REVISTA MATEMATICA IBEROAMERICANA
VoL. 10, N.° 1, 1994

An inverse Sobolev lemma

Pekka Koskela

Abstract. We establish an inverse Sobolev lemma for quasiconformal
mappings and extend a weaker version of the Sobolev lemma for quasi-
conformal mappings of the unit ball of R" to the full range 0 < p < n.
As an application we obtain sharp integrability theorems for the deriva-
tive of a quasiconformal mapping of the unit ball of R” in terms of the
growth of the mapping.

1. Introduction.

Suppose that u belongs to the Sobolev space W!?(B™(1)), p > n,
where B™(1) is the unit ball of R™. Then the Sobolev imbedding theorem
states that u is uniformly Holder continuous in B"(1) with exponent
1—n/p, see [GT, 7.26]. Recently, in [AK1, 4.7] we established a partial
converse to this imbedding.

Theorem A. Let f be a I -quasiconformal mapping of B"(1) into R™.
If f is uniformly Hélder continuous in B™(1) with ezponent 0 < a <1,
then f € WLP(B™(1)) for some p > n, which depends only on K, n,a.

Thus, for quasiconformal mappings the Sobolev imbedding ad-
mits a converse. Recall that a homeomorphism f : D — D' is K-
quasiconformal if f € W,."(D) and

[f'(@)I* < K Jg(x)
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holds a.e. in D. Here |f'(z)| is the operator norm of the formal deriva-
tive f'(z) of f.

In this note, we study the invertibility of the Sobolev lemma, which
states that if u belongs to the Sobolev space W?(B™(1)), 1 < p < n,
then |u|P™/("~P) is integrable over B"(1), ¢f. [GT, 7.26]. We prove the
following inverse Sobolev lemma; see Corollary 4.6.

Theorem B. Let 0 < p < n, and suppose that f is a K -quasiconformal
mapping of B™(1) into R™. Then

/ |f|7dm < +o0, forall 0<qg<p
Br(1)
if and only if

/ |f|? dm < 400, forall 0<s<pn/(n—p).
B (1)

It should be observed that Theorem B extends a weaker version
of the Sobolev lemma to the full range 0 < p < n. We also point out
that the inverse Sobolev lemma does not, in general, hold for Sobolev
functions. It seems to be a special property of quasiconformal map-
pings. In fact, the inverse Sobolev lemma may even fail for non-injective
mappings satisfying the above inequality and in particular for analytic
functions. Indeed, there exist bounded analytic functions of the unit
disc whose derivatives fail to be integrable [R].

We link the integrability of the derivative of a quasiconformal map-
ping to the integrability of the mapping itself by means of growth esti-
mates for the mapping. As a handy tool we employ the notion of the
average derivative of a quasiconformal mapping introduced by K.Astala
and F.W.Gehring [AG1]. This substitute for the derivative has turned
out to have a number of applications in questions related to boundary
distortion of quasiconformal mappings, see [AG2], [AK2], [AK1], and
[H]. Following Astala and Gehring we write

dm

af(z) = exp(/B log J¢(y) nIle),

where |B;| is the n-measure of B, and B, stands for B(z,d(z,0D)/2).
In order to establish sharp integrability results (6.1), (6.2) in terms
of the dilatation K we prove a quasiconformal analogue of Koebe type
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growth estimates for univalent functions. In the course of our study we
provide new evidence to ensure that ay plays the role of the derivative
by generalizing some classical growth estimates on the derivative of a
univalent function, ¢f. [Hy, 1.3, 1.9, 3.3], [P, 1.6].

2. Preliminaries.

Our notation and terminology conform with that of [V1]. In par-
ticular, B™(z,r) and S™"!(z,r) = 0B"(z,r) are the open ball and
sphere of radius r centered at x. We abbreviate B"(0,1) to B"(1) and
S™=1(0,r) to S 1(r), and we write w,—1 for the (n — 1)-measure of
S™=1(1). D and D' will always denote proper subdomains of the n-
dimensional Euclidean space R", and we apply the convention B, =
B"(z,d(z,0D)/2) for points « in D. We write C = C(a,...) to indi-
cate that C depends only on the parameters a, ... Finally, for any pair
E, F of disjoint, closed sets in D, M(E, F; D) is the modulus of the
family of curves joining E, F in D, and we abbreviate M(E, F;;R") to
M(E,F) and M(E,0D; D) to M(E; D).

Next, we collect a number of results used in our proofs. First we
state the following well known modulus estimate, see [G1].

Suppose that E, F C R" are disjoint, non-degenerate, closed, con-
nected sets with E bounded and F' unbounded. Then

d(E, F) ))l—n,

(2.1) M(EB,F) 2wy (log C (1+ diam (E)

where C = C(n).
We will frequently employ the following basic property of quasi-
conformal mappings; see [V1, 18.1], [V2, 2.4].

Lemma 2.2. Let f : D — D' be K-quasiconformal. Then for any
0 < A < 1 there ezist positive constants Cy,Cy depending only onn, K, \
such that

B"(f(z),C1d") C f(B"(x,C>d)) C B"(f(z),d'),

where d = d(z,0D) and d' = d(f(z),0D'). Moreover, there 13 a con-
stant C3 depending only on n, K such that

B"(f(z),d'/C3) C f(B:) C B*(f(z),Csd")
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and

d(f(B:),dD') > d'/C; .

Next, from Lemma 2.2, [G2, Lemma 4] and [IN, Theorem 2] we
deduce

Lemma 2.3. There ezists a constant C; = Ci(n,K) > 1 such that
if f i1s K-quasiconformal in D and B = B™(z,r) C D satisfies r <
d(z,0D)/C,, then for any0 <p <n

n/
[1gran < corma=mio ([ g am)™”,
B C,B

where Cy = Cy(n, K, p) and C1B = B*(z,Cir).
Furthermore, from [IN, Proposition 3] we have

Lemma 2.4. For each 0 < p < 00 and any K > 1 there i3 a constant
Cy = Cy(p,n, K) such that for all K -quasiconformal mappings f of D

If(z)| £ C, r—"/p(/ T dm)l/p

B"(z,r)
whenever B™(z,Cyr) C D, where C; = Cy(K,n).

We continue with a quasiconformal analogue [AG2, 1.8] of the
Koebe distortion theorem.

Lemma 2.5. Let f : D — D' be K -quasiconformal. There is a constant
C, which depends only on n, K, so that for each x € D

L d(f(2),0D") < ay(z)d(z,0D) < C d(f(z),0D")

Ql

and

([ rorg)” <a@<c( [ 1rorg)”

Ql+
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PROOF. First of our claims is [AG2, 1.8]. Moreover,
dm \1/n |fBz|\!/"
! n___ < K
([ rorg) " < (<55
and, by [Vl, 34.5-6],

(/;3, 1f' ()" I—%%)l/n > (Kl—n llibi_xll)l/n.

Therefore, owing to Lemma 2.2, our second chain of inequalities is a
consequence of the first.

We conclude with a lemma which will prove useful.

Lemma 2.6. Let f : D — D' be K-quasiconformal. If v C D 13 a
rectifiable curve with () > d(v,0D), then

diam (fv) < C/a;(x)ds.

~

Here C depends only on n, K.

PROOF. Pick a cover By, ..., By of v where each ball B; is of the form
B; = B,, with z; on v so that no point in D lies in more than C = C(n)
of these balls; this is possible by the Besicovitch covering theorem. Now
Lemma 2.2 yields

diam (fv) < ) diam (f(B;)) < C1 »_ d(f(=:),8D"),

where C; = Ci(n, K). On the other hand, from the assumption on the
length of v, we deduce that for each ¢ the one-dimensional measure of
4 N B; cannot be less than d(z;,0D)/2. So, appealing to Lemmas 2.2
and 2.5, we obtain

/af(z)ds >C; Y d(zi,8D)ag(zi) > Cs Y _ d(f(z:),0D"),

.

where the constants C,,C3 depend only on n, K. The claim follows.
Observe that the behavior of the quasiconformal mapping f(z) =

z|z|~1/% of B™(1) at the origin shows that some assumption on the
diameter of the curve 4 in Lemma 2.6 is necessary.
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3. A local inverse Sobolev lemma.

Throughout this section f will be a K-quasiconformal mapping of
B"(1), and we assume that f(0) = 0, d(0,0f(B"™(1))) = 1. We prove
that integrability conditions over hyperbolic balls are characterized by

the growth of f.

Theorem 3.1.The following two conditions are equivalent for 0< p <co.

a) / If[Pdm < C;.

T

b)  If(2) < Ci(1—z))™/P.

The constants Cy,Cy depend only on p,n, K and on each other.

PROOF. First note that, by Lemma 2.4, @) implies b). For the converse,
observe that d(f(z),0f(B™(1))) <1+ |f(z)|; hence Lemma 2.2 gives

IF(¥)] < (1 +C)(1+[f(2)))

for all y € B;, where C3 = C3(n, K). The desired implication follows.

Theorem 3.2. Let0 < p < n, fit x € B"(1), and suppose that |f(z)| <
Ci(1 — |z|)*~™/?. Then

/ F'Pdm < Cy,
B,

where Cy = Cy(p,n, K, Ch).
PROOF. Observe from Lemma 2.2 that for all y € B,
[f(y)] < Ca (1 = z|)' /7,

where C3 = C3(n, K, C;). Now
/ |F'I" dm < K |£(B,)] < Cs (1 — [z)0=/P
B;

where Cy = Cy(p,n, K, C1). Next, Holder’s inequality yields

/n
[ oirram<impom ([ g am)™,
B Bz
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and the claim follows.
Theorems 3.1 and 3.2 are local in nature. It is not too difficult to
produce examples where the converse to Theorem 3.2 fails. Neverthe-

less, we have a global version of the converse statement which completes
the chain of implications.

Theorem 3.3. Suppose that fB, |f'|P dm < C; for all z € B™(1) where
0<p<n. Then

f(@)] < C2 0P (1= [/,
for all z € B"(1), where C2 = Ca(p,n, K).
PrOOF. We conclude from Lemma 2.3 that

n/
firmdm < caq=tapra= ([ i am)™
B B,

< Cs (1~ [o)"0="/P),

where B=B"(z,(1—|z|)/C3),Cs=Cs(n, K), and Cs =Cy(p,n, K)C/?.
Since the inverse mapping of f is K™ !-quasiconformal, Lemma 2.2
shows that

I n 1 n n
[ dm > o (7@, 08B (1)
B 6
with Cg = Cg(n, K), which permits us to deduce

d(f(2), 0f(B"() ¢, ¢M/e (1 — |g)=rtr
1-|z| - ’

for all z € B™(1), where C7 = C¢(p,n,K). Thus, by Lemma 2.5, we
have

ag(z) < Cs C17 (1= |a) /7
in B"(1), where Cs = Cg(p,n, I{). Since f(0) = 0, the claim follows
from Lemma 2.6 by integrating a¢(z) along the line segment joining 0
to z.

Combining Theorems 3.1-3.3 we obtain
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Theorem 3.4. Let 0 < p < n. Then the following conditions are
equivalent.

o) |f(z)| <Ci(1~|e)'™/P in B(1).

b)  d(f(2),0f(B"(1))) < Ca(1 = [2])*~"/? in B"(1).
¢) ap(z)<C3(1—|z|)™™/* in B"(1).

d) / |f'Pdm < Cy for all z € B™(1).

z

e) / |f,pn/(n-p) dm < Cs for all z € B"(1).

z

Here all constants depend only on p,n, K and each other.

PRrOOF. Conditions a), d), and e) are equivalent by Theorems 3.1-3.3.
Furthermore, b) follows from a) by the triangle inequality, and c¢) from
b) by Lemma 2.5. Finally, Lemma 2.6 enables us to deduce a) from c).

We point out that Theorem 3.4 gives the following somewhat sur-
prising corollary.

Corollary 3.5. Let s > 0. Then
[f(z)] < Ci(1—z[)™° n B"(1)
if and only if
d(f(z),0f(B"(1))) < C2 (1 —z[)™* n B™(1).
For completeness, let us comment on the Sobolev lemma for qua-

siconformal mappings in the case p > n. From [N, 1.4] and Lemma 2.5
we have

REMARK 3.6. The following conditions are equivalent.

a) / |f'|* dm < C; for all z € B*(1).

B
) feBMO(B"(1)).
¢) d(f(z),df(B"(1))) < C for all z € B"(1).
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Contrary to the case 0 < p < n, one cannot characterize the in-
tegrability condition «) of Remark 3.6 by means of the growth of f.
In fact, the argument of the proof of Theorem 3.4 gives the estimate
|f(z)] < Clog(1/(1 — |z|)), whereas there exist univalent functions of
B?%(1) of slower growth but not belonging to BMO(B?(1)). Examples
of this type can easily be constructed with the help of the equivalence
on a) and ¢) in Remark 3.6 and the methods employed in Section 5.

Finally, here is the case p > n.

REMARK 3.7. If f is uniformly Hélder continuous in B™(1) with some
exponent o > 0, then fB, |f'|Pdm < C for all z € B™(1), for an
exponent p = p(n,K,a) > n. Moreover, if f is conformal, one may
take p = n/(1 — a). Conversely, if fB, |f'|Pdm < C for some p > n
for all z € B™(1), then f is uniformly Holder continuous in B™(1) with
exponent 1 — n/p. Indeed, the assertion is a consequence of [AK1, 4.7]

and [GM, 2.24].

4. The global case.

In this section we present global versions of the results of the pre-
ceding section. As earlier, we assume throughout this section that f is a
K-quasiconformal mapping of B™(1) with f(0) = 0 and d(0,0f(B"(1)))
= 1. We begin with an extension of the Sobolev lemma to the full range
0 < p < n for which record the following lemma due to K. Astala [AK2].

Lemma 4.1. For eachp > 0 and for all1/2 <r <1
/ |f|Pda§C/ M(t, fP(1—-t)" 2 dt,
Sn—l(r) 0

where C' = C(p,n,K) and M(t, f) = max ;)= | f(z)].

Theorem 4.2. Suppose that [y |f'|Pdm < C, 0 < p < n, for all
z € B™(1). Then for all0 < ¢ < pn/(n—p)

/ |f]9dm < C; c9/p ,
Bn(1)

where Cy; = Cy(p, ¢,n, K).
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PROOF. Notice first that by Lemmas 2.2 and 2.3 it suffices to establish
the assertion with B™(1) replaced by B = B™(1) \ B*(0,1/2). Now
Theorem 3.3 asserts that M(t, f) < Co CMP (1 —t)1="/P for 0 < t < 1,
where Co = Co(p,n, K). Hence the claim follows by integrating the
inequality in Lemma 4.1.

We point out that one cannot take ¢ = pn/(n—p) in Theorem 4.2;
see Remarks 4.8 below. Next we establish an inverse Sobolev lemma
for quasiconformal mappings of B™(1).

Theorem 4.3. Let 0 < p < n. Then for any q > p there is a constant
C =C(p,q,n,K) such that

[ wrranso([ g am
Bn(1) Bn(1)

PROOF. Let ¢ > p. It suffices to establish the integrability condition
with B™(1) replaced by B = B"(1)\ B"(0,1/2). Now Hélder’s inequality

gives
/ P dm = / FPIF0 12 dm
B B

< (/LLfVﬂfr"”Pan’”‘(jQprnﬂn—m(hn)“‘“/"

Next, the quasiconformality of f yields

) (n—p)/n

/ |f'[*1 £~/ dm < K/ 2| "/? dm .
B #(B)

With the help of Lemma 2.2 we conclude that f(B) C R®\ B™(0,C3).

Hence o
/ |z| /P dm < Cs / tnmimma/p gt
f(B) C2

The assertion follows from this string of inequalities because

From the proof of Theorem 4.3 we further deduce
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Theorem 4.4. Let 0 < p < n, and suppose that

|z]™"dm =C < +o0.
F(Br(1)\B~(1)
Then

(n—p)/n
[ arranscierm([ gD dm) "
Bn(1) Bn(1)

Combining Theorems 3.4, 4.2 and 4.3 we have

Corollary 4.5. Let 0 < p < n and suppose that fB, |f'lPdm < M in
B"(1) or that [ |f|P"/*~P)dm < M in B"(1). Then

/ |f'|7dm < oo, forany 0<qg<p.
Bn(1)

Next, combining Theorems 3.4, 4.2, 4.3 and Corollary 4.5, we de-
duce

Corollary 4.6. Let 0 < p < n. Then the following conditions are
equivalent.

a) |f'|9dm < 400, forall 0<qg<p.
Bn(1)

b) |f]I°dm < 400, forall 0<s<pn/(n—p).
B*(1)

¢) |f(z)] € C; (1 - |z|)!~™/9 in B"(1), for each 0 < ¢ < p, for
some Cy .

d) / |f'|9dm < C,, for all z € B™(1), for each 0 < q < p, for
B:

some C, .

€) / |f|°dm < Cs, for all z € B™(1), for each 0 < s <pn/(n—
B
p), for some Cj3 .
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OPEN QUESTIONS.
Suppose that an(l) |f'|P dm < 400 for some 0 < p < n. Does it

follow that fB,,(l) |f|9dm < 400 with ¢ = pn/(n — p)? By the
Sobolev lemma this is the case for 1 < p < n, and from Theorem
4.2 we know that this integral converges for 0 < p < 1 provided
0<g<pn/(n—p).

Suppose that [p [f'[Pdm < M for all z € B™(1). £ 0 < p < n,
then Corollary 4.5 ensures that fB”(l) |f']9dm < 400 for all 0 <
q < p. On the other hand, one can apply the example in [K] to
show that this is not, in general, true for p > n. Is the conclusion
nevertheless valid for analytic univalent functions of the unit disc
for all 0 < p < oo ? If this is the case, then Remark 3.7 would show
that [p () [f']?dm < +oo for all 0 < ¢ < 2/(1 — a) provided f is
uniformly Hélder continuous in B?(1) with exponent 0 < o < 1.
With some work one can show that this, in turn, would yield that
the Hausdorff dimension of df(B?(1)) is at most 2/(1 + a).

REMARKS 4.8.

(a)

(b)

Theorem 4.2 does not hold for ¢ = pn/(n — p) and Corollary 4.5
does not extend to the case ¢ = p. Indeed, a simple counterexample
is provided by the quasiconformal mapping f(z) = (z — w) |z —
w|™17?, a > 0, where. w € S"71(1). An appropriate modification
of f shows that the assumption on f(B"(1)) in Theorem 4.4 is
necessary and that Theorem 4.3 fails for ¢ = p.

Corollary 4.6 shows that for 0 < p < n the global integrability
of a quasiconformal mapping of B™(1) and that of its derivative
are more or less completely characterized by the growth of the
mapping.

A look at the proof of Theorem 4.3 shows that we did not need
the fact that the domain in consideration is a ball. Consequently,
Theorem 4.3 extends to any domain D.

5. Koebe type distortion theorems.

Motivated by Corollary 4.6 we turn our attention towards distor-

tion estimates for quasiconformal mappings. We establish the following
distortion theorem that for plane univalent functions reduces to the
classical results, e.g. [Hy, 1.3, 1.9], [P, 1.6]. Some parts of the theo-
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rem are apparently folklore, but we have not been able to locate these
results in the literature except for the upper bound in (a), which is a
special case of [FMV, 4.2].

Theorem 5.1. Let f be K-quasiconformal in B™(1), and assume
that f(0) = 0, d(f(0),0f(B™(1))) = 1. Set a = K~V and b =
(2K)Y/ (1) Then

&) 1f(@) 2 [2*/C and |f(z) < C(1—|a])™
) (1 [e)*~1/C < aj(z) < C(1— fal)~>1.
¢) If fB"(1) is convez, then

() <CA—]z))~"

and
(1—|z))*7!/C < ag(z) S C(1~[z)™* 7 .
d) Forn > 3 there is a' = d'(n,K) witha' — 1 as K — 1 such
that c) holds without the convezity assumption if a is replaced with a'.

Here C = C(n, K).

We divide the proof of Theorem 5.1 into several lemmas. To sim-

plify our statements we assume in Lemmas 5.2-5.5 that f : B*(1) —
D = f(B™(1)) is K-quasiconformal, f(0) = 0, and d(f(0),0D) = 1.

Lemma 5.2. We have
f@) <CA-]z)™ and ap(z) <C(1~|z))™"7,
where b= (2K)/(*=1 and C = (n, K).
PROOF. By Lemmas 2.2 and 2.5 we may assume that |z| > 1/2. For

each such z set E, = B,, and let F = B"(0,1/5). Using a standard
modulus argument, we deduce from (2.1) that

C 1-n
2 M(E,, F; B"(1)) > wa-1 (log ﬁ:c_l) :

where C; = C;(n). On the other hand, (2.2) shows that f(F) C B*(C;)
and |f(z)| < C2|f(y)| whenever |f(z)| > C3, where C3,C3 depend only

on n, K. Hence

M(f(Ez), f(F); D) < wn—1 (log(Cs |f(2)])) ™"
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provided |f(z)] > Cj3, where both constants C3,Cs depend only on
n, K. By the quasiconformality of f

M(E.,F; B"(1)) < K M(f(E.), f(F); D),

which permits as to infer that

lg(Ci 1(2)) < b log (1

1-—

L

provided |f(z)| > C3 and the proof for our first claim is complete.
Finally, the estimate for as follows from the first claim and Theo-
rem 3.4.

Lemma 5.3. We have
1f(z)] > Cle|* and ag(z) 2 C(1— 2|7,
where a = K/~ b = (2K)1/(*=1) gnd C = C(n, K).

PROOF. Foreach 0 < r < 1,let E, = Fn(r). Then M(E,; B"(1)) =
wn—1 (log(1/r))!~™. On the other hand, if diam (f(E,)) < 1/2, then
M(f(E,); D) < wy—; (log(1/ diam (f(E,)))!~™. Since f is K-quasicon-

formal, we conclude that

(o8 famrrmyy) < (es) "

Hence diam (f(E,)) > C; r®, where a = K'/("=1) and C; = Cy(n, K).
The desired bound for |f(z)| is now a consequence of Lemma 2.2.
Next we estimate as(z). By Lemma 2.5 it suffices to show that

d(f(z),0D) > C3 (1 - |z|)°,

for each z € B™(1) for some constant Cy which only depends on K, n.
Lemmas 2.2 and 2.5 permit us to assume that |z| > 1/2. Set again
E, = B, for each such z and define F = B"(0,1/5). From Lemma
2.2 and the argument of the proof of Lemma 5.2 we conclude that it
suffices to find constants C3 and 6;, which depend only on n, K, such
that c e
3
M(f(E.), f(F); D) S wa-1 (log ———= 7 E:))) ,
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whenever diam (f(E;)) < 6;. Now Lemma 2.2 yields that d( f(F"),0D)
> b3 > 0, where §; = 63(n, K). Applying again Lemma 2.2 we find a
constant 6; = 6;1(n, K, ;) < 62/2 such that

f(F)C D\ B"(f(2),62/2)

whenever diam (f(E;)) < 6;. Since f(E;) C B"(f(z),diam (f(E:)),
the desired modulus inequality follows with C3 = §,/2, and the proof
is complete.

Lemma 5.4. Suppose that D i3 convez. Then
|f(z)| < C(1— )"

and

(1= lz))*7/C < ag(x) <CA =27,
where a = K'Y/~ and C = C(n, K).

PROOF. Since D is convex, we have [V1, 7.7] for each z € 9D that

(5.5)  2M(B"(z,r)nD,D\ B"*(2,R); D) < wn—1 (log }72) o

whenever 0 < r < R. So, using the notation of the proof of Lemma 5.2,
we obtain

2 M(f(E.), f(F); D) < wa_y (log(Cs |f(z)])) ",

whenever |f(z)| > Cs, where Cs,Ces both depend only on n, K. The
desired bound for |f(z)| follows as in the proof of Lemma 5.2, and
Theorem 3.4 yields the analogous bound for af(z).

The lower bound for a () is obtained using (5.5) in an appropriate
step in the proof of Lemma 5.3.

Lemma 5.6. For n > 3 there is ¢’ = a'(n,N) witha' — 1 as K — 1
and such that the estimates in Lemma 5.4 hold without the convezity
assumption if a 1s replaced with a'.

PROOF. As established in [AH, 1.2] and in [T], for &' < K;(n), f has a
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K'-quasiconformal extension g : R~ — R ", where K’ = K'(n, K) satis-
fies K' — 1as K — 1; see [V1, 13] for the definition of a quasiconformal
mapping of R". Hence

M(E.,F) < K' M(f(E:), f(F)),

where E,, F are as in the proof of Lemma 5.2. Thus, replacing K
with K', the argument of the proof of Lemma 5.2 gives the desired
upper bounds for |f(z)| and af(z). The lower bound for a¢(z) follows
by modifying the proof of Lemma 5.3.

EXAMPLE 5.7. Theorem 5.1 is sharp for each K > 1 for n = 2 and for
convex images for general n.

Let n =2, fix K > 1, and let k£ denote the Koebe function. Define
f(z) = z|z|¥~1. Then f is K-quasiconformal and, consequently, A =
f o k is K-quasiconformal. Now a simple calculation shows that for
z = (0,t), 0 < t < 1, we have h(z) > C(1 — |z|)72K, an(z) > C(1 —
|z])~2K-1, and ap(—z) < C (1 — |z])2K~!. Furthermore, |f(z)| = |z|X.
Finally, for the convex case set g(z) = (z —w)|z —w| ™K for some w €
S1(1) (for n > 2 set g(z) = (z — w) [t — w|~'~* for some w € S*71(1),
where a = K1/(»/1),

REMARK 5.8. The proofs of Lemmas 5.2 and 5.4 show that if f(B"(1))
is contained in a half space, then |f(z)] < C(1 — |z])™%; the constant
C will in this case also depend on the distance from the origin to the
boundary of the half space.

6. Sharp integrability exponents.

The results of sections 4 and 5 yield sharp integrability exponents.

Theorem 6.1. Suppose that f i3 a K-quasiconformal mapping of
B"(1). Then

/ |f'|P dm < 400,
B~(1) '

for all0 < p < n/(14(2K)/(*=D). Moreover, if f(B™(1)) is contained
in a half space, then 2 K may be replaced with K. Furthermore,

/ lfl'm/(n—p) dm < 400
B (1)
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for the indicated values of p.

PROOF. The claim follows from Theorems 3.4, 4.3, 5.1 and Remark

5.8.

REMARKS 6.2.

(a)

(b)

A result of Jerison and Weitsman [JW] implies that |f|? is inte-
grable for some exponent ¢ = ¢(n, K), but the exponent obtained
from their work is not sharp. The exponents in Theorem 6.1 are
sharp for each K > 1 in the plane and for each K > 1 in R”,
n > 2, for mappings into a half space. This follows via a simple
calculation for the functions in Example 5.7. We refer the reader
to [AK2] for the HP-theory of quasiconformal mappings.

We deduce the following from Theorem 6.1. If D C R? is any sim-
ply connected domain and f : D — B?(1) is K-quasiconformal,
then [ |f'(z)[Pdz < +oo for all 2 —-2/(1 4 2K) < p < 2; compare
with [AK1, 4.10]. We point out that the standard factorization
argument combined with the analogous result for univalent func-
tions, ¢f. [B], due to F.W.Gehring and W.K.Hayman, fails to give
this sharp bound.

Suppose that f is K-quasiconformal in R™ \ {0}. Then the argu-
ments used in Section 5 apply to verify that |f(z)] < C|z|™¢ in
B™(1), where a = K'/(»=1), Now integrating this estimate we ob-
serve that an(l) |fIP dm < 400, for 0 < p < n/KY (=1 Hence,
by and Theorem 4.3 and Remark 4.8, the analogous integrability
result for |f'| holds for 0 < p < n/(1 + K'/(®=V). As easily seen,
the above upper bounds for p are sharp.

We do not know whether the claim of Theorem 6.1 holds for all K-

quasiconformal mappings of B®(1) in the case n > 3 if 2 K is replaced
with K. Next we produce an estimate which is asymptotically sharp as
K — 1; observe that if w € S®7(1), then |f'|*/? is not integrable over
B™(1) for the Mébius transformation f(z) = (z — w) |z — w|™2.

Theorem 6.3. Let f be K -quasiconformal in B™"(1), n > 3. Then

/ If'|P dz < +o0, for all 0 <p < po(n,K),
B™(1)

where po(n, ) - n/2 as ' — 1.
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PROOF. First note that by Lemma 5.6
|fx) <CA-z))7*, «e€B"(1),

with a = a(n, k) - 1 as K — 1. Then Theorem 3.4 and Corollary 4.5
yield the desired estimate.

ADDED IN PROOF. We have recently (Buckley, S. and Koskela, P.,
Sobolev-Poincaré inequalities for 0 < p < 1) answered 4.7.(a) in the
positive.
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