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Wiener-Hopf integral
operators with PC symbols
on spaces with
Muckenhoupt weight

Albrecht Bottcher and Ilya M. Spitkovsky

Abstract. We describe the spectrum and the essential spectrum and
give an index formula for Wiener-Hopf integral operators with piecewise
continuous symbols on the space L? (R ,w) with a Muckenhoupt weight
w. Our main result says that the essential spectrum is a set resulting
from the essential range of the symbol by joining the two endpoints of
each jump by a certain sickle-shaped domain, whose shape is completely
determined by the value of p and the behavior of the weight w at the
origin and at infinity.

1. Introduction.

Given p € (1,00), let A, denote the set of all nonnegative functions
w on R such that the singular integral operator S,

SH@ =~ [ L8 4 reR,

T J_ul—T
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is bounded on the space L?(R,w) with the norm

o= ([ oterscor)™

If w € Ap, then the compression S of S to the positive half-line Ry =
[0, 00),

i@ =g [ L, e,

is a bounded operator on L?(R4,w) (= LP(R4+,w|R4)). The operator
S+ is the archetypal example of a Wiener-Hopf integral operator with
a piecewise continuous symbol: by definition, the symbol of S, is the
function

1 for £ € (—o0,0),

-1 for £ € (0,00).

A fairly general class of Wiener-Hopf integral operators is consti-
tuted by operators W of the form

o(§) = —sgn = {

(Wf)(z)= Z;]z /oo . I)f(t) dt+/ook(:1:—t)f(t)dt, >0,

t—zx

where ¢; € C and a; € R are given numbers and k € L'(R) is a given
function. The symbol of W is defined as the function

m

a(€)=-> cisgn(€—a;)+ k(E), E€R,

J=1

where k stands for the Fourier transform of &,

O = (FB©) = [ Ko)ds,  €eR.

Notice that a is a piecewise continuous function with jumps at a4, ...,
am and at infinity.

What we are interested in here is the spectrum and essential spec-
trum of a Wiener-Hopf integral operator with a piecewise continuous
symbol on LP(R;,w). As usual, the spectrum of W is the set of all
A € C for which W — Al is not invertible. An operator W on L?(R4, w)
is said to be Fredholm if it is invertible modulo the compact operators
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or, equivalently, if its range is closed and the kernel and cokernel di-
mensions a(W) and B(W) are finite; in that case the index of W is
defined as a(W) — B(W). Finally, the essential spectrum of W is the
set of all A € C for which W — AI is not Fredholm.

It has been well known for a long time that the spectrum and
the essential spectrum of a Wiener-Hopf operator with a discontinuous
symbol on LP(R;) or LP(R4,w) depend very sensitively on the value
of p and the behavior of the weight w.

The pioneering work in this direction is undoubtedly Harold Wi-
dom’s 1960 paper [16]. He observed that the spectrum of S on LP(Ry)
is a certain circular arc depending on the value of p, namely the cir-
cular arc between —1 and 1 containing the point —t cot(7/p), which
enabled him to identify the spectrum, the essential spectrum and the
index of Toeplitz operators with piecewise continuous symbols on the
(unweighted) Hardy spaces HP(R); the Toeplitz operators studied by
Widom are just the operators we shall define in Section 2.9 below.

The hey-day of the development was the late sixties and early sev-
enties. During that period Gohberg, Krupnik [8], and Duduchava [4],[5],
to mention only the principal figures, considered pure Wiener-Hopf op-
erators with piecewise continuous symbols on LP(R ) (without weight)
and they proved that the essential spectrum of W is the continuous
closed curve resulting from the range of the symbol a by joining the
two endpoints of each jump by a certain circular arc. All these arcs are
similar to one another and their shape is determined by p. The results
of Gohberg, Krupnik, and Duduchava were extended by Schneider [14]
to weights w of the form

n

w(z) =z +il*[[le—B", zeR.

=1

He showed that the essential spectrum of W is again obtained from
the range of a by filling in certain circular arcs. The interesting point
of Schneider’s criterion is that the circular arcs between a(a; — 0) and
a(aj + 0) are all similar to one another and that their shape is deter-
mined solely by p and the behavior of the weight at infinity (z.e. the
value of u+ p1 +- -+ pn ), while the shape of the arc joining a(+o0) to
a(—o0) depends only on p and the behavior of the weight at the point
z=0.

The main result of the present paper describes the essential spec-
trum of W in case w is any weight belonging to A,. We show that
this spectrum is obtained from the range of a by filling in a certain
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sickle-shaped domain (which will be called a “horn”) for each jump.
A circular arc is regarded as a degenerate horn. It turns out that the
horns joining a(a; — 0) and a(a; + 0) are again similar to one another
and that their shape is given by merely the value of p and the behavior
of the weight at infinity, whereas the shape of the horn between a(+o0)
and a(—oo) depends on p and the behavior of the weight at z = 0 alone.

2. Toeplitz Operators.
2.1. Muckenhoupt weights on the circle.

Let T denote the complex unit circle and let p be a nonegative
function on T which does not vanish identically. For 1 < p < oo,
consider the space LP(T, p) with the norm

17lhs = ([ 11107am) ™,

where dm is Lebesgue measure on T. If p = 1, we abbreviate L?(T, p) to
L?(T). The weight p is said to be a Muckenhoupt weight, and we write
p € Ap(T) in this case, if p € LP(T), p~! € LY(T) (1/p+1/q=1), and

G ) G o) <

where the supremum is over all subarcs I of T and |I| denotes the arc
length of I. Weights of this type first appeared in connection with the
boundedness of the Hardy maximal function operator in Muckenhoupt’s
paper [11].

The singular integral operator Sy ,

04 er

1
(5ot =7 | 2
is bounded on LP(T) by a theorem of Marcel Riesz. The problem of
describing all the weights p such that Sy maps LP(T)NLP(T, p) into itself
and extends from LP(T) N LP(T, p) to a bounded operator on L?(T, p)
was solved by Hunt, Muckenhoupt and Wheeden [9]: S, extends to a
bounded operator on L?(T, p) if and only if p € A,(T). We remark that
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nice discussions of the Hunt-Muckenhoupt-Wheeden Theorem are also
in [6], [7], [10] and [13]. Notice that a so-called power weight, given by

n

pt)=[[It-ml*, teT,

=1

where 7, € T and y; € R, belongs to A,(T) if and only if —1/p < p; <
1/q for all [.

Troughout what follows let p € A,(T). Then the two projections
Py = (I+ S5)/2 and Qo = (I — Sp)/2 are bounded on LP(T, p). The
Hardy space HP(T,p) is defined as the image of Py in LP(T,p), i.e.
HP(T, p) = P,L?(T, p).

2.2. Toeplitz operators on the unit circle.

The Toeplitz operator Ty(a) generated by a function a € L*°(T) is
the operator on HP?(T, p) that sends f to Py(af). Since p € Ap(T), the
operator Tp(a) is bounded. The function a is usually referred to as the
symbol of Ty(a).

A well known theorem by L.A. Coburn says that Ty(a) is invertible
if and only if Tp(a) is Fredholm with index zero (see e.g. [2, p. 216]).
Hence, in order to study invertibility of Toeplitz operators (or, equiv-
alently, in order to describe their spectrum), it suffices to establish a
Fredholm criterion (or to describe the essential spectrum) and to have
an index formula.

Given a Banach algebra 2 with identity element, we denote by G2
the invertible elements in 2. The Hartman-Wintner Theorem (again
see [2, p. 216]) tells us that if Ty(a) is Fredholm, then a € GL*°(T).
If a is continuous, a € C(T), then the invertibility of a in L*°(T) (and
thus in C(T)) is also sufficient for Ty(a) to be Fredholm, and the index
of Ty(a) is then minus the winding number of a(T) about the origin.
In general, however, symbols a € GL*(T) do not induce Fredholm
Toeplitz operators.

Let PC(T) denote the C*-algebra of all piecewise continuous func-
tions on T. A function a € PC(T) has at most countably many jumps
and the limits

a(t+0)= lim a(te*)
e—0=+0

exist for each ¢ € T. Under the sole assumption that p € A,(T),
a Fredholm criterion and an index formula for Toeplitz operators on
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H?(T, p) with symbols in PC(T) were only recently obtained by one
of the authors [15]. Before citing this result we need a (crucial) lemma
and the definition of what we call horns.

Lemma 2.3. ([15]). Let p € A,(T) and 7 € T. Then the set

I(p,p) = {n €R: |t — 7]*p(t) € A,(T)}

18 an open interval of a length not greater than 1 containing the origin.
REMARK 2.4. If p is a power weight as in Section 2.1, then clearly

L,(p,p) = (-1/p— 1, 1/q — ),
IT(p,p) = (—1/P,1/Q) for 7 ¢ {Tla- .. ’Tn}v

i.e. all I-(p, p) have length 1. To produce a weight p € A,(T) such that
I.(p,p) is any prescribed interval (—a,3) 3 0 of a length a + 3 < 1,
let first PQC denote the C*-algebra of all piecewise quasicontinuous
functions on T (see [2] or [3]). In [3], we showed that there exist a €
PQC with a logarithm loga € PQC such that Ty(a) is invertible on
HP(T,|t — 7|*) if and only if 1/p + p € (0,a + B). This implies (see
[15]) that if we put

p(t) = |exp(Po(loga))| [t — |*71/7,
then p € A,(T) and I (p, p) = (—a, B).

Definition 2.5. For p € Ay(T) and 7 € T, let I,(p,p) be the interval
determined by Lemma 2.3 and define the numbers v(p, p) by

(—=v7(p,p),1— v (p,p)) = I(p,p)-

Because I, (p, p) contains the origin and is of a length not greater than
1, we have
0< vy (p,p) <vf(p,p)<1.

2.6. Horns.

In what follows the argument of a nonzero complex number is al-
ways specified to belong to [0,27). Given two real numbers v, § such
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that 0 < v < 6§ < 1 and two distinct complex numbers z,w, we define
the 4,6 horn joining z and w to be the set

(—=z

H(z,w;7,8) = {¢ € C\{z,w} : arg (—w

€ [2m7,276]} U {z,w}.
Notice that for each ¢ € (0,1) the set

{¢ € C\{z,w} : arg g:; =2m¢d}

is a circular arc. If ¢ = 1/2, this arc degenerates to the open line
segment (z,w). For ¢ € (0,1/2) (respectively ¢ € (1/2,1)) this arc is
located on the right (respectively, left) of the straight line passing first
z and then w, and it consists just of the points at which the segment
[z, w] is seen at the angle 27¢ (respectively, 27(1 — ¢)). To cover the
case z = w, we also define H(z, z;7,6) = {z}.

Note that 0 ¢ H(z,w;v,6) if and only if z # 0, w # 0, and
arg(z/w) does not belong to [27y, 276].

For a € PC(T), the set

ap,, = | J H(a(r = 0),a(r + 0);v7 (p, p), v (, p))
TeT

results from the (essential) range of a by filling in a well-defined horn
into each jump. The set a, , is clearly connected. Any closed continuous
curve obtained from the (essential) range of a by joining a(t — 0) to
a(t 4+ 0) by a circular arc contained in the horn between a(t — 0) and
a(t + 0) inherits an orientation in a natural fashion. If 0 ¢ a, ,, we
denote by wind a, , the winding number of that curve about the origin.

Theorem 2.7. ([18]). If p € A,(T) and a € PC(T), then the essential
spectrum of To(a) on HP(T,p) is the set ap ,. In case 0 ¢ a, ,, the
indez of To(a) on HP(T, p) equals —winda, , .

2.8. Muckenhoupt weights on the real line.

Our next concern is to carry over Theorem 2.7 to Toeplitz operators -
on Hardy spaces of the real line.
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For p € (1,00) and a nonnegative function w on R which is not
identically zero, we consider the space LP(R,w), whose norm is given

by
1l = ([ lo@s@paz) "

Again we abbreviate L?(R, 1) to L?(R).
We write w € A, and call w a Muckenhoupt weight if w € LP(R),
w™! € LY(R) (1/p+1/g=1), and

Sl}p (T}T/;w(z)pd$)l/p(ti”,/] (z)_qu)l/q < o0,

where I ranges over all finite intervals I C R and |I| stands for the
length of the interval I.

The singular integral operator S (see the Introduction) is bounded
on LP(R), and it was also Hunt, Muckenhoupt and Wheeden [9] who
showed that S maps LP(R) N LP(R,w) into itself and extends to a
bounded operator on LP(R,w) if and only if w € A4, .

Henceforth let always w € A,. The projections P = (I + §)/2
and @ = (I — S)/2 are bounded on L?(R,w), and the image of P in
L?(R,w) is denoted by HP(R, w) and called the p-th Hardy space of R
with the weight function w.

2.9. Toeplitz operators on the real line.

Given a € L*°(R), define the Toeplitz operator T(a) on HP(R, w)
by T(a)f = P(af). Since w € A,, this is a bounded operator. Again
the function a is called the symbol of T(a).

The Coburn and Hartman-Wintner theorems extend to Toeplitz
operators on HP(R,w): the operator T'(a) is invertible if and only if
it is Fredholm of index zero, and the Fredholmness of T'(a) implies
the invertibility of a in L*(R). If a € C(R), which means that a €
C(R) N L*(R) and that the limits a(+o00) exist and are equal to each
other, then for T'(a) to be Fredholm on H?(R,w) it is necessary and
sufficient that a € GL*°(R); in that case the index of T'(a) is minus the
winding number of the range of a about the origin.

Let PC be the C*-subalgebra of L°°(R) consisting of all functions
a in L*(R) which have limits a(£ £ 0) for each ¢ € R and for which the
limits a(+o00) exist. Note that functions in PC have at most countably
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many jumps. Also notice that PC contains C(R), the C*-algebra of
all functions @ € C(R) N L*(R) with finite (but not necessarily equal)
limits a(£o00).

Theorem 2.10. Let w € A, and a € PC.
(1) Each of the sets

L(pw)={n€eR: fz:f

I (p,w)={peR: |z—:|7 w(z) € 4,}

v e s}, ¢er,

18 an open interval of a length not greater than 1 which contains the
origin
- 5 def
L(p,w) = (—vg (p,w),1 — v (p,w))  (E€R=RU{o0})
with 0 < v (p,w) < Vz'(p,w) <1.
(2) The essential spectrum of T(a) on HP(R,w) equals

apw = (| H(al€ — 0),a(¢ +0); 75 (p,w), 77 (p,w))

EER
U H(a(+00), a(—00); v (p, w), v (P, w)) -

If0 ¢ apw, then the indezx of T(a) 1s —wind ap 4 -

PROOF. We reduce the case of the real line to the situation on the
circle in a standard way (see e.g. [8, p. 307]).
Define the weight p on T by

t+
t—

p(t) = w(i 1)|t _1'7%P, teT.

Then the operator B : LP(R,w) — L?(T, p) given by

't+1), tET, ¢ € L"(R,w),

1
)= ——
(Bo)(t) = 7= ¢(iT—5
is an isomorphism, the inverse operator being

z €R, ¢ € L?(T, p).

x—{—i),

T —1

(B )() = —— v
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Moreover, B~1SyB = —S. The latter equality in conjunction with the
Hunt-Muckenhoupt-Wheeden theorems implies that p € A,(T) if and
only if w € A, and also that, for { =¢(7+1)/(t — 1) € R,

= w@ € 4,

T—1

if and only if

ity - ot 122
| (i )= 1 = = T () € A,(T),
t—1

and, analogously, that

|z — | T*w(z) € A,

exactly if
A+1 e st41 \—2/p _ o .
lzt—l _ZI w(zt—1)lt_1| =278t = 1)#p(t) € Ap(T).

So part (1) of the present theorem is an immediate consequence of
Lemma 2.3.

Let us now show that 0 ¢ a, . if and only if T(a) is Fredholm.
Since the essential range of a is a subset of a, ., and the Fredholmness
of T(a) necessitates the invertibility of a in L*°(R), we may without
loss of generality a priori assume that a € GLP(R).

It is easily seen that T(a) = Pa|lm P is Fredholm of index x on
H?(R,w) = PLP(R,w) if and only if the operator @)+ PaP is Fredholm
of index « on LP(R,w). Because BSB~! = —Sj, it follows that

B(Q + PaP)B™! = Py + QoyBaB™'Q,
= Py + Qob Qo
=(Po+bQo)(I - PobQo)
=b(b""Py+ Qo)(I — PobQy)
= b(Qo + Pob™' Po)(I + Qob™ ' Po)(I — PobQo),

where b(t) = a(i(t+1)/(t—1)) for t € T. The operators I+Qob~' Py and
I—P,ybQq are invertible, the inverses being I —Qyb~! Py and I+ Pyb Qo,
respectively. Since a € GL*(R), the operator of multiplication by b is
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invertible as well. Hence, T'(a) is Fredholm of index x on H?(R,w) if
and only if
To(b™') = Ppb~!|Im P,

is Fredholm of index « on H?(T, p) = Py L?(T, p).
From Theorem 2.7 we infer that Ty(b™!) is Fredholm if and only if

0¢ (b = JHO(r=0),67 (7 +0);v7(p, p), v (p, p))
€T

= |J HE (-0, (r +0)07(p,p), v (pop))
T€T\{1}

U HGH(1 = 0),67(1 4 0); 15 (p, p), v (P, p))

= |J H(a™ (€ +0),a7 (€~ 0); 5 (p, p), v (9, p))
EER

U H(a™" (=o0),a™ (+o0); vz (p, ), v (P, ) -
Consequently, 0 ¢ (b71), , exactly if

aTME+0) _ a(€=0)
Mg —0) T "84 +0)

for all £ € R and

¢ [2mvg (p,w), 210 (p, w)]

arg a”!(—o0) a(+00§ ¢ [2rv 2 (p,w), 2mv (p, w))

a=1(+o0) '8 a(—oo

which is equivalent to the condition that 0 ¢ a, . -

3. Convolution operators on the real line.
3.1. Fourier multipliers.

Again let 1 < p < oo and w € A,. Denote by F': L*(R) — L*(R)
the Fourier transform and by F'~! its inverse. If a is any function defined
on R, the multiplication operator f +— af is traditionally denoted by
al, and in case al is applied after another operator, B say, one writes
aB instead of aIB.

A function a € L*°(R; is called a Fourier multiplier on L?(R, w)
if the mapping f — F~1aFf maps L*(R) N L?(R,w) into itself and
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extends to a bounded operator of L?(R,w) into itself. The latter op-
erator is then usually denoted by W°(a). It is well known that the set
MP(w) of all Fourier multipliers on LP(R,w) is a Banach algebra under
the norm

llallp,w = IW°(a)ll c(zr B w)) »

where £(X') stands for the Banach algebra of all bounded operators on
a Banach space X.

One can show (see e.g. [5] and [12] for power weights) that M?(w)
contains all functions a € L*(R) with finite total variation Var (a) and
that for such functions the estimate

lallpaw < epaw (llallos + Var (a))

holds, where ¢, ,, is some constant independent of a.

Let R be the compactification of R by one point at infinity. The
closure in MP(w) of the set of all functions a € C(R) with Var (a) < oo
is denoted by CP(w), and we let PC?(w) stand for the closure in M?(w)
of the set of all piecewise continuous functions on R which have finite
total variation and at most finitely many jumps. Clearly C?(w) C
PC?(w). It can be shown (see [14] and [12, Proposition 12.2] for power
weights) that PCP(w) is continuously embedded into L>°(R). This
implies that C?(w) C C(R) and PCP(w) C PC, where PC refers to
the C*-subalgebra of L>°(R) consisting of all functions a which possess
finite one-sided limits a(é £ 0) at every point £ € R. Morcover, a
function a € CP(w) (respectively, « € PCP(w)) is invertible in C?(w)
(respectively, PCP(w)) if and only if it is invertible in L>(R) (see [12]
for the case of power weights).

3.2. Wiener-Hopf integral operators.

The Wicner-Hopf operator 1(a) generated by a function a €
MP(w) (its so-called symbol) is the compression of W°(a) to the pos-
itive half-line Ry = (0,00). z.e. W(a) is the bounded operator on
LP(R4,w) (= LP(R4.,w|R4)) acting by the rule f — (W°a)f)Ry4.
Let x4 be the characteristic function of Ry . The space LP(R,, w) may
be identified with y4L?(R.w) and consequently, we may also think of
W (a) as the operator 4 W °(a)|Im y41.

Our aim is to describe the spectrum of W(a) on LP(Ry,w) if a
belongs to PCP?(w). The proof of Proposition 2.8 of [5] for w = 1 along
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with the arguments used in the proof of Proposition 1.6 of [14] for power
weights can be easily modified to show that if a € PC?(w) N GL*®(R),
then W(a) is invertible on LP(R4,w) if and only if W(a) is Fredholm
of index zero on LP(R4,w). We shall prove below that a € GL*®(R)
whenever a € PC?(w) and W(a) is Fredholm. Thus, in order to identify
the spectrum of W (a) we are again left with finding a Fredholm criterion
and an index formula.

We finally remark that if a € C?(w), then W(a) is Fredholm on
LP(R4,w) exactly if a(€) # 0 for all £ € R, in which case the index of

W {(a) equals minus the winding number of the naturally oriented curve
a(R) about the origin (see [2], [4], [8] and [12] for power weights).

3.3. Singular integral operators.

The connection between Tocplitz operators on HP (R, w) and Wie-
ner-Hopf operators on LP(R4,w) is established by singular integral op-
erators on LP(R,w), i.e. operators of the form b1 + ¢S = bI + cW%(0)
or, slightly more generally, of the form

AU+ eS)A T = bI + W (),

where \,(z) = €7* for z,n € R, 0(£) = —sgn¢ for £ € R, and 0,(§) =
—sgn({ —n) for £,n € R.

Let x_ and x4 be the characteristic functions of (—o0,0) and
(0, 4+00), respectively. We have

(I 4+ x+Woa)x-D)(x-I+ x4 W°(a)x+I) = x-I + x+ W°(a),

and since I + x4 W% a)x—I has the inverse I — x4+ W0%a)x_I, it fol-
lows that the Wiener-Hopf operator W(a) = x4+ W°(a)|Im x4 is Fred-
holm on L?(R,,w) if and only if so is the operator x_I + x4+ W?°(a) on
LP(R,w).

In the next chapters we shall use localization techniques to reduce
the study of Y_I + x4+ W?(a) to the investigation of the operators

X-I+x+W'(a(n —0)x; +a(n+0)x7), 7ne€R,

and
X—T + v+ W' (a(—o0)xg + a(+0)x7 ),
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where x, and xj; are, respectively, the characteristic functions of
(—o0,n) and (n, 4+00). But if a, 3 € C, then

_ 1+o0 l1—0o
x=T+ X WPlaxy +8x7) = x-1 +xsW* (a—522 + =71)

o —

Pwo(o,)

_ a+f
—(x-+ 5 X+)I+X+
= bl + cWoay,),

and since W(o,) = A, 1S\, I and /\Tf] I are isomorphisms, we arrive at
the operators

bI+c¢S=bP+Q)+c(P-Q)=(b+c)P+(b—-0c)Q
=(b—(;)(b+r

P +Q) = (b-c)(dP+Q).
Because now (dP + Q) = (PdP + Q)(I + QdP) and I + QQdP has the
inverse I — QdP, we arc finally led to operators of the form Pd|lm P
with d € PC. But the latter operators are just the Toeplitz operators
T(b) on Im P = H?(R,w) we have alrcady studied in Chapter 2.

For further reference we summarize part of the preceding reasoning.

Lemma 3.4. Let b,c € PC and n € R, and suppose b — ¢ € GL*®(R).
Then bI+cW°(a,) 1s Fredholm on LP(R,w) if and only if T((b+c)/(b—
c)) is Fredholm on HP(R,w).

4. Local singular integral operators.
4.1. Preliminaries.

To carry out the program sketched in Section 3.3 we make use of
the local principle of Gohberg and Krupnik [8] (see also [1], [2], [5] and
12))

Let 2 be a Banach algebra with identity clement. A bounded
subset MM C A is called a localizing class if 0 ¢ 91 and for every two
clements By, B, € 9 there exists a third element B € 9 such that
B;B = BB; = B for j = 1,2. A family {M;}rer of localizing classes
is said to be covering if for every choice {B;},ep of elements B, € 9,
there exist finitely many 7, ..., 7, such that B, +---+ B, _ isinvertible

in 2.
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Let now {9M,},er be a covering family of localizing classes in 2
and put B = (J{9M, : 7 € T}. The commutant Com B is a closed
subalgebra of . Fot 7 € T, define

3:={A€Com®B: inf ||AB||= inf ||BA||=0}.
BeM, BeM,

One can easily show that 3, is a closed proper two-sided ideal of Com %B.
Finally, for A € Com B, denote by A, the coset of the quotient algebra
Com B/3, containing A.

Theorem 4.2. (Local principle of Gohberg and Krupnik, [8]). With the
notation introduced in Section 4.1, an element A € Com*B 1s invertible
in A if and only if A, s invertible in Com*B/3, for every r € T.

4.3. The algebra 2.

We apply Theorem 4.2 to the Calkin algebré A = L/K, where L
is the Banach algebra of all bounded operators on L?(R;,w) and K
stands for the ideal of all compact operators on LP(R,w).

4.4. Localizing classes in 2.

We are interested in “localizing” operators of the form bI+cW?(a),
where b,c € PC and a € PC?(w). In order to “localize” the coefficients
b and c at y € R and the symbol a at n € R, we consider the following
candidates M, , for localizing classes in A = L/K: the set 9, , consists
of all cosets of the form vW?°(u)+K such that v,u € C(R) are piecewise
linear with finite total variation and v (respectively, u) is identically 1 in
some open neighborhood of y (respectively, n) and identically 0 outside
some other open neighborhood of y (respectively, n). One can show as
in [5] (for w = 1) or in [12] (for power weights) that 9, , coincides
with K and thus the zero in £/K whenever y € R and n € R. However,
if

(y,m) € (R x R)\(R x R) = (R x {00}) U ({o0} x R)U {(c0,00)} =T,

then M, , is indeed a localizing class in £/K (again see [5] or [12] for
power weights).
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To check whether {90, ,)}(y,n) e is a covering family, i.e. whether
> u;jWP°(v;) is Fredholm provided Y uj > 1 and > v; > 1, and to
=1

decide whether the cosets we are interested in, namely
bI + cW(a) + K, b,ce PC, a € PCP(w),

belong to Com*B a good piece of work must be done. For w = 1 all
this is done in [5], and for power weights a detailed exposition of these
things is in [12] (see also [14]). It is not difficult to convince oneself that
the arguments of [5] and [12] extend to arbitrary Muckenhoupt weights
and thus show that {9, ,y}(y,mer is a covering family of localizing
classes in £/K and that all the cosets mentioned above are in Com B.

4.5. Localization in 2.
For b,c € PC,a € PC?(w) and (y,n) € T we put
[6I + cW°(a)]y , = [b + cW°(a) + K](y,n)-
One can show (as in [4] and [12]) that
[ + cW’O(a)];,n = [by] + cyWO(a,,)];',,,

if by, ¢, € PC and a, € PC?(w) are any function such that b—b,,c—c,
are continuous at y and a — a, is continuous at 7. Hence, instead
with an operator bI + ¢cW?°(a), one has to deal with the in general
simpler operators b,I + ¢,W°(a,); the price for this reduction is that
invertibility in £/K is replaced by invertibility in Com B/3y 4)-

Our main concern in this chapter is the invertibility of the elements
(“local singular integral operators”) [bI +cW°(a¢)]7  in Com B/3(y,y)-

Lemma 4.6. Let b,c € PC, assume that b — ¢ and b + c are both
invertible in L°(R) (and thus in PC), and putd = dy . = (b+c)/(b—c).
Suppose further that y,n,( € R. Then

(1) [bI + cW°(0¢)]5 o 18 invertible if and only if

0 ¢ H(d(y — 0),d(y +0); v, (p,w), v (p,w));

(2) [bI + cWO(0¢)|%, o 18 invertible;

00,00
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(3) [bI 4 cWO(0¢)]%,, i invertible if n # (;
(4) [bI + WO (a()IZ, ¢ is invertible if and only if

0 ¢ H(d(+00), d(~00); v (P, w), Ve (P, w)) -

PROOF. (1) We have
[bI + W (0¢)]5 00 = [by + ¢, W(0¢)]5 oo

where by, c, € PC are any functions such that b,(y £+ 0) = b(y = 0) and
cy(y £0) = ¢(y £0). The functions b, and ¢, may be chosen to be
continuous on R\{y} and to satisfy by ¢y € GPC and dy, ,(z) # 0
for all z € R\{y}.

Suppose first that 0 does not belong to the horn H = H(---). We
then infer from Lemma 3.4 and Theorem 2.10(1) that b, + ¢, W%(o¢)
is Fredholm, which, by Theorem 4.2, implies that [b, I + cyWO(ac)];',oo
is all the more invertible.

Now suppose 0 € ‘H and, contrary to what we want, assume [b, ] +
cyWO(o¢)]y o is invertible. For z € R\{y} we have

by T + ¢, WO(00)]F o0 = lay ()T + by (2)W(00)] 7 oo

and since the operator ay(z)I + b,(z)W°(o¢) (having constant coeffi-
cients) is Fredholm by Lemma 3.4 and Theorem 2.10(1) (for constant
symbols), [b,I + ¢, W°(o¢)]7 o, must be invertible due to Theorem 4.2.
Finally, if n is any point of R, then

by T + ¢, W (0% = [By(00)] + ()W (005

and combining Lemma 3.4, Theorem 2.10(1) (for constant symbols)
and the “only if” part of Theorem 4.2 we conclude again that [b,] +
cyWO(0¢)]%,, is invertible

Hence it turns out that [b,I + ¢,W°(o¢)]7 , is invertible for all
(z,n) € T, and so the “if” portion of Theorem 4.2 gives that b,I +
¢y W (o) is Fredholm. This however contradicts Lemma 3.4 and The-
orem 2.10(1), since 0 € H.

(2) The element [bI + cW°(o¢)]%, o is equal to

g9 = [b(—00)x-TI + b(+o0)x+T
+ (e(—00)x— + c(+00)x+ )W  (x= — x+)]% .00
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and hence belongs to the closed subalgebra € of Com B/3 (o) gener-
ated by

€= [I]‘go,oo v T'= [X+I]go,oo y S= [WO(X+)]go,oo .
(notice that x4 = 1—x4). Because ¢W°(¢p) — WO (¢)¢I is compact on

L?(R,w) whenever ¢ € C(R) and 3 € C(R) N PCP(w) (see e.g. [12, p.
93] for power weights) and there are such ¢ and ¥ with

r=[0 0, 5=[W(¥)5%w;
it follows that € is commutative and that r> = r and s> = s. Let M
denote the maximal ideal space of € and let I' : € — C(M) stand for
the Gelfand transform. The spectra of the idempotents r and s are
subsets of {0,1}. For j,k € {0,1}, put
My = {m €M : (Tr)(m) =, (Ts)(m) = k}.

So M = MOO U Mo] U AIIO U Mlla and if m S Mjk, then
(Tg)(m) = b(—o00)(1—)+b(-+00)j +(e(—00)(1—j)+e(+00)s)(1—k—k),
which is one of the four numbers

b(—o0) £ ¢(—00), b(+00) £ ¢(+00).
Since b+ ¢ € GL*°(R), we obtain that g is invertible in € and thus all

the more in Com B /300, 00) -
(23) We now have

(B + W (00T = T + oc(m)el),
and since b+ o¢(n)c is either b — c or b+ ¢, the multiplication operator
(b+ a¢(n)c) is invertible on LP(R, w).
(4) Because
(B + WO ()| ¢ = [boo] + coWO(00)] % ¢

for any functions b, coo € C(R) such that

boo(F00) = b(F00), coo(F0) = ¢(£0), bog ¢ € GPC, dp, ., #0,
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for all z € R, it suffices to prove that [bool +coo W (0¢)]Z, . is invertible

if and only if 0 is not in the horn H o H(---).

If 0 ¢ H, then bool + ceuW?®(0¢) is Fredholm by Lemma 3.4 and
Theorem 2.10(1) and hence [booI + coo W° (0¢)]5 ¢ is invertible by The-
orem 4.2.

Conversely, assume 0 € H but [boo] + cooW(0¢)]7, . is invertible.
If y € R, then

oo + ca W (00)]7 oo = [boo(y) + oo(¥) WO (0)]T oo »

which is invertible by Lemma 3.4, Theorem 2.10(1) (with constant sym-
bols), and Theorem 4.2. In case n € R\{(}, we know that [booI +
CooWO(0y)]%, , is invertible from the parts (2) and (3) we have already
proved. Thus, [bool + CocW°(0¢)]%, , is invertible for all (y,n) € T.
From Theorem 4.2 we so infer that boo + coo W°(0¢) is Fredholm, which
contradicts Theorem 2.10(1), since 0 € K.

5. Wiener-Hopf integral operators.

Lemma 5.1. If a € PC?(w) N GL*®(R) and y,n € R, then:
(1) [x=T + x+W°(a)]; o is invertible if y # 0;
(2) [x-I+ X+W0(a)]z,”oo 18 invertible if and only if

0 ¢ H(a(+00),a(—00); v (p, w), v (P, w));

(3) [x=T + x+W°(a)]Z, o is invertible;
(4) [x-I+ x+W°a)]%, , 18 invertible if and only if

0 ¢ H(a(n — 0),a(n + 0); vz (p,w), vL(p, w)).

PROOF. (1) The element [x_I + x.,.WO(a)];’oo is equal to [I]7 , for
y < 0 and equal to

[W°(a(—c0)x- + a(+00)x+)]y 00
_ a(—o0) —;— a(+oo)I+ a(—o0) —2— a(+oo)W0(a) ;’
= b + W°(0)]]

,O0
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for y > 0. It is clear that [I]7  is invertible, and since

b+c a(—o0)
b—c  a(4o00)

#07

we deduce the invertility of [x—I + x+W?°(a)]} ., from Lemma 4.6(1)
(with constant b and c).
(2) The coset [x—I + x4+ W°(a)] ., equals

[X-T+ x4+ W°(a(—00)x - + a(+00)x4)]f oo
a(—o0) ‘;' a(+°°)1- + a(—o0) ;a('*'oo)
=[bI + W°(0)]f o -

= [x-1+ WO(o) :

We have

<b+c

b—p)($)=1 forz <0

and

bjc ($):a(—00)7£0 forz > 0.
b—c a(+0o0)

Hence, Lemma 4.6(1) implies that [x_TI + X+W°(a)]g’oo is invertible if
and only if

0¢ H(l,%—;;vﬂp,w%w‘f(z),w)) ;

which happens if and only if
0 ¢ H(a(+00), a(—00); v (p, w), vy (p,w))-

(3) Because [x_I + x4 W°(a)]%, ., equals

™

[x-1 + x+W°(a(—00)x~ + a(+00) x4 )]% 00 = [bI + W ()], o

the assertion is immediate from Lemma 4.6(2).
(4) As in Section 3.3, let x,” and X: be the characteristic functions
of (—oo,n) and (5, 400), respectively. Then

[X-I+ x+W(a)]% = [x=T + x4+ W°(a(n — 0)x;, + a(n + 0)x;)]%.,

—0)+a(y+0 —0)—a(n+0 ™
/_I+a(77 );0(77 )I+ a(Tl )2 a(77 )WO(O',-,) o
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0 L4
= [bI + W' (0y)|S,n »

and since

b+c _ b+c _a(n—0)
b—c(—oo)_l’ b—c(+oo)—a(n+0)’

we obtain from Lemma 4.6(4) that [x—I + x+W°(a)]Z, , is invertible if
and only if

0 ¢ H(SI g vz, w)vh (o)

which is equivalent to the condition that
0 ¢ H(a(’? - 0)7 a(’? + 0)7 Vo_o(_pv w)7 V:o(pa w)) .
Here now is our main result

Theorem 5.2. Let w € A,, a € PC?(w), and define v (p,w), vi(p,
w) by Theorem 2.10(1). Then the essential spectrum of W(a) on
LP(Ry,w) s

P = (nLeJm H(a(n - 0),a(n +0); vz (p, w), v (p, )

U H(a(+00),a(—00); vy (p,w), vy (p,w)).
If 0 ¢ a?'* then the indez of W(a) on LP(R4,w) equals —wind a?*.

PROOF. We first show that the essential range of a is a subset of the
essential spectrum of W(a).
Let n € R be a point at which a is continuous and assume

W(a) - a(n)I = W(a — a(n))
is Fredholm on L?(R4,w). Then, by Section 3.3, the operator x_I +

X+ W?®(a—a(n)) is also Fredholm on L?(R,w) and consequently, by the
“only if” part of Theorem 4.2,

XTI+ x+W°(a—am))%,, = X-1% ,
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is invertible. This, however, is impossible because

X+1)50,n[X~1150,n = [0]S0,5 s [X+1]5,4 7 [0]50,y -

Thus, the essential spectrum of W(a) contains the values of a at all
points at which it is continuous. Since these values are dense in the es-
sential range of a and the essential spectrum of W(a) is closed, it follows
that the whole essential range is a subset of the essential spectrum.

We are now left with showing that if a € PC?(w) N GL*(R), then
xX-I + x+W?(a) is Fredholm on L?(R,w) if and only if 0 ¢ a?*; the
index formula then follows by a standard homotopy argument from the
case of continuous symbols.

But Theorem 4.2 in conjunction with Lemma 5.1 implies at once
that if a € PCP(w) N GL*°(R), then the Fredholmness of W(a) is
equivalent to the condition that 0 ¢ aP*.

5.3. CONCLUDING REMARK. Lemma 4.6 can also be used to gain
interesting information about the Fredholmness of operators of the form

A=Y "b;Wqy),

i=1

i.e. pseudodifferential operators with symbols
S bi(x)aj(€)  b; € PC,a; € PCP(w)
=1

on LP(R,w) (for the case w = 1 see [4] and for power weights see [12]
and [14]). We shall devote more space to this question in a forthcoming

paper.
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