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Non-separable bidimensional

wavelet bases

Albert Cohen and Ingrid Daubechies

Abstract. We build orthonormal and biorthogonal wavelet bases of
L?(R?) with dilation matrices of determinant 2. As for the one dimen-
sional case, our construction uses a scaling function which solves a two-
scale difference equation associated to a FIR filter. Our wavelets are
generated from a single compactly supported mother function. How-
ever, the regularity of these functions cannot be derived by the same
approach as in the one dimensional case. We review existing techniques
to evaluate the regularity of wavelets, and we introduce new methods
which allow to estimate the smoothness of non-separable wavelets and
scaling functions in the most general situations. We illustrate these
with several examples.

I. Introduction.

In the most general sense, wavelet bases are discrete families of
functions obtained by dilations and translations of a finite number of
well chosen mother functions. The most well known are certainly dyadic
orthonormal bases of L?(R), of the type

(1.1) Yi(z) = 27922 x —k), jkeZ.

These constructions have found many interesting applications, both in
mathematics because they form Riesz bases for many functional spaces
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and in signal processing because wavelet expansions are more appropri-
ate than Fourier series to represent the abrupt changes in non-stationary
signals.

Several examples have been given by Meyer [Mel], Lemarié [Le]
and Daubechies [Daul], generalizing the classic Haar basis in which
the mother wavelet » = x[0,1/2) — X[1/2,1) suffers from a lack of
regularity since it is not even continuous. All are based on the concept
of multiscale analysis, i.e. a ladder of closed subspaces {V;}, ez which
approximates L?(R),

(1.2) {0} »..icVCVo... > L*R),

(note that in some papers and in Meyer’s book, the converse convention
is used, t.e. V; C Vj41) and satisfies the following properties,

(1.3) f(z) €V; < f(22) € Vju1 <= f(2'2) € Vg,
(1.4) there exists a function ¢(z) in V; such that the

set {¢(z — k)}kez is an orthonormal basis for V; .

Since Vy C V_;, the scaling function ¢(z) has to be the solution of a
two scale difference equation,

(1.5) o(z) = 22 cn 9(22 —n) .

ne€z

The associated wavelet is then derived from the scaling function by the
formula

(1.6) ¥(z) = 2> (1) Cin (22 — 1) .

n€z

In the standard interpretation of a multiresolution analysis, the
projections of a function f on the spaces V; are viewed as successive
approximations to f, with finer and finer resolution as j decreases. The
wavelets can then be used to express the additional details needed to
go from one resolution to the next finer level, since the {¢(z — k)}rez
constitute an orthonormal basis for Wy, the orthogonal complement of
Vo in V_;. The whole set {d’i(ﬂ}j,kez forms then an orthonormal basis
of L?(R).

We are here interested in similar constructions adapted to functions
or signals of more than one variable.
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The most commonly used method to build a multiresolution anal-
ysis and wavelet bases in L?(R") is the tensor product of a multires-
olution analyses of L?(R). In L?(R?) it leads to a ladder of spaces
V; = V; ® V; C V;_; generated by the families, '

(1L7)  ¥l(z,y) = 279027z —k) o277y — 1), kLEL.

Three wavelets are then necessary to construct the orthogonal comple-
ment of Vg in V_;, namely,

(1.8) Vao(z,y) = @(2)¥(y)
(1.9) Uy(z,y) = p(z)e(y) , ;
(1.10) Ve(z,y) = P(a)P(y) -

Actually, the theory of multiresolution analysis, as it was intro-
duced by S. Mallat and Y. Meyer (see [Mal] and [Mel]) was first mo-
tivated by the possibility of building these separable wavelets for the
analysis of digital picture.

It is clear, however, that this choice is restrictive and that it gives a
particular importance to the z and y directions, since ¥, and ¥, match
respectively the horizontal and vertical details.

A more general way of extending multiresolution analysis to n di-
mensions consists in replacing the axioma (1.3) and (1.4) by

(111) f(z) € V; <> (D)€ Viy
(1.12) There exists a function ¢ in V4 such that the set
{¢(z — k)}rezn is an orthonormal basis for V; ,

where D is a n X n dilation matrix.
All the singular values Ay,..., A, of D must satisfy

(1.13) Am| > 1,

to ensure that the approximation gets finer in every direction as j goes
to —oo. Furthermore, we require D to have integer entries. This con-
dition means that the action of D on the translation grid Z™ leads to a
sublattice I' C Z".

The number of basic wavelets required to characterize the orthog-
onal complement of Vy in V_; is in that case trivially given by the
following heuristic argument. This complement should be generated
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by the action of Z™ on the basic wavelets, in the same way that Vj is
generated by the action of Z™ on ¢, whereas V_; is generated by the
action of D~'Z™. Consequently, each of the generating functions can be
associated with an elementary coset of D™1Z"/Z"™ ~ Z"/DZ" except
one which corresponds to the scaling function (see figure 1). There-
fore, d = |det D| — 1 different wavelets are needed. Note that it is
not strictly necessary that the entries of D be integer to build wavelet
bases using D as the elementary dilation.

D
A
Fanl

Figure 1

-1
Z? and DZ2? in the case where D = 2

1 2
The scaling function and the four basic wavelets
are indexed by an element of Z2/DZ?.
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However, the condition seems to be necessary for the existence of a mul-
tiresolution analysis based on a single, real valued, compactly supported
scaling function.

In this work we shall indeed focus on real valued, compactly sup-
ported scaling functions and wavelets. They have the advantage that
the sequence {c,}nez introduced in the two scale difference equation
(1.5) is real and finite. These coefficients play an important part in
the numerical applications because they are used directly in the Fast
Wavelet Transform algorithm as decomposition and reconstruction fil-
ters. They constitute in that case an FIR (finite impulse response) filter
which can be implemented very easily. Furthermore, this finite set of
coefficients contains all the information about the multiresolution anal-
ysis since the functions ¢ and 1 can be constructed as solutions of (1.5)
and (1.6). Our starting point to build wavelet bases will thus be a finite
set of coefficients and the associate two-scale difference equation, rather
than the approximation spaces V; themselves.

The main difficulty in this approach is the design of the FIR filter
{¢n}n=0,... n in such a way that ¢ and 1 are smooth and have orthonor-
mal translates.

In the one dimensional case, it is shown in [Daul] that orthonor-
mal wavelets can be constructed by choosing a filter which corresponds
to a particular case of exact reconstruction subband coding schemes,
and which can be made arbitrarily regular by increasing the number
of taps in a proper way. Several contributions have followed, giving
supplementary information on the type of filter which has to be used
(see [Me2], [DL], [Col], [Dau2], [Co2], [Dau3)).

In the present bidimensional case, the design of filters associated
to “nice wavelet bases” turns out to be more difficult because some of
the one-dimensional techniques do not generalize trivially (or do not
generalize at all!) to higher dimensions and new methods have to be
introduced. This article concentrates on the situation where D is a 2 x2
matrix with |det D| = 2.

We deliberately restrict ourselves to this set of matrices for two
reasons:

e These dilations have already been considered by electrical engi-
neers and seem to have interesting applications in signal analysis
and image processing. For example, since only one basic wavelet
is required, one may hope for a more isotropic analysis than with
the separable construction. Subband coding schemes with deci-
mation on the quincunx sublattice have been studied in the works
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of J. C. Feauveau [Fea] and M. Vetterli and J. Kovacevic [KV].
Our work is complementary to their signal processing approach
since we investigate here the mathematical properties, such as the
Holder regularity of the wavelet bases associated to these schemes.
This regularity is important when one asks that the reconstruc-
tion of the signal from the coarse scales has a smooth aspect (see
Section II.2).

e These dilations are simple and our study will be reduced to the
case of two basic matrices. However, the difficulties which appear
in the evaluation of the regularity of the corresponding wavelets
are common to all the non-separable constructions, and the tech-
niques that we develop to solve this problem can be used for other
types of dilations. We believe that the set of integer matrices with
|det D| = 2 constitutes an interesting “laboratory case” in the
general framework of multidimensional wavelets.

In the next section of this paper, we shall give an overview of
different techniques which can be used in the construction of one di-
mensional compactly supported wavelets. Some new tools will be intro-
duced specifically to be generalized and used in the multidimensional
situation.

The third section examines the possible subband coding schemes
with decimation on the quincunx sublattice and their general relations
with non-separable wavelet bases.

In the fourth section, orthonormal bases of wavelets are constructed
from such coding schemes. We show that for the same filters, different
bases with widely differing regularity can be obtained, depending on the
choice of the dilation matrix. Finally, we use a biorthogonal approach,
in Section V, to construct more symmetrical wavelet bases correspond-
ing to linear phase filters and allowing a more isotropic analysis. We
show that arbitrarily high regularity can be attained and we give some
asymptotical results.

II. The construction of compactly supported wavelets in one
dimension: A complete toolbox.

The purpose of this section is to review, in the one dimensional
case, many different techniques that can be used to build regular wave-
lets from subband coding schemes, theoretically and numerically. Some
of these techniques, like the Littlewood-Paley estimation of smoothness,
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are not frequently used in the one dimensional case, but they turn out
to be very useful for the non-separable bidimensional wavelets. For
more details, the reader can also consult [Daul], [Mel], [Mal], [Vel],
[Dau2], [Me2], [Co2].

Wavelet bases and subband coding schemes.

I1.1.a. The orthonormal case.

Let {V;}jez be a multiresolution analysis of L%(R). We can use
the discrete Fourier transform of the finite sequence {e,}22 N,» i€ the
transfer function

Na

(2.1) mo(w) = Z c e i = Z cpe= i

n€z n=N,;

to rewrite the two scale difference equation (1.5) that characterizes ().
We suppose that the ¢, are real. Taking the Fourier transform of (1.5)
and (1.6) we obtain

(22)  $(2w) = mo(w)p()

~

(2.3) P(2w) = e mo(w + 7) B(w) = m1(w)P(w) .

Two fundamental properties of mg(w) can be derived from the mul-
tiresolution analysis properties

e Since {¢(z — k)}kez is an orthonormal basis of Vj, the Fourier
transform ¢(w) satisfies a Poisson identity

(2.4) > lpw+2nm)f =1,
n€Z
Combined with (2.2) this leads to
(25) mo(w)* + |mo(w +m)|* =1

which may also be written as

(2.6) 2 )" cncnyar = 6ko (=1if k=0, 0 otherwise) .
n€ez
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e The denseness of {V;};ez in L%(R) is equivalent to

50 = o)z = 1,

(see [Mel], [Mal] or [Col]).
Consequently, we have

(2.7) mo(0) = 1 and my(m) = 0,

which may also be written as

N2 N2
(2.8) Z cn = 1 and Z (-1)"cn = 0.
n=N1 n=N1

The subband coding scheme associated to our multiresolution analysis
appears clearly in the Fast Wavelet Transform Algorithm of S. Mallat
[Ma2]. Let us recall how it works. The initial data are considered as
the approximation of a continuous function at the scale 7 = 0,

(2.9) S = (fop(z—k), keZ.

This allows the computation of the approximations and the details at
coarser scales, i.e.

(2.10) Si = 2772 (f,¢l) and D} = 27/ (f4l), j>0.

(The coeflicients are normalized in such way that if f = 1 locally, then
S; = 1 in that area). The sequence {S}}rez (respectively {D}}irez)
is then derived from {S "1rez by a convolution with the filter mg(w)

(respectively, m;(w)) followed by a decimation of one sample out of two
to keep the same total amount of information, z.e.

St=> enar SI7, D = 3 (1" caq1on SIT.

n n

The algorithm then iterates on {Sj}kez Conversely, the sequence
{S] }kEZ can be recovered by applying the same filters mo(w) and
mi(w) on {Sj Vrez and {Dk}kez after inserting a zero between every
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pair of consecutive samples, and summing the two components (multi-
plied by two for normalization purposes), i.e.

5;1;—1 = 2ZCn—-2k S){; + (_1)71—1 C2k+1—n -Di; .
k

All these operations, decomposition - decimation - interpolation - re-
construction, constitute a complete subband coding scheme as shown
on figure 2. The property of exact reconstruction can now be derived in
two ways. It is a natural consequence of the multiresolution approach,

since V; = Vj $ W41 but it can also be viewed as a consequence
of formula (2.5) for the filter mq. This type of filter pair (mg, m,) is
known as a pair of “conjugate quadrature filters” (CQF); they were
first discovered by Smith and Barnwell in 1983, ¢f. [SB1]. The design
of FIR pairs, with real coeflicients and perfect reconstruction, has been
generalized in [Daul]. It also appears in [ASH], [SB2], [Vel].

Tho _@71;})‘@— mo

original reconstructed
signal signal

mq —( : )_HP_. my

Figure 2
Subband coding scheme corresponding to the FWT algorithm.
The sign 21 stands for “decimation of one sample out of two” and 2T for
the insertion of zeros at the intermediate values.

Since mg(w) is regular (it is a trigonometric polynomial) and since
mo(0) = 1, we can iterate (2.2) to obtain

+o0
(2.11) pw) =[] mo27*w).
k=1

Given a conjugate quadrature filter mg(w) (7.e. a trigonometric polyno-
mial satisfying (2.5) and (2.7)), it is thus possible to define the scaling
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function, either as a solution of the two scale difference equation (1.5),
or explicitly with the above infinite product. However, this does not
always lead to a multiresolution analysis: the function ¢(z) = % X[0,3]
generated by the CQF mgo(w) = (1 + €%¥)/2, for example, does not
satisfy the orthonormality of the translates. Orthonormality of the
@(z = k) turns out to be equivalent to the L? convergence of the trun-
cated products ¢n(w) = [[re; mMo(27¥w)xX[—2nr, 277 (w) to G(w) (be-
cause {¢n(z —k)}rez is an orthonormal set as soon as (2.5) is satisfied).

More precisely, the following result characterizes the subclass of
CQF filters leading to a multiresolution analysis and orthonormal basis
of wavelets.

Theorem 2.1. Let mo(w) be a Conjugate Quadrature Filter. Then,
the infinite product (2.11) leads to a multiresolution analysis if and only
if there exist a compact set K C R such that,

i) K contains a neighbourhood of the origin,
i) |K| = 27 and for all w wn [—m, 7], there exist n € Z such that
w+2nT e K,
iil) for alln > 0, mo(27"w) does not vanish on K.

The set K is said to be “congruent to [—m, 7] modulo 27" (figure
3). The proof of this result can be found in [Col]. It exploits the
continuity of my, the compactness of K and mg(0) = 1 to show that
(iii) is equivalent to p(w) > ¢ > 0 on K. This is then sufficient to derive
the L? convergence of the ¢, by Lebesgue’s Theorem. We shall use a
multidimensional generalization of Theorem 2.1 in the fourth section.

| ' | | —
— r T 1

_d4r —r _ 0 2z T 3r

3 2 3 2

Figure 3
Example of compact set congruent to [—7, 7| modulo 2.
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I1.1.b. The biorthogonal case.

The conjugate quadrature filters are a very particular case of sub-
band coding scheme with perfect reconstruction, because identical fil-
ters (up to a complex conjugation) are used for both the decomposition
and the reconstruction stages. If we do not impose this restriction,
then the scheme uses four different filters: mo(w) and Mq(w) for the
decomposition, mo(w) and m;(w) for the reconstruction. Perfect re-
construction for any discrete signal is then ensured if,

{ mo(w) mo(w) + my(w) my(w) = 1
mo(w +7) mo(w) + Mmi(w+7) my(w) = 0.

mo(w) and m;(w) may thus be regarded as the solutions of a linear
system. However, to avoid the infinite impulse response solutions, we
shall force the determinant of this system to be ae’**, « # 0, k € Z. For
sake of convenience we take a = —1 and k = 1 (a change of these values
would only mean a shift and a scalar multiplication on the impulse
response of our filters). This leads to

(2.12)

(2.13) mo(w) mo(w) + mo(w +7) Mme(w+m) = 1,
and
(2.14) my(w) = e ¥ mg(w+7), W) = e mo(w + 7).

The formulas (2.13) and (2.14) are thus the most general setting for
finite impulse response subband coders with exact reconstruction (in
the two channel case). The functions mg(w) and 7y (w) are called “dual
filters”. It is clear that the special case mg(w) = ro(w) corresponds
to the conjugate quadrature filters of II.1.a. However, dual filters are
easier to design than CQF’s. For example, if m, is fixed, my can be
found as the solution of a Bezout problem which is equivalent to a linear
system. The coefficients of these filters can be very simple numerically
(in particular they can have finite binary expansion which is very useful
for practical implementation), furthermore they can be chosen symmet-
rical (“linear phase filter”), a property which is impossible to satisfy in
the CQF case.

We can mimic, in this more general framework, the construction of
orthonormal wavelets from CQF. Assuming that mg(0) = me(0) =1
and mo(m) = mo(m) =0, we define

+o0
(2.15) ¢w) =[] mo(27*w),
k=1
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(2.16) P(2w) = m(w)pw),
+oo

(2.17) gw) = JJ mo(27*w),
k=1 "'

(218) D2w) = M (w)dw) .

In [CDF], the following theorem was proved,

- Theorem 2.2.
o If ¢n(w) = [Ticy mo(2 ™ w0)X(—2nm,2nm(w) and G,(w) = [Tk,
1o(27Fw) X[—2nr,2nx(w) converge in L2(R) respectively to (w)
and é(w), then the following duality relations are satisfied

(2.19) (p(z —k),p(z — k') = Skn
(2.20) (WL o) = &5 bk

and for all f in L*(R) one has the unique decomposition

J
(2.21) f=tm Y S (f4l)dl

J—
‘oo T ke

(in the L? sense). )

o If ¢ and ¢ satisfy |p(w)| + |p(w)| < C(1 + lw|)~1/2=¢ for some
e > 0, then the families {1} }jrez and {Y1};rez are frames of
L*(R).

o When these two properties hold, then {37, &i}j,kez are biorthog-
onal (or dual) Riesz bases of L%(R).

Many examples of these systems can be found in [CDF| and a
sharper analysis of the frame conditions is developed in [CD]. We now
recall a practical way of constructing ¢ and 1 numerically from a given
subband coding scheme.

I1.2. The cascade algorithm.

In the last section we saw that the scaling function ¢(z) could be
approximated, at least in L?(R), by a sequence of band limited functions
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{¢n}n>0 defined by

(2.22) $n(w) = J] mo(277w) X(=2nm,27m () -
j=1

These functions are characterized by their sampled values at the points

27"k (k € Z), ie.
(2.23) P = on(27k) .

This sequence can also be considered as the impulse response of the
transfer function

(2.24) Sa(w) = 2" ] mo(2'w).

j=1
Sp(w) can be obtained recursively by the formula
(2.25) Snt1(w) = 2mp(w) Sp(2w) .

In the time domain, (2.25) becomes an interpolation scheme; the se-
quence sy is dilated by insertion of zeros (Sp(w) — Sa(2w)) before
being filtered (multiplication by 2mg(w)). We have thus,

(2.26) spth = 2) " cpoak st
kez

This iterative process, which computes the {s} }rez sequences from an
initial Dirac sequence 0 x is called the “cascade algorithm”. We illus-
trate it on figure 4 (our sequences are represented by piecewise constant
functions).

Note that it identifies exactly with the reconstruction stage in the
FWT algorithm described in II.l1.a. The scaling function is thus
approached by the reconstructed signal from a single approximation
coefficient at a coarse scale. Similarly, the wavelet will be obtained by
starting the reconstruction from a detail coefficient at a coarse scale
(and thus applying m;(w) at the first step of the cascade).

This explains why subband coding schemes associated with regu-
lar wavelets are particularly interesting: the smoothness of the wavelet



64 A. COHEN AND I. DAUBECHIES

determines the appearance of the coarse scale components of the recon-
structed signal. A smooth appearance is important for many applica-
tions such as compression where a big part of the finer scale information
is thrown away.

In the biorthogonal case, the analysis and the synthesis wavelets (3
and %) need not have the same regularity. As just discussed, smoothness

a) ho 1

b) hy

c)

w(-2) H |_| H w(2)
] L L [ ]
(o]

e) hz

Figure 4
The cascade algorithm (from [Daul]).
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is important for the reconstructing function; the analyzing function
needs only to be sufficiently regular to ensure that the wavelet bases
are unconditional, so that the FWT algorithm is stable. Note that
an important property on the analyzing wavelet is cancellation, i.e.
vanishing moments, ensuring small high scale coefficients for smooth
regions in the function or signal to be analyzed.

Let us finally mention that this type of “refinement method” is
well known in approximation theory as “stationary subdivision” (e.g.
[CDM], [DyL]). Most of these papers are motivated by interpolation
problems, where smooth curves or surfaces need to be constructed, con-
necting (or close to) given sparse data points. Consequently, they are
mainly concerned with what we call the reconstruction stage and they
do not study the existence of an associated subband coding scheme.
This also means that they do not care about an easy way of encoding
or representing the extra “detail information” («— W;) that can be
added in going from one refinement level to the next one (V; — V;_).
On the other hand, the subband coding literature seldom mentions the
importance of the smoothness appearing in the cascade of the recon-
struction from the low scales. Orthonormal and biorthogonal wavelet
bases lead to an elegant combination of these two approaches.

. We now present several different methods to estimate the regular-
ity of the wavelets associated to a given subband coding scheme. We
shall concentrate on the regularity of the scaling function which deter-
mines the regularity of the wavelet itself because (z) is a finite linear
combination of translates of p(2z). Whatever the method used, if a
global regularity of order r is achieved, then the cascade algorithm also
converges uniformly up to this order (see [Daul], [DL], [Co2]).

I1.3. Regularity: the spectral approach.
I1.3.a. A Fourier estimation of the Holder exponent.

Let us denote by C the Holder space defined as follows. For
a = n+p,B€]0,1], f € Cif and only if it is n times continuously
differentiable and for all = # y,
[f"(=) — f*(y)]
|z -yl

< C(f).

Define also

227)  Fp = {f: (I+R)Ffw)el’} (a20,p21).
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It is well known (and easy to check) that Fotite ¢ F& C C@, for
€ > 0. For compactly supported functions f, we also have

(2.28) f € C* implies f e F3

so that the decay of the Fourier transform can be used to evaluate
the global regularity. To estimate this decay in the case of the scaling
function, it is possible to use the factorization of mg(w); due to its
cancellation at w = 7, we have indeed

N

(2.29) m) = (F55) b

The infinite product (2.11) is thus divided in two parts. The first part,

which comes from the factor ((1+ e*)/ Z)N gives decay, since
too 27k too
1 + e _ —k _ 2 . w
(2.30) ,;[zll <——2————>' = kl;[2 cos(27w)| = IZ sm(§)| .

The second part, which involves the factor p(w), can be controlled by
a polynomial expression. Indeed, since p(0) = 1 and p is a regular
function, the infinite product generated by the second factor satisfies

+co
IT r27*w)
k=1

Defining, for 7 > 0,

(2.31) <C I1 lp(27*w)] -

1<k<log(14|w|)/log 2

j—1
(2.32) B; = sup H p(2*w)
w€eR k=0
and
log B;
. b, = J
(2.33) I T logl
we obtain
+oo
(2.34) [T p2*w)| < C(B)) et Hleb/loe? < € (1 4 |w|)®
k=1
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and
(2.35) [B(w)] < C (14w N .

Consequently, ¢ is in 7 and C* if « < N — b; — 1 for some j > 0.
We see here that N must be large to allow high regularity since b; is
always positive. In fact, one can prove that if the wavelet is r times
continuously differentiable then it has at least r 4+ 1 vanishing moments

(see [Mel], [Daul]), i.e.

(£) G0 = (1) i = 0,

forn = 0,...,7+ 1 and thus N > r + 1. These cancellations are
also known as the Fix-Strang conditions [FS]; they are equivalent to
the property that the polynomials of order N — 1 can be expressed as
linear combinations of the {¢(z — k)}rez. However, these conditions
are necessary but not sufficient to ensure the regularity of the scaling
function since the effect of N may be killed by a large value of b;.
Fortunately, this can be avoided by a careful choice of the filter mg(w)
(and, in the biorthogonal case, additionally mg(w)).

In the CQF-orthonormal case, a particular family of FIR filters
indexed by N has been constructed in [Daul]. This construction uses
the polynomial

S N-145)
(2.36) Pn(y) = : Y
N (Y ]};( ; )J

(with the shorthand notation y = sin?(w/2)), which is the lowest
degree solution of the Bezout problem

(2.37) Py(y)(1—y)V + yVPy(1—-y) = 1.

The corresponding filters are defined by

(238) () = (”jw)N pr(©)

with

(2.39) pn(@)? = Pu(y) = Py (1‘—‘”) .
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The Fejer-Riesz lemma guarantees that there exists a FIR filter py(w)
which satisfies (2.39). It is clear that the CQF condition (2.5) is equiv-
alent to (2.36) and the conditions in Theorem 2.1 are trivially satisfied
with K = [—m, w]. For large values of N, the regularity a(N) of
the associated scaling function is approximately 0.2 N and the exact
asymptotic ratio between a(N) and N can be determined. Intuitively
speaking, this means that the contribution of py(w) removes “eighty

percent of the regularity” brought by the factor ((1+ ei“’)/2)N. For
this estimation, we need to optimize the inequality (2.35), i.e. find the
best possible exponent for the decay of ¢(w).

I1.3.b. Optimal and asymptotical Fourier estimation: The role
of fixed points.

We start by defining “the critical exponent of mg(w)”:

j—1
[ r2*)
k=0

Then, it was proved in [Co2] that under the hypothesis |p(7)| > |p(0)| =
1 (satisfied in the present case (2.39)), ¢(w) cannot have a better decay
at infinity than |w|*~N. If the infimum b is attained for some finite j,
b = b, then this estimate is optimal.

How can we estimate the critical exponent? A first method consists
in evaluating b; for large values of j. Indeed, b is also the limit of the
sequence b; because the boundedness of p implies by < b; + O(j/J).
This may however require heavy computations.

In several cases, it is possible to use a more powerful method based
on the transformation 7 : w — 2w mod-27 and the fixed points of its
powers 7", n > 0. Indeed, let wy be a fixed point of 7™ for n > 0 and
define its orbit w; = Tiwy, for j = 0,...,n — 1. Since p(w) has period
27, we have

(2.40) b = inf b; = inf max =

1
i>0 >0 weR jlog2 &

(2.41) p(2™*w;) = p(w;), forallk >0

and consequently

n—1
1
2.42 nk 22— j
(2.42) bu 2 5 log ,IJ p(w;)
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Letting k go to oo, this leads to

1
nlog 2

(2.43) b>

n—1
log | [] p(w;)] -
Jj=0

Fixed points of T lead therefore to lower bounds for b and upper bounds
for the regularity index. In fact they can do much better and provide
optimal estimates for certain types of filters. Let us consider the small-
est orbit of 7 different from {0}, namely the pair {—27/3, 27 /3}. Note
that, because our filters have real coeflicients, |m¢(w)| and |p(w)| are
even functions so that [p(27/3)] = |p(—27/3)|. The following result
associates the value |p(27/3)| and the critical exponent b.

Theorem 2.3. Suppose that p(w) satisfies

(2.44) <l ()| wwi<
5 2w 2 . 2r
(2.44') p(w)p(2w)]| < |p )| 75wz
Then
2.45 b= — 1 2m
(2.45) = T2 °g|”(?>i-

PROOF. We already know from (2.43) that b > log |p(27/3)| /log 2.
We now use the bounds on p to find an upper bound for b;, 7 > 0. We
can regroup the factors in (2.32) by packets of one or two elements in
order to apply either (2.44) or (2.44") on each block. Since only the last
factor can miss one of these two inequalities, we obtain

il 27\ "7}

(2.46) II p(2*w)| < ip <?) sup [p| ,
k=0

and thus,

(2.47) by < — [J_—_l 1og‘p<2_”>| L sup floglpll]
J J
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which leads to

. <
(2.48) b< s

/(%))

The equality (2.45) means that the worst decay of $(w) occurs for
the sequence wy = 2"7/3, n > 0. This is interesting, because (2.44)
and (2.44") turn out to be satisfied in many cases and in particular for

the whole family of CQF defined by (2.38), (2.39). This is easy to check

directly for small values of N, since the inequalities can be rewritten as

log

and to (2.45).

(2.49) Pu(y) < Py (2) ty<d,

2

(49)  Pun) Potasi-w) < (Py () #Fsust.

The discussion for general N is more difficult and we refer to [CC] for
a complete proof of (2.49), (2.49'). However, a similar result can be
obtained in a simple way. To characterize the asymptotical behavior of
the critical exponent when N goes to 400, one does not need the full
force of (2.44), (2.44"), however. It can also be derived from a weaker,
asymptotically valid inequality, as proved by H. Volkner in [V].

Theorem 2.4. Let b(N) be the critical ezponent associated to m) (w)
and a(N) the Holder exponent of the corresponding scaling function.
Then

. b(N)  log3
(2.50) Nl—l.r-ri-loo N  2log?
and
e a(N) . N—bN) log3
(2.507) nhrfm N = Nl—lg-loo ¥ =1 STog 3 0.2075

PROOF. This result can be viewed as a consequence of Theorem 2.3,
but it can also be proved directly by using some properties of Pn(y).
Let us write (2.36) in the following form:

(251)  Pu(y) = Nf(N‘j”j) (%)j(zyv-

j=0
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From (2.36) we see that Py (1/2) = 2N~!; since Py is an increasing
function between 0 and 1, we have
(2.52) Py < (max{dy, 2" = |g(y)|" " .

It is now trivial to check that (2.49) and (2.49') are satisfied if we replace
Pn(y) by g(y). The same argument used in the proof of Theorem 2.3
leads then to

N -1 3 N-1
. < - =
(2.53) b(N) < 3 Tog 2 loglg (4)‘ 3 Tog? log 3

but from (2.43) we get

1 3
b(N) > log [Py (=
( )_2log2 °8 N(4>l
2.54 _
(2.54) oL |(en -2 §N1>N—213
= 2log2 B\ N-1)\2 = 2logz 87"

This proves the limit (2.50), and consequently (2.50") since the decay
index of the Fourier transform is equivalent to the Holder exponent
when both tend to +oo.

The use of fixed points for optimal estimations of the spectral decay
is thus very efficient when one is looking for arbitrarily high regularity
since a sharp asymptotical result is obtained. For small filters, this
method does not give a good result because the error on the exact
regularity may have the same order as the value of the Holder exponent
itself. For such filters, other methods, which take advantage of the
small number of taps in the filter, can be used to derive more precise
estimations. We now describe these methods; they are typically based
on matrix computations.

I1.4. Regularity: Matrix based sharper estimates.
II.4.a. The Littlewood-Paley approach.

We first recall some aspects of the Littlewood-Paley theory. Let
v(z) be a real-valued, symmetrical function of the Schwartz class S(R),
which satisfies
(2.55) { Y (w)=0 if w|<1/20r [w]| >5/2,

¥(w) >0 if1/2 < |w| < 5/2,
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so that the frequency axis is covered by the dyadic dilations of 4. In-
deed, we have

+oo
(2.56) 0<Ci< > APw)<C i w#0.

j=—oo

Define for any f in S'(R) the dyadic blocks A;(f) by
(2:57) Aj(f) = 292 )+ f = Ai(f) = #277)f .

The Littlewood-Paley theory tells us that several functional spaces can
be characterized by examining only the LP norm of these blocks. This
is the case in particular for the Sobolev spaces WP:* and the Hélder
spaces C%, a > 0. To do this, it is necessary to change slightly the
definition of C* when « is an integer; we shall say that a bounded
function f is in C™ if and only if f®~! belongs to the Zygmund class
A, i.e. there exists a constant C' such that, for all z and y, we have

(2:58) | @+ y) + N @~ y) =277 (@) S Clyl

With this convention, the Hélder space C® is characterized by the fol-
lowing conditions,

(2.59%) f is a bounded continuous function.

Note that the choice (2.55) for v is arbitrary and that more general
functions could be chosen to divide the Fourier domain into dyadic
blocks. To derive these types of estimates on the scaling function ¢, we
introduce a tool which will be very useful in the bidimensional case.

Definition 2.1. Let L?[0, 2n] be the space of 2m-periodic, square inte-
grable functions on [0, 27|, and C[0, 2] the space of 27w-periodic con-
tinuous functions. Then, for any m(w) in C[0, 27|, we define the tran-
sition operator Ty, associated to m(w) by

Tw : L*[0, 271] — L?|0, 27]

(2.60) foTufle) = m(3)7(3)
+m(§+7r)f(§+7r) :
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Note that when m(w) is a trigonometric polynomial, the study of T,
can be made in a finite dimensional space. More precisely, if we define

N>

(2.61) E(Ny, Np) = { > hae™ i (hn,,... k) eCNz—M“}
n=N;

then we have clearly

(2.62) (f, m) € [E(Ny, Np))* implies T,,f € E(Ny, Ny) .

This is due to the contraction w — w/2 which appears in the definition
(2.60) of Ty,. If ¢, is the n-th Fourier coefficient of m(w), then the
matrix of Ty, in the basis of the complex exponentials is given by

(2.63) Tpn = (2¢0-n) -

The size of this matrix P in E(Ny, N3)is L x L with L = Ny — Ny + 1.
This operator has been studied by J. P. Conze and A. Raugi and several
ideas presented below are due to their work [CR], [Con]. We shall use it
to derive Littlewood-Paley type of estimations for the Holder continuity
of the scaling function. For this, we need the following result.

Lemma 2.5. For alln > 0,

T 2% n
(2.64) (Tr)" f(w)dw = / F27mw) [ m(2 7 w)dw -
- k=1

—2"7

PROOF. We prove it by induction. It is clear for n = 1 since

[ o= [ m(5)1(5) + m(5+m)7 (5+7)] @

w/2
2/ [m(w)f(w) + m(w + 7) f(w + 7)] dw

—7/2

2w = [T m(3)5(5) &

—m

Assuming (2.64) for n, we obtain at the next step,

/ (L) f(w) do = [ (To) T f(0) o

-7 -7
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2"
»/;2"11'
n

. ™/2 -
— on+1 m kw mlw w
=2 // Ll 2 )}[ (@) f(w)

+m(w + 7)f(w+ )] dw
on¥ln [ntl
_ / [H m(2‘kw)} FE ) dw .
k=1

—on+4lpg

n

[m(2™" W) f(27" )

m(27*w)
1

k=
+m@2 " w4 )R w+ )] dw

This concludes the proof.

We now suppose that m(w) is a positive trigonometric polynomial
in Epy = E(—M, M) and that m(0) = 1 and m(7) = 0. Then m
can be factorized as

(2.65) m(w) = cos*V (%) p(w)

where p(w) is a trigonometric polynomial that does not vanish for w =
m. Note that necessarily N < M. From this cancellation property, we
can derive,

Lemma 2.6. {1,1/2,...,272V*"1} qre eigenvalues of Tr,. The row
vectors p; = (nj)n=_M,m’M, for 0 < 57 < 2N — 1 generate a subspace
which 1s left invariant by T,, and contains one eigenvector for each of
these 2N eigenvalues.

Consequently, the orthogonal subspace defined by

M
Fy = { Z Rne™ i .
n=—M

M .
> nfhn:o,j=o,...,2N—1}
n=—M

(2.66)

18 Tight tnvariant by Ty, .

PrOOF. The factorization in (2.65) is equivalent to the cancellation
rules
M
(2.67) > (=) nle, =0 forj=0,....2N - 1.
n=—M
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In particular, for j = 0, we have

(2.68) Zczn = ZCQn+1 = % (because m(0) =1) .

n n

This means that the sum of each column in the matrix of T (2.63)
is equal to 1 and that po = (1,...,1) is a left eigenvector for the
eigenvalue 1. For 0 < j < 2N —1 we define ¢; = p; P = (q]-_M, . ,q}”);
we have,

(2.69) qf = anCQn_e.

Thus, if £ is even

(2.70) ¢ =3 (n n .;i)fcz,,

and if ¢ is odd

VAN
(2.70%) ¢ = Z <n+§+§) Cont1 -

n

Using the binomial formula and the cancellation rules (2.67), we see
that g; is a linear combination of pi for k =0,...,7. The coefficient of
p; is given by the last term of the binomial and is thus equal to 277.
Consequently {p;};=o,...2n-1 is a triangular basis for the left action of
T, and the eigenvalues are {2‘j}j=07m,21v_1.

We now come back to the scaling function ¢, given by the infinite
product

(2.71) pw) = [[m ).

Theorem 2.7. Let Fy be the invariant subspace of Ty, defined by
(2.66). If X is the eigenvalue of Ty, restricted to Fy with largest mod-
ulus, and if || < 1, then, we have, with a = —log|A|/log2 (> 0),

o o131 C ¢ foralle >0,
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o o 13 in C* if the restriction of T,, to the invariant subspace F) of
eigenvalue A 13 purely diagonal (i.e. = M)

These two estimates are optimal if p(w) does not vanish on [—m, 7).
PRrOOF. Consider the trigonometric polynomial
(2.72) Cn(w) = (1 —cosw)™N .

It clearly belongs to Fin.
Consequently, for all n > 0,

i (Th)"Cn(w)dw

—m

(2.73) < (2m)'/? (/7r |(Tm)ncN(w)|2dw>l/2

—Tm

< C(A+€e)" or C|A|™if Tru|F, = AI.
We now use Lemma 2.5 combined with the inequality
(2.74) Cn(w) > 1 when —g— C|w| <7

This leads us to

/ Hw)dw < C [[ 2 *w) dw
2n-1r<|w|<L2n '

2r-trljw|<2n Loy

2™ n
< c/ Cn(27"w) [[m(27*w) dw
- k=1

=C | (T)" Cn(w)dw .

-m

Consequently the Littlewood-Paley blocks satisfy the inequality

(275) Al € €27 £ >0, a = —log(|A])/ log2

(2.75") 1A;(@)||zr < C27%, if Trm|F, is purely diagonal.

Since ||Aj()||L= < HAJ-(L,@)HU we obtain the announced regularity.
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To prove that these estimates are optimal, we need to reverse all
the inequalities which have been used. First, note that since m(w) and
p(w) are positive, we have ||Aj(¢)llL= = ||Aj(¢)|lL1-

Let f be an eigenfunction in F). If /f,\(w)dw > 0, then

2" n T
/ AT [[me w)d = [ (Tn)"fa(w)dw
(276) 7T k=1 o
=" [ fa(w)dw > CA™.

™ us

If Falw)dw < 0, then we replace fy by —fx. If fr(w) dw =0,

o —
then the argument has to be modified slightly; see below (after (2.78)).
Since we have supposed that ¢(w) does not vanish on [—7, 7], we have

(2.77) p(w) > C [[m(2*w) foralln>0and w| < 2"r .
k=1

Note that this hypothesis corresponds to the condition of Theorem 2.1
with K = [—m, 7]. In a more general setting, we could replace the
integrals on [—2"7, 2™ 7| by integrals on 2" K and the same results would
hold. Combining (2.76) and (2.77) gives

2

(278) [ )l 1h@ el > O

™

(I fa(w) dw = 0, then a slightly more sophisticated argument

-7
will do the trick. Lemma 2.5 still holds if the measure dw is replaced by
any other measure of the type ¢g(w) dw where g is a 2w-periodic, strictly
positive, continuous function. We can always choose g such that

falw) g(w)dw >0

(2.76) then holds if dw is replaced everywhere by g(w)dw. Since g is
strictly positive, this modified version of (2.76) combined with (2.77),
still implies (2.78)).
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Since fy has a zero of order 2N at the origin, the function y(z),
defined by 4(w) = |fa(w)| X[, n)(w) is convenient for the Littlewood-
Paley analysis of Holder regularity less than 2N. This is the case for ¢
since 2N + 1 vanishing moments would be necessary for a higher Holder
exponent than 2N (see [FS], [DL] or [DyL]). Consequently (2.78) tells
us that ¢ cannot be more regular than C*. To prove the optimality of
C®~¢ when T,,|F, is not purely diagonal, it suffices to replace f) by a
function gy such that T\,gx = Agx + pfa with g # 0. This leads to

2"
(2.78) [ e@lln@ )] do 2 Cna”
—-2"r

which proves the optimality of C*7¢.
The theorem is thus completely proved.

REMARKS.
¢ The estimates (2.75) and (2.75") can be found by an equivalent
technique, using the transition operator T}, corresponding to the

factor p(w) in (2.65). We simply consider the eigenvalue A, with
largest ||, and iterate T}, on f = 1. This leads to

J
/ G(w)ds < C w2V | [ p(2*w) | do
V-1r<w<2w 2i-1r<|w|<L2i k=1
<C27Ni [ (T,)1 dw

< C(Ppl+e) 2720
(or CIA P 272N S T, /Fy, = M)
and thus ¢ € C*~¢ with & = 2N —log|),|/log2. This estimate is

in fact the same as (2.75). Indeed, if u is an eigenvalue of T, in
Fy, then its associated eigenfunction can be written as

(2.79) fu = (sin? (%’))N gu(w) -

Replacing m(w) by its factorized form in

e ) = 5 (3)m(3) 4G5 +)
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we obtain, after dividing by [sin® (w/2) cos? (w/2)] N,

(281)  p2Vguw) = gu (%) p (%) +9u (g— + W) p (% + 7r) -

We see here that the eigenvalues of T}, are exactly given by p, =
22N ;. This proves the equivalence between the two techniques.

e In general m(w) is not a positive function. One can then define
M(w) = |m(w)|? and use the operator Ty, associated to M(w).
The result is an estimate of the L? norms of Aj(p). Using the
Cauchy-Schwarz inequality, we derive the following corollary,

Corollary 2.8. Suppose that M(w) = |m(w)|? has a zero of order
2N at w = 7. Define A, the largest eigenvalue of Thy on Fn and
a = —log)/(2log2). Then, ¢ € H*=¢ C Co~1/27¢ where H® is
the Sobolev space of indez s. The value a i3 attained if Ty|p, =
Al

Note that the Holder exponent has no chance of being optimal
because we have used the Cauchy-Schwarz inequality and ¢(w) is
not a positive function. The Sobolev exponent however is optimal.
The regularity of compactly supported wavelets was estimated with
this method in [Daul].

The transition operator plays also a crucial role in the biorthogonal
wavelet theory: we show in Appendix A how it can be used to prove
that the families {1} ez and {1,;{ }j kez are unconditional bases, with
weaker assumptions than the boundedness of (1 + |w|)'/?+¢(|p(w)| +
|¢(w)|) imposed in Theorem 2.2.

The optimal estimate for the global and local Holder regularity of
any wavelet can be estimated by another method developed by I. Dau-
bechies and J. Lagarias in [DL]. We now recall its main points.

I1.4.b. The time domain approach.

Let m(w) = ZQI:() cne'™ be a trigonometric polynomial such
that m(0) = 1 and m(7) = 0. We do not require that m(w) be positive.
Let ¢(z) be the scaling function defined by the infinite product (2.71).
It is at least a compactly supported distribution in [0, N].
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In the time domain approach, we represent () by its “vector”
form w(z):[0,1] - RY

(2.82) [w(z)]n = e(z+n-1), n=1,...,N.
From the two scale difference equation (1.5) we get

w(z) = { To w(2z) ifz<1/2,

(2.83) i
Ty w2z —-1) ifz>1/2,

where Ty and T; are N x N matrices defined by

(2.84) (To)i,; = cai—j—1 1<#45<N,

(2.84’) (Tl)i,j =C2i—j 1 S i,j S N.
Using the notations

dn(z) = n'" binary digit of z € [0, 1]

( _{Zz ifz<1/2
"=V 2 -1 ife>1/2 (binary shift) ,

we can rewrite (2.83) as a “fixed point” equation
(285) w(z) = le(z) w(’l’(l‘)) .

This leads to an evaluation of w(z) and its derivative by an iterative
process. The regularity of the result depends of course on the spectral
properties of Ty and Ty. Note that when m(w) has a zero of order L
(as for the transition operator studied in the previous section), then the
space F, orthogonal to the vector p; = (n")n=1y,__‘N forj=0,...,L—1
is invariant by Ty and 7;. This method gives sharp estimates on the
local regularity in z by considering the products Ty, (5 - - - Ty, (z) for all
n > 0. The main result on global regularity proved in [DL; Theorem
3.1] is the following

Theorem 2.9. Suppose that there ezist p < 1 such that, for all binary
sequence (d;)jez and all m > 0, we have

(2.86) 1Ta,Tay - Tau|Fe || < Cp™ .
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Define a = —logp/log2. Then,

e if a 18 not an integer, p belongs to C?,
e if a is an integer, 0~ is almost Lipschitz: for almost all x,t,

oz +1) — " (2)| < Clt| |log It] ] -

REMARK.

e The “generalized spectral norm”

(2.87) p(To, T1) = limsup max ||[Ty,Tu, - Ta, |r, ||/™
m— 00 j=0 or 1
J=1,...,m

gives a sharp estimate of the global regularity. Note that it is
in general superior to the spectral radius of T, and 7. When
N 1is not too large it is possible to compute the exact value of
p(Th, Ty). For example, in the case of orthonormal wavelets, the
optimal Holder exponent was found in [DL] for N =4, 6 and 8.
The same evaluation becomes more difficult for larger filters.

e The generalization of this approach in higher dimensions is not
trivial. In particular, it involves nonstandard binary expansions
depending on the dilation matrix which is used. We describe these
techniques in Appendix B.

As a conclusion of this review of regularity estimators, we could
say that these three approach are complementary: the time domain
method gives sharp results but it is only practicable for small filters,
the Littlewood-Paley estimates can be derived for longer filters but
they will be optimal only if m(w) is a positive function and finally,
the Fourier approach is less precise but appropriate to asymptotical
results on very large filters. Let us also mention that another method
recently developed by O. Rioul [Ri] and based on £!(Z) norms estimates
of the iterated filters leads to interesting results; in particular, it is still
manageable for larger filters than the time domain method of [DL].

We are now ready to deal with the bidimensional wavelets. We
start by examining the different subband coding schemes that can be
used to build these non-separable multiscale bases.
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II1. Two channel bidimensional subband coding schemes.

As mentioned previously, we shall concentrate on the dilation ma-
trices of determinant equal to 2 or —2. In such conditions, the subband
coding scheme that we consider split the signal in two channels (instead
of four in the separable case) and only one wavelet is then necessary
to characterize the detail coeflicients at each scale. We first present
a short summary of the equations satisfied by these filter. They are
immediate generalizations of the results presented in II.1.

I11.1. General conditions for exact reconstruction.

As in the one dimensional case, the scheme that we are considering
here is based on four fundamental operations:

e The action of two analyzing filters, one low pass
Mo(UJ) = MO(W],WZ)

and one high pass Ml(w) = M (wy, wa),

e Decimation on each channel by keeping only the samples on the
sublattice I' = DZ?,

e Insertion of zero values at the intermediate points of Z2/T",

¢ Interpolation by two synthesis filters, one low pass

My(w) = My(wi,w2)

and one high pass M;(w) = M;(w;, wy), followed by reconstruc-
tion of the original signal by summation.

We see here that the conditions for perfect reconstruction will not
depend on the dilation matrix D but only on the sublattice I' = DZ?
that is generated (different matrices may lead to the same I'). More pre-
cisely, there exist only two types of grid corresponding to a decimation
of a factor 2 in Z*:

e The quincunx sublattice, shown on figure 5, is generated by the
integer combinations of (1,1) and (1,-1).

e The column sublattice, shown on figure 6, is generated by the in-
teger combinations of (0,1) and (2,0). It is of course equivalent to
the row sublattice, by exchange of the coordinates.
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The same arguments that were used in II.1.b show that perfect
reconstruction is achieved by FIR filters, if and only if they satisfy

(up to a shift) the following equations, which are similar to (2.13) and
(2.14).

e In the quincunx case,

(3.1) My(w) Mo(w) + My(w + (7, 7)) Mo(w + (7,7)) = 1

and

My (w) = e "@1+w) Moo 4 (x, 7)),

3.2 . .
(3-2) M (w) = e+ Ario+ (n, ).

T 1
B S I

o —— » o
T ® *— - L4 *—

¢ : o 4+
-t t—+ .

Figure 5 Figure 6
Quincunx decimation. Column decimation.
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e In the column case,

(3.3) Moy(w) My(w) + My(w + (7, 0))Mo(w + (7, 0)) = 1
and

54 Miw) = ¢ Tho(o + (7, 0),
Mi(w) = e My(w + (=, 0)) .

If the analysis and synthesis filters are equal, we find two generalizations
of the CQF condition (2.5). The formulas (3.1) and (3.2) become
|Mo(w)]* + |Mo(w + (m, m))|* = 1,

3.5 .
(3:5) Mi(w) = e (witwz) My(w + (7, ™)) ;

whereas (3.3) and (3.4) become

|Mo(w)* + |Mo(w + (m, 0))]* = 1,

(3.6) B A
M(w) = e My(w + (7, 0)) .

As in the one dimensional situation, we want to build from these sche-
mes the associated scaling function which can be viewed as the limit of
the cascade-reconstruction algorithm.

IT1.2. Non-separable scaling function and wavelets.

If ¢;npn are the Fourier coefficients of My(w), i.e.

(37) Mo(UJ) = Mo(wl,LUQ) = Z Cmn e—i(mwl-{-nw?),

m,n

then the associated scaling function ¢(z) = ¢(z;, z,) satisfies a two
scale difference equation,

(3.8) $(z) = 2 cmp ¢(Dz — (m,n))
and its Fourier transform can be expressed as an infinite product

+oo
(3.9) $w) = J] Mo(D™*w)
k=1
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which is convergent if and only if My(0) = 1.

This scaling function has compact support if and only if Mp(w)
is an FIR filter. We see from (3.9) that ¢ will be highly dependent
on the choice of D. For the same sublattice and the same filter, the
results can be completely different for different D. The column sublat-

tice for example is generated by both matrices D; = (g ?) and
D, = (1) g , but the first one cannot lead to an L? scaling function.

Indeed, we would have

+oo
$1(0, 2nm) = [ Mo(D7X(0, 2nm)) = 1,
k=1

for all n > 0. But since ¢; is compactly supported and belongs to
L?(R), it is also in L'(R) and its Fourier transform should tend to zero
at infinity. We can also remark that only the eigenvalues of Dy have
their modulus strictly superior to 1.

The choice of the dilation matrix is thus very important. In fact,
although the equations (3.1)-(3.2) are different from (3.3)-(3.4), the
choice of the sublattice is less important: Indeed, for any dilation matrix
D, such that D;Z? is the column sublattice, we can define

(3.10) D, = PD,P~! withP = ((1) 1)

Clearly, the image of Z? by D, is now the quincunx sublattice. Then,
for any filter Mj(w) satisfying the column-CQF condition (3.6), the
corresponding scaling function ¢; can be written in the following way,

+o0 ~+oo
$1(w) = [[ Mg(Di*w) =[] M3(P7'D;*Pw) = §3(Pw)
k=1 k=1

where ¢, is also a scaling function defined by

+oo
n _ 2Dk
(3.11) $2(w) = EMO(Dz )

M (w) = Mj(P™'w) .
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1 0

. 1
Since P = (1 1

),we have
| MG (@)? + [MG (w + (m, m)[* = [Mg (w1, w1 +w2)|?
+ |M01(w1 + 7T, w1 w2 +27r)|2 =1.

And thus M satisfies the quincunx-CQF condition (3.5). A similar
,result holds of course if we start from two dual filters M and M which
satisfy (3.3). This shows that the scaling functions associated to D; and
D, are linked by the simple relation ¢2(z) = ¢1(Pz). Consequently we
can restrain our study to the quincunx case. More generally, if D; and
D, satisfy

(3.12) D, = PD, P!

where P is a matrix having integer entries and determinant equal to
1, then we also have the same type of equivalence between the scaling
functions. For this reason, we shall only consider the two simplest
dilation matrices of determinant 2, which cannot be related as in (3.12)
since they do not have the same eigenvalues:

(3.13) R = (1 _11> (Rotation of% and dilation of \/5)

and

1 1

S = ( ) (Symmetry with respect to (V2 +1,1)
(3.13") 1 -1

and dilation of \/5) .

In both of these cases the image of Z? is the quincunx sublattice. The
wavelet 1 is then defined by

(3.14) P(Dw) = Mj(w)p(w) with D=Ror S,

where M;(w) is defined by (3.5) in the orthogonal case, and by (3.2) in
the biorthogonal case where we also have a dual wavelet defined by

(3.15) #(Dw) = Mi(w) é(w) with D=RorS.

The goal is now to design filters leading to regular scaling functions and
wavelets. We end this section by presenting two important families of
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filters. The regularity of the associated ¢, 1, # and v will be estimated
in sections IV and V by different techniques which all are natural gen-
eralizations of the one dimensional tools that we introduced previously.

II1.3. Filter design.
I11.3.a. The orthonormal case.

Recall (see [Daul]) that in 1D, the CQF filter can be designed in the
following way, in order to obtain wavelets with an arbitrarily high reg-
ularity:

1) For a given number N of vanishing moments, define mq by

2 _ |, 2(¥ N .2 (W
(3.16) |mo(w)|* = [cos (2)} Py [sm (2)}
where Pn(y) is a polynomial, solution of the Bezout problem
(3.17) yV Pn(1—-y)+(1—y)" Pu(y) = 1.

The minimal degree choice is given by

pN<y)=NZ—jl (N’j”f)yf.

j=0

2) Find the function mg(w) by using the Riesz lemma which guar-
antees that there exist a trigonometric polynomial solving (3.16).

Unfortunately, this last result does not generalize to higher dimen-
sions. We thus have to find other means to build trigonometric poly-
nomials which satisfy (3.5). One possible method is the “polyphase
component” construction used by Vaidyanathan [Va] and M. Vetterli
[Ve], [VK]. It is based on the remark that My(w) satisfies (3.5) if and
only if the polyphase matrix

(3.18)

Hg(w) = —=

My(w) + Mo(w + (7, 7)) Mi(w)+ Mi(w + (m, w)))
V2 \ My(w) = Mo(w + (1, 7)) Mi(w) — My(w + (, 7))
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is unitary for all w. Since the product of two polyphase matrices is also
a polyphase matrix for a third pair of filter, infinite families can be con-
structed by multiplying elementary building blocks of the type (3.18) as
soon as we know some simple filters which satisfy (3.5). The disadvan-
tage of this method is that it does not furnish the vanishing moments
in a natural way. Recall (see [Mel]) that the N times differentiability
of the function % implies

(3.19) [B(w)] < C (Jwr [V + |woN*Y), (jw|— 0)

and thus My(w) has necessarily a zero or order N + 1 at the frequency
w = (m, 7). This can also be viewed as the Fix-Strang condition (see
[SF]) for the regularity of the scaling function ¢.

The simplest way to build such filters with N arbitrarily high is to
remark that if mg(w) is a 1D solution of the CQF equation (2.5), then
the 2D filter defined by

(3.20) My(w) = My(wi, w2) = mg(w;)

satisfies the equation (3.5). It is apparently a good candidate for build-
ing regular wavelets since it has the same order of cancellation in (7, 7)
as mo(w) in 7. This allows us to build an infinite family of filters with
an arbitrarily high number of vanishing moments by posing

(3.21) Mg (w) = mg (w1)

where {m{'(w)}n>o is the family of filters designed in [Daul], defined
by (2.35), (2.37) and (2.38). Note that the filter (3.21) has a unidimen-
sional structure but since the dilation D contains either a rotation or
a symmetry, the final analysis (using iterates of the filter) is performed
in all the directions of the plane. In Section IV, we shall take a closer
look at the associated wavelets and their regularity. If D = R, then one
can also derive another family of “almost” one-dimensional filters M
from unidimensional mq (they get again fanned out to other directions
by applying R™!). Explicitly,

w] —w w —w
oo (252) o (252 47))
1 w] —w w; —w :
() m (252 )

-Mo(wl,wz) =

| =
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This construction corresponds to a filter with taps on two diagonals,
hnin, = 0if ny # —ny and ny # —ny 4+ 1. It is easy to check that
this M, satisfies (3.5) if m, satisfies |mo(w)|? + |mo(w + 7)|? = 1. I
mo(0) = 1, mo(m) = 0, then My(m,m) = 0 follows, so that M;, as
defined in (3.5), satisfies M71(0,0) = 0, as it should. One easily checks,
however, that 0, My(m, ) and 0., M(m,7) cannot both be zero for
these examples, so that the corresponding bases cannot possibly be C?.
Only the small examples are therefore of any interest; it seems possible
(numerical experiment) to construct a continuous ¢ corresponding to a
4-tap filter in this way.

IT1.3.b. The biorthogonal case.

The filter design is clearly easier in the biorthogonal situation. One
can start from a given filter My(w) and find the dual My(w) by solving
linear equations.

In particular we can look for filters which have more isotropy than
those of the family (3.21). Here, again, the one dimensional theory can
help us to build families of filters in a simple way. Several examples
of real and symmetrical dual filters have been designed by the authors
and J. C. Feauveau in [CDF].

In these one dimensional construction the symmetry allows us to
use the variable y = sin® (w/2) and to write the transfer functions as

(3-22) mo(w) = p(y) and mo(w) = p(y)

where p and p are two polynomial satisfying

(3.23) py)py) +p(l—y)p(l—y)=1.

In two dimensions, consider the variables y; = sin® (w;/2) and y; =
sin? (wy/2). If the filters are symmetrical with respect to the vertical

and the horizontal axes, the duality condition in (3.3) can be rewritten
as

(3.24) P(y1, ¥2)P(y1, y2) + P(L—y1, 1 —y2)P(1 —y1, 1 —y2) = 1,
where

P(y1,y2) = Mo(wi,wa2),  P(y1, y2) = Mo(wi,ws) .
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We see that a possible choice for P and P is given by
(3.25) P(y1,y2) = plays + (1 —a)y2)

~

(328 P(y1, y2) = playi + (1 —a)y2)

where « is in [0,1]. For an optimal isotropy it is natural to choose
a = 1/2; in this case the diagonals are also symmetry axes. This
choice is known in signal processing as the McClellan transform of the
1D filters p and p. Using the variable z = (y; +y2)/2 we can thus write

(3.26) My(w) =p(z) and My(w) = p(z)

where p and p are polynomials satisfying (3.24). These polynomials
must also satisfy

(327)  p(0) = p(0) = 1 and p(1) = p(1) = 0
which are necessary for the construction of wavelet bases. Note that we
have
1/, 4 /w1 . 2 (W2
z=— s | — | +sm” { —
)
— g (4 _ ezw1 _ ezwg _ e—1w1 _ e—th)

and thus z can be regarded as the transfer function of the filter which
computes the discrete Laplacian with the formula

1
(Adl')m,n = g (4~Tm,n —ZTm—-1,n — Tm41,n

(3.29)

- :I:m,n—l - xm,n+l ) .

Since a Laplacian scheme has frequently been proposed in image
processing to detect the edges with a maximum isotropy (see [AB], [M]),
it 'seems tempting to use z or one of its powers as a high pass analyzing
filter (and thus 1 — z as the corresponding low pass synthesis filter).
This can be achieved in a very simple way, by a method already used

to build biorthogonal bases in L%(R). Recall that

N-1 .
Puz) = 3 (N—j1+]>2j

i=0
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is the lowest degree solution of the Bezout problem
(3.30) ZNPy(1—2)+(1-2)NPn(2)=1.

If we fix the reconstruction low pass as M{¥ (w) = (1 — 2)" (so that the
analyzing high pass is, up to a shift, the N-th power of the Laplacian),
then a possible choice for the dual filter is given by

(3.31) Myt w) = (1-2)" Pryu(2)

where L is a positive integer indicating the cancellation order of M, at
w = (m, w). L has to be chosen large enough so that both functions
@(z) and ¢(z) satisfy the necessary conditions to generate a pair
(1,91} ez rezz of unconditional Riesz bases (see Theorem 2.1 and
Appendix A). We shall examine the properties of these functions and
give an estimate of the minimal value of L in Section V.

We have now at hand two families of filters, orthonormal and
biorthogonal, with an arbitrarily high number of vanishing moments.
We still have to know if these filters allow us to build wavelet bases with
an arbitrarily high regularity as in the one dimensional case ([Daul],
[Co2]). As we shall see in the next two sections, the results of our
investigations are very surprising and show that the multidimensional
situation contains a lot of new difficulties from this point of view.

IV. Orthonormal bases of non-separable wavelets.

Let us consider the family of CQF filters defined by

(4.1) My (w1, wz) = mf (w1)
with

N-1 . .
(42) @) = [eos? (2)] > (N —jlﬂ) in? (2)]’

and the associated scaling functions for the dilations S and R,

(4.3) bnv,sw) =] Ms'(57*w),
k=1
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(4.4) dnr(w) =[] M (R *w).

k=1

IV.1. Orthonormality of the translates.

A first requirement is that the Z2-translates of ¢ N,S Of ¢n R are
orthonormal. This is a necessary and sufficient condition to generate
multiresolution analyses and orthonormal bases of wavelets.

Theorem 4.1. For all N > 0, the functions ¢ p have orthonormal
translates and generate wavelet bases of the type

27/2p(D7 iz — k), jEL, keZ?,
where D = S or R.

PROOF. By a trivial generalization of Theorem 2.1, this orthonormality
is ensured if and only if |[¢(w)| > C > 0 on a compact set K congruent
to [—m, 7]? modulo 27Z? which contains a neighbourhood of the origin.

It is clear that M (w) vanishes only on the vertical lines w; =
(2k + 1), k € Z. Consequently we see that the simple choice K =
[, 7]? is not convenient since for both dilations, we have

(4.5) D™ (x, m) = (7,0)
and thus
(4.6) $(m,7)=0.

Recall that in the one dimensional case, the trivial choice K = [—7, 7]
was convenient for the family m{Y(w). Here we have to use a compact
set K slightly different from [—7, 7]® so that D™/ K N {w; = (2k + 1)7}
is empty for all 7 > 0 and for all £ in Z. This can be done very easily by
removing small neighbourhoods of (7, 7) and (—m, —7) and translating
them by (-2, 0) and (27, 0) as shown in figure 7.

One checks easily that all the sets D™/K for j > 0 are contained
in the strip |w1| < 7™ — ¢, € > 0 where M{¥(w) does not vanish.

We now have to check the regularity of the scaling functions which
have been obtained. We shall see that the results are completely differ-
ent depending on whether one chooses S or R as the dilation matrix.



NON-SEPARABLE BIDIMENSIONAL WAVELET BASES 93

Figure 7
The convenient compact set A congruent to [—m, 7]2:
Neighbourhoods of (7, ) and (—m, —7) have been
shifted so that ¢ does not vanish on K .

IV.2. The symmetry dilation case.

1 1
1 -1
St = %5. Since M{¥(w) = m{¥(w1), we have to consider the sequence
{[S7?w]1}j>0 for a given w = (w1, wy). Clearly, it has the following
form:

In this case the dilation matrixis S = ( ) and its inverse is

1 . .
—wWi,y.. 27 (w1 +w2), 27wy, ...

(w1 +w2), swr, $wr +w2)
p— w — —
2&)1 2)s wi, 4_(4)] w2 ), 1

2

Since S72% = %I , the odd and the even parts are simple dyadic sequences
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and this leads to

(4.7) On,s5(w) = pn(w1 +w2) Gn(wr)
(4.8) on,s(z) = @n(z2) pN(z1— 22)

where ¢y is the one dimensional scaling function. The associated
wavelet is defined by

(4.9) PN s(w) = Mi(w)dn s(w) = Pn(w1 +wa) Gn(wr)

(4.10) Y s(z) = Yn(z2) on(T1 — T2) .

We see here that the scaling function and wavelet are in this case sepa-
rable in the sense that they can be expressed directly in terms of the one
dimensional functions ¢y and ¥ . This separability can be explained

1 c e
2 0) which is simply a
dilation by a factor 2 (in one) direction, followed by an exchange of the
axes. The regularity can of course be made arbitrarily high since it is
directly given by the Holder exponent of ¢y .

by the fact that S is similar to the matrix (0

REMARK. Theorem 4.1 is not necessary here to prove the orthonormal-
ity of the translates since it is a trivial consequence of the separability
formulas (4.7) and (4.8).

We now consider the case of the matrix R which is by far less
trivial.

IV.3. The rotation dilation case.

, /1 41 L 1/1 1
We now have R = (1 1 )andR = 2(_1 1) . The
sequence {[R™7w]; }j>0 is then,
1 1 1 1
%(wl + wa), 392, Z(w2 —w1), 7% —g(uh +wa),
1 1 1

1 1
— —wy, — (w1 —w2), 1—6(011), E?:(wl + w2), 392

8% 16
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Here the first power of R™! proportional to the identity is R™* = —%I.
Consequently, it is not possible to use the one dimensional scaling func-
tions and wavelets to express the ¢n and ¢ in a separable way. We
first consider the case N = 1 which corresponds to the Haar filter. The
result of the cascade algorithm with this filter shows how different the
situation is when R is used instead of S.

IV.3.a. The twin dragon.

For M{}(w) = (1 + e~*1)/2, the function ¢; g satisfies

(4.11) ¢1,r(z) = ¢1,rR(Rz) + ¢1,R(Rz —(1,0))
and
(4.12) brr= ] Mj(R™*w) .

k=1

By iteration of the cascade algorithm, one finds that ¢ is the character-
istic function of a well known fractal set called the “twin dragon” (see
[K]) shown in figure 8. This set can be defined directly in the complex
plane as

(4.13) A = {i €n (1—;)” {en}nen € {0,1}N}

n=1

and it is clear that ¢; g = xa solves (3.41) since we have

(4.14) A:<1;i)AU<1;i)(A+1)
~RTITAUR(A+(0,1)).

The self-similarity of A is thus expressed by the two scale difference
equation (4.11), but furthermore, since the family {¢; r(z — k) }rez2 is
orthonormal (by Theorem 4.1) and since |A| = ¢; r(0) = 1, these inte-
ger translates constitute a fractal tiling of the whole plane R? (similarly
to the squares obtained in the tensor product situation with the same
filter). This beautiful property has been observed independently by
W. Madych and K. Grochenig [MG| and W. Lawton and H. Resnikoff
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[LR]. More generally, such tilings can be derived by considering a two
scale difference equation of the type

d
(4.15) $(z) = > $(Dz+e;)

=1

where D is a dilation matrix and {e;}i=1 . q are d representatives of
Z"|DZ"™ (d = |det D|). This scaling function and the corresponding
wavelet do not seem however of great interest for image processing: not
only are they discontinuous but the set of discontinuity is a very chaotic
fractal curve. Nevertheless the twin dragon is important in estimating
the regularity (local and global) of the wavelets with dilation matrix R.

0.4 T T T T T T T

0.2

o
N
T

o
EN
T

o
[,
T

o
oo
T

-

1 i

4 '
08 06 -04 02 0 02 04 06 08

Figure 8
The “twin dragon” set A.
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Indeed, if we want to generalize the method of [DL] (see Section I1.4.6),
it is necessary to consider the expansion of any point in C in terms of
the power of (1 + i)/2 (~ R™'), which also means that the point is
considered as the limit of a “dragonic sequence” {A;};ez with A; C
Aj_q and |Aj| = 277. These “dragonic expansion” techniques are
described in Appendix B.

Let us now examine the functions obtained with higher order filters
which have more vanishing moments.

IV.3.b. Higher order filters.

We are interested in the family of scaling function ¢n r, N > 1.

Recall that in the one dimensional case, the asymptotic result en-
suring arbitrarily high regularity (Theorem 2.4, Section I1.3.6) is based
on the value of |mg (£27/3)| since {—27/3, 27/3} is a cyclic orbit of
w +— 2w modulo 27. In the present case similar considerations for a
fixed orbit of w = Rw modulo 27Z2, lead to an opposite result: arbi-
trarily high regularity cannot be obtained by increasing the number of
vanishing moments. More precisely, we have

Theorem 4.2. For all N > 0, the function ¢n g is not in C1(R?).

PROOF. This is of course true for N = 1 since we obtain the twin
dragon. For N > 1, we shall prove a stronger result: the decay at in-
finity of &N,R(w) cannot be majorated by C |w|™! (which is a necessary
condition for ¢y g to be in C! because it is a compactly supported
function). For this we consider the orbit of w — Rw modulo 27Z?
given by the four points (27 /5,47 /5), (27/5, —47n/5), (=27 /5, —47/5)
and (—27/5, 47/5). Let us denote vy = (27/5, 47/5) and v; = Rlvo.
One checks easily that

(4.16) |én r(v0)] = Cn #0 forall N >0.
We then have, for all N > 0,
2r
N —
" ( 5 )
From the definition of m{’ we have

o ()] = e G 2  (5)

J
(4.17) l¢n.r(v;)] = Cn

(4.18)
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and we know from (2.51) that

(419) Pu(y) S (@), g <y<t.

Because cos2‘ (7/5) > cos? (w/4) = 1/2, we can write

2\ |2 ™1V ™
i (2 =1 o G o )
>1=[sn® (3)] " [reos* (5)]
N-1

=1 —sin? (%) [sin2 (—2-52)}

and thus, since |v;]| > 27/2,

|én,R(v5)] > Cn {1 ~sin’ (3) [Sinz (2?”)] N_]J

> Cnlv| ™%

i/?

with ay = ‘log (1 — sin? (7/5) (sin2(27r/5))N_1) I /log2. Clearly ay
is decreasing with N. Since a; =~ 0.6115 < 1, this ends the proof.

In fact, these wavelets do not even seem continuous although we
have no mathematical proof for this. A simple look at the result of the
cascade algorithm for the 4 tap filter (which corresponds to a .55 Holder
continuous one dimensional wavelet) shows how chaotic the functions
¢r,N can be (figure 9). The design of FIR filters leading to regular
wavelet bases with R as the dilation matrix seems to be a difficult
problem. Using a polyphase component approach M. Vetterli and J.
Kovacevic ([KV], p. 32) have constructed a filter for which the result
of the cascade looks continuous but no infinite family with arbitrarily
high regularity has been designed so far.

The main difficulty which makes this design unpracticable is the
absence of the Riesz lemma in more than one dimension and thus the
impossibility to start by designing the square modulus of My(w) in an
appropriate way. Apart from this problem, the CQF filters (in particu-
lar the family (3.21) that we have introduced) cannot be symmetrical.
We must keep in mind that one of the interests of the quincunx grid
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decimation is to have a more isotropic analysis; this is only achieved if
the filter coefficients are themselves symmetrical around the horizontal,
vertical and diagonal directions.

These two reasons encourage us to construct biorthogonal bases of
wavelets from dual filters for which the Riesz lemma is not necessary
and linear phase can be achieved.

Figure 9

Approximation of the scaling function ¢2p .
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V. Biorthogonal bases of nonseparable wavelets.

Let us recall the family of dual filters introduced in II1.3.b. It is

based on the variable
() <50 (2)

z =

N =

We have chosen

(5.1) MY (w)=(1-2)",
and
(5.2) My (w) = (1 - 2)* Pnys(z),

where L is still to be fixed.

A first remark is that the action of the dilation matrices R and
S on the variable z are equivalent. This is due to the fact that z is
invariant if we exchange w; and wy or if we change the sign of one of
these variables. We shall thus consider a dilation matrix D which can
be equal to R or S. To express its action on z we still need the two
variables

o2 (W1 — a2 (%2
(5.3) y; = sin ( 5 ) and y; = sin ( 5 ) .
We then have

1 D 1
z= 5(1/1 +y2)— 2z = §(y1 +y2 — 2y1Y2)

D 1
_ 2z = —
2

1
(4y1(1 —y1) +4y2(l — o)) = 5(3!1 +v3)

D 1
— 2= Ty — 2V1Y2) -

We shall start by studying the scaling function ¢; associated to the
filter M{}(w) = 1 — z, because it is the elementary building block for the
family ¢n (= (*)V¢y).
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V.1. The quincunx Laplacian scheme.

The coefficients of M{(w) are centered around the origin and hav
the following form: :

1 1
(5.4) - 11 4 1
1
Note that this is the simplest symmetrical filter (with respect to the
horizontal, vertical and diagonal directions) which satisfies the cancel-
lation condition M} (7, 7) = 0. To estimate the decay of ¢;(w) we could
hope for a bidimensional formula equivalent to

8

+ .
(5.5) cos(27Fw) = e ,
w

x~
‘l_ll

used in the one dimensional case. Note that (5.5) is based on the iter-
ation of sinw = 2sin(w/2) cos(w/2). Unfortunately, similar relations
do not exist in the bidimensional case for the dilation matrix D. In
particular the infinite product

+oo
(5.6) $1(w) = [ Mo(D7w)

k=1

has no simple expression and one checks easily that, unlike (5.5), it
does not have uniform decay at infinity. Indeed, let us consider the sets
{(27/5, 4w /5)} and {(27/3, 27 /3), (27/3, 0)}. These are two cyclic
orbits of w +— Dw modulo 27Z? and modulo the exchange of coordi-
nates and sign changes which do not affect the variable z. Consequently,
if we define v; = DJ(27/5, 4n/5) and p; = DI (27/3, 27/3), we

have, when j goes to +o0,

cos? (7/5) + cos? (27 /5
2

J
(5.7) qil(vj)w[ ’} ~ C oy

and

. 2 /2
68 bt~ (L Y eost (F)] 7 ~ st
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with

cos? (m/5) + cos? (27 /5)
(5.9) a, = “Tog2 og [ 5 ] ~ 2.83
and

(5.10) a, = —1022 log K“’SZ (”2/3) + 1) cos? (%)] ~2.68 % ay .

Still we would like to find a global exponent for the decay of qz@l(w)
at infinity. For this we shall introduce an “artificial” function which
will play the same role as cosw in (5.5). We define

sin2 <w1 ;wz) + sin? <w] ;wz
(5.11) Cw) =

T (3 ()
sin 5 + sin 5

Contrarily to M} (w), C(w) is not a trigonometric polynomial, but it
is a bounded regular function which vanishes at the point (m, 7) with

the same order of cancellation as M} (w). Moreover, it satisfies by
construction

),0(0)=1.

2 [sin® (w1 /2) + sin® (w2/2)]

2 2
wi + w3

<C(1+w|)72.

+oo
(5.12) [[C(D7w) =
k=1

The decay of this infinite product is now uniform and, for this rea-
son, C(w) will play an important role in the construction of our dual
bases. For the moment, by comparing C(w) and M{(w), we obtain the
following result:

Proposition 5.1. The decay of gﬁl(w) at infinity 18 controlled by
(5.13) (@) < C(1+ )72

Furthermore, this exponent is globally optimal, i.e. there ezists a se-
quence {w;};>o such that limj_ 4o lwj| = +oo and |¢1(wj)| ~ Clw;|72.

PROOF. Using the variables y; = sin®(w;/2) and y, = sin®(w2/2) we
can rewrite C'(w) as

Y1ty —2my2 _ (I=y1)y2 + (1 —y2)ua

5.14° Cw) =
( ) () Y1+ Y2 Y1+ Y2
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We thus have

Q-—y)yz+(Q—y2)ys  (I—y1)+(1—y2)

Clw)— M}(w) =

Y1+ Y2 2
_ =y —y) + (1= 12)(y1 — v2)
2(y1 +y2)
_ (y1 — 92)2 >0
2(y1 +y2) —

Thus M (w) < C(w) and by (5.12) |¢1(w)| < C (1 + |w|)~2. To prove
that this exponent is optimal we consider a small vector p # 0 in R2

and define

(5.15) wj = Di(m, ) +p,
so that
~ +w .
(5.16) $1(w;) = [[ My (DF*(x, )+ D *p) .
k=1

Let us divide this product in three parts
d1(w;) = [b1 ((m, ™)+ D7)

j—1
L M3 (D m, m + D%)}
k=1

- [M5 (=, 7)+ D p)]
= A(j) B(j) C() -

(5.17)

One checks easily that ¢, (, 7) # 0 and thus, for j large enough or
sufficiently small p, we have 0 < C; < A(y) < 1. It is also clear that for
1<k<j—1,M} (D'~ *(x, x)) =1 and that for £ > 1, M}(D(m, m)+
o) > 1—C||o|| for ¢ small enough, with C > 0. Consequently, if p has
been chosen small enough, 1 > B(j) > [[, [L = C27¢|jp||] = C2 > 0.
Finally since (7, 7) is a second order zero of My(w), the third factor
satisfies

279Cs ||pl)* = Cs|ID7p|* < C(j)

(5.18) s Iy
CelID77p|* = 277Cy |lpl* -

IN
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This shows that ¢;(w;) behaves like 277 ~ |w;|~2 when j goes to +oo
and the proposition is proved.

Note that from the decay of qgl(w) we cannot even conclude that
it belongs to L'(R?) or that ¢;(z) is a continuous function. Yet both
are true; we are going to prove this by the Littlewood-Paley method
explained in Il.4.a. The filter M} (w) and the scaling function ¢;(w)
are particularly well adapted for this approach since they are positive
so that the regularity estimation is optimal (because ||A;(¢1)||re ~

1A;(#1)|L1; see Section IL4.a).

Proposition 5.2. The optimal global Holder ezponent for ¢,(z) s

a 2 1g<1+\/5):.61

“log2 4

PROOF. We consider the transition operator defined by
(5.19) TF(Dw)= M}(w)F(w)+ Mj(w + (7, 7)) F(w + (7, 7).

As in the one dimensional case T can be studied in a finite dimen-
sional space but this subspace cannot be defined as simply as E(N;, N2)
in (2.61). One way of finding an invariant subspace is to apply T to the
constant 1 and then iterate it on the characters e'(¥1w1+k2w2) which are
obtained until a stable set is attained. With Mj corresponding to (5.4),
this subspace is trivial, since T} = 1. Lemma 2.5 then guarantees the
integrability of #1, hence the continuity of ¢;. To estimate the Holder
exponent of ¢; we need a larger subspace, which we obtain by iterating
T on 1 and on cosw; + cosws. The size of the matrix representing the
action of T on this subspace can be seriously reduced by exploiting the
symmetries, i.e. the invariance under w; «— —w;, wy «— —wy and
Wy — Wwoy.

Using the subspace E generated by the basis
(5.20) €3 =1, ez = cosw; + coswa, e3 = cos(wy +wq) + cos(wy —wy)

we obtain the following matrix

1 1/2 0
(5.21) T =10 1/2 1
0 1/4 0
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which has the eigenvalues {1, (1 +/5)/4, (1 - \/5)/4} The two last
eigenvalues correspond to the subspace Ey C E defined by

(5.22) Ey, = {F(w)€ E: F(0)=0} .

Similarly to the one dimensional case, we iterate T on the positive
function e; — %62 which is clearly in Ey and this leads us to

(523) 8580l ~ [Biatsn)],, ~ C(1+4‘/5)] :

where Aj/5(¢1) is the Littlewood-Paley block corresponding to the re-
gion DI([—=, ]?)/DI~! ([—=, 7]?), situated at a distance 27/2 of the
origin. Consequently, if we define

(5.24) a = — 2 log<1+4\/5> ~ 0.61,

then it follows from (5.23) that
(5.25) (1+ |w|)* $1(w) € L*(R?) and ¢;(z) € C*(R?) .
Consequently ¢; is Holder continuous with regularity 0.61.

This property appears in the graph of ¢; on figure 10 (obtained
by the cascade algorithm) which presents a smooth aspect with several
pointwise cusps. Note that this regularity is not sufficient to derive a
better decay of ¢;(w) than |w|~%¢!; Propositions 5.1 and 5.2 are thus

complementary.

REMARKS.
e Note that, since we have
(5.26) M}(w) + Mj(w+(m, 7)) =1,

we can derive the L! convergence of the truncated products qgln
= Hj=1 My(D77w)xX pr([-n, n?)(w) With the same method as in the
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orthonormal case for the L? convergence (Theorem 2.1). This leads
us to a Poisson summation formula

(5.27) > bi(w+2km) =1

kez?

which is equivalent to
(5.28)  ¢i(n1,np) = 1if ng =ny =0, 0if (ny, ny) € Z2/{0} .

This interpolating property of ¢; has been noticed in approxima-
tion theory by Deslaurier and Dubuc [DD]. It explains the four
cusps surrounding the center at the points (0,1), (1,0), (0,—1)
and (—1,0) which are visible on figure 10. However, a sharper

analysis shows that the isolated points where ¢;(z) =0 are an
infinite family.

SS>
SSOSSS SSI>
S SO OSOSOSS SO
SIS OSSO SO SSSIS
< oSS S
SIS, RS
S S SSSS SSSsSs2
- ,...".‘.‘O"II///
SSOSOSOSOSS Y,
SSSTSTS
S OSSO
<

Figure 10
The scaling function ¢;(z).
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¢ As mentioned in Section III.3.b, the variable z = (y; + y2)/2 can
be replaced by, more generally, z) = Ay; +(1— )y, with A € [0, 1];
Mg (w) = 1—z, is still positive. Let us now distinguish the dilation
matrices R and S. Then, a similar analysis in the case of D = R
leads to a § x 5 matrix in the basis

(e1,€2,€3,€4,65) = (1,coswy,coswy,cos(w; + wq),cos(w; — wsy))
2 A 1-X2 0 0
1 0 1-2X A 0 2
(5.29) T\ = 3 0 1-2AX A 2 0
0 A 0 0 0
0 0 1-X 0 0

and numerical computations show that the “isotropic value” A =
1/2 gives the highest index of regularity. The lowest index of regu-
larity is attained for A = 0 or 1. Note that A = 1 corresponds to the
convolution product g(z) = xa * xa where A is the twin dragon
introduced in IV.3.a. The Hoélder exponent is then o ~ 0.47.

o To estimate the decay of §(w) (= (Xa(w))?), one can again use
the function C(w) of Proposition 5.1, in a slightly different way.
Remark that, if we define G(w) =1— 2, =1 — y;, then

(1—y1)y2+ (1 —y2)ua

C(w)— G(w) = - (1=
(w) (w) " T Vo (1-w1)
=y1(y1—y2)20
Y1 + Y2
ifyIZyZaa‘nd
2[(1 — +(1—
2C(w) - Glw) = (1 —y1)y2 + (1 —y2)y1] C-wm)
Y1+ Y2
_ Ay —y) +2u(d—y)
Y1+ Y2 -

if yo > y; . On the other hand

(5.30) §w)l = [[ GR ™ w);
k=1
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to majorate |§(w)| for 29/2 < |w| < 20+1/2 we only need to majo-
rate the j first factors in (5.30). Since R rotates by m /4, half of the
factors can be majorated by C(w) and the others by 2C(w). This

leads to

(5.31) |§(w)| < C 2'os(+lwD/loa2 1T C(R™*w)
1<k<L2log(1+|w])/log 2

and thus

(5.32) §w)<CA+ ).

It is easy to check (in a similar way as for ¢;(w)) that this esti-
mate is optimal. An immediate consequence is that the Fourier
transform of the twin dragon characteristic function xa satisfies

(5.33) Xaw) < C(1+w|)~/?
which was not obvious since we did not have a formula similar to

(5.5) for xa.

We now return to the construction of our biorthogonal bases and
attack the problem of obtaining isotropic wavelet bases with arbitrarily
high regularity.

V.2. Biorthogonal wavelet bases with arbitrarily high regu-
larity.

We now consider the whole family of filters

(M), i)}

defined by (5.1) and (5.2).
A first remark is that the regularity of the functions ¢y increases
linearly with N. More precisely, since

(5.34) én(z) = (x)Véi(z),

we can use the characterization of the optimal decay exponent for b1 (w)
established in Proposition 5.1 to estimate the regularity index a(N') of
¢n(z). This leads to

(5.35) 9N -2 < a(N) < 2N
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and thus to
a(N) _

(5.36) lim
N—+o0

The estimate (5.35) is of course more interesting for large values of N

than for small values where the error is comparable with the regularity.

For N =1, we have seen that o ~ 0.61.

For N = 2, the Littlewood-Paley approach is still reasonable; using
the symmetries reduces the size of the matrix to 9 x 9. Analyzing the
eigenvalues, one finds that ¢, is in C® with @ ~ 2.93. The function
¢2 = ¢1 * ¢1 looks very smooth indeed on figure 13.

For N > 3, the matrix becomes too large to tackle by hand. In all
cases the regularity of the wavelet ¢y ; will of course be the same as
that of ¢. The problem is now to find the appropriate dual function
for the analysis. More precisely we want to design the filter

(5.37) Mt w) = (1-2)% Prys(2)

by choosing the number L in such way that the hypotheses of Theo-
rem 2.2 (in its bidimensional generalization) are satisfied, i.e. that we
have at least

(5.38) ]%NYL(W)l <C(1+ )1, e>0.

To show that such a choice is possible for any value of N (i.e. for an
arbitrarily regular synthesis function), we need an asymptotical result
of the same nature as Theorem 2.4. We want to be sure that the
regularizing action of the factor (1 — 2)l' can compensate the inverse
effect of P4, if L is large enough.

Using a similar approach, we consider the simplest fixed point of
w +— Dw modulo 27Z?2, and modulo sign changes and the exchange of
w; and wy. This fixed point is wg = (27/5, 47/5) which corresponds
tozg = z(wo) = 5/8.

We now decompose MSV’L into three factors, by introducing the

function C(w) defined by (5.11):
(5:39) Mg"*(w) = [C@)F QW) Prsr(z) = [C@)* Brr(w)

with
Q) = M} (w) _ (1 +¥2)(2—y1 —y2)
C(w) 2(y1 +vy2 — 2y1y2)
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We already know from Section I1.3.b that

(5.40) Pn(z) < (42)N7' ifz>

N

From the Bezout relation (3.30), we also have

1-—=2

(5.41) PN(z)s( ! )N.

Consequently, we can roughly majorate Py(z) by

N
(5.42) Pn(z) < [min{ , max{4z,2}}] if z €[0,1] .

1
1-=2
Defining H(w) = min{l/(1—z), max{4z,2}} and G(w) = H(w)Q(w),
(5.39) leads us to

(5.43) Myt (w) < [Cw))F [Gw)]* [Hw)N .

We are now facing a similar situation as in Theorem 2.4 where we had
shown that the function ¢g(y) = max{2,4y} = h(w) satisfied

(5.44)
{h(w) = g(y) < g(3/4) if y < 3/4,
h(@)h(2w) = g(y)g9(4y(1 —y)) < [g(3/4))® if3/4<y<1.

In the present case, although we do not dispose of any simple mathe-
matical proof, numerical evidence shows that we have

w w wp)]? i
(5.45) { G(w)G(Dw) < [G(wo)] or if not,

G(w)G(Dw)G(D*w) < [G(wy)]?
and similarly

w w wo)]? or if not,
(5.46) {H( )JH(Dw) < [H(wo)] f not
H(w)H(Dw)H(D?w) < [H(wo)]?

These two statements are illustrated respecfively in figures 11 and 12.
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b) Graph of G2(y1, y2) = max{G(w)G(Dw)G(D*w), [G(we)]*} — [G(wo)]?

(c)

0.2

04 - Vo Gy

0.6 - G2

0.8 -

1.0 Gi

c) Compared supports of Gy(y1, y2) and G2(y1, y2)
Figure 11
Graphic proof of (5.45)
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a) Graph of Hy(y1, y2) = max{H(w)H(Dw), [H(wo)]*} — [H(wo)]?

(b)

N

b) Graph of Hz(y1, y2) = max{H(w)H(Dw)H (D*w), [H(wo)]*} — [H(wo)]?

(c) S
0.0 - vl

0.2 H1

04
Yo , -
0.6 - - H2 ,,/"

0.8 -

10 Moo

¢) Compared supports of Hy(y1, y2) and Ho(y1, y2)
Figure 12
Graphic proof of (5.46)
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On a) and b) of each of these figures we have plotted the functions
max{F(w)F(Dw),[F(wo)]*)} — [F(wo)]?
and
max{F(w)F(Dw)F(D*w), [F(wo)’} — [F(wo))?

for F = G and H (the coordinates are (yi, y2) € [0,1]?). On c) the
supports of a) and b) are shown to be disjoint regions in [0, 1]2.

We now estimate &N,L(w). From(5.39) and (5.43) we get

2 Too
on,L(w) = H [C(D_kw)]L Bn,.(D7*w)
k=1
< C(1+w])2E 11 By (D™ *w)
1<k<2log(1+|w|)/log 2
<C(1+ |w|)_2L[ I1 G(D-kw)]L

1<k<L2log(1+|w|)/log 2

N
H(D—kw)} .
1<k<2log(1+|w]|)/log 2

Using (5.45) and (5.46) to divide these products in groups of two of
three factors which satisfy one of the inequalities, this leads to

(5.47) ;N Lw) SO+ ,w')—-2L+2(LlogG(wo) + Nlog H(wo))/log?2

or
(5.47) ‘;;N,L(w) < C (1 + |w|)2Ele-1+2N8
with

a—_-l—()-g-%gm:&%? and 5=-1-o‘°r—(l£—;(%)—)—):1.322.

Fortunately o < 1. This means ¢A>L‘N(:1:) can be made arbitrarily regular
by choosing L large enough. In particular, (5.38) will be satisfied if we
have

(5.48) 2L(c — 1)+ 2NB < —1.
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The smallest L such that M and Mév L generate unconditional mul-
tiscale bases is therefore given asymptotically by

BN  logb — log2

= N ~ 14. .
l-a log16 — log15 2N

(5.49) L(N) ~

This asymptotical estimate is moreover optimal. Indeed define w; =
Diwy, = DJ(2n/5, 41/5). Because of the fixed point property of wq,
we clearly have

~N,L

N, ~ J
(5.50) ¢ (wi)~ C [0 (wo)] ~ C oy
with
-9 L
(5.51) y = 2 loe My (o)

log 2

From the definition (5.2) of MN , we get

- 5
itier= () e (2
N E AN+ L-1) 5 N+L-1
—\8 N+L-1 8
N+L L N
15 5
> = — —
2e(2) () -<(3) G)
and thus
L <C + oL log16/15 oN log5/2

log 2 log 2
=C + 2L(1 —a)—2Np.

It follows that the estimate (5.49), if true, is certainly optimal. While
we expect (5.45), (5.46), hence (5.49), to be true, we have unfortunately
no rigorous proof. However, we can prove inequalities which are slightly
less strong than (5.45), (5.46), leading to a non-optimal but rigorous

estimate for L(N). More precisely, we can prove that Q@ = [, 7]?
can be split up as Q = ; U Q3 U Q3, with

Glw) < € weQ,
(5.52) G(w) G(Dw) < & w ey,

G(w) G(Dw) G(D*w) < € we Ny,
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with £/2 ~ .9588 < 1, resulting in (5.47') with

a = ~ .93982 .

If we use the crude estimate H(w) < 4 for allw € [—m, 7]%, correspond-
ing to # = 2, then this leads to

this factor is about twice as large as in (5.49). The detailed proof of
this estimate is in Appendix C.
All these results can be summarized in the following theorem.

Theorem 5.3. The family of dual filters { M} (w), MéV’L(w)}N,LW
generates biorthogonal bases of compactly supported wavelets with arbi-
trarily high regularity. For large values of N, the Holder exponent of
én(z) 18 equivalent to 2N and the minimal choice for L is asymptoti-
cally proportional to N,

(5.53) L(N) ~ KN,
with 14.215 < K < 32.959 .

Here the upper bound on K is not tight, and we expect £ = 14.215
to hold, as indicated above.

REMARK. By taking L larger than L(N), ¢M:L can also be made arbi-
trarily regular. However, in many applications such as coding, approx-
imation, data storage and compression, we do not really care about the
regularity of the analyzing functions ¥ and @; only the synthesis func-
tion 1 and ¢ have to be smooth since this property is important for the
cascade-reconstruction algorithm. This justifies the choice of the min-
imal value L(NN) such that the families {2j/2 qu,L(Djz —k)}jez, kez2
and {2//% ¢ (DIz — k)}jez, kez> are unconditional dual bases of
L?(R). Recall that the existence of frame bounds is essential for the
stability of the subband coding scheme.

We end this section by taking a closer look at the size of these dual
filters.
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V.3. Size and optimal implementation of the dual filters.

The asymptotical ratio L(IN)/N =~ 14.2 is big in the sense that the

filter Mév L) may have a very large number of taps. More precisely, a
polynomial P(z) of degree p corresponds to a filter with p? + (p + 1)2
nonzero coefficients. For example, if N = 3,

~+rNL(N
My (W) = (1= 2)P™ Py pony(2)

is according to (5.49) a polynomial of degree p = N +2L(N) ~ 87 in z.
Consequently it is the transfer function of a filter with approximately
1350 taps!

It seems thus that the dual filter is, even for small values of N,
much too large for a realistic implementation. This is not quite true for
several reasons.

First, one can factorize the polynomial Py (n)(2) and express

M(fv Lasa product of p monomials in z. By applying successively these
monomial filters instead of using directly their product, the number
of multiplications per sample in the filtering process is reduced from
order p? to p. Note that this complexity reduction associated with
the factorization is due to the multidimensional situation and does not
occur in the 1D case.

Second, the filter corresponding to the variable z, i.e. the laplacian
discrete scheme, has coefficients cp o = 1/2 and ¢19 = c_10 = ¢co;1 =
cg,—1 = —1/8. It can thus be implemented by using binary shifts instead
of multiplications. This is very important since a binary shift is usually
performed 10 times faster than an addition and 100 times faster than a
multiplication in most processors. This shows that only the additions
count here. If  is the time for one multiplication, each monomial filter
will generate one sample in approximately 3t/5 and the same operation
will take 3pt/5 for the whole filter. For N = 3 and p = 87, this
corresponds to the complexity of a 52 tap filter which is much more
reasonable than the first estimation.

Finally, for small values of IV, it is clear that the asymptotical esti-
mate (5.49) of L(N) is far from sharp, just as, in 1D, the asymptotical
estimate on regularity of Section II.3.b was ill-suited to small filters. A
better estimate for L(N) can be found by checking that the optimal

decay exponent for &(w) is exactly determined by the value of MON L at
wo = (27/5, 47/5). More precisely recall that we have

MY Ew) = [Cw))F B p(w) .
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For the small values of N and L considered below, one can check by
the same graphical arguments that the inequalities (5.45) or (5.46) are
also satisfied by By r(w), i.e.

(5.54) { Bn,1(w) BN,1(Dw) < [Bw,i(wo)]? or if not,

BN,L(w) BN,L(DLU) BN'L(DZLU) S [BN,L(WO)]S .
In order for (5.38) to be satisfied, we therefore only need

V2

(5.55) My (wo) < -

and this will be sufficient for these small Vi}lues of N and L for which
(5.52) holds. Using the definition (5.2) of MON’L we obtain

o for N=1,L(1) =3,

o for N =2, L(2) =12,

o for N =3, L(3) =22.

0.3

R
(5 ‘&%&\
N 2o
SN
S
SO

Figure 13
The scaling function @2 (= ¢1 * ¢1).
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b) ¢1
Figure 14

Analysis and synthesis scaling function for N =1 and L = 2.
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Analysis and synthesis wavelets for N =1 and L = 2.
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Clearly these estimates are much better than (5.49). Finally, L(N) can
be even more reduced, for small values of N, if an even sharper criterion
that the frequency decay (5.38) is used to ensure the existence of frame
bounds. We show indeed in Appendix A that the spectral analysis of
the transition operators Ty and To corresponding to the functions | M|
and |M0|2 can be used to derive both the frame property and the L?
convergence needed to have a pair of dual Riesz bases. In [CD] we prove
that this criterion is sharp so that the value of L(NV) is here optimal.
Unfortunately the matrices of Ty and Ty can be very big, even for small
N and L.

For N = 1, we now obtain L(N) = 2 so that the two filters M,
and MJ? are of small size. We show on figure 14 and 15 the scaling
functions and wavelets obtained from such a choice.

Appendix A: A sharp criterion for frame bounds.

We want to give here a better result than Theorem 2.2 to char-
acterize the dual filter pair (mg, 7o) which lead to biorthogonal Riesz
bases of wavelets. The method that we show here uses the transition
operators associated to the positive functions |m|? and |me|? (see Sec-
tion I1.4.a).

First, recall that the ¢, @, ¥ and 9 are defined by

+oo
pw) = J[ mo(27*w), $2w) = mi(w) w),
k=1

(A.1)

v

Too ~ ~
W) = J] mo(27*w), $2w) = mu(w) (w) .
k=1

As mentioned in Theorem 2.2 the duality relations (2.19), (2.20) and
the decomposition formula (2.21) are ensured as soon as the partial
products

n(w) = [T mo@ " 0)xi-2mm, 22w (@),
Sa(w) = [T mo@7Fw)x(-2nr,20m(w)

converge in L%(R) respectively to ¢(w) and G(w).
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The main difficulty is then to obtain the frame bounds A4, B, A
and B all strictly positive such that for all f in L%(R),

AFIZ < D KADI? < BISIR,
J,k€Z

AFIP< D0 (WABD1P < BIAIP -

7, k€L

(A.2)

It is sufficient to obtain the two upper bounds of (A.2) because
the lower bounds are then obtained by using (2.21) and the Schwarz
inequality which give

1/2 1/2
(A3 IfIP < (Z (f; w£>|2> (Z I(f, zZiW)
Jk ik
In [CDF] we used the following assumption

(A.4) @) + ) < C 1+ ])~2/2~

which can also be formulated with ¢ and ¢ instead of ¢ and . Here,
we shall prove the L2-convergence of {¢n, $n}n>o and the frame in-
equalities (A.2) using weaker assumptions. More precisely let Ty and
To be the two transition operators associated to the functions |mg|?
and |my|?, as defined in Section II.4.a. They both operate in two
spaces of trigonometric polynomials Ex and Ey. We have proved in
Lemma 2.2 that the subspaces Fy = {f € Eny : f(0) = 0} and
Fy = {f € Eg: f(0) =0} are invariant under the action of Tp and
To. The following result gives a sharp characterization of the dual filter
pairs associated to biorthogonal wavelet bases.

Theorem A.l. Let A (respectively :\) be the largest eigenvalue of Ty
(respectively, Ty) in the subspace Fn (respectively, Fy). Then if ||
and |5\| are both strictly inferior to 1, the functions 1 and 1/; defined by
(A.1) generate biorthogonal Riesz bases of wavelets {37, z,z)i}j,kez.

PRrOOF. We shall prove here that this condition on the eigenvalues of
T, and Tj is sufficient to obtain biorthogonal wavelet bases. In fact, it
is also a necessary condition. This result is detailed in [CD].
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We first show that ¢ and ¢ are in L?(R). As in Theorem 2.7, we
apply T§ to the function Cy(w) = 1 —cosw which is in Fy and by using
Lemma 2.5, we obtain

/ ¢(w)[Pdw < C |Pn(w) P dis
2n—1r<l|w|<L2n 2n-1x<l|w|<L2"

2™ r
<c / C1(27"w) | (w) 2d
—2n

y+1\"
< I
<e(+)
because (7+1)/2 > 4. Since we also have (y+41)/2 < 1, it follows that

the dyadic blocks in the Littlewood-Paley decomposition of ¢ satisfy
the inequality

(A.5) 12;(¢)lle < €27 for somee >0 .

This proves that ¢ and i are even better than L?: They belong to a
Besov space B5* (C L%(R)) for some € > 0. We shall use this property
to prove the frame inequalities. Similarly ¢ and P belong to B§’°° for
some & > 0. To prove the L? convergence of the sequence p, to ¢, we
remark that since mo(0) = 1, for « in |0, 7] small enough we have

(A.6) lw| < @ implies |[p(w)|>C >0.

We now introduce the sequence g defined by
(A7) sa@) = JI mo@ ™ w)xi-zna2na(@) -
k=1

It is clear that $%(w) converges pointwise to ¢(w), but (A.6) also im-
plies |¢%(w)| € |¢(w)]/C for all n > 0. By the Lebesgue dominated
convergence theorem we get

(A8) Tim ol ~llz = 0.

We now use the hypothesis on the eigenvalues to evaluate the L norm
of the difference ¢, — 3o

/ pale) = G = [ fonle)as
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1 i n .
< L. Cpa(w) s

2“
_2"
<C27" — 0.

n—oo

Consequently ¢, converges to ¢ in L?(R) and the same holds for @,
and $.

It remains to establish the upper frame inequalities in (A.2). We
shall obtain them by using the following lemma.

Lemma A.2. Let ¢ be a function in L?(R) such that for some o > 0,

(A.9) > h(w + 2km) P77 < Cy
kez
(A.10) > [PETw)” <G
JEZ

uniformly in w. Define, for 3,k in Z, zbi(z) = 2792270z — k).
Then, for all f in L*(R),

(A.11) Yo AP <G fI17

J,kEZL

Let us first assume that this result is true to conclude the proof of the
theorem. We thus have to check that there exist a ¢ > 0 such that
(A.9) and (A.10) are satisfied for 3 and .

To check (A.10), we define I; = [-27*lx, —2ix| U [27m, 29F 7).
For j <1, we can use the cancellation of 1)(w) at the origin to obtain

(A.12) max lh(w)] < C27 forj <1.

For j > 2, we know that 1)(£2/m) = 0 since @(2km) = Ofor k € Z\{0}.
We thus have

max [th(w)]* < /1,. % (hﬁlz) dw

<2
I:

J

$) 2 0)| do




124 A. COHEN AND I. DAUBECHIES

o[ [ e a] [ [[|5 @ @)

The first factor can be majorated by 27/ because we have proved that
¥ belongs to B;*°. The second factor is finite since it is proportional
to [|zy(z)[? dr and ¢ is a compactly supported L? function. Conse-
quently

(A.13) max [p(w)| < C27/2  forj>2.

Combining (A.12) and (A.13) we see that (A.10) holds for all & > 0,

since we have

max Y [H(2w)|” <y [max |¢(w)l]a

JEZ JEL
< C[Z 907 Z 2-50,'/2J
<1 722
S CQ(U) .

We now check that (A.9) is satisfied for some o > 0. Because the
wavelet satisfies ¥(4kn) = 0 for all k € Z, we can derive

2kn+2m
S +2nP <> [ b s
k€EZ kEZ
< 2 nn21l=0/2 dw
< [0
. _1di
<|2-— =71 | dw
<2-of [ )| FE|

< —el] [ [ [ o) a] "

We already saw that the second factor was finite (in the proof of (A.10)).
The first factor is also finite for o small enough. Indeed, using ¢ € B3
and the Holder inequality, we obtain

1—0o

/ [h(w)P 2 dw < [/ [(w)? dw} (27+1)”
I I;
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< ¢ 2i(e—2e(1-9))

We thus have to choose ¢ > 0 such that 0 —2¢(1 -0) <0, i.e. 0 <
2¢/(1 + 2¢). Since the same results also hold for the dual wavelet b,
the theorem is proved modulo Lemma A.2 that we tackle now . Using
the Plancherel and the Poisson formulas, we derive for any f in L?(R)

/ F(w) D(@w) €

Zl(f,¢i)l2— =2

kEZ kEZ

= 2221

kez
1 [ . L —

- = -j -j w

= o A 2 ;GZ: F(279 (w + 20r)) P(w + 20m)

] 27
= | (T 2m) e + 2mler

ez

/ f(2iw) Pw) e

2
dw

A

2
- Jeh(w + 2€7r)|1_"/2) dw

-j 27 o . -
5 ] (Z |f277(w + 26m)P? |¢<w+2ew>|”)

ez

: <Z e +2€7r)|2—”) dw

ez

IN

< G f@TW)P (W)l dw

o
-+ q / F@)P [h(2iw)? do

Summing on all the scales j € Z and using (A.10), we get

a1) Y nehr< a2 / f@)fdo = C:Cy |IfI?

7,k€EZ

and this concludes the proof.
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Appendix B. Dragonic expansions.

In this Appendix we want to show how the one-dimensional tech-
niques in [DL] can be extended to multidimensional situations. As an
example we discuss the two-dimensional case, with the dilation matrix

1 1
R= (_1 -

A first multidimensional extension of [DL] can be found in [Mo].
Even though he looks at general matrices, Mongeau effectively reduces
his analysis to pure dilations by considering the smallest n such that
D = D" is a multiple of the identity, and rewriting (by iteration)
the two-scale equation so that it involves only D. This procedure can
drastically increase the number of different terms in the equation. We
choose here to work directly with D = R itself.

When the two-scale equation is one-dimensional, and the dilation
factor is 2, the regularity at z of the function ¢ solving the equation is
regulated by the binary expansion of z (for dilation factor p, the same
role is played by the p-ary expansion). Moreover, R and in particular
supp ¢ is tiled with integer translates of the interval [0, 1], which can
be viewed as the set of numbers equal to the decimal part only of their
dyadic expansion; if N such tiles are needed to cover the support of ¢,
then the two-scale functional equation can be rewritten as an equation
for an N-dimensional vector-valued function involving two matrices Tp
and T,. The spectral properties of Ty, T} then determine the regularity
of ¢, both local and global [DL].

In the two-dimensional case with dilation matrix R, the role of
elementary tile is now played by the twin dragon set A. It is defined
by

{:c eER*: z= iR_jpj where
(B.1) =1
i € L=2/RE = {(0,0),(1,0)}}

Under the standard identification of R? with C, with (z,y) ~ z +1y, A
can also be written as

oo N
(B2) A = zEC:zdej(lzz) where d; = Qorl

=1
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This set A is compact, has fractal boundary, is selfsimilar, and its Z2-
translates tile the plane. The indicator function of A is the solution to
the two-scale equation

¢(z) = ¢(Rz) + ¢(Rz —(1,0))

(see [GM]). A is called the twin dragon set [K]. We shall give the name
dragonic expansions to expansions of z or z as in (B.1), (B.2). Note
that (as in the binary case) some points may have two different dragonic
expansions, e.g. .01000...= ((1414)/2)® = i/2 = .1011111... (This
example also illustrates that addition follows rules very different from
the binary case, since .0100... + .0100... = .1111...)

Suppose we are interested in various regularity properties of L!-
solutions ¢ of

(B.3) $(z) = Y cx ¢(Re —k),

keA

where A is a finite subset of Z2. Such solutions are uniquely defined
up to normalization and have necessarily compact support. One can
determine the minimal set I' C Z2 so that R™}(I'+ A — L) C T; then
supp ¢ C Uger(A + ¢). The equation (B.3) for ¢ can be rewritten by
defining the |I'|-dimensional vector v(z) by

(B.4) vi(z) = ¢z +7), jeTl, ze A,
we have

vj(z) = Z CRj+dy(z)—k Vk(TT)
%

where dy(z) is the first digit in the dragonic expansion of z, and 7z is
the point obtained by dropping d; (z) from the same dragonic expansion

of z, ,
& 14+1Y)’
TT = Zdj+1(w)< 5 ) .

=1

Equation (B.4) can be recast as

(B.5) v(z) = Ty, (g v(TT),

where (To)jx = crj—k , (Th)jk = crj—k+(1,0) -
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We have completed a setup analogous to that of [DL]. The question
is now whether the proof techniques of [DL] still work in this case. The
answer is basically yes. For instance, we still have

Theorem B.1. Assume that the cx in (B.3) satisfy

Z CRn = Z CRn+(1,0) = 1.

n n

Then e; = (1, 1,...,1) is a common lefteigenvector of Ty, Ty with
eigenvalue 1 for both matrices. Define E, to be the one-dimensional
subspace orthogonal to ey. If there exist A < 1, C > 0 so that

(B.6) ITa, -+ T, | &, || < CA™

for all possible dj =0 or 1, all m € N, then the L!-solution ¢ to (B.3)
is Holder continuous with ezponent a = |log\|/log /2.

This is the analog of Theorem 2.3 in [DL]. Two different strategies of
proof are given in [DL]. The first one involves piecewise linear spline
approximants; this technique would be hard to generalize here because
of the fractal boundary of our domain building blocks A + k. A second
strategy, which does not use splines at all, but leads to longer proofs,
is explained in the Appendix in [DL]; this strategy generalizes to the
present case. The main point we have to check to make sure the proof
carries over is whether elements that are close necessarily have dragonic
expansions with the same starting digits. In the one-dimensional, bi-
nary case, if two dyadic rationals z, y are closer than 27" |z —y| < 27™,
then z and y have binary expansions with coinciding first m digits. (If
e.g. ¢ <y <+ 2™, then the expansion “from above” of z — ending
in all zeros — has the same first m digits as the expansion “from below”
of y — ending in all ones.) This is crucial in the proof, and allows to
extract Holder continuity from the condition (B.6). We therefore have
to check whether a similar property holds in the “dragonic” case.

By analogy we shall call dragonic rationals all the points in A for
which a terminating dragonic expansion can be written. Typically drag-
onic rationals also have other, non-terminating dragonic expansions.
For each dragonic rational z the terminating expansion is unique; we
denote its digits by d_?(w),j eN.

Let us also introduce the notations Ry, R;,

Roy = Ry, Ry = Ry + (1,0),
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or Rsy = Ry + d(1,0), withd = OQor1.

Take now a fixed dragonic rational z, and assume that d2(z) =
for j > J. All the y € A that have the same first J digits d_?(l'),j <J,
constitute a little dragon A j(z) themselves,

As(z) = Ry Ryl A

z itself is the image of (0,0) under the same map R;Jl(z) . -R;ll(z). The
set A is tiled by 27 little dragons of the same size as A, all translates
of Aj. For every such little dragon, we call the point corresponding
to (0,0) the “bottom”, and the point corresponding to (0, 1) (the only
other point in Z? N A) the “top”. If z is a dragonic rational with at
most N nonzero digits, then z is the bottom of A ;(z) for all J > N.
(But note that the “orientation” of Aj(z), as indicated by the line
connecting bottom and top, changes with J!). It follows that z is on
the border of these A j(z). If = is not at the edge of A itself, then there
must exist another little dragon A ;(y) so that z is the top of A ;(y)
(since A is the union of all the 27 possible dragons A ;). Since the top
(0,1) of A is given by the expansion .111111..., we can therefore find
another dragonic expansion for z, ending in all ones, and with the same
J first digits as y,

di(z) = dj(y) forj<J, dj(z) =1 forj>J.

We have seen how to obtain the two expansions for a dragonic
rational z. We now want to show that if another dragonic rational y
is “close” to z, then at least one of its expansions starts with the same
digits as one of the expansions for z. Define

p = max {r: B((0,0); 1) CAU(A-(0,1))},

where B(y; A) is the open Euclidean ball centered at y with radius A.
Suppose z is a dragonic rational with dg(x) =0forj > J. Takem > J,
and consider the set

Bn = {yeA: [y—z|<p27 "%},

There are two possibilities: either z is on the border A of A, or it
isn’t. If z € OA, then

Ry (o) Ry (B = (0,1))
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has no common interior points with A, so that B, C An(z), and the
terminating expansions of all y € B, have the same first m digits d%(z),

Jj = 1,...,m If z ¢ OA, then R_S’,l,(z) e R;ol(z) (A—(0,1)) C A; this
set is then a little dragon A,,(z) of which z is the top. In this case
B,, C An(z)U Ap(z), so that every point y € B,, has a dragonic
expansion with either the same first m digits as d°(z) (if y € An(z))
or as d'(z) (if y € Ap(2)). This is the main ingredient needed to make
the proof of Theorem 2.3, as sketched in the Appendix in [DL], work in
the present case.

One other point that needs checking is whether the existence of
two different dragonic expansions for z does not lead to inconsistencies
for the definition of v(z). If d?(z) = 0 for j > J, then d°(z), d'(z) are
linked by

N N
¢ =Y d)(z)R7(1,0) = Y dj(z) R7(1,0) + R7Y(0,1)
j=1 j=1

for N > J arbitrary. One can then compute v(z) in two ways, using
the two expansions. The following computation shows that they lead
to the same result: for k € T,

N
v ) di(z)R7(1,0) = |Tae(z  Tag()v(0,0)]
= Z CREk+d?(2)(1,0)—j1 CRj1+dS(2)(1,0)—j2 - * - CRjN+d% (2)(1,0)—jn
J1--JN
[U(an)]]N
= Z CRk+d}(z)(1,o)—m1~--CRmN_1+d3,(z)(1,0)—mN
my..mpN

(0,00, 4 SN d(2)RN=E(1,0) — SO0 dl(z)RN=k(1,0)

= Z CRk+d} (2)(1,0)=m - - - CRmn_1+dL (2)(1,0)=mn [2(0,0)]my+(0,1)

my.. MmN

= [Td}(r)"'Td}v(z) v(0,1)]

The rcader can now check that the proof in [DL] indeed carries
over to prove Theorem B.1. Similarly, one can prove differentiabil-
ity of ¢ under stronger conditions on Ty, Tj, similar to Theorem 3.1



N ON-SEPARABLE BIDIMENSIONAL WAVELET BASES 131

in [DL]. Finally, the same techniques can also be used for local reg-
ularity estimates, but these are a bit more tricky, and require fur-
ther study of the properties of dragonic expansions. In practice, the
matrices To|g,, T1|g, are often too large to permit a rigorous esti-
mate of A in (B.6). However, A is bounded below by the quantities
p(Ta, --- Ty, |E,)"/™, and this leads to upper bounds for the Holder
exponent a.

EXAMPLES.

1 g(z) = 3 g(Re+(1,0)) + g(Rz) + 3 g(Re —(1,0))

The solution to this equation is the convolution xa * xa, where
Xa is the indicator function of the dragon set A (see also the
second remark following Proposition 5.2). In this case I' has 10
elements. The largest spectral radius of Ty|g, is obtained for
d =0, p(To|g,) = .847810..., corresponding to a lower bound
A > p(To|g,) in (B.6), or a Holder exponent o < .47637... Via
other methods (using the transition operator T of (5.19)) one also
derives that this value is a lower bound. This global Hélder expo-
nent is attained in dragonic rationals, in particular in (0,0).

Note that when M, is positive, as in this case, the transition oper-
ator T is already known to give optimal results. One easily checks
that the matrix representing T is in fact a submatrix of Tp, so that
it is not surprising that they have a common eigenvalue!

2. ¢(z) = ho¢p(Rz)+h1¢(Rz—(1,0))+hep(Rz—(—1,1))+hsd(Rz —
(0,1)), with hg = .506970418225, h; = —.207072424345, h, =
493029581775, hy = 1.20707242435. This is an example from the
family described at the very end of Section I11.3.a. It leads to an or-
thonormal wavelet basis. In this case |I'| = 14; the parameters have
been chosen so that p(Ty|g, ) ~ p(T1|E,) ~ .714. Plots of approxi-
mations to ¢ seem to suggest that ¢ might be continuous, but we
have no proof. If it is, then its Holder exponent is bounded above

by log[p(ToTi|E,)'/?]/ log V2 ~ log(.90649)/ log /2 =~ .28327 .

Appendix C. Proof of the inequalities (5.52) for G(w).

The function G is defined as

Gw) = cosz% + cos? %] [sin2% + sinz%
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-1
. sin2£1_*‘_.u£. + sin2u H(w)’
2 2
. _ l/. 2w . g W2
with Hw) = h(2 (sm 5 + sin 2)) ,
L 0<t<1/2
and h(t) = 1-1¢ -7 ’
4t 1/2<t<1.

We want to prove inequalities for G(w), G(w)G(Dw) and G(w)G(Dw)
G(D%w), where D(w;,w,) is either (w1 + w2, w; —ws) or (w1 —w2, w1+
w2). (Since G is invariant for the interchange of wq,ws, it does not
matter which definition of D is taken, D = R or D = §.) To prove
these inequalities it is convenient to use different variables,

- _ 1 (2@ g2 2 = — sin? YL gin? 22
s—s(w)—z(sm 2+sm 2),p—p(w)—sm sin”
We then have
s(1—s
6w) = L=Dnis) = 20(s).

Moreover,
s(Dw) = 2(s—p),  p(Dw) = 4(s* —p).
As w ranges over [—, 7], (s,p) fill out the domain A defined by
A = {(s,p): 0<s<1, max{0,2s — 1} <p < s?}.

In terms of these new variables, we therefore want to study n(s,p),

n(s,p) 7(D(s,p)) and 5(s,p) n(D(s,p)) n(D*(s,p)), for all (s,p) € A,
where D is defined by

D(s,p) = (5,p) = (2(s—p), 4s* —p)).

Note that D maps A twice onto itself (both AnNn{s <1/2} and AN
{s > 1/2} get mapped to all of A). Moreover D has one fixed point,
(so,p0) = (5/8, 5/16), corresponding to n(sg,pe) = 15/16.
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We shall prove that A = A; U Az U A3z, where

(C.1) n(s,p) < ¢ on Ay,
(C.2) n(s,p) 7(D(s,p)) <(* on A,
(’C-3) n(s,p) n(D(s,p)) n(D*(s,p)) <¢* on A; .

The value of ¢ will be fixed by our estimates below; our goal is to obtain

(< 1.
Choose @ = +/.9, and define the region A; by

Ay = {(s,P)EA:pS(l—%)s if s<1/2,

pgs-zsz(l—s) if 521/2}.
a

Since
s . 2s2(1—3s) .
s, = — fs<1/2, ——= ifs>1/2,
n(s,p) 5 —p) / P /
we automatically have
(C.4) n(s,p) < aon A; .

By the definition of n and D, we have to distinguish four different
regions when studying n2(s,p) = n(s,p)n(D(s,p)):

n2(s,p) =
S > ifs<1/2, p<s—1/4
2G-p)  4s-25%+p) SUS ps !
251 -9) fs<1/2, p>s—1/4,
s—p

s2(1-s) s?(1—s) )
: - >1/2, p>s—1/4,
i—p  s—2s24p fs21/2, pzs—1f
45%(1 —s)(1 - 3) _ 8s%(1 —s)(s —p)(1 —2(s —p))
5—p B s+p—2s2

ifs>1/2, p<s—1/4.
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We define A, by

= AZ,I U Az,z .

Since §(1 — §) < 1/4 for all § € [0, 1], we have

s S
< =
772(3717) = 2(§ _ﬁ) 4(5 — 252 +P)

on all of Ay ;. Since moreover p > (1 — 1/2a) s, we have

wen<lio-d )] <o) e

on AZ,I-
On Az 2N {(s,p) € A: p>s—1/4}, one easily checks that

s3(1—s
nisn) = oty
satisfies 9,n, # 0 everywhere. It follows that 7, achieves its maximum
on the boundary of this domain, given by the three pieces p = s?, with
1/2<s<.9,p = s—1/4with1/2<s<.7,and p = 2as —a? with
.7 <5 £.9. One easily checks that the maximum value of 72 on this
boundary is .9.
Similarly one checks that 7, achieves its maximum on A, , N {(s,p) €
A : p < s—1/4} on the boundary of this set; again this leads to
n2 _<_ 9.

It follows that

(C.5) 72(5,p) <.9 = a’onall of A, .

It remains to determine an upper bound on n3(s,p) = n(s,p)n(b(s,p))
n(D*(s,p)) on A\ (A1 UA) = {(s,p): 25-1<p< s p>
s —25%)(1-3)/a, p < 1.8s — .81} Since s — 25%(1 — s)/a is strictly
increasing, we have A\ (A UA) C Az = {(s,p): 2s—1<p<
s2,pr = 1.8s; —.81 < p < 1.8s — .81}, where s; is the solution
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to s —2s*(1 —s)/Ja = 1.8s — .8l. In A; one has to distinguish
4 subdomains, corresponding to different expressions for n3, namely
Asy = A3N{p>p1,p>22s—1,p<2s—1/4)*}, A3y = AsnN{p>
2(s—1/4)%, p<s—1/4}, As3 = AsN{p>s—1/4, p>2(s—1/4)?}
and Azy = AsN{p>s—1/4, p<s(s—1/4)?}. On Az, As3z and
A3 4 one checks explicitly that 9,m3 # 0. On Aj 3, the exact expression
for n3 is too complicated, but one can replace it by an upper bound,

252(1—s) 25%(1—3) 25°(1-35)
s—p §—p i—p
_2(1-s) 5 28(1-3)
s—p $—p §-—
16 s2(1 — s)3(1 — 3)
§—p

773(3’]7) =

3

= 53(3ap) '

This upper bound again satisfies 8,73 # 0 on A3 5. It follows that 73 on
Aj is bounded by the maximum of n3 on the boundaries of A3z i, Asz 3,
Aj 4 and of 73 on the boundary of A3z ,. Explicitly, for all (s,p) € As,

(C.6) n3(s,p) < Ms(s1,p1) = 88145650226 . ..
This numerical upper bound is larger than (.9)%/2; it follows therefore

from (C.4) and (C.5) that we have proved (C.1)-(C.2) for

¢ = [Fs(s1,p1)]/% = .958812370442. ..
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