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Further pseudodiftferential
operators generating
Feller semigroups
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Abstract. We prove for a large class of symmetric pseudo differential
operators that they generate a Feller semigroup and therefore a Dirich-
let form. Our construction uses the Yosida-Hille-Ray Theorem and a
priori estimates in anisotropic Sobolev spaces. Using these a priori es-
timates it is possible to obtain further information about the stochastic
process associated with the Dirichlet form under consideration.

Introduction.

Generators of Feller semigroups are characterized by the Yosida-Hille-
Ray Theorem, see [7] or [13]. This characterization involves the notion
of the positive maximum principle. It was Ph. Courrége [6] who gave
a characterization of operators satisfying this maximum principle. He
proved that these operators are certain integro-differential-operators
and later these results had been developed further in order to con-
tinue studies started by von Waldenfels [39]-[40]. More recent results
on generators of Feller semigroups can be found in [8] or [37]. How-
ever, even in the paper [6], Courrége gave also a characterization of
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the operators satisfying the positive maximum principle as pseudodif-
ferential operators. These pseudodifferential operators have a symbol
a: R™ x R* — R with the property that for any z € R™ the function
€ — a(z,f) is a continuous negative definite function, see Definition
1.1. At that time the theory of pseudodifferential operators was rather
young, see [18] and [28], and it seems to us that this characterization
has never been used to construct Feller semigroups or Markov pro-
cesses. Only recently there are some investigations using the theory of
pseudodifferential operators to construct and study Markov processes.
For example T. Komatsu in [29]-[32] uses the theory of elliptic stan-
dard pseudo differential operators to study perturbations of symmetric
stable processes; and in [27] A. N. Kochubei uses the theory of
hypersingular integrals due to S. G. Samko, see [36], to obtain Markov
processes by constructing fundamental solutions of certain parabolic
pseudo differential operators.

On the other hand continuous negative definite functions do en-
ter in a quite different way in the theory of Markov processes. They do
also characterize translation invariant Dirichlet forms, see [2], [9] and
as a standard reference for Dirichlet forms [14]. In [23] we pointed out
that it is possible to combine Hilbert space methods, which are ve-
ry convenient when working with Dirichlet forms, with the result of
Courrege in order to construct a Feller semigroup starting with a pseu-
dodifferential operator having a symbol with the properties mentioned
above. In [24] a special example of an elliptic pseudodifferential opera-
tor was discussed in detail.

The purpose of this paper is to give further examples of pseudo dif-
ferential operators generating Feller semigroups and to study properties
of corresponding objects like the associated Dirichlet form and Markov
process. Now the operators under consideration are no longer elliptic
pseudodifferential operators and some classical calculus of pseudodiffer-
ential operators is not applicable. While our strategy in constructing
the semigroup is just the same as in [23], it was necessary to strengthen
some results of [23]. In particular the commutator estimate in Section
6 improving an earlier result, see [22], plays an essential part in proving
the fundamental estimates.
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1. Notations and auxiliary results.

Most of our notations are standard. The spaces Cg° (R™), C™ (R"),
0 <m < oo, LP(R"), 1 < p < o0, the Schwartz space S(R") and
the Sobolev space H® (R"), s € R, are defined as usual. In the case
m = 0 we write C (R") instead of C™ (R"). By C (R™) the space of
all continuous functions u : R® — R vanishing at infinity is denoted.
Further we set H*(R") = (\,5, H* (R"). The supremum norm is
denoted by ||+ ||oo, the norm in H¥(R™) is denoted by ||+ ||s, in particular
the norm in L2 (R™) is || - ||o and ("), is the scalar product in L% (R").
The norm in L? (R"™), p # 2,00, is denoted by || - ||z». For s € R we
define the function A® : R® — R by £ — A*(§) = (1+ |E[2)3/2 and we
have ||u||s = ||A® (D) u|lo, where A® (D) is given by

(1.1) A* (D) u(z) = (27r)‘"/2/ e A (€)a (€) dE .

R"
Here and in the following we denote by 4 the Fourier transform of wu.
By the Sobolev embedding theorem, see p. 121 of [33], we find for
s>m+n/2, m €N, that

(1.2) [ullem < efluls
holds for all u € H* (R"™), where

|lu]lcm = max sup [0%u(z)].
la|<m rER"

Moreover it follows that for |a| < m we have 0°u € C (R™). In order
that the last statement makes sense we have to identify H* (R™) with a
subspace of C™ (R™), which is possible by Sobolev’s embedding theorem
for s > m + n/2. Thus in this case we will always regard H* (R") as a
subspace of C™ (R"). Since C§° (R") C H® (R") for all s > 0 and since
C§° (R™) is dense in Co (R™) with respect to the norm || - ||, it follows
that for s > n/2 the space H? (R") is dense in Cy (R™) with respect
to the supremum norm.

Next let us introduce the notion of a negative definite function
which will be central in our paper.

Definition 1.1. A function a : R® — C is said to be negative definite
if for allm € N and (z',...,2™), 27 € R", 1 < j < m, the matriz

(a (z*) +Z(—E—a(xi—xj)) A

1,)=1,....m
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18 positive Hermitian, i.e. if for all m-tuples (c1,...,¢m) € C™
m . — .
(1.3) Z (a (x’)+a(mi)—a(z'—x1)) cic; > 0.
ij=1

A standard reference for negative definite functions is the book [1]. In
particular the following lemma is proved there.

Lemma 1.1. Let a : R® — R be a continuous negative definite func-
tion. Then a is nonnegative and there exists a constant c, such that

(1.4) a(€) <eca(1+€7)

for all £ € R™. Further a'/? is also a negative definite function.
We also recall Lemma 2.1 of our paper [22].

Lemma 1.2. Let a: R"™ — R be a continuous negative definite func-
tion. Then we have for all {,n € R™

(1.5)  la(é)—a(n)| <4a?(&)a P (E—n)+a(E—n).

As pointed out in [19, p. 327-328], (see also Section 10 of this paper)
using examples of continuous negative definite functions given in [1],
continuous negative definite functions need not be differentiable nor
do they in general belong to classical symbol classes such as the class

Sps (R™), see [38] for the definition.

Finally let us remark that throughout this paper ¢ denotes a non-
negative constant which may change from line to line.

2. Some function spaces.

In this section we will introduce a family of anisotropic Sobolev spaces
related to a continuous negative definite function.

Definition 2.1. Let a? : R® — R be a continuous negaﬁive definite
function and ¢ > 0 a real number. We define the space H* 7 (R™) by

ey atr) = fue 2@ [ (rat )" i (6) P < o0}

Rn
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On H** (R™) we have the norm
(22) s = [ (14 (©)*"1a(6) P
]Rn

With the norm (2.2) the space H9 (R™) is a Hilbert space and
Cs° (R™) is a dense subspace. Moreover, by Lemma 1.1 it follows that

H* 1 (R™) contains the space H??(R") and is contained in L?(R™).
Later we will often assume that for some #, 0 < ¢t < 2, the estimate

(2.3) c (1416 < (1 +a2()"?

holds. Clearly this implies that Hea (R™) is continuously embedded
into the space H' (R™), i.e. we have

(24) [ulleg < <t llullg,a2 -

Thus when (2.3) holds and ¢ is sufficiently large we can identify
He* (R™) with a dense subspace of Co (R").

The next lemma is proved as Proposition 1.5.A in [21].

Lemma 2.1. Suppose that limg—o (1 + a® (£)) = oo holds. Further
let ¢ > 0 be given and r > q. Then for anyn > 0 there ezists a constant
c(n) =c(n;r,q,a%) such that

(2:9) ullga2 < 7 llwllraz +c(n) llullo
for allu € He'r (R™).

We will need the following characterization of the dual space of

He 9 (R™).

Proposition 2.1. Let a’? and q be as in Definition 2.1. Then the
dual space of H* 9 (R™) is the completion of L (R™) with respect to
the norm

v
(26) HU’”—q,az = sup M .
0#veH*2.9(R") lvllg,q2

Moreover, for u € L? (R"™) we have

(2.7) nmﬁwz=/ (1+a? (€))7 () [Pde .
mﬂ
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Since L? (R™) is dense in [H“z’q (R™)]* with respect to the norm ||-||_; 42
we have [H*' (R™)]* = He = (R"), where the space H*"~* (R™) is
defined by (2.1) taking —q instead of ¢ and u to be a Schwartz distri-
bution.

In the case of the usual Sobolev spaces this result can be found in
[34, p. 31]. The proof of our proposition follows essentially the lines of
the considerations in {11, p. 201-203], and is left to the reader. We also
refer to Proposition 1.2 in [21].

3. The operator L (z, D).

As pointed out in the introduction we want to construct a Feller semi-
group and therefore a Dirichlet form by starting with a pseudodiffer-
ential operator L(z,D). This operator will be introduced now. For
1<j<nlet a? : R — R be a continuous negative definite functions.
Further, for 1 < 7 < n we assume that functions b; : R®™ — R are given.
The operator L (z,D) is defined by

(3.1) L(z,D)=) b,(z)d}(D;) ,
j=1

where a? (Dj), 1 <3 < n,is the operator

(3.2) a?(Dj)u(z) = (271')_"/2/ e'™¢a? (&) (€)dé .

mn
Clearly by Lemma 1.1 this operator is well defined on C§° (R"™). Later

we will introduce a larger domain for L(z,D). Let a® : R®™ — R be the
function

n

(3.3) HOED AR

j=1

Since each of the functions a? is a continuous negative definite function

it is clear that a® and 1 + a? are continuous negative definite functions
(sce Section 10). Obviously we have with suitable constants for any
s>0

1+ Z?:l a?s (&5)

(34) Cn,s < (1+ o2 (6))8

< Cnys -
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Now take r,t € (0,2], r > ¢t > 0 and let m( be the smallest even integer
such that
n

(3.5) t(m0—|—1)23+[2]

holds. Further suppose

r o r(r—t)mg

0<1-
< 2t t2

Let § € (0,1 —r/(2t) — r (r — t)mo/t?) be fixed and define s by
(3.6) s=(1-6)-—
It follows that

(3.7 s§————>0.
Taking t and r as above we assume

(3.8) c(1+1ER) " <1+a2(€) <, (141677 .

Now we can state our assumptions on the coefficients b;.

B.1. It is assumed that b; is bounded and continuous.

B.2. We suppose that b; = d; 4 c¢;, where c; is a real number and
d; : R® — R is a function satisfying

(3.9) d; ()1 < e (1+1e17) " -
where ¢ =n +r(s+1/2) + tmg + 1.
B.3. For all £ € R™ we require
(3.10) bj(z)>6; >0

to hold.
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B.4. For some z3 € R™ we assume

61
(3.11) 2o, sup [bj (z) = bj (z0) | < 5~ -

In order to prove commutator estimates for the operators a; (D;)
we have in addition to assume that

(312 G+ <14a @) <5416,

where 0 <t <t; <r; <r <2.

In Section 10 we will give examples of operators satisfying all the
conditions stated above. Note that our assumptions are far from being
the most general or the sharpest. In particular when considering special
operators as it was done in [24] or [16] much of our assumptions could
be relaxed. Beside the operator L(x, D) we also will often consider the
operator L*(z,D) = L(z, D)+ X\, A € R.

The next lemma will be used frequently

Lemma 3.1. For all u € C§° (R™) we have

(3.13) lla; (D3)ullg <> Nlaj (D) ully < lfull}/z,q0 -

=1

PROOF. For u € C§° (R"™) we have
(D 2 _ a ()4 24 n2. 3 14 2 ¢
la; (D) ull Aj@wmnssAgkﬂmwme

< [+ @O P = [ull -
R" =

4. On the bilinear form associated with L(z, D).

The operator L (z, D) can be regarded as a pseudo differential operator
with symbol

L(z,6) =) bj(z)d}(§) -
1=1
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This operator is clearly defined on C§° (R™) by

L(z.D)u(z) = 2x) ™ [ eoL(a,e)n(6) de

(41) n
= (27)" /2 E (z et a? (£:)a .
(2 ) o b] ( )/';n 7 (6]) (E) df

Since a? (D;)u € Co (R™) for any u € C5° (R™), see [21, Proposition
1.4] and b; € L*°(R"), it follows that we can define on C§° (R") the
bilinear form

n

(4.2) B(u,v) = (L(z,D)u,v)y = »_ (b;(-) a3 (D;)u.v),

=1

The bilinear form associated with L* (z, D) is denoted by By. Our next
aim is to prove that B has a continuous extension onto H® /2 (R™).
For this we need

Proposition 4.1. Suppose that (3.12) holds. Then for any n > 0 there
exists a constant c(n) > 0 such that

(4.3) Ila; (Dj), 05 (lwlli/z,a < nllufliy2,62 + () ullo
for allu € H 12 (R™).

As usual we denote by [aj (D;),b; (-)] the commutator of a; (D;)
and b; (-), i.e. the operator

uwr aj(Dj) (bju)(-) = b (-)a; (Dj)u(-) .

The proof of Proposition 4.1 is analogous to that of Corollary 3.2 in [22].
It will be given in Section 6 where more general commutator estimates
are discussed. Using the commutator [a; (D;),b;] we can write B in a
more appropiate way, namely

B(u,v) =Y _(bj(-)a;(D;)u,a;(D;)v)o
j=1

+ Y (a5(Dj)u, [a;(D;), b;()]v)o -

i=1

(4.4)
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Now we claim

Theorem 4.1. For all u,v € C§° (R™) we have

(4.5) |B(u, )| < cllulliyz,e 1v]l1/2,02 -

PROOF. Let u,v € C§° (R™). Then it follows that
|B(u,v)| < il |(8;(-)a;(D;)u, aj(Dj)v)o|
i=
+ Zn; |(a;(D;)u, [a;(D;), b;(-)]v)ol
P
< Ci lla;(Dj)ullo lla;(Dj)vllo

+lea](D ullo l[a;(D;), b;()]ello

< cHuHx/z,a? vll /2,62

where we used Lemma 3.1 and Proposition 4.1 for the last step.

Obviously (4.5) holds also for By, A € R. Thus B) has a continuous

extension onto H®+1/2 (R™) which is again denoted by Bj. Furthermore
we have

Theorem 4.2. For all u € H* 1/2 (R™) we have with a suitable con-
stant dy

(4.6) Blu,w) > 2 [l 5,02 o ul}

PRrROOF. It is sufficient to prove (4.6) for all u € C§° (R™). For these u
we find

B(u,u) =Y (bj(-)a3(D;)u,u)o

j—l

> Z )aj(Dj)u,a;(Dj)u)o
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n
— 1) _(a;(D;)u, [a;(D;), b;(-)]u)ol
J=1
= B] - |Bg| .

Now we get using B.3

(47) By = /R S by(@)la2(D;)u(z) Pz > b ulls 2,00 — 61 [ul
n]=1

Using Proposition 4.1 we can estimate B, as follows

|B2] = 1> (a;(D;)u, [a;(D;), b;(-)u)o]

Jj=1
<3 el jzaar (nllulls 2,00 + e(n) lullo)
i=1
(4.8) < e ull} /g 02 + ele) Julld

where > 0 and therefore ¢ > 0 are sufficiently small constants. Thus
by (4.7) and (4.8) we have

B(u,u) > (61 = &) [ull} /2 2 = (c(e) + 61) lullf
which implies (4.6).

It follows that L*(z, D), A € R, has a closed extension L*, called
the Friedrichs extension, with domain D (L’\) defined as the set of the

functions u € H® /2 (R™) such that

(4.9) there exists f € L* (R™) such that for all v € He 172 (R™):
B,\(IL,U) = (f?v)() .

Note that L* is the only closed extension of L*(z, D) with the property
that D (L*) C H®"1/2(R"), see [26] or [41]. Moreover —L* is the gen-
erator of an analytic semigroup of contractions provided A is sufficiently
large. Our next goal is to characterize the domain D (L?).
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5. A characterization of D (L?).
First of all let us prove
Proposition 5.1. The operator L*(z,D), A\ € R, has a continuous
eztension onto H* ! (R™), i.e. L*(z,D): H* 1 (R") — L2(R") is a

continu- ous operator.

Proor. For u € C§° (R™) we find using B.1

IL*(z, DYullo < 11> bi(-)a2(D;)ullo + [Al luflo < ¢ [lulls.az -
7=1

The next estimate will give an important regularity result for
solutions of the equation L*(z, D)u = f.

Theorem 5.1. Under the assumptions B.1-B.4 and (3.12) there exists
a constant ¢ such that

(5.1) lulls.as < ex (1L, Dyullo + ffullo)
holds for all u € L* (R") with L*(z, D)u € L? (R™).
ProoF. Using Proposition 2.1 we find
lulls,a2 11 B (a3 (Ds)u + Ao
j=1
= llullsaz 11+ D af(D0) (Y bi(-)az(Ds)u + Aw)l|-,a
=1 7=1
> (u, (14 Y aj(D))D_ bi(-)a}(D;)u+ Au))g
=1 Jj=1

=((1+ Za?(Dl))u,ij(-)a?(Dj)u + Au)g
=1 J=1

= Y (af (Dyu,b;(-)a3(Dj)u)o + A flul

=1
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FAS Do, u)g +Z<u b(a2(D;)u)s -

I—

For A > 0 we find

(5.2) A af(Du,u)o =AY |la(Diyull§ > 0.
=1 =1
Further we have with ¢ as in B.4
> (af(Di)u,b;(-)a(Dj)u)o = E(a?(Dl)uabj(ﬂfo)a?(Dj)U)o
Li=1 Ail=1
+ Z((b ) = bj(z0))a(D;)u, ai(Di)u)o
7,0=1
=A;+A4,.

Now, by B.3 and Lemma 2.1 we get for n; >0

Z (bj(20)a3(D;)u, af (Dr)u)o

5 1=1

553 [ e tacra

7,i=1

-6 [ (1+Z (&) la©)Pde - &l
- a?(&:)|a(é))?
26, /m; b)) () dg

(5.3) > (81 = m1) llullf a2 = (61,m1) JJulls -

Now we estimate A, by taking into account B.4:

42| < ) 1(b;() = bj(=0))a3(D;)u, af(Do)uol
=1

n
< Dex sup |b(z) — bi(zo)l Y lla3(Dy)ullo [|ai (De)ullo
7,1=1

385
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< max sup Ibi(2) = bi(20)| (1 43(;)ulo) (3 o (Doyullo)
=1

1
VRS j=1

< —
nlxéljaécn sup |bj(z) — bj(z0)] ||“||1 a2

5
= “u”l a? -
Thus

(5.4) |[4;] < — &

5 lullfaz -

Moreover using Proposition 4.1 and Lemma 2.1 we find for any n; > 0
n
| D _(,b5(-)a}(D;)u)o]
i=1

< e (a;(Dj)u,a;(Dy)u)el + Y 1([65(), a;(D;)]u, a;(D;)u)o|
j=1 j=1

< cllulll/anr < mallullf oz + cln2) llullg -

Thus we find for A > 0

ol a2l S B5()a2(Ds)u + Aull
=1
> (81— 61/2 = m — ma)[[ull? 42

+ A lla(Dayullf + (A = e(b1,m1,m2)) Il -
=1

For n; = n2 = 6;/8 and A > A\g = ¢(6;) we find using (3.12)
2 b1
(5.5) IL%(z, D)ullo 2 o llull1,a2 -

Now let A € R be arbitrary. Then it follows that

[ufli 02 < e[| L2 (z, D)ullo
=c||ILMz, D)u + (Ao — Nulfo
< ¢ (JILA(z, D)ulfo + [Xo = Al [Jullo)
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< (JILA(=z, DYullo + [lulo)
which proves the theorem.

Note that Theorem 5.1 also follows from Theorem 7.1 below, even
the structure of the proof is the same. However our proof of Theorem
5.1 does not use Theorem 6.1, that is why we have given it separately.

Corollary 5.1. Let us consider L*(z, D) as an operator on L%(R")
with domain H*"! (R™) C L% (R"). Then L*(z, D) is a closed operator.

PrROOF. We prove that He' (R™) equipped with the graph norm
llullo + ||IL*(z, D)ul|o is a Hilbert space. By Proposition 5.1 we have

lullo + [|IL*(z, DYullo < c[lull1,q2
for all u € H*™! (R™). Conversely, by Theorem 5.1 we find
¢ Jlull a2 < flullo + L7 (2, D)ullg

forallu € H*' ! (R™), since for these u we have by Proposition 5.1 that
LA(z,D)u € L?* (R™). Thus the graph norm is equivalent to the norm
Il - 1,2 which implies that H? ! (R") is a Hilbert space with respect
to the graph norm.

Following [26, p. 325-326], we get

Theorem 5.2. Let L*(z, D) be as above and let L* be its Friedrichs
extension. Then we have D (L*) = H* 1 (R") and L* = L*(z,D) as
operators defined on H*" ! (R™).

Note that Theorem 5.2 is a regularity result for solutions of the
representation problem

(5.6) Ba(u,) = (f,¢)o  forall o € C5°(R"),

where f € L?(R") is a given function. For A > d; the non-symmetric
version of the Lax-Milgram theorem implies that (5.6) always has a
solution in H?"!/2 (R™), while the definition of D (L*) together with

Theorem 5.2 gives that this solution belongs already to He' (R™).
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6. Some commutator estimates.

In order to get further regularity results for solutions of the equa-
tion L*(z, D)u = f we have to prove some commutator estimates. First
we note the trivial identity

m—1
(61) g™ —y™ = (1,‘ _ y) Z :L,lym—-l—l
=0

which holds for all z,y € R and m € N.

Lemma 6.1. Let a? : R® — R be a continuous negative definite func-
tion and m € N. Then we have for all {,n € R"

(6.2) I(1+a*(€)™ = (1 +a*(n)™|

m—1

<4(a(6—n)+a*(€—n) Y 1+ &)1+ ).

=0
PROOF. By (6.1) we have

(1 +a*(€)™ — (1 +a*(n)™|

m-—1

= (1 +4a(€) = 1 +a*(n)| D (1 +a(€)) (1 +a*(m)™ 17"

=0

Since a? is a continuous negative definite function we find using
Lemma 1.2

(14 (€)™ — (14 a*(n)™|

<(4a(&a(€ —n)+a*(E—n) Y (1+a*(€) (1 +a ()™
=0

< (4a(f —n) +a¥(E =) 3 (1+a*(€) V(1 + P ()™,
=0

which proves the lemma.

The proof of Theorem 6.1 requires the following two lemmas
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Lemma 6.2. ([35], Lemma 2.2.1) For any ¢ € R and all {,7 € R" the
inequality

(6.3) (14 €)1+ n*)~ <2191 (1 4 € — p|?)ld!
holds.

Lemma 6.3. ([35], Lemma 2.2.4) Let k € L' (R™). Then we have for
all u,v € L% (R™)

6) | [ ([ 56— muto(epin)de] < o o ol

Now we prove

Theorem 6.1. Let b; be as in B.2, in particular suppose (3.9) with
g=n+r(s+1/2)+tmo+1. Then for all u € He mo (R™) we have

(6.5) L+ a*(D))™, b (Nullso a2 < €llttllmo—s,a2

r—t . . :
mq with mg, s and § as in Section 3.

where sg = s —
PRrROOF. First we note that for u € C§° (R") we have

[(1+ a*(D))™, b;()u = [(1 + a*(D))™, d;(-) + ¢;]u
=[(1+ a*(D))™, d;(")]u,

thus we only have to prove (6.3) with d; instead of b;. By a straight-
forward calculation we find for u € C§° (R™) that

(1 + a* (D)™, d;()u)" ()
B /mn d;(€ —n)((1 +a*(€))™ — (1 +a®(n)™ )a(n)dn .

Furthermore, for v € L% (R") we have
({1 + a*(D))™°, d; ()], v)ol

/n ( - d;(& —n)((1 + a2(€))™ — (1 + a2(77))m°)mﬁ(£)dn)d§‘
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mo—1
c (€ - a(§ — a*(é —
S L (L de-niae-n+ae-m

(L4 (€)1 + ()™ fa(n)| Iﬁ(ﬁ)ldn) d¢

Scmgl A; (/m |di (€ = I+ [€ = 9l*)

(+d* ) (+d%9)'"?
(1+a*(n)' (1 + a?(n))~mot!

(L4 ()" (1 +a%(n)"F (L 4+ a2(€) o &)
(1 + a® ()™~ [a(n) dn) d

mo—l

"‘ _ _ 2
EX c,/m(/m 1d;(6 =)l (1+ 1€ = n[?)

=0
(14 |E[2)2 (1 + |€2)rst1/2)/2
(14 |9|2)1/2 (1 + |p|2)1(1-6)/2

(L4 a(€)T*IB(E)I(1 + a(m)) ™~ li(n) |dn) d

"D,Q'—l

_ 7. _ _ (r—t)/
G6) > c'/m,, (/m,, d;(€ =) (L+ 1€ —n*) (1 + |€]) 2

=0
. (1_{_‘6]2)(7(34'1/2)4'11)/2

TP (1+a2(€)~*[&(€)]

(1 a2(m)™ " la(n)ldn) dg
mo—1

< CZE[/

(3.8),(6.3) = Rn

([ 1dste=mia+1e =

(14 |£ _ n|2)(r(8+1/2)+t1)/2

R (1 +a2(€))—8+(r—t)(l/t)

BN+ a*(n)™ ~*|a(n)Idn ) d€
<o ([ asie=aty e —ppresmenr

(3.9)
(14 a? () eI/
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(1 +a2(m))™ ~Pla(n)|dn ) d€
< c]|o]l-a0,a2 l|llmosa? -

Thus we find
|([(1 + a®(D))™, dj(-)]u, v)o]
9]l -s0,a2
which implies by Proposition 2.1
II(2 + a*(D))™, d;i(Nulls—2¢—t)imost) < €[llmo—s,a2 »

thus the theorem is proved.

S c “u”mo—ci,az )

Corollary 6.1. Let b; be as in Theorem 6.1. Then for any n > 0 there
ezists ¢(n) > 0 such that

(6.6)  [I[(1+a*(D)™,b;()]ullo < nllullme,az + c(n) [lullo
holds for all u € H* ™o (R™).

PROOF. For u € H*" ™o (R™) we have using (6.5) and Lemma 2.1
(L + a®(D))™, bi(lullo < [1[(1+ a®(D))™, bi()ulls—(r—t)(mo/0),a2
< cl|ullmo—s,a2
< 7 [[wllmo,az + €(n) [lullo -

Finally we have to give the

PROOF OF PROPOSITION 4.1. Let a; € (0,1 — r;/2¢;) and set s; =
(1 = 8)ti/r1 —1/2. Then we may proceed as in the proof of Theorem
6.1 (or as in the proof of Theorem 3.1 in [22]) to get for u € Cg° (R™)
and v € L? (R™)

|([ar( D), b;(-)]w, v)o| = |([a(Dr), dj(-)]u, v)o]

die - e (L)
<c [ ([ el e -t e

(4 (@) ()1 + a ()~ () dn) de

i e o 1+|£|2)ﬁ(31+1/2)/2
oo (L= miasie=ap) (£

(1 g} (&) B(OI(L + af (1))~ ()l ) d,
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which implies

lfar(Da), b5 ()]ullsr,az < €llufli-ar a2 »

from which the proposition follows as Corollary 6.1 follows from Theo-
rem 6.1.

7. A regularity result.

We will need a stronger regularity result for solutions of the equation
(7.1) L*z,D)u = f

For this we give

Theorem 7.1. Let L*(z, D) be as before, i.e. assume B.1-B.4. Suppose
further that L)z,D)u € H® ™o (R™) for some u € L?(R"). Then
u e H* ™t (R") and

(7.2) [tllmo+1,02 < (1L (2, D)ttl|mg a2 + lulo)
holds.

PROOF. Let u be as stated in the theorem. Then we have using Prop-
osition 2.1

l[ullmo+1,a2 1L2(2, D)l mo,a2

= |[ullmot1,a2 (1 + a*(D)) 2™ LY (2, DYu|| - mo 1,02

> (u, (14 a*(D))*2™ LAz, D)u),

= (1 +d*(D))"*™ou, (1 + a*(D))™ LA(z, D)u)o

= (1 + a*(D))"*™ou, (1 4 a*(D))™ (Y b;(-)a(D;)u + Au))o

=1

= A((1 4 a®*(D))*™ou, (1 + a*(D))™u)g

+((1+ a,2(D))1+m°u, (1+ aZ(D))mo ij(.)aﬁ(Dj)u)o

j=1
= A H“||3n0+1/2,a2 + Dy + D>,
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where
Dy = ((1 +a*(D))'*™ou, (1 4 a*(D))™ En:l bj(z0)a3(D;)u)o
i
and
Dy = ((1+a*(D))'*™u, (1 +a*(D))™ }n:l(bj(') — bj(z0))aj(Dj)u)o -
i

Here z¢ is again the fixed point given by (3.11). First we estimate D;
using (3.10):

D= [ (1+a(€)™ o1+ a(€)™ Y bi(mo)al(€)la(e) e

J=1

28 [ (1a€) Y 6 o) e
‘ &

(7.3) > 6 H“Hizo“,a? — 6 “““2mﬁ-l/2,a2 .

Now let us turn to D,:

Dy = (14 d*(D))"™u, (1+a®(D))™ > (b;(-) — bj(x))a’(Dj)u)o

=1

= S (1 +a3(D)) 0w, (b () — by(0))(1 + a2(D))™a(D;)u)o
J=1

+ > (1 +a*(D)) 0w, [(1+ a*(D))™°, b(-)]al(Dj)u)o
j=1

= Djiy 4+ Dy, .
By (3.11) we get

|Diz| € max sup [b;(r) — bj(xo)|
1<j<n rER™

ST+ a2 (D) Foully (14 a3(D))a3(Dy)ullo
j=1

< sup |bj(z) — b;(z
= 2 g, )~ bl
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(1 + a*(D))F™oullo Y |1 + a*(D))™a?(D; )ullo

=1

<n max sup [b(z) = bj(@o)] [[ullismg oz

(7.4)

1
< _é_ ”ulﬁ—i-mo,a.2 .

Furthermore we find

Do = | Y ((1+a*(D))*™u,[(1+ a*(D))™, bj(-)]a3(D; yu)ol
j=1

< S Jullitmonaz (1 + a2(D))™, b;(-)]a2(D; )ullo

=1

(7.5) 2 2
< e Julll g a2 + <€) lullo

where ¢ > 0 is an arbitrary number. Combining (7.3)-(7.5) we find
A . 01 2
[elli4mo a2 IL7(2, D)ttllmo a2 2 (61 = 5 =€) [t mg,a2
+ (A= 61) ot 172,02 = (e) Il -

Since ||ullo < ||4|lmo+1/2,a2 We get for A > 6,

”u“1+mo,ﬂ2“L/\(1"’ D)U“mo‘a?

)
> (EJ —¢€) ||u”f+m0’az + (A =61 —c(e)) |Jull -

Thus taking ¢ = 6; /4 and A > é; + ¢(61/4) we find
A &1
1A D)l s > 2 .-

Now let A € R be arbitrary and set A\g = 81 + ¢(61/4). Then it follows
using Lemma 2.1 for any n > 0 that

4
”u“mo+1,a2 < 5_1 “L/\O(xsD)“”mo,u2
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4 A
<3 ([IL7(z, D)ullmo,a2 + [A = Aol|[t] ms,a2)
4
< -(5—1- ( ”L/\(‘T’ D)ullmo,ﬂ2
+ 1A = Aol [[ullmo+1,a2 + c(m) [X = Ao ] |lullo) -

For n = 6; |A — Ao|/8 we finally get

8 .
elimotraz < 5 IL* (2, DYutllmg,a2 + &llulo

< ¢ (IL*(z, D)ullmg a2 + Illlo) ,
which proves the theorem.

From Theorem 7.1 it follows that any solution u € L? (R™) of the
equation

(7.6) LNz, Dju=f,  feC{(R"),

belongs to He mot! (R™) C Cx (R™). Furthermore, by Theorem 4.2
and Theorem 5.2 we know that fz'or A > dgy there exists for any f €
L? (R™) a unique solution u € H* ! (R") of (7.6).

We close this section with

Theorem 7.2. For A € R the operator L*(z, D) maps Ha"mot1 (R™)
continuously into the space He'mo (R™).

PROOF. Let u € C§°(R™). Then we have using Corollary 6.1 and
Lemma 2.1

”LA("L'a D)u“mo,u2

< (1 +a*(D))™ Y~ bi(-)a3(DjYullo + A [teflmo,a2

i=1

< bs()(1 + a*(D))™0a3(D;)ullo + A [[llmo,a2

i=1

SO + @D by a(Dy o
j=1
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< cllullmoti,az + A [tllmo,az + € tllmo+1,a2 + € 1o

SEHu“mo-+-l,a"’ .

REMARK 7.1. The proofs of Theorem 7.1 and Theorem 7.2 together
with assumptions B.1-B.4 show that both thcorems hold for any £ € N,
k < my, instead of my.

8. On the operator [L*]™°.

Let LA(z, D) be as in the previous section. In order to apply results
of [17] and [25], see also [16], we need a characterization of D([L*]™),
where L is the Friedrichs extension of L’\(_m,D), see Section 4. Since
L# is self-adjoint we can define the operator [L*]* using the functional
calculus or by iteration. It is well known, see [12, Corollary XII.2.8.,
p. 1200], that these two definitions coincide and that [L#]* is a closed
operator on its domain D([L#]*). Furthermore we have (sce [12, Defi-
nition XII, 1.1, p. 1186))

81)  D(L*)) = {ue DL [LM*'ue D)}
and

(82)  D(L*)*)={uwe D(L"]): L*we D(L"*")} .
Now we claim

Theorem 8.1. Let L* be the Friedrichs extension of the operator
L#(z, D), where L(z,D) satisfies the assumptions B.1-B.4. Then we
have for any k < my

(8.3) D([L")*) = H *(R") .

PrOOF. We prove (8.3) by induction. For & = 1 (8.3) was proved
in Theorem 5.2. Next we prove that D([L*]*) ¢ H* ¥ (R™) provided
we know that D([L#]*~1) = H* ¥=1(R"). Let u € D([L*]¥). Then we
have [L*)¥u = [L*]*~!L#y and L*u € D([L*]¥~1) = H* %=1 (R"). But
by Theorem 7.1 and Remark 7.1 it follows now that u € He k (R™).
Finally let us prove that H® ¥ (R")C D([L*]*) assuming that
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D([L*]Y) = HY'"Y(R") for | < k. Let u € H**(R"), then by
Theorem 7.2 and Remark 7.1 we find that [L#]*~1u € H*" ! (R") but
He' (R™) = D(L*), which by (8.1) proves the theorem.

By the Sobolev embedding theorem we get

Corollary 8.1. Let L* as above. Then we have by (3.5)
(8.4) D([L*]™°) C Co (R™) .

9. On the Feller semigroup generated by —L*(z, D).
By definition a Feller semigroup on R" is a family of linear operators
(Tt)i>0, Tt : Coo (R™) — Coe (R™), satisfying the following conditions
F.1. For all t,s > 0 we have Ty4y = TyT; and Tp = I.
F.2. For all u € Cx (R") it follows that 1ir_r(1) ITiu — ullec = 0.

F.3. Let u € Coo (R®) and 0 < u <1 in R™. Then it is required
that 0 < Tyu < 1 holds for all t > 0.

The generator of a Feller semigroup is the operator

(9.1) Au = lim T’“t“ =

t—0

which is defined on D(A) C C (R™), where D(A) consists of all u €
Co (R™) such that (9.1) exists. The following theorem, often called the
Yosida-Hille-Ray Theorem, will be of greater importance to us.

Theorem 9.1. ([7, p. 3-44], or (13, p. 165]) Let D(A) be a linear
subspace of Cop (R™) and let A: D(A) — Co (R™) be a linear operator.
Suppose further that D(A) 1s dense in Co (R™), that A satisfies the
positive mazimum principle on D(A), i.e. if u € D(A) and o € R"
such that sup cpn u(z) = u(xg) > 0 then it follows that Au(z) < 0,
and suppose that for some A > 0 the operator A\I — A maps D(A) onto
a dense subspace of Coo (R™). Then A has a closed extension which s
the generator of a Feller semigroup.

It was Ph.Courréege who gave a characterization of operators
satisfying the positive maximum principle on Cg° (R™).
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Theorem 9.2. ([6, p. 2-36]) Let a : R® x R® — R be a continuous
function such that for each x € R™ the function € — a(z,§) is negative
definite. Then the operator —a(x,D) defined on C§° (R™) by

(9.2) —a(z, D)u(z) = (27r)‘"/2/ e'*¢(—a(z,€))a(€)dE
]Rn
satisfies the positive mazimum principle on C§° (R™).

Theorem 9.3. Suppose that L(z, D) satisfies B.1-B.4. Then for each
z € R™ the function

(9-3) £ > bi(w)aj(§)
=1

18 negatve definite and —L(x, D) satisfics the positive mazimum prin-
ciple as an operator defined on He mo+l (R™).

ProoF. The fact that the function defined by (9.3) is negative defi-
nite follows from Definition 1.1 and (3.10). By (3.5) we know that
He*motl (R™) C C, (R"). Furthermore, Theorem 7.2 combined with
the Sobolev embedding theorem gives

(9.4) IL(2, DYulleo < ¢ [[tllmg1,a5

Now let u € H* ™ot (R") C Cop (R") and o € R™ such that u(z,) =
sup,egn u(z) > 0. Take x € C§°(R") such that x(z¢) = 1 and
X|En\{zo,} < 1. Then for any n > 0 the function u + nx belongs to

H*mot1 (R"), sup, cpn(u + nx)(z) = u(zo) +n > 0 and
(9.5) (w4 nX)|Rr\{zo} < u(T0) + 7.

Let (¢),en, ¢! € C5°(R™), be a sequence converging to u + nx in
He'mot! (R") and therefore also in C (R™). Denote by z, € R"
a point defined by @}(x,) = sup,cpn @l(z). Since ¢ — u + nx in
Cx (R™) it follows that ¢@(z,) — u(zg) + 7. We claim that a sub-
sequence of (z,),en converges to zg. If no subsequence of (z,),en
converges to xg, then there exists an open neigbourhood Us(z¢) such
that at most a finite number of members of that sequence lie in Us(zo).
By (9.5) we can find some ¢, 0 < ¢ < 5, such that

(v 4+ X)) |Er\Us(zo) < w(T0) + 1 — €.
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But this is a contradiction to the fact that ¢?(z,) — u(zo)+ 1. In the
following we may suppose that the whole sequence (z,),ey converges
to zg, since otherwise we have to take a subsequence. Since we have
@eNzy) = u(zo) +n > n > 0, we can also suppose that ¢l(z,) > 0 for
all v € N. By Theorem 9.2 the operator —L(z, D) satisfies the positive
maximum principle on C§° (R"™). Thus we have —L(z, D)p?(z,) < 0.
But this implies —L(z,D)(u + nx)(z¢) < 0, where we used (9.4) and
the convergence properties of (¢?),en. Thus we have for any n > 0
that

—L(z, D)u(zo) < n(L(z, D)x)(z0),

and for  — 0 the theorem follows.

Now from Theorem 4.2, Theorem 5.2, Theorem 7.1 and Theorems
9.1-9.3 we get

Theorem 9.4. Let L(x, D) satisfy the assumptions of Theorem 9.3.
Then for all A > 0 the operator

—L(z,D) : HY ™o+l (R") — H* ™o (R") C Cs (R")

has a closed extension which is the generator of a Feller semigroup on
R™.

An immediate consequence of Theorem 9.4 is

Corollary 9.1. Suppose that L(z, D) satisfies the assumptions of The-
orem 9.3 a72Ld 18 symmetric. Then By 1s a regular Dirichlet form with
domain H /2 (R™).

10. Examples.

In this section we want to give examples of operators L(x, D) we can ap-
ply to Theorem 9.4 and the results of the theorems leading to Theorem
9.4. For this we have to recall some basic properties of continuous
negative definite functions. Our standard reference is the book [1].
First we want to note the following representation formula, sec [9, p.
5-9] or [1, p. 184].
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Theorem 10.1. (Lévy-Khinchin Formula) Every real-valued continu-
ous negative definite function a : R® — R has the following representa-
tion

2
101)  a®)=c+QE)+ [ (1= cos(em) T do(a),

where ¢ > 0, Q i3 a non-negative quadratic form on R™ and o is a
positive measure on R™ which does not charge the origin and has finite
total mass. Conversely, given ¢,Q, and o with the properties mentioned
above, then the function a defined by (10.1) is a continuous negative
definite function.

Sometimes it is convenient to consider continuous negative definite
functions of the form

(102) al€) = [ (1= cos(e,m)k(n) dn.

We will call k the kernel associated with a. For 0 < s < 1 an example
is A22(¢) = [¢[*°, where the associated kernel is given by Kjs(n) =
e(n, )] ~".

Clearly the set of all continuous negative definite functions forms
a convex cone. Further, if a; : R®™ — R, j = 1,2, are two continuous
negative definite functions then the function a : R™*"2 — R defined
by (&,n) — ai1(£) + az(n) is again a continuous negative definite func-
tion. This fact is verified by a direct calculation using (1.3). Since for
0 < s < 1 the function A?* is a continuous negative definite one, it
follows that for s;, 0 < s; < 1, and b; > 0 by £ = 325, b;A%%(¢;)
a continuous negative definite function is given. It is rather easy to
construct continuous negative definite functions on R. By Proposition
10.6 in [1] any continuous function a : R — [0,00) which is even and
when restricted to [0, 00) increasing and concave is negative definite.

From the previous considerations it follows that for any choice of ¢;
and rj, 0 < t; < r; <2, there are a lot of continuous negative definite
functions a'j :R - R, 1< 5 < n, satisfying

(10.3) c; (1+ |§j|2)tj/4 <1 +a§(£j))1/2 <& (1+ |€j|2)r,~/4_

Since the square root of a'j is again a continuous negative definite func-
tion, we can now start to construct an operator L(z, D) satisfying the
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assumptions of Theorem 9.3. It is clear that
(10.4) (&) =) _ai(&)
i=1

is a continuous negative definite function on R™ and that
(10.5) c(L+[EP)? < (1 +a*(©) Se(1+ )7

holds, where ¢ = min;<j<nt; and r = max;<j<n rj. Thus given ¢ and
n, we can find mg such that (3.5) holds. Then we will determine r > ¢
such that 0 < 1—r/(2t)—r (r — t) mg/t? holds, i.e. r € [t,t(1+M)A2],
where )
m = —— (((2mo + 1)2 + 8mo)!/% — (2mq + 1)).
4my

Now we take continuous negative definite functions af : R — R satisfy-
ing (10.3), where t < t; < r; < r. Note that r = t is the elliptic case,
1.e. in that case we will handle an elliptic pseudodifferential operator.
Then it is possible to let mq tend to infinity and the regularity results
are just (hypo-)elliptic regularity results. In particular, we get for coef-
ficients b; = d; + ¢j,.d; € S(R™), satisfying B.1-B.4, that any solution
u € L?(R") of the equation L*(z,D)u = f, f € H® (R"), lies also
in H* (R"). However, when we want to handle non-elliptic operators
mg must be finite and therefore in general we do not get hypoellipticity
results.

Now, taking b; : R® — R satisfying B.1-B.4 it is clear that the
operator

(106) > bi(2)a(Dy)

satisfies all assumptions of Theorem 9.3, in particular all results proved
in sections 4-8 do hold.

11. Some probabilistic consequences.

In this section we will show that the validity of estimate (4.6) is not
only helpful in constructing a Feller semigroup or a Dirichlet fz'orm, but
once it is known that By is a symmetric Dirichlet form on H® 1/2 (R")



402 JacosB

and that the continuous negative definite function a? satisfies (3.8),
then (4.6) has some probabilistic consequences for the stochastic process
associated with By. We will consider two of these consequences.

For the first one we recall a result due to M. Fukushima [14].

Theorem 11.1. ([14], Theorem 2) Suppose a symmetric Dirichlet form
E on L%(R™) is regular and satisfies

(11.1) lullZe < e(E(u,u)+co [|ullg)

for some ¢ > 2 and ¢ > 0. Then the associated standard Markov
process M possesses the following properties. There ezists a Borel set
N of zero capacity such that R® \ N is M-invariant and further the
following assertions hold:

i) The resolvent kernel R,(z,-) 13 absolutely continuous with re-
spect to the Lebesgue measure for each p >0 end z € R\ N.

1) The transition function p,(z,-) is absolutely continuous with
respect to the Lebesgue measure for eacht >0 and z € R® \ N.

ui) A set A CR™\ N 1s of zero capacity if and only if A is polar,
that 13, almost all sample paths starting at z € R® \ N do not hit A at
positive time.

Now we claim

Theorem 11.2. Let M* be the standard Markov process associated
with By, where By is generated by L*(z, D) which is assumed to be
symmetric and to fulfill the assumptions of Theorem 9.3. Then the
assertions of Theorem 11.1 do hold for M*.

PROOF. It remains to prove that
(11.2) lullZe < c(Ba(u,u)+co [lu3)

holds for some ¢ > 2 and a constant ¢y > 0. But combining (3.8) with
(4.6) we have with a suitable constant ¢

lullf/2 < e(Ba(u,u) + do ||ullf)

for all u € H*"1/2 (R™) = D(B)). Now applying the Sobolev inequality
(see [38, p. 20]) we find

lullee < ¢ Jlulles2
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with ¢ = 2n/(n — t), hence ¢ > 2. Thus with this value of ¢ we get
(11.2).

Note that one can use (11.1) to get L°°-bounds for the resolvent
of the semigroup generated by —L*, see [14] and also [20].

Our second application is concerned with the asymptotic behaviour
of the semigroup (7;)t>0 generated by —L* on L? (R™). In their work
[5] E. Carlen, S. Kusuoka and D. Stroock proved the following result
which we formulate here for our special situation again assuming that
B, is symmetric.

Theorem 11.3. ([5], Theorem 2.16) Let v € (2,00) and ¢ = 2v /(v —
2) > 2. Suppose further that with some constants ¢; and c2

(11.3) lullze < €1 (Ba(u,u) + ez [lulff)

holds for all w € H* /2 (R™). Then there ezist constants ¢ and cb
such that the Nash-type inequality

2 v 4/v
(11.4) lulla¥*” < ¢ (Ba(u,u) + ¢, [[ull2) |lull3h

holds.
Further they showed the next theorem, which we again state only
in a formulation convenient for our purposes.

Theorem 11.4 ([5], Theorem 2.2) Suppose that (11.4) holds for all
ue Ho' /2 (R") Then there ezists a constant d > 0 such that for the
semigroup (T});>o generated by By on L? (R™) the estimate

eCat
(11.5) I Tt lorope <d —= t”/2
holds fort > 0. Here ||-||p1— L~ denotes the operator norm for contin-

uous linear operators mapping L' (R™) into L™ (R").

Again using (3.8) and (4.6) we get by the Sobolev embedding the-
orem estimate (11.3). Thus (11.5) follows with v = 2n/t > 2. In [5]
further results related to these of Theorem 11.3 and Theorem 11.4 are
given.

We also want to mention that Theorem 8.1 enables us to ap-
ply some results of the theory of (r,p)-capacities developed by M.
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Fukushima and H. Kaneko in [17] and by H. Kaneko in [25]. For details
we refer to the paper [16].

Finally let us remark that it seems to us to be possible to use some
of the Feller semigroups constructed in this paper to obtain examples
for balayage spaces in the sense of [3].
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NOTE ADDED IN THE PROOFS. Meanwhile some of our results had been
improved. A report on these results is given in N. Jacob: Pseudodif-
ferential operators with negative definite functions as symbol: Appli-
cations in probability theory and mathematical physics. In Operator
theory: Advances and Applications 57 (1992), 149-161.
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