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Abstract. In this paper we use the Calderén-Zygmund operator theory
to prove a Calderén type reproducing formula associated with a para-
accretive function. Using our Calderén-type reproducing formula we
introduce a new class of the Besov and Triebel-Lizorkin spaces and
prove a T'b theorem for these new spaces.

Introduction.

Let ¢ be a function with the properties: ¢ € S(R™), supp $ C{¢e
R™: 1/2 < |¢] £ 2}, and |¢(€)] > ¢ > 01if 3/5 < |¢] < 5/3. The
classical Calderén Reproducing Formula can be stated as follows:

Theorem. (The Calderén Reproducing Formula) Suppose that the
function ¢ satisfies the properties above. Then there exists a function
1 satisfying the same properties as ¢ such that

F=) texdexf,

kez

where Yr(z) = 25" p(2%z) and the series converges in L? morm or in
S'|P, the test functions modulo polynomials.
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It is well known that the classical Calderén Reproducing Formula
plays an important role in harmonic analysis and wavelets analysis as
well. For instance, this formula can be used to study classical func-
tion spaces, namely the Besov and Triebel-Lizorkin spaces, and obtain
atomic decompositions of these spaces, and prove the boundedness of
Calderén-Zygmund operators, namely the T'1 theorem for the Besov
and Triebel-Lizorkin spaces. Further applications of this formula can
be found in [C1], [C2], [CF], [FJ1], [FJ2], [FIW], [GM], [P] ,[R] and
[U]. Since the classical Calderén Reproducing Formula is given by the
action of convolution operators, the Fourier transform is the basic tool
for proving such formula.

Our concern in this paper is to establish a Calderén-type repro-
ducing formula associated to a para-accretive function introduced in
[DJS], which are not convolution operators. The new idea to establish
the Calderén-type reproducing formula associated to a para-accretive
function is to use the Calderén-Zygmund operator theory. More pre-
cisely, we will introduce a class of “test functions” which will be said to
be the strong b-smooth molecules, b is a para-accretive function, and a
class of the Calder6n-Zygmund operators whose kernels satisfy a strong
smoothness condition. We then prove that the Calderén-Zygmund op-
erators in the class above are bounded on “test functions”, that is, these
operators map the strong b-smooth molecules into the strong b-smooth
molecules. Using the approximation to the identity associated to a
para-accretive function introduced in [DJS] and a Coifman’s idea (see
[DJS]), we will construct a Calderén-Zygmund operator whose kernel
satisfies the strong smoothness condition mentioned before and use this
Calderén-Zygmund operator to establish our Calderén-type reproduc-
ing formula associated to a para-accretive function.

As an application of this reproducing formula we prove a T'b the-
orem. To be precise, suppose that T satisfies the hypotheses of the T'b
theorem of [DJS], where b; = b, = b. Suppose also that Tb = T*b = 0.
The results of [L] and [HJTW] state that TM, is bounded on B:'q
and F*9 for 0 < a < € and 1 < p,q < oo, where ¢ is the regularity
exponent of the kernel of T and M} denotes the operator of multipli-
cation by b. Hence T maps bB,"? into By*? and bF;"? into F;»? for
0 <a<eand 1l < p,g < oo. Applying this to T*, we obtain by du-
ality that T maps B, *? into b‘pr_"”q and F,*7 into b_lFP_""q for
0<a<eand1<p,q < oo. However, the results of [L] and [HITW]
can not be applied to the case where a = 0. As in the case of R", using
our Calderén-type reproducing formula associated to a para-accretive
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function, we will introduce a new class of function and distribution
spaces, namely the Besov and Triebel-Lizorkin spaces associated to a
para-accretive function, and prove the T'b theorem for these new spaces,
which includes the case where a = 0.

The paper is organized as follows. In Section 1 we describe the no-
tations, definitions and some known results to be used throughout and
prove a boundedness result of a class of the Calderén-Zygmund opera-
tors. In Section 2 we establish the Calderén-type reproducing formulas
associated to a para-accretive function. The Besov and Triebel-Lizorkin
spaces will be introduced in Section 3 and a T'b theorem will be proved
there. In the last section we make several remarks.

Section 1.

We begin by reviewing some basic facts about the Calderdn-
Zygmund operator theory.

Definition 1.1. A singular integral operator T is a continuous linear
operator from D(R™) into its dual that is associated to a kernel K(z,y),

a continuous function defined on R™ x R™ \ {z = y}, satisfying the
following conditions: for some constants ¢ >0 and 0 <e <1,

(12i)  |K@yl<Scl—y™,  forallz#y,
(1.2.1) |K(z,y)— K(z',y)| < clz = 2'|f|lz —y| "¢,
for all z,z' and y in R™ with |z — 2'| < |z — y|/2, and
(1.2.iii) |K(z,y) = K(z,y")| < cly = y'|le —y| "%,
for all z,y and y' in R™ with |y —y'| < |z —y|/2.

Moreover, the operator T can be represented by
(13) @50 = [[ Kz f@)o(a)dady

R™ xR»

for all f,g € D(R™) with supp f Nsuppg = @.
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Definition 1.4. An operator T is called weakly bounded if there ezxists
a constant ¢ > 0 such that for all f and g € S supported in a cube
Q C R™ with diameter at most t > 0,

(1.5) (T f,9)] < et (| flloo + IV flloo) (lglleo + 2 IVgllco) -

It was shown in [DJS] that if T is a weakly bounded operator as-
sociated to a kernel satisfying (1.2.i) then T has a continuous extension
from C{ into its dual, where C] denotes the space of continuous func-
tions f with compact support such that

f(@) = S@)l _

|z —y|7 oo,

Iflly = sup

z#y

and for such operator T the weak boundedness property in Definition
1.4 can be described as follows.

Definition 1.6. Let T be a continuous operator from C{ into its dual
for each m > 0 . We say that T is weakly bounded if, for each n > 0,
there 13 a constant ¢ > 0 such that for all cubes Q with diameter at
mostt > 0 and all f,g € CJ supported in Q,

(1.7) (T, 9)] < et fll4llglly -

It was shown in [DJS] that if the kernel of T satisfies the condition
(1.2.1), then (1.7) holds for all » > 0 whenever it holds for some n > 0.
David and Journé gave a general criterion for the L? boundedness of
singular integral operators defined in (1.1) ([DJ]).

Theorem 1.8. (The T'1 Theorem of David-Journé) Suppose that T is
a singular integral operator defined in (1.1). Then T is bounded on L?
if and only if: a) T1 € BMO, b) T*1 € BMO, and ¢) T has the weak
boundedness property defined in (1.4).

Suppose that ¢ is a function with the properties as in the classical
Calderén Reproducing Formula. The classical Besov spaces Bp'(R")
for « € R and 1 < p,q < oo are the collection of all f € §'/P such that

1£llgge = (3225 ldk * £11,)9)"? < +oo,

kezZ



CALDERON-TYPE REPRODUCING FORMULA AND THE Tbh THEOREM 55

and Triebel-Lizorkin spaces FP"’?(R") for a € Rand 1 < p < oo,
1 < ¢ < oo are the collection of all f € §'/P such that

1 e = 1S (24165 % £)9) 7], < +00.

kez

The T1 theorems for the classical Besov spaces B;"q(R") and
Triebel-Lizorkin spaces F;”q(R") were proved in [L] and [HITW] | re-
spectively.

Theorem 1.9. (The T'1 Theorems for the Besov and Triebel-Lizorkin
Spaces) Suppose that T is a singular integral operator whose kernel
satisfies the conditions (1.2.1), (1.2.11) and T1 =0, and T has the weak
boundedness property. Then T is bounded on the Besov spaces Bg"q(R")
and Triebel-Lizorkin spaces Fp"‘*q(R") for0<a<el<pgqg< oo,
where ¢ 13 the regularity ezponent of the kernel of T.

Replacing the functionl in the T'1 theorem by more general bound-
ed function David, Journé and Semmes proved the T'b theorem ([DJS]).
To state their Th theorem we need the following definitions.

Definition 1.10. A complez-valued bounded function b defined on R™
18 said to be a para-accretive function if there exists a constant ¢ > 0
such that for every cube @ C R™, there i3 a subcube I C Q with

(1.11) ‘Té—lflb(z)dzi >¢>0.

Definition 1.12. Suppose b; and by are complez-valued functions
whose inverse are also bounded. A singular integral operator is a con-
tinuous operator T from by Cy into (b2Cy)' for alln > 0 for which there
exists a kernel K(z,y) satisfying the conditions (i), (ii) end (iii) of (1.2)
such that for all f,g € CJ with supp f N suppg = @,

(Thy f,bag) = 9(z) ba(z) K(z,y) bi(y) f(y) dz dy .
AL

David, Journé and Semmes proved the following T'b theorem.
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Theorem 1.13. (The Tb Theorem of David-Journé-Semmes) Sup-
pose that b; and by are para-accretive functions and T is a singular
integral operator from b;Cy into (boCJ) defined in (1.12). Then T is
bounded on L? if and only if: a) Thy € BMO, b) T*b, € BMO, and
c) My, TMy, has the weak boundedness property defined in (1.6).

We now introduce our “test functions”.

Definition 1.14. Fiz two ezponents 0 < f < 1 and v > 0. Suppose
that b is a para-accretive function. A function f defined on R™ is said
to be a strong b-smooth molecule of type (B,7) centered at zo € R™ with
width d > 0 if f satisfies the following conditions:

d
(1.15.) I[f(z)| <c @tz =z’
) , g — ]\ d
(1.15.11) lf(]:) - f(l' )I S (& <d+ |fL‘ — Iol) (d+ )1‘ _ xol)n+7 ’

for le = a'| < (d+ |¢ — zo])/2, and

(1.15.iii) /m f(z)b(z)dz = 0.

This definition was first introduced in [M1] by considering the con-
ditions (i) and (iii) of (1.15), and (ii) of (1.15) replaced by

#e) ~ S < e (B2

(116) " o
. + .
(@ )

We call such f a b-smooth molecule of type (3,~) centered at o € R"
with width d > 0. The collection of all strong b-smooth molecules of
type (B,7) centered at zo € R™ with width d > 0 will be denoted by
MBN(zy,d). ¥ f € MP(zg,d), the norm of f-in MBV(z,d) is
defined by

(L17) (| fllprcemze.a) = inf{e > 0: (1.9) (i), (ii) and (iii) hold } .

We denote M7 the class of all f € M(#7)(0,1). It is easy to see that
M7 is a Banach space under the norm || f||pss., < +00. We then
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introduce the dual space (M(#7))' consisting of all linear functionals £
from M to C with the property that there exists a finite constant
¢ such that for all f € M)

(1.18) IO < ellfllareom -

We denote (h, f) the natural pairing of elements h € (M#)" and f €
M@ Tt is easy to check that for zo € R™ and d > 0, M (z4,d) =
M with equivalent norms. Thus, for all A € (MM (h, f) is well
defined for all f € M (z,,d) with zo € R and d > 0.

We now state and prove the main result in this section.

Theorem 1.19. Suppose that b i3 a para-accretive function and T 13 a
singular integral operator from Cg(R™) into its dual for all n > 0 such
that T and b='(T*)M, satisfy the hypotheses of Theorem 1.9 and fur-
ther, K(z,y), the kernel of T, satisfies the following strong smoothness
condition

(K (2,9)b7" (y) — K(z',9)b7" ()
(1.20) — (K (z,y")b7 (y') — K(z',y" )b~ ("))l

S Cl:l) _zllely _ yllelm _ y|-—n—2£

for all z,2' |y and y' in R™ with |z —2'| < |z — y|/3 and |y — | <
2 — y1/3.

Then T maps the strong b-smooth molecules of type (B,7) centered
at £9 € R™ with width d > 0 to the strong b-smooth molecules of type
(B,7) centered at o € R™ with width d > 0 for 0 < B,y < € where ¢
18 the regularity ezponent of the kernel of T. Moreover, denote ||T|| the
smallest constant in the estimates of the kernel of T, then there exists
a constant ¢ > 0 such that

(1.21) ITFllmeo o,y < NTI L lareom (zo,a) -

In [M2] it was shown that if T satisfies the hypotheses of Theo-
rem 1.19 except (1.20), then T maps b-smooth molecules of type (3,7)
centered at zo € R™ with width d > 0 to b-smooth molecules of type
(B',7') centered at zo € R™ with width d > 0 for 0 < 8’ < 8 and
0 < v' < ~, which is not available for our purposes.

To prove Theorem 1.19, we follow Meyer’s idea, [M2]. Fix a
function § € D with suppf C {z € R : |z]| < 2} and § = 1 on
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{z € R® : |z| < 1}. Suppose that f is a strong b-smooth molecule
of type (B,v) centered at zo € R™ with width d > 0. We first prove
that T(f)(z) satisfies the size condition (i) of (1.15). To do this, con-

sider first the case where |z — zo| < 5d. Set 1 = £(y) + n(y) where
€(y) = 6(y — 0/(10d)). Then, as in [M2],

Tf(z) = [ K(z,) (F(0) = £(=)) €w) dy
+ [ Ko, fw)n(w) dy
+ f(z) /K(w,y){(y) dy =1+1I+1III.
Using lemmas 2 and 3 in [M2], we have

I<e

K(z,y)| |f(y) = f(z)] dy

|z—y|<25d

n o=yl
<clfluwonen [ lo-umEgha

|z—y|<25d

Scllfllmev(zea @ s

and
| < c|f(z)] < el fllae(zo,ay 4 -

For the term II we have
d7

- . d
Iy — zo|" 7 y

1] < el Fllatomen.d / o~y
|ly—zo|>10d

< C“f”]\l(ﬂr")(zo,d) d—nv

since |z — z¢| < 5d. This shows that T f(z) satisfies (i) of (1.15) for the
case |z — zg| < 5d. Now consider the case where |z —z¢| = R > 5d. Set
1= I(y)+J(y)+L(y) where I(y) = 8(8|z—y|/R), J(y) = 8(8|y—zo|/R),
and fi(y) = f(y) I(y), f2(y) = f(y) J(y), and fa(y) = f(y) L(y). Then

it is easy to check the following estimates
dY
(1.22.a) 1AW < ellflime o Friy -

y—y'ﬁ dY
(1225) [H(5) = O] < elflaroizos et =2
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for all y and y' € R",

1fs(W)] < ellfllare.n(zo,a)
dr

(1.220) . ly——m X“,_,M)n/s} ’
d
(122.) [ 15214y < el s ianr 5
| [ a <e( [1nwla+ [1n01dw)
d
(1.22.¢) < cllfllmev(zo,a) R_: )

since [ f(y)b(y)dy = 0. We now have

59

Th(z) = /K(%y) (fl(y)-fl(w))u(y)dy+fl(x)/K(x,y)U(y) dy

= ri(z) + r2(z),

where u(y) = 0(4|z —y|/R). Applying the estimates in (1.22), we obtain

—yl?

—n T
Ir1(2)] < ellfllaen(z0,0) / e~y ™"~ e W

[z—y|<R/2
dv
< el fllmev(zo,d) Rty

dv
Ir2(2)] < elfa(@)] < cllifllmemzo.ty Frgy -

For f, we have
Tfa(z) = / ("N (y)K(z,y) — b (z0)K(z,20)) f2(y) b(y) dy

+ b7 Y(zo) K(z, o) / f2(y) b(y) dy

= o1(z) + o2(x).
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Using the estimates of the kernel of b™!T*M, and f; in (1.22),
ly —zol*  d”
lo1(2)] < el fllaree(zo,d) Rrte Ty oo|"F dy
ly—zo|<R/4

dv
< el fllme(zo,a) R

since v < ¢, and

—n d”
o2() < e R | [ olw) M) o] < el ot oy s -
Finally,
—n d”

TA@I < Moo [ o=yl o dy

|z—y|>R/8

ly—zo|>R/8

dY

<c l]f.lM(ﬂ"‘l)(xo,d) Rnt+v '’

This proves that T f(z) satisfies (i) of (1.15) for |z —zo| > 5d and hence
the estimate (i) of (1.15). It remains to prove that T f(z) satisfies the
smoothness condition (ii) of (1.15). Set |z — zo| = R and |z — z'| = é.
We consider only the case where R > 5d and 6 < (d+ R)/20 (see the
proof in [M2] for the case where R < 5d). As in the above,

Th() = [ K(e,w) (fily) = () ) dy
+ [ Kaw) fiv) ) dy
+h(e) [ K@y,
where 1 = ((y)+ u(y) and {(y) = 6(|z—y|/(26)). Denote the first term
of right hand side above by p(z) and the sum of the last two terms by

g(z). Then the size condition of K and the smoothness of f; in (1.22)
yield

-n |$—ylﬂ d7
)l < elflsnon [ o= vl EEe i dy
[z—y|<48
& dv

< cllifllmeizot) 75 Fmrs -
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This estimate still holds with z replaced by z' for |z — z'| = §. Thus,

&8 dr
[p(z) = p(2)]| < ellflle (0,00 15 Tt -

For ¢(z), using the condition that T'1 = 0, we have

qw»wuv=/awaw—Kwnm(mw—ﬁu»mw@
+ (@)= @) [ K6 cw)dy
=I+1I.

Again, using lemmas 2 and 3 in [M2], and the smoothness of f; in
(1.22), we obtain

&8 dv
1] < el f(2) = () < ellf I ooty T Tt -

Notice that

—ylB  d
-y
1f1(y) = fi(@)] < ellFllmen(z0,a) Lo Rﬂl Rt

for all y € R”, term I is dominated by

|K(z,y) — K(z',y)| [fi(y) — fi(z)] dy
26<|z—y|
o—a' [a—yf d7
<clflwonen | ot g o
|z—y|>26

88 dv
< c|lfllmev(zo,0) 7P Ry

since B < €. This shows that T f;(z) satisfies the condition (ii) of (1.15)
for the case R > 5d. Note that z and z' are not in the supports of
f2 and f3 and 6 < (d+ R)/20 < R/16. Using the strong smoothness
condition of the kernel of T in (1.20) and the estimates of f, and f3 in



62 Y. S. HawN
(1.22), we then have
ITx(2) = Tha(a")]
= | [ (K@) @) - K@ 0)b ™ @) 20 b b
<| [ (E@wr ) - KEwp )
— (K(2,20)b™(@0) - K(2',20)b™(20))) fal(y) b(y) dy|

+[(E (2, 20) — K&, 20))b™(20)) | / F2(y) () dy|

< c|lfllarem(zo,a)

|z — 2'|°ly — ol dr

Foal @+ ly—ao)
ly—zo|<R/4
|z —2'|*  d7
+ || fllme(zo,a) e =z B
68 dv
< cllifllme o) 75 a2
since f3,v < ¢, and
The) -TaEI=| [ (K@ -KEw) so)d|
|z—y|>R/8>26
|z — 2’|
<c o= gpte |fs(y)| dy
|lz—y|>R/8

6 d”
< |l fllmem(zo,a) B RET

These estimates show that T'(f)(z) satisfies the condition (ii) in (1.15)
for the case where R > 5d and § < (d + R)/20. The fact that
JT(f)(z)b(z)dz = 0 follows from the condition T*(b)(z) = 0. This
completes the proof of Theorem 1.19.
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Section 2.

In this section we construct a Calderén-Zygmund operator whose
kernel satisfies the strong smoothness condition (1.20) and use this op-
erator to establish the Calderdén-type reproducing formula associated
to a para-accretive function. We first introduce the following definition

(see [DJS]).

Definition 2.1. A sequence (Sk)recz of operators is called to be an
approzimation to the identity associated to a para-accretive function b
if Sk(z,y), the kernel of Sk, are functions from R™ x R™ into C such
that for allk € Z and all z,2',y and y' in R", and some 0 < e <1 and
c>0,

(2.2.1)

Se(z,y) =0, if [z —y|>c27%  and  ||Si|leo < c2F7,
(2.2.11) |Sk(z,y) — Se(z,y')] < 2K |y — )7,
(2.2.i1) |Sk(z,v) — Sk(z',y)| < 2K+ |z — 2|,

|(Sk($l),y) - Sk(‘T,» y)) - (Sk(l‘,'y’) - Sk(-’F’, y'))l
(2.2.iv) < 2K g — gl |y — o7,

(2.2.v) / Se(z,y)b(y)dy =1, for allk € Z and z in R™,
Rn

(2.2.vi) / Sk(z,y)b(z)dz =1, forallk € Z and y in R™.
R"

In [DJS] such operators were constructed and all conditions except
for (iv) in (2.2) were checked. Note that in [DJS] Sy were given by
P}{Pyb}~' Py where P; satisfy the conditions (i), (ii), and (v) with
b(z) =1 1in (2.2). We have

(Sk(z,y) = Sk(z",y)) — (Sk(z,y") — Sk(z",y))
= / (Pk(z, z) — Pi(z, x')) (Peb(2))™* (Pk(z, y) — Pi(z, y')) dz.

The condition (iv) in (2.2) then follows from simple calculation.
We can now state our Calderdn-type reproducing formula.
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Theorem 2.3. Suppose that (Sk)rez i3 an approzimation to the iden-
tity deﬁned in (2.1). Set Dy = S — Sk—1. Then there exists a family of
operators (Dk)keZ such that for all f € M®B:),

(2.4) f=>_ D M, D My(f),

kez

where the series converges in the norm of LP, 1 < p < oo, and M#A)
with f' < B and v' < . Moreover, Dk(x y), the kernel of Dk, satisfy
the following estimates: for €',0 < €' < €, where ¢ is the regularity
ezponent of S, there exists a constant ¢ > 0 such that

—ke'

27F + |z —ynte

(2.5.) |De(z,y)| < ¢

|Di(z,y) — Di(z',y)|

) oo\ 2
(2.5.11) <c (2 k + |$ _ yl) (2-—k + ll. _ yl)n+a’ )

for |z —a'| < (27 +|= —y))/2,

(2.5.iii) /]R ] Di(z,y)b(z)dz =0,
for all k € Z and y in R™,
(2.5.iv) . Di(z,y) b(y)dy =0,
for all k € Z and z in R™.

The similar formula on spaces of homogeneous type for the case
where b(z) = 1 was established in [HS2]. To prove theorem (2.3) we
begin with a Coifman’s idea. By non-degeneracy condition (v) and the
size condition (i) in (2.2),

(2.6) I=Y DiM, in L*(R").
k€Z
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Coifman’s idea is to rewrite (2.6) in the following way
1= (> Dets) (3D M)
k€EZ jEL

(2.7) = > D Di+i My D My

li|>N keL
+3 " > Diyj My Dy My = Ry + T
kEZ |jI<N
where
Ry =Y > Diyj My D M,
|7I>N k€z
and
Ty = > DJ My Dy M,
k€Z
with
Dljcv = Z Dk+j,
l71<N

and N is a fix positive integer. It was shown in [DJS] that limy_..c TN
= I in L? and hence Ty is bounded on L? for large N. Our goal here
is to show that Ty ! maps the strong b-smooth molecules of type (3,7)
centered at z¢o € R™ with width d > 0 to the strong b-smooth molecules
of type (f,~) centered at zo € R™ with width d > 0. To be precise, we
prove the following theorem.

Theorem 2.8. Suppose that (Di)irez 13 as in Theorem 2.3, and T =
> kez DY My Di My where DY = >_1jl<n Dk+j and N is a large posi-
tive integer. Then Tﬁl maps the strong b-smooth molecules of type
(B,7) centered at zo € R™ with width d > 0 to the strong b-smooth
molecules of type (B,7) centered at xo € R™ with width d > 0. More
precisely, for 0 < B, < € there exists a constant ¢ > 0 such that if N
18 sufficiently large,

(2.9) IR (e zo,ay < €Nl a6 (zo.a) -

The proof of theorem (2.8) is based on the following technical
lemma.
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Lemma 2.10. Suppose that the hypotheses of Theorem 2.8 are satisfied,
and Ty and Ry are as in (2.7). Then for 0 < €' < € there ezist a
constant ¢ > 0 and § > 0 such that

(2.11) |RN(z,y)] < 27 |z —y| 7",

(2.12) |Rn(z,y)— Rn(z', )| < c27 |z — 2’| | — y| 7",
for |z —2'| < |z —y|/2,
|(Rn(z,y)b7 (y) — Rn(a',y)b7 (v))
(2.13) — (Rn(z,y" )07 (') — Rn(a", ¥ )67 '(¥"))|
<2 Mz — 2| ly -y |le —y| "2,
for |z —a'| < |z —y|/3 and |y —y'| < |z —y|/3,
(2.14) [(Rn f,9)| < c27 N2/ £l llglly »

for all f,g € CJ(R™), n > 0, supported in Q with diameter at most
t>0.

Assuming Lemma 2.10 for the moment and applying the same proof
of (2.10) to b=!(Rn)*Mp, and using the facts that Ry(1) = 0 and
(Rn)*(b) = 0, by Theorem 1.19,

(2.15) IRN (P are oty < €27V NIl a6 (20,) »
for all f € MV (z9,d). Using the fact that Ty' = 3, (Rn)™, we
obtain
1T N M 2o,y < Z(C2_N6)m||f||M(B’“f>(ro,d)
(216) m=0
<c¢ ”f”M(ﬂﬂr)(zo,d) )

for a fixed sufficiently large integer N, which shows (2.9) and hence
Theorem 2.8.
It remains to prove Lemma 2.10. In fact, we prove the following
estimates: for 0 < " < ¢ there exists a constant ¢ such that
| D+j My Dy Mi(z,y)|
o—[(k+i)AK]e
(2_[(k+j)/\k] + Ix — y,)n+€ ’

(2.17) < c27lile

|Di+; My Die My(z,y) — Diyj My Dic Mi(2', y)|

-2 \ o—[(k+i)AKE"
(2.18) sc (2—[(k+j)/\k]) (27 [+ L [z — y[)nte
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for |z —2'| < |z —-y|/2,
|(Di+j My Di(z,y) — Diyj My Di(z',y))
— (Di+; My Di(2,y') — Di4; My Di(2', )|

E" €"
2.19 |z — '] ly —¢'|
( ) se (2—[(k+:‘)/\k] 9—[(k+5)AK]

o—[(k+5)Ak]e"
(2 IRFDAR [ — gt

for [t —2'| < |z —y|/3 and |y — ¥'| < |z — y|/3, where D; are as in
Lemma 2.10 and a A b denotes the minimum of a and b.
It is easy to see (2.17). For instance, suppose j > 0, then

|Ditj My Dy My(z,y)|
- l/DHj(x,z) (=) Di(,y) b(y) ds|

- ) /DH,- (z,2)b(z) (Dx(2,y) — Di(z, y)) b(y) dzl

<c / okt |5 _ g|e ok(nte) g,

lz—zls2"(k+i)
< —jE kn
<e2 2 X{|=-yn5cz-")

which shows (2.17) for the case 5 > 0. To see (2.18), suppose 7 > 0.
Then there exists a constant ¢ such that for |z — z'| < |z — y|/2 and all
a,0<a<e,

[Di+; My Di My(z,y) — Dy My Dy Mi(z', y)|
= ‘/ (Di+j(z, 2) = Ditj(2', 2)) b(z) Dr(z,y) b(y) d=

= | [ (Bets@2) = Dyt 2)) b2

- (Di(2,y) — Di(z,y)) b(y)dZ‘

<e 2(k+j)(n+e) '(L‘ _ xlle lz _ z_le 2k(n+s) dz

|z—-z|$c 2-(k+j)

ve [ IPues) = D' 2)
|z —z|<c2-(k+i)

|z — z|* 2K+ g
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<ec |.’L‘ _ zlle 2k(n+s)

(2.20) te [ Dess(,2) = Dugs(a'2)
|z’ —z|<c2—(k+i)
(Jz —2'|* + |z — 2'|%) ok(nte) 4,
<ec lx _ 'Tlle 2k(n+s)
+ec 2(k+j)(n+a)|$ —z'|*

|z' —z|<c2—(k+i)
|z — o[ 2k g

<ec I‘T _ ‘T'ls 2k(n+e) + c2°‘|z _ xl|(a+e)2k(n+a+e) .
Note that for |z — 2’| < |z — y|/2 the estimate of (2.17) implies

(2.21) |Dgy; My Dy My(z,y) — Dyyj My Dy My(z',y)| < c277¢ 2k

If choose a small enough, the geometric mean of (2.20) and (2.21) and
the fact that the support of D4 ; My Dy My(z,y)— Dy My Dy My(z')y)
is contained in the set {|z —y| < c27F}U{|z' —y| < c27*} yield (2.18)
for the case j > 0. The proof of (2.18) for the case § < 0 is similar but

easier.

The proof of (2.19) is similar. Suppose j > 0. Then there exists a
constant ¢ such that for |z — 2’| < |z —y|/3, |y —y'| < |z —y|/3 and

alla ,0<a<e,
{(Dk+j My Dy, My(z,y) — Diy; My Dy My(z',y))
~(De+s My Dy My(2,y) — Der; My Di My(a', )|
- ’/(Dk+j($,2)—Dk+j($',z))
b(z) (Di(z,9) = Di(z,y) bly) d2|
= | [ (Bras(@,) - Dras(e',2)) (2)

' ((Dk(zvy) - Dk(z’y’))
—(Dk(l‘,y) — Di(z, y’))) b(y) dz}
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<ec 2(k+j)(n+€) |:L' _ xlle

|z—z|<c2-(k+i)
= ol ly— o/ 24429 g

(2:22) te [ IDus(e,2) = Duate',2)
|2/ —z|<c2—(k+i)
e — ol ly — y'[F 2429 4

<ec |.’1,' _ x/le |y _ ylls 2k(n+26)
+e 2(k+j)(n+a) I‘T _ xlla
|z’ —z|<c2-(k+i)

. !’13 _ $l|e ly _ ylle 2k(n+2£) dz

<ec ’$ _ zlle |y _ ylls 2k(n+2€)

+ czja lw _ w'l(a+5) Iy _ ylle 2k(n+a+25) )

Note that for |z — 2’| < |z — y|/3 and |y — y'| < |z — y|/3 the estimates
of (2.18) and (2.21) imply
(2.23)

|(Di+j My Di My(,y) = Di+j My Dy Mi(2',y))

— (Di+4j My D My(z,y') — Dryj My Di My(2',y")) |
< C(l.’l) _ $I|E’ 2k(n+e') A 2—j52kn) )
If choose a small enough, the geometric mean of (2.22) and (2.23) and
the fact that the support of
(Dk+j My Dy Mb(:t, y) - Dk+]' My D, Mb(:r', y))
— (Dk+j My Dy My(z, y') — Dy My Dy ]\fb(.’l?’, y'))

is contained in the set
{lz—y| < c27F}u{ja’ —y| < c27F}u{|z—y'| < c27F}Uf|a'—y'| < 27}

yield (2.19) for the case y > 0. The proof of (2.19) for the case j < 0 is
similar but easier.

Considering the cases j > 0 and j < 0 separately, and summing
over k, and then, (2.17) implies (2.11), (2.18) and (2.19) imply (2.12)
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and (2.13) with constant ¢2~? replaced by a constant c, respectively.
By taking the geometric means with (2.11) we obtain (2.12) and (2.13).

We leave these details to the reader. Finally, the estimate of (2.14)
follows the following simple calculations.

(Baf,9) = 3 3 [[ Dess Mo D Mia,0) 1) (@) d e

|i]>N k€Z

Since

I /Dk+j My Dy My(z,y) f(y) dy'
mn

S|

—l7le k+7)Akln
<o [Ny e esonny @) = F@)] dy
]Rn

< c27ble o= I(HDAK ) £
|/Dk+j My Dy My(z,y) f(y) dy
]Kn

—|7le k47 k
< 0/2 lile ol(k+i)Ak]n X (jomyice 2-L4i)AR], |f(y)| dy
Rn
< c27lile gt £ Q)

and denote |Q| = 27%°"  we then, by the estimates above, have
’ /Dk+j My Dy My(z,y) f(y) dy
]Rn

c271ile 2= ((k+DAKI=ko)n | 71| |Q|7/™;
T | 2 lile 9[(k+5)AK]—ko)n 1l Q™.

Thus,

‘ / Dyt j My Dy My(z,y) f(y) 9(z) dy dz

< c2lile 9= ([(k+j)Ak]—ko)n 11l |Q|l+2n/n lglly
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and
| / Diy; My D My(z,y) f(y) 9(2) dy da
< c 2~ lile o([(k+5)Ak]—ko)n NNl |Q|1+2n/n gl -

which yields (2.14). This shows Lemma 2.10.

Now we turn to the proof of Theorem 2.3. Let Dy = Ty ID,ICV , where
DY is defined in (2.7) and N is a fixed large integer such that 7' maps
the strong b-smooth molecules of type (8,v) centered at zo € R™ with
width d > 0 to the strong b-smooth molecules of type (8,v) centered
at 7o € R™ with width d > 0 by Theorem 2.8. It is easy to see that
DYN(z,y), the kernel of DY, is a strong b-smooth molecule of type (&, ¢)
centered at y with width 2=% > 0. Thus, 5k(z,y) =Ty DN (-, v)](2),
the kernel of bk, is a strong b-smooth molecule of type (¢, ¢’) centered
at y with width 27k > 0for 0 < &' < € by Theorem 2.8. This shows that
Dy(z,y) satisfies the conditions (i), (ii) and (iii) of (2.5). The condition
(iv) of (2.5) follows from the fact that (D2 )(b) = 0. All we need to do
now is to prove that the series in (2.4) converges in the norm of L? and
M® "), Suppose first that f € M), Then the convergence of the
series in (2.4) in M%) is equivalent to

(2:24) Jim || Y7 De My Di My(f) = fllagesr. =0,
[k|<M
for 0 < #' < B and 0 < 4' < 4. Since
S DMy DeMi(f) =T5' (> DI My D Mi(f))
IKl<M IKl<M
=T5'(Tn — 3. DY My Dy My(f))
|k|>M
= f~ lim RR(f)
_T];I( Y DY M, Dy M,,(f)),
|k|>M

to show (2.24), it suffices to prove

(2.25) Jim [[RF ()l =0,

(2.26) |T§1( > DY M, D, M,,(f))”M(ﬁM =0

lim l
M—oo
|k|>M
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By (2.15),

IRF (A aerary < €27V ™ I fllpgesrany < €27V ™ | fll s

since 0 < ' < B and 0 < ' < «, which gives (2.25). The proof of
(2.26) is based on the following estimate

2.27) || D> DY My D My(£)llpeoran < €27M7 || Fll e
|k|>M

forall 0 < ' < 3,0 < 4' < v and some o > 0, and a constant ¢ which
is independent of f and M.
Assuming (2.27) for the moment, by Theorem 2.8, for 0 < #' < f8

and 0 < 7' <7,

ITR > DY My Die My(£)l|pgcor. 0y
|k|>M

<cl Z Dy My D My(f)|| pgeor 2y
|k|>M

S C2—]VIU ”f”M(ﬁ,'v) )

which gives (2.26).

To prove (2.27), it suffices to show that for 0 < 8" < § and 0 <
v' < 7 there exist a constant ¢ which is independent of f and M and
some o > 0 such that

| 3= DY My D Mi()()|
|k|>M

(2.28) < Cz—MU(l + |x|)_(n+7’) fllarco s

| > DY My D Mi(f)(@)— Y DY My Di My(£)(=")]
|k|>M |k|>M

z—a'[\#"
(2.29) gc(llﬂxll) <1+|i|)n+*’ 1 llascom

for |z —2'| < (1+ [z])/2.
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To see this, by taking the geometric average between (2.29) and
the following estimate

> DY My D My(f)(z) — D Di My Dk My(f)(z)
K[> M K> M

<| 3 DY My D My(f)(@)| +| D DI M Di Mi(f)(=")|
[k|>M |k|>M

< 271+ [z)) 7| fllago
for |z — z'| < (1+ |z|)/2, we have
DY My D My(f)(z) — Y DY My Dy My(f)(<")
(2.30) |k|>M |k|>M

<c27M7 |z —2'|F (1 + |2) ") | fll e

for |z —2'| < (1+ |z])/2.
Now (2.28) and (2.30) together with the fact that

/1; > D My Dy My(f)(z)b(z)dz

" kI>M
= Z M, Dy My(f)(z) (D)*(b)(z)dz =0,
R 1k|>m

show that

S DY M, Dy My(f)(x) € M#7)
|k|>M
and
| > DM D)< o2 e
k|>M '

which gives (2.27).

Now we prove (2.28). Denote E; = DY MyD;. It is easy to check
that Ei(z,y), the kernel of Ej, satisfies the conditions (2.2.1), (2.2.ii),
and (2.2.1i1) with ¢ replaced by €' , 0 < €' < ¢, and Ex(b) = 0. Consider
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first the case where |z| < 2, then

| S° DY My D My(£)(a)|
|k|>M

=| ¥ EM(f)@)

|k|>M
<| 3 [ Bl b) () f2)
(231) k>M 7R
| +1 3 [ Buen)bw) fw)dy] (since Be(5) = 0)
k<—M/B"
<Y 2 o +¢ 3 2™ fllarom
k>M k<—-M

< c(27MB L 27 My | £l preon

<e27M7 (14 |2))~ ") || fll g, (since |z < 2)

and, where o > 0 is a constant and 0 < v’ < 7.
This proves (2.28) for|z| < 2. If |z| > 2, then

| Y @] < | Y [ Buan) b))~ 1))

|kI>M k>M
ap> /m Ex(z,y) b(y) f(y) dy| = T+ 11.

k<—-M

Since |z —y| < ¢27% < ¢2™™ for k > M and hence |z — y| < 1 if
M is larger than log, c. This gives that |y| > |z| — |z — y| > |z]/2 for
M > log, ¢ and term I is now bounded by a constant times

> [ IBde e -

k>M
(D™ + 1+ |2 )T"F) dy || fllages

<e( 2 27) W+l ™ | fllascsin

k> M
<c27MB (14 |2) ) || fll agesm -

(2.32)
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To estimate the term II, by use of the fact that [;. f(y)b(y)dy = 0, we
have

I/]R,,E"(:”’y) b(y)f(y)dy'
= l/mn (Ex(z,y) — Ek(z,O)) b(y) £(y) dyl

<e / |Ex(z,y) — Ex(z,0)] |f(y)| dy
(2.33) lyl<|z|/2

te / |Ex(z,y) — Ex(z,0)| |f(v)| dy
lz|/2<]yl<3]z|/2

ve [ IBew) - Bue OlIfW)ldv.
ly|>3]z|/2

Since

|EL($’ y) - Ek(l‘, 0), S c2k(n+5) (J_l)s :

|z

the size condition of f yields

|Ei(z,y) — Ex(z,0)| |f(y)] dy

lyl<lz|/2
e 1
< ok(n+e) (M)
(2.34) =€ lz|/  |y|»tY
lyI<l=l/2
.X(k: 2k<clz|—1} ”f”M(ﬂw)
< 2% |z~ || fll arco -
Similarly,
|Ex(z,y) = Ex(z,0)| |f(v)] dy
ly|>3|z|/2
(2.35) . )
s czknx{k: 2k<e|z|=1} lZ|=Y | fll prcom
< c2k? |I|_(n+7,) | £l prce
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and

|Ex(z,y) — Ex(z,0)|[f(y)| dy
|z1/2<]y|<3z|/2

(2.36) <c / (1Ex(z, y)| + |Ex(z,0)]) | f(y)| dy

lzl/2<]y|<3|z|/2

< ¢2ke ]ml“(""”",) (FAIYEEE

where 0 =y — ' > 0.
Combining (2.33), (2.34), (2.35) and (2.36) shows

M<e S 25 2~ | fll g
k<—-M

<27 M (14 |27 | fll e

which together with (2.31) and (2.32) implies (2.28).
It remains to prove (2.29). We need only to check that

S DY M, DM, and b7 ( 3 DY M, Dy M,,)*M,,,
|k|>M |k|>M

as operators, satisfy the hypotheses of Theorem 1.19 and the estimates
of the kernels are independent of M. Since

(3 D,ICVMkaM,,)*sz S Di M, (DY) My,
|k|>M |k|>M

and Dy and D} satisfy the same conditions, so it suffices to check that
Z|k|>M D,ICVMkaM;, satisfies the hypotheses of Theorem 1.19 with the
constants independent of M. This follows from the simple computation.
We leave these details to the reader.

Finally, to see that the series in (2.4) converges in L? for 1 <
p < o0, by the proof above, we only need to show that (2.25) and
(2.26) still hold with the norm of M7 replaced by the norm of L?
for 1 < p < co. The estimates in Lemma 2.10 show that Ryb™! is a
Calderén-Zygmund operator with the operator norm at most ¢2~N®
and hence Ry is bounded on L? for 1 < p < oo with the operator norm
at most ¢ 27 N9, This yields (2.25) and also implies that T is bounded
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on L? for 1 < p < oo. To see that (2.26) still holds with the norm of
M"Y replaced by the norm of L? for 1 < p < oo, it suffices to show
limpr—co || 2o k1> m DN My Dy My(f)|l, = 0 for f € LP,1 < p < oo.
This can be proved by a result in [DJS]. More precisely,

| > oF MkaMb(an

|k|I>M
= sup ( Z D;]cVMkaMb(f)ag>
”9”,,151 |k|>M
1/2 1/2
< sup ( Z |Dka(f)l2) “ ”( Z | My (Dllcv)*(g”z) ”,
gl ca ' i PR RSM d

(by a result of [DJS])

<c sw ||( 3 DeannF)" sl

”g”pISI [k|>.)\1

<e|( = emnr) s,

|k|>M

where again by a result of [DJS] the last term tends to zero as M tends
to infinity . This ends the proof of Theorem 2.3.

By an argument of duality we obtain the following Calderén-type
reproducing formula on (M)’ .

Theorem 2.37. Suppose that (Dy)rez 3 as in Theorem 2.3. Then

~

there ezists a family of operators (Dyi)rez whose kernels satisfy the
same properties as in Theorem 2.3 such that for all f € (MBMY

(2.38) f=>" My D My Di(f),
keZ

where the series converges in the sense that for all g € M) with
B> and v > 7,

(2.39) Jim (3 My Dy My, Di(f),9) = (f.9).
KI<M
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We leave the details to the reader.

Section 3.

In this section we introduce a new class of the Besov and Triebel-
Lizorkin spaces associated to a para-accretive function, which general-
izes the classical Besove and Triebel-Lizorkin spaces on R" and prove a
Tb theorem on these spaces. We begin with the following proposition.

Proposition 3.1. Suppose that (Sk)rez end (Qk)rez are approzi-
mations to the identity defined in (2.1). Set Dy = S — Sk—1 and
Ey = Qi — Qi_1. Then for all f € (M®BD) with 0 < B, < €, where
€ 18 the reqularity ezponent of the approzimations to the identity, there
ezist two constants ¢; and co > 0 such that

o (e 1B " < (e 1o Al)
keZ

(3.2) kezZ

<o (@ IEDI?) ",

kEZ

for —e<a<e,1<p,qg< o0,

o [( S imaon) |, < (S ipweanr) ],
k€Z

k€EZ
<a| (Tt Emr) ],

k€ezZ

(3.3)

for —e<a<e,l1<p,qg<oo.

PROOF. We first prove (3.2). Without loss of generality we may assume
that

(Z @ 1mI)) " < +oo

kez

and

(@ 1Dan ) " < +oo.

kez
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Since Di(-,y) € M9 by the Calderén-tfype reproducing formula in
(2.37), there exists a family of operators (E;);cz such that

Di(f)(z) = (Di(z,"), f) = (Di(=,"), Y My E; M, E;(£))

JEZ
=" Dy My E; M, E;(f)(z).
JEZ
Thus,
IDk(F)llp < D 1Dk My E; My E;(£),
(3.4) T _
< 11Dk My E;jllp p [|Ms E5(F)llp -
JEL

The estimate in (2.17) still holds with D; replaced by E'j and hence
implies that | Dy My Ej|, , < c271¥=3l¢" Thus,

(= 1oanly) < (St S e 0r)

kez kez JEZ

<c (Z (Z 2—|’°—J’I6”+(k—j)a)q/q’

kEZ j€L
—lk=jle"+(k—j)a (oja 1/q
2k D o B ), )0)
JEZ
jor . 1/q
<c (@ IEWDI)) " < +os,
jEL
since we may choose —¢'' < a < €'’ and hence

S g lkile ke § gtk ke o oo,
kEZ JEL

The same proof can be applied to prove the other inequality in (3.2).
To prove (3.3), we will use the Fefferman-Stein vector-valued max-
imal function inequality. As in the proof above, we have

IDk(f)()| < 3 |Di My E; My Ej(f)(z)|
JEZ

<ey 27 M MOMLES(£))(=),
JEZ
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where M is the Hardy-Littlewood maximal function. This gives

(et IDk(f)I)")l/ I,
k€EZ
<c ” (§ :(2ka § 2—|k—jl€" M(MbE](f))q) 1/q“p

kezZ JEZ

<ec “ ( Z ( Z 2—|k—jls"+(k—j)a)q/q’

k€EZ ;€Z
. ]26; g-Ik=ile" +(k=i)a (ke M(MbEj(f))q) v “,,
<ec ” Z (210‘ M(MbEj(f))q)l/q”
i€z ’

(since Y 9—lk—jle" +(k—j)e + 3 o—lk=jle" +(k—j)a +00)
kEZ i€z

(2 mnEm”|
JEZ

<c|

(by the Fefferman-Stein vector-valued maximal function inequality for
1<p,qg< )

. 1/q
<5 mn) |
i€Z P

(since b € L>®°(R")), which shows one inequality in (3.3). The other
inequality in (3.3) can be proved by same manner.

We remark that if the kernels of E} satisfy the conditions (i), (ii),
(iii), and (iv) of (2.5), the first inequality in (3.2) and (3.3) still hold.

The proposition above allows us to introduce the following Besov
and Triebel-Lizorkin spaces associated to a para-accretive function.

Definition 3.5. Suppose that (Si)rez is an approzimations to the
identity defined in (2.1). Set Dy = Sk — Sk—1. The Besov spaces bBy9,
for —e <a <e and 1 < p,q < oo, are the collection of f € (MPBM)
for 0 < B,v < ¢, such that

(3.6) 7l = (@ 1De(PI) " < +oo.

kez
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The Triebel-Lizorkin spaces pr"*q, for —e<a<eand 1l < p,q < o0,
are the collection of f € (MY for 0 < B,y < e, such that

O Wiz = (T 0x0) | < oo

To prove the Tbh theorem on the Besov spaces bB]‘,”'q and Triebel-
Lizorkin spaces bFP“’q we need the following proposition.

Proposition 3.8. Suppose that f € (MPDY with 0 < B,y < €
and ||f|l,pee < 00 for —¢ < a <eandl < p,g < © (respectively,
[l fllopea < oo for —e < @ < € and 1 < p,q < o). Then there ezists

a sequence {fn}S%,,fn € bM"E) with 0 < &' < e,n = 1,2,..., such
that

nll_{fgo | fr — f”bB;‘v? =0 (respectively, nlin;o | fn — f”bl;-v;,q = 0).

PROOF. Suppose f € (M) with 0 < 8,7 < € and ||f“bB;3"' < +o0
(respectively, ”f“b}';vpa,q < +00). It suffices to show that for any 6 > 0,.

there exists a g € bM (<€) such that
llg = Fllypes <8  (respectively, |lg — fll,pze < 6).

To see this, it follows from the Calderén-type reproducing formula in
(2.37) and the proof of (3.1) that

| S B m0,0 -1, <c( X @ IDHI) "

HEY ’ l71>M
and hence
dm | 32 MDD ], =0
lil<M
(respectively, hm ” z M, D; My D;i(f) - f“bF"" =0).
<M
Now set

ou(z)= Y / b(z) Dj(z,y) by) Ds(f)(v) dy.

1My ) <m
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It is easy to check that gy € bM (') All we need to do now is to show
that for any given § > 0 there exists My > 0 such that for all M > M,

“gM - > MyD; M, Dj(f)“m,,,q <
lilsm ?
(respectively, “gM ~ 3" M, B; M, Dy( f)”bﬁw < é).
lil<M ’

To do this, we have

gu— Y M, D; M, Dj(f)(=)
lil<M

—= % [ @)Dy n)bw) D)W -

l]lSM|yI>M

By the definition (3.5), then it follows from the proof of (3.1) that

”gM— > My D; MbD,'(f)H

lil<m o
=(ze|pe X [ a0 B ninwarl] ))”
k€EZ FISMy S M
(respectively,
”yM— Y. M, D; MbDj(f)HbFa,q
lil<M ’
=|(Zeme X [ o) B s Ditnwan?) | )
kez FISM)y S M ?
< (@ 3 1De My Dyl / 16) D))l d)*)
K€L |jI<M lyl>M
(respectively,
<[(Z e X 2 mim 05|
kez <M ’

where XM = X{y: |y|>M) )

<o( X @ [ innwra)’)”

liI<M ly|>M
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(respectively,

<d 3 @b i)

lilsM

Since ”f”bB;,q < 400 (respectively, ||f||,,p;.q < 400), so that there
exists M; > 0 such that for all M > M,

(X @ inn)?) " <56
[i12M
(respectively, ”(U%:M (27 ”Dj(f))q)l/q“p - % ).

It is easy to see that there exists My > M; such that for all M > M,

(> e [ nnwra)” <

l]ISMO '.'II>M

( respectively, “( Z (27 |xm Dj(f)|)q)l/q“p < 5156)
|71< Mo

Thus, for M > M, we then have

HgM— > MbﬁijDj(f)‘
lil<M

<e(X e [ nnpa)”

lilsM ly|>M

<e( Y @ I0l,)") "

[712 Mo

te( (27 / IDj(f)(y)I”dy)””)q)l/q

[11< Mo ly|>M
1

1
Scié—f-c%&:

B;‘,Q(b)
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(respectively,

“gM- > MbﬁijD,-(f)Hb

fge
HE3Y

<c|[( X @I Df(f”)q)l/q“p

lil<M
SCH( Yo (@ |Dj(f)|)q)l/q“,
131> Mo
+c“( 3 (2i°xMDj(f)|)q)l/q”,,
|71< Mo

1 1
<c— —§=46).
_c2c6+c2c )

This completes the proof of Proposition 3.8.

We now state the Th theorem for bB;,”q and pr“’q. First notice
that if T is a singular integral operator defined in (1.25), then T can
be extended to a continuous linear operator from bM(#:7 0 < 8, , to
(bCT)'. To see this, let f € M with 0 < B, and ¢ € bCJ(R™), and
choose 8 € C}(R™) with 6(z) =1 for = € supp g, we then define

(3.9) (Tbf,g9) = (T(bf0),9) + (T(bf(1 - 0)),9).

Since bf8 € bCJ(R™), so (Tbf0,g) is well defined. Using the facts that
bf(1—6) and g belong to L!(R™) and supp bf (1 —60)Nsuppg = @, then

/ K(z,y)b(y) f(4) (1 - 6(y)) g(z) dy dz
R™ xR™

converges absolutely, and hence (T'(bf(1 — 6)), g) is well defined. It is
also easy to check that (3.9) is independent of the choice of 6.

Theorem 3.10. Suppose that T s a singular integral operator defined
in (1.25) and T(b) = T*(b) = 0, and MyT M, has the weak boundedness
property. Then T can be eztended to a bounded operator from bBy? to

b‘lB;"" for —e <a<e,l1<pq< o, and from bF;’q to b‘le“’q
for —e < a < e ,1 < p,g < o0, where f € b_lB“,”q if and only if



CALDERON-TYPE REPRODUCING FORMULA AND THE Tb THEOREM 85

bf € bBS4, and f € b= E®9 if and only if bf € bEXY, and ¢ is the
regularity exponent of the kernel of T.

PrOOF. By Proposition 3.8, bM(el’e’), 0 < €' < ¢, is dense in bB]‘,”q
for —¢' < @ < ¢ and 1 < p,q < oo, and in bF"? for —¢' < a < €,
1 < p,q < oo. Thus, it suffices to show that for f € bM ) N ng”q
with —¢’ < a<e’'and 1 <p,q < o0,

(3.11) I fllyos e < ll s
and for f € bME ) N pr"‘vq with —¢' <a<¢e' and 1 < p,q < oo,
(3.12) 1T flly=s e < llfllypo

where c is a constant which is independent of f.

To do this, since T can be extended to a continuous linear operator
from bM¥,0 < B, < ¢, to (bCJ)', for f € bM(") N bBX with
0 < 8,7 < €' we then have

Tf=Y TMyDiM,Di(f)  in (bC7),
kez

since Mb—lf € M) and hence, by Theorem 2.3,

M7l = 3 De My Di My (M5 £) = 3 Di My Di(f)
€ €

in the norm of M) with 0 < 8,~ < €'. Therefore,
: 1/q
1T -0 = (3 (277 1D; My(THp))
JEZ

= (X (27 1D; My Y T My De 1y Bu(),)°)

J€Z k€L

1/q

(since D;(-,y)K(y) € bC3)
. ~ 1/
< (30 (27 30 ID; MyT My Dilyp 1Dx(£)l)?)
JEZ kEZ

To estimate the last term above, we need the following lemma (see

[HS1)).
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Lemma 3.13. Suppose that T satisfies the hypotheses of Theorem
3.10. Then for 0 < €' < ¢ there exists a constant ¢ > 0 such that
D; My T My Di(z,y), the kernel of D; My T My Dy, satisfies the follow-
g estimate:

9—(knj)e’
G + o=y

(3.14) |D; MyT My Di(z,y)| < co-lk=ile

Assuming Lemma 3.13 for the moment, we have

— 1/q

(272 30 2771 | Ba(£)llp)?)

JEZ keZ
kezZ

@ 1Be(Hl)")

ITfly-15g0 < e (3
<e(X
<e(

5 @ IDHI)?) " = ellfllgge

kez
by the remark following (3.1). Similarly,

7 lstge < | (3 (2 30 0 70 e 3y Bu()*) |

JEZ kez

3 (290 S 2 lk-ile MM, Bi(f) ) ”,,

kez

(X
JEL

< ( @t mon D)) |
(2

<c

1/q
<ec 2k°|ka )|)q) ”
P

(by the Fefferman-Stein vector-valued maximal function inequality)

(> @ lpk(f)l)”)l/qﬂp

kez

<c

= cfll,ges

by the remark following (3.1).
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All we need to do now is to show Lemma 3.13. We prove the
estimate (3.14) in the crucial case where j > k and [z — y| < c27F.
The three remaining cases: j > k and |z — y| > ¢27*% j < k and
|z —y| < ¢e277,j < k and |z — y| > ¢27, are similar or easier. Let
no € C*(R") be 1 on the unit ball and 0 outside its double. Set
m = 1 — no. Then, following the proof of Lemma 7 in Section 6 of
[DJS], we have

D; M, T M, Di(=,y)
(3.15) = //Dj(a:,u) b(u) K (u,v) b(v) Di(v,y) dudv
=/ Dj(z,u)b(u) K (u, v) b(v) (Di(v,y) — Di(z,y)) dudv
since T(b) = 0, so
D; My T M, Di(z, y)
=/ Dj(z,u) b(u) K(u, v) b(v)

- (Dx(v,y) — Di(z,y)) 770(

Z—x)dudv

2-7

(3.16)
+ / Dj(z,u) b(u) (K(u,v) — K(z,v)) b(v)
) (Dk(v’ y) - Dk(x’ y)) m (1;—2—_;) dudv

=I+1,

since 1 = no + m and D;(b) = 0. Now With Y(u) = Dj(r,u) and
¢(v) = (D(v,y) — Di(z,y))no((v — z)/c277),

1| = |(Mb T My8,)]
< 2770 14| Lipy 1% l|Lipy
(by the weak boundedness property of M;T M)
< C2~j(n+2n)(2(k—j)e 2kn 9im) (2=inQn))

< c2(k—j)s 2kn ,
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which is dominated by the right side of (3.14) for the case where j > k
and |z — y| < ¢27*. Using the smoothness of K(u,v) together with

|Di(v,y) — Di(,y)| < 2K+ o — g

°x
{lv—yl€c2=k}u{|z—y|<c2—F} ?

we have

< e i D@ u — 2|

v —z|rte

{lo—yl<c27*}u{lz—y|<27%}
[v—z|>c27’

- 2k(+e) 1y _ 2|¢ du dv

< ¢27Iegkn v — x|_("+e) dv
jv—z|>c2-k
+ c2(k=9)e gkn / v —z| " dv

c2=*>|v—z|>c2-J
< cz(j—k)e' 2kn ’
which again is dominated by the right side of (3.14) for the case where

j > k and |z — y| < ¢27*. This proves (3.14) for this crucial case and
completes the proof of Theorem 3.13.

Section 4.

We remark that our Calderén-type reproducing formula still holds
if the conditions on the approximation to the identity are replaced by
the following more general conditions:

—ke
NCREEFEE

(i) 1Sk(z,y)| <

|Sk(z,y) — Sk(z,y")]

(i1) — € -k
< ( ly = '] ) 2~k ’
27k + )z —yl) (27F 4|z —y[)n*e
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for [y —y'| < (27F + |z — y)/2;

|z — 2’| )E o—ke
7+ 1o —yl) BFA - u

(ii) WAaw~SAwaSC(
for |z —2'| < (27% + |z —y])/2;
|(Sk(z,y) = Sk(@',y) = (Sk(z,y") = Se(z",¥")]
(iv) <c( & — /) )( ly — v/l ) 27k
ST\ F e —yl) \2F+je—y|) @ F+[z—y])~Fe’

for |z —2'| < (2—k + |z —y|)/3 and |z — 2| < (2"‘ + |z —y|)/3;

(v) / Sk(z,y)b(y)dy =1, forall k €Z and z € R";
R~

(vi) / Sk(z,y)b(z)dr =1, forall k€Z and y € R™.
Rn

Using our Calderén-type reproducing formula associated to a para-
accretive function one can prove the atomic decomposition, duality, and
interpolation for bB;"? and bF,;? as for the classical Besov and Triebel-
Lizorkin spaces. Since the Fourier transform, translation and dilation
are not used so all results in this paper can be generalized to spaces
of homogeneous type introduced in [CW]. We will discuss these details
elsewhere.

Acknowledgement. I would like to thank the referee for his through
revision of the paper and his useful comments.
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