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1. Introduction.

Let G be an open subset of a Riemannian n-manifold M™. A
function u € C(G) N W, ,,.(G), with 1 < p < oo, is called p-harmonic
in G if it is a weak solution of

(1.1) —div (|Vu[f™? Vu) =0,
that is,
(1.2) /G(|vu|1"2 Vu,Vp)dm =0

for every ¢ € C§°(G). Equation (1.1) is the Euler-Lagrange equation
of the variational integral
/ |Vul? dm.
G

We say that a Riemannian n-manifold M™ has the Liouuville D, -property
if every p-harmonic function u on M™ with

/ |Vulf dm < +o0

143



144 1. HOLOPAINEN

is constant. In this paper we study the invariance of the Liouville D,-
property under rough isometries between Riemannian manifolds; see
Section 3 for the definition of a rough isometry. We prove that if M™
and NV are roughly isometric, and if both M™ and N” have bounded
geometry, then M™ has the Liouville D,-property if and only if so does
N" (Theorem 5.13). Note that the dimension of M™ may differ from
that of N”.

Our result is new also for harmonic functions (p = 2) even in 2-
dimensional case. Indeed, in all previous results, excepting P. Pansu’s
result which will be discussed later, manifolds M™ and N? must be
homeomorphic. It is known that the Liouville Dy-property is pre-
served under quasiconformal mappings between 2-dimensional Rieman-
nian manifolds and under bilipschitz (sometimes also called quasi-iso-
metric) maps in all dimensions n > 2. See, for instance, [SN, p. 405-
411] where also slightly more general classes of maps are studied in
this context. Note that rough isometries need not be continuous. Thus
they form a very large class of maps which, however, have nice invari-
ance properties. It is worth noting that a similar stability result is not
true for positive (or bounded) harmonic functions even under bilips-
chitz maps. Indeed, Lyons [L] has constructed a manifold M and two
metrics g and ¢', with ¢™1¢g’ < g < cg' such that (M, g) has no non-
constant positive harmonic functions but (M, ¢g') carries a non-constant
bounded harmonic function. It is an interesting open problem whether
a similar unstability result holds for p-harmonic functions if p # 2. We
remark that Pansu [P] has also studied the invariance of the Liouville
D,-property under rough isometries but under more restrictive assump-
tions on manifolds M™ and N”. He assumes that a global Sobolev in-
equality ||ull, < ¢||Vull,, with ¢ > p > 1, holds for C§°-functions of
M™ and NV, and that cohomology groups H!(X,R), X = M™" N",
are trivial. With these additional requirements on M™ and NV, the
same conclusion as in Theorem 5.13 can be made. He has informed
the author that it is possible to obtain our result also by refining his
arguments. However, our methods are different.

The proof of the result in this paper is based on ideas of A. A.
Grigor’yan and M. Kanai. In [K2] Kanai showed that the positivity of
2-capacity at infinity, and so the existence of Green’s function for the
Laplace equation, is preserved under rough isometries between Rieman-
nian manifolds of bounded geometry. On the other hand, Grigor’yan
[G] has presented a criterion, which involves 2-capacities, for the exis-
tence of a non-constant harmonic function with L?-integrable gradient
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on a Riemannian manifold. For the proof of our result, we first gen-
eralize Grigor’yan'’s criterion to the non-linear case at hand. Here we
present somewhat shorter proofs than Grigor’yan’s original ones which
are not fully available in our setting. Then we show, by modifying
Kanai’s arguments, that the p-capacities in the criterion for the Li-
ouville D,-property remain essentially unchanged in rough isometries
between manifolds of bounded geometry. The lack of injectivity of a
rough isometry causes here some troubles which, however, can be solved
by using a (semi)local Harnack inequality (Theorem 3.3). We want to
emphasize that it is easy to obtain local Harnack’s inequalities in the
following form from known results in R™ by using suitable chart maps.
Suppose D C M™ is an open set and C C D is compact. Then there
exists a positive constant ¢ such that

(1.3) supu < cinfu
c (o

whenever u is a positive p-harmonic function in D. The main disad-
vantage of (1.3) is that, with no assumptions on the geometry of M™,
the constant ¢ depends not only on metric parameters of C' and D but
also on the location of D on M™. Such an inequality is useless in the
proof of the main result. In Section 3 we prove inequality (1.3) with
D = B(z,r), C = B(z,r/2), and with ¢ independent of z if M™ has
bounded geometry. Here r < rg < 2(inj M™)/3 and ¢ depends on r¢
but not on r. We think that this inequality may also have independent
interest.

The main result is formulated for so called A-harmonic functions
which are continuous solutions of

—div A(Vu) =0,

where (A(Vu),Vu) =~ |Vul’, with 1 < p < oo. The precise as-
sumptions on A are given in 2.16. In [H1-2] and [HR] we studied a
classification of Riemannian manifolds based on the existence of non-
constant A-harmonic functions with various properties. By [H1, Section
5], there exists a non-constant bounded p-harmonic function v in M™,
with f,,. [Vo|” dm < +oco, if and only if M™ admits a non-constant A-
harmonic function u, with [, [Vu[? dm < 400, for some, or, in fact,
for every A € A,(M™). Thus it suffices to consider only bounded p-
harmonic functions if we want to study whether a given manifold carries
a non-constant A-harmonic function with LP-integrable gradient and A

of type p.
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Harmonic functions and rough isometries on graphs are studied in
Markvorsen, S., McGuinness, S., Thomassen, C., “Transient random
walks on graphs and metric spaces with applications to hyperbolic sur-
faces”, Proc. London Math. Soc. (3) 64 (1992), 1-20.

2. Preliminaries.
2.1. Terminology.

Throughout the paper we assume that M™ is a non-compact, con-
nected, and oriented Riemannian n-manifold, where n > 2, of class
C* equipped with a Riemannian metric (-,-). The Riemannian dis-
tance and the volume form will be denoted by d and dm, respectively,
and |[A| = [, dm stands for the volume-of a measurable set A C M™.
Furthermore, if |A| > 0, we write

1
Uy = udm:——-/udm
][A |A] Ja

for the integral average of a measurable function u of A.
A vector field X € loc L!(G) is a (distributional) gradient of a
function u € loc L'(G) if

/ udivY dm = —/ (X,Y)dm

G G

for all vector fields Y € C§(G). The space of all functions u € L}, (G)
whose distributional gradient Vu belongs to LP(G), where 1 < p < oo,
will be denoted by L},(G). The Sobolev space W}}(G) consists of all
functions u € L (G) which belong to LP(G), too. We equip L,(G) and
W, (G) with the seminorm ||Vu|[, and with the norm

lullip = llull, +1Veullp,

respectively. The closures of C§°(G) in L}(G) and in W)(G) are de-
noted by L o(G) and W, o(G), respectively.

Throughout the paper ¢, ¢, ¢1,... will be positive constants, and
c(a,b,...) denotes a constant depending on a,b,... The actual value
of ¢ may vary even within a line.

Most of the time we assume that M™ is complete and has bounded
geometry which, in this paper, means that the Ricci curvature of M™
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is uniformly bounded from below by —(n — 1)K2, with K > 0, and
the injectivity radius of M™, denoted by inj M™, is positive. The well-
known comparison theorems [BC, p. 253-257] and [CGT, Section 4]
then give estimates

Bz, R)| _ Vi(R)
B~ Vi)

(2.2) |B(z,r)| < Vi(r) and

for the volumes of geodesic balls for all z € M™ and R > r > 0. Here
Vi (r) is the volume of a geodesic ball of radius r in the simply connected
complete Riemannian n-manifold of constant sectional curvature —K?2.
This estimate holds without the assumption on the injectivity radius.
By applying (2.2) to volumes of n-balls in R", we obtain

Vk(r) . Vk(R)
rm ~— R»

for R > r > 0. Volumes of small geodesic balls in M™ have a lower
bound

(2.3)

(2.4) |B(z,7)] > vor™

for all z € M™ and for all r < inj M™ /2, where v, is a positive constant
depending only on n. This estimate is proved by C. B. Croke [Cr].
Another result of Croke which will be used in this paper is the following
isoperimetric inequality

|D|*""V/" < carea(dD),

where D C B(z,r) is a domain with smooth boundary, r < inj M™/2,
and ¢ depends only on n; see [Cr, Theorem 11] and [CGT, p. 16-17].

Hence
(2.5) |D|™~ /™ < ¢ |B(z,r)["/""!/™ area (8D)

if m > n. It is well-known that the isoperimetric inequality (2.5) implies
that

([ s an) ™"
(2.6) 7PN

<clB(a " [ _IVuldm,
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where c is the same constant as in (2.5) and u € C§°(B(z,r)); see,
for example [C]. We obtain a Sobolev estimate by applying (2.6) and
Holder’s inequality to functions v = |u|”, where u € C§°(B(z,r)) and
~ is suitable, and approximating.

Lemma 2.7. Suppose that M™ i3 a complete Riemannian n-manifold,
with inj M™ > 0, and that 1 < p < m, where m > n. Then there exists
a constant ¢ = c(n,m,p) such that

(m—p)/m
(/ lulpm/(m—P) dm) n/
(2.8) B(z,)

< clB(z,r)|p/"_p/m/ [Vulf dm
B(z,r)

for every w € W ((B(z,r)) and r < inj M™/2.

The above estimate will be used in the proof of Harnack’s inequality
together with a Poincaré inequality. We recall Buser’s isoperimetric
inequality [B, Section 5]

(2.9) area (02N B) > clTET ’
€2 r

where B = B(z,r), {1 is an open subset of B with smooth boundary
such that || < |B| /2, and ¢ < 1 depends only on n. Note that r can be
arbitrary large in this inequality. Buser normalized the metric so that
the lower bound for the Ricci curvature is —(n — 1). By rescaling the
metric back to our setting, we obtain (2.9). We rewrite the right hand
side of (2.9) as r~1e~(1+K7") where ¢, > 0 depends only on n. The
analytic counterpart of (2.9) is the following local Poincaré inequality

(2.10) /]u—u3| derec“(HKr)/ |Vu| dm,
B B

where ¢, > 0 and u € W} (B); see [C], [K2] for deducing (2.10) from
(2.9).
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2.11. Rough isometries and nets on manifolds.

Following Kanai [K1-3], we say that a mapping ¢: X — Y between
metric spaces X and Y is a rough isometry if, for some ¢ > 0, the
c-neighborhood of X coincides with Y, and if there exist constants
a > 1 and b > 0 such that

(212) a7l d(e,y) - b < d(p(2),0(y)) < ad(z,y) +b

for all z,y € X. Note that the mapping ¢ need not be continuous. Two
metric spaces are said to be roughly isometric if there is a rough isometry
between them. If p: X — Y is a rough isometry satisfying (2.12) with
the constants a and b, it is possible to construct a rough isometry
¥:Y — X. Indeed, for any y € Y, there exists at least one ¢ € X such
that d(¢(z),y) < ¢, where c is the constant in the definition. If we set
¥(y) = z, then % satisfies (2.12) with constants a and a(b + 2c), and
the a(b + ¢)-neighborhood of Y coincides with X. Thus % is a rough
isometry. It is called a rough inverse of . Furthermore, a composition
Y op: X — Z of rough isometries ¢: X — Y and ¥:Y — Z is a rough
isometry. Thus being roughly isometric is an equivalence relation.

A netis a countable set P with a family {N,},ep of finite subsets
N, of P such that, for all p,¢ € P, p € N, if and only if ¢ € N,. A
sequence of points pg,pi,--..,p¢ in P is said to be a path from py to pe
of length £ if py € N, _, for k =1,...,£. A net is connected if any two
points of P can be joined by a path. For any two points p and ¢ in a
connected net P, we denote by é(p,¢) the minimum of the lengths of
paths from p to q. Then § satisfies the axioms of metric, and it is called
the combinatorial metric of P. The boundary of a subset S C P is the
set {p € P: 6(p,S) =1} and it will be denoted by 95.

Suppose then that M™ is a Riemannian manifold. Let P be a max-
imal collection of k-separated points, where £ > 0 is a fixed constant.
Then P together with a net structure {N,},cp of sets N, = {g € P :
0 < d(p,q) < 3k} is called a k-net on M™, or simply a net. Since M™
is assumed to be connected, it is easy to see that P is also connected.
Next we show that a x-net with the combinatorial metric ¢ is roughly
isometric to M™ with no curvature assumptions on M™"; see [K1].

Lemma 2.13. Let M" be a Riemannian manifold and let P be a k-net
on M"™. Then (M,d) and (P,6) are roughly isometric, and furthermore

1 1
(2.14) 3. 4Up,a) < 8(p,g) < —dp,g) +1,
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for allp,q € P.

PROOF. We prove that the inclusion map : : P — M™, i(p) = p,
is a rough isometry. Since P is a maximal k-separated set, the k-
neighborhood of P(= iP) coincides with M™. To prove the left hand
inequality, let p and ¢ be two distinct points in P, and let é(p,q) = £.
Then there exists a path pg = p,p1,...,p¢ = ¢ of length ¢. For each
t =1,...,¢, and € > 0, there is a smooth curve from p;_; to p; of
length at most 3k +¢. Thus there exists a piecewise smooth curve from
p to ¢ whose length is at most 3x¢ + fe. Letting ¢ — 0 we conclude
that d(p,q) < 3ké(p,q). For the right hand inequality, let p and g,
with p # ¢, be any points in P. Again there exists a curve v from p
to ¢ of length I(v) < d(p,q) + €. Let £ be a positive integer such that
k(€ —1) < l(y) £ k€. Now there are points o = p,z1,...,T¢—1,Z¢ = ¢
on v such that d(z;—1,z;) < k for all 2 = 1,...,£. For each z;, there
exists a point p; € P such that d(z;,p;) < k since P is a maximal
k-separated set. By the triangle inequality, d(p;—;1,pi) < 3k, and so
6(pi—1,pi) < 1. Hence

1 1
6(p,0) LS =1 +1< < (dp,g) +€) +1,

and the right hand inequality follows by letting e — 0. We see that
ké(p,q) — £ < d(p,q) < 3ké(p,q), and therefore the inclusion map
satisfies (2.12) with a = max{3x,1/«} and b = .

A net P is said to be uniform if sup {#N, : p € P} < 4o0. If
P is a k-net on a complete Riemannian n-manifold M™ whose Ricci
curvature is bounded from below by —(n — 1)K?2, then

(2.15) #{p€P: pe B(z,r)} < p(r),

for every z € M™ and r > 0, where y(r) depends only on r,n, K, and
k; see [K1]. In particular, such a net P is uniform.

2.16. A-harmonic functions.
As we mentioned in the introduction, our result applies not only

to p-harmonic functions but also to solutions of a wide class of equa-
tions modeled by the p-Laplace equation (1.1). Let A be a mapping



ROUGH ISOMETRIES AND p-HARMONIC FUNCTIONS 151

A : TM"™ — TM™ which satisfies the following assumptions for some
numbers l <p< oo and 0<a < f<oo:

the mapping A, = A | T, M" : T,M" - T, M" is
2.17) continuous for a.e. £ € M", and
(2 the mapping = +— A,(X) is measurable

for all measurable vector fields X

for a.e. z € M™ and for all h € T,M™,

(2.18) (A (h),h) > a|hP,

(2.19) |4z (k)| < BIRPT,
(2.20) (Az(R) — Az (k),h — k) >0,
whenever h # k, and

(2.21) A (AR) = APTE A AL(R)

for all A € R\ {0}.

A mapping A which satisfies conditions (2.17)-(2.21) with the con-
stant p is said to be of type p. The class of all A of type p will be
denoted by A,(M™).

A function u € Wpl (G) is a (weak) solution of the equation

Joc
(2.22) —div A(Vu) =0

in G if .
/ (A(Vu),Vp)dm =0
G

for all ¢ € Cg§°(G). Continuous solutions of (2.22) are called A-
harmonic.

Perhaps the most important feature of A-harmonic functions is the
following comparison principle. If u and v are A-harmonic functions in
G @ M™ with v > v on OG, then v > v in G. The comparison
principle has made it possible to develop a non-linear potential theory
for solutions of (2.22). For the basic results in the non-linear potential
theory in the Euclidean n-space we refer to [GLM], [HK], and to a
forthcoming book [HKM]. Finally, we remark that it follows directly
from the properties of A that Au + p is A-harmonic if u is A-harmonic
and A and p are constants.
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3. Local Harnack’s inequality.

In this section we prove a local Harnack inequality for positive A-
harmonic functions on a complete Riemannian n-manifold with bound-
ed geometry. We need the result later in the paper. Harnack’s in-
equalities are usually proved using the Moser iteration method where
Sobolev and Poincaré inequalities are involved. We start by recalling
the following Caccioppoli-type inequality from [H2]. We assume that
A € Ay (M™) satisfies conditions (2.17)-(2.21) with constants a and 3,
and that G C M™ is open.

Lemma 3.1. Let u be a positive A-harmonic function in G, and let
v =u?? where g € R\ {0,p — 1} and A is of type p. Then

(3.2) /Gnuvvv’ dm < (a-l—q—%)p/cwvn;" dm

holds for every mon-negative n € C°(G).

The most important point in the following theorem is that the
constant ¢y in (3.4) does not depend on z at all.

Theorem 3.3. Suppose that M™ 1s a complete Riemannian n-manifold
with bounded geometry, and let A € A,(M™). Then there exists, for
each 0 < rg < 2inj M™/3, a constant co = co(n,p, K,ro, 3/a) such that

3.4 sup u < ¢o inf
(34) B(z,r/2) 0 B(z,r/2)

u b
for every positive A-harmonic function u in a geodesic ball B(z,r) C
M™, where r < rg.

PRrROOF. The proof is similar to that in [H2] but we want to give it in
detail to work out how ¢y depends on various parameters. Fix ry <
2inj M™ /3, and let r < rq. Suppose that u is a positive A-harmonic
function in B(z,r) C M™. Let v = u%/?, where ¢ € R\ {0,p — 1}, let
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m = max{n,p + 1}, and write A = m/(m — p). The Sobolev estimate
(2.8) and the Caccioppoli inequality (3.2) imply that

1/2
(/ Inv[P* dm)
B(z,3r/4)

(3.5) Sdﬂawﬂwmwm/ (n? |Vo? + v? [Vn|P) dm
B(z,3r/4)

lq| P )/
<Al(—2— 1 P |Vl d
- ((IQ—PHI) * B(z,sr/4)v (Val dm

for every non-negative 7 € C§°(B(z,3r/4)), where

A= |B(z,3r/)P"P™  and o =a(n,pBla).

Let r/2 < t < ' < 3r/4, and write t; = t + (¢' — ¢)27% and
B; = B(z,t;) for every i = 0,1,... Then (#; — t;41)™? = 20+Vr(3 —
t)”?, By = B(z,t'), and B(z,t) C B; for every i. For each ¢, we choose
a non-negative n; € C§°(B(z,3r/4)) such that n; = 1in Biy1, 7: =0
outside B;, and |Vn;| < 2(¢; — tiy1)~!. Next we choose ¢o € R\ {0}
such that

S p-1)

(3.6) lgoX —p+1] > o

for every i. Applying (3.5) to 7; and to ¢ = goA* yields

1/A
/ ulr dm
Biy1

'qo—)‘il g 20+ A
SA(Q%»—p+n)+1 =iy,

and so

(/Bj (uq°)'\j dm) /¥

-1 i|P /3 s’

. qO/\, 2P,
< 4% ] ——l.———+1 —/ u? dm |
= th@»—p+1V ) @ —0p5 g,
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where S; = Y27 A7 and S} = Y1_((i + 1)A™*. The condition (3.6)
implies that the product above has an upper bound which depends
only on n and p (note that m = max{n,p +1}). Letting j — co we get

S; — m/p and
m/p
(3.7) sup u? < CZA IB(:C t) I][ u?® dm,
B(z,t) B(z,t')

with ¢; = ¢2(n,p) provided that (3.6) holds. The condition (3.6) holds
for every go < 0. Moreover, for every g > 0, there can be at most one 7
such that

p@ 1)

—_ p :
Thus every interval [¢/]), q] contains a number go which satisfies (3.6)
for all ¢. To get rid of (3.6), suppose that ¢ # 0. If ¢ < 0, we set gy = g,
otherwise, we choose go € [¢/), ¢] such that (3.6) holds for every i. Next
we choose c; = max{cy, (2¢;/Pve/™)=™}. Then

lgA —p+1| <

cs A™/7 |B(a,t)] _ s " Pug " (r/2)™ o1
@-om = G/
by (2.4). It follows from (3.7) that

/90
sup u? = ( sup u"°>
B(z,t) B(z,t)

c3 A™/? |B(z, ¢t 9/90
68 S<3 - _rt)(m )|) [ e
B(z,t")

¢t A™? | B(a, )|
B (' —t)m* B(z,t")
This holds for every ¢ # 0 and r/2 <t < t' < 3r/4. Next we write
B(s)=B(z,r/2+sr/4) for 0 < s < 1. Since A=¢; |B(z,3r /4)[P/"7P/™,

we can write (3.8) as

mA/n
supu? < ¢ (M) (s' — s)_""\][ u?dm
B(s'

B(s) rm

q/q0

uldm.

V\’ 3 4 mA/n
<c (——I-LZD—/)) (s' — s)_m’\][ u!dm.
B(s')

To



ROUGH ISOMETRIES AND p-HARMONIC FUNCTIONS 155

Here we used volume estimates (2.2) and (2.3) to obtain first | B(z,3r/4)|
< Vi(3r/4) and then Vi (3r/4)r—™ < Vi (3ro/4)ry *. We have proved

that
1/q
sup u < (c(s' — s)’"*)-l/q ][ u?dm ,
B(s) B(s')

—-1/q
inf u > (c(s' — s)'"’\)l/q ][ u~?dm
B(s) B(s')

for all ¢ > 0 and 0 < s < s’ < 1, where ¢ = ¢(n,p, 3/a, K,rq). By the
refined version of the John-Nirenberg Theorem [BG],

and

sup u < exp(cg(u inf wu,
B(z,r/2) ( ( )) B(z,r/2)
where

g(u) = sup inf llogu — a| dm

0<s<12€RJ p(y)
and ¢ = ¢(n,p,B/a,K,rg). To estimate g(u), we first use the local

Poincaré inequality (2.10) and Holder’s inequality

1
g(u) < ————— inf logu — a| dm
) < B2 a2 Jageangay B

< rexp(ca(1+ Kr))
- |B(z,7/2)| B(z,3r/4)

[Viogu| dm

rexp(ca(1+ K7)) |B(z,3r/4)|'71/?
- |B(z,7/2)]|

1/p
. / |V log ulP dm :
B(z,3r/4)

Furthermore, [HK, 2.24] implies that

(3.9) / [Viegul|f dm < c(p,ﬂ/a)/ [ValP dm
B(z,3r/4) B(z,r)
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for every n € C§°(B(z,r)) such that n = 1 in B(z, 3r/4). We obtain an
upper bound c¢r~? |B(z,r)| for the right hand side of (3.9) by choosing
n such that |Vn| < 8/r. Putting together these estimates yields

|B($,37‘/4)l( IB(x,r)l )I/P
|B(z,7/2)] \|B(z,3r/4)|

g(u) < cexp(cn(l + I\'.'r))

r (r 1/p
< cexp(ca(1+ Kro)) Vk(3r/4) ( Vik(r) )

V[((T‘/z) VK(37‘/4)

Finally, we apply (2.2) and (2.3) to volumes of n-balls in R" to deduce
first that cr™ < Vg (r/2) (< Vi(3r/4)), with ¢ = ¢(n), and then that

Vi (3r/4) < Vi (3r/4) < Vi (3ro/4)
V(r/2) = e~  erp

Similarly,
Vi(r) . Vi(ro)
Vk(3r/4) = ecry

Hence g(u) has an upper bound which depends only on n,p, /o, K,
and ro. The theorem is proved.
As a consequence of the local Harnack inequality we obtain the

following result.

Theorem 3.10. Suppose that M™ is a complete Riemannian n-mani-
fold with bounded geometry and that A € A,(M™). Let

. 2. .
ro = min{1, 3 inj M"}.
Then there ezists a positive constant cqy = cy4(n,p, B/a, K, rq) such that

=il -

whenever u 18 A-harmonic in M™, with infp» u = 0 end supym u = 1.

(3.11) d(z,y) > c4 7o max {llog

PROOF. Let z and y be two points in M™. We may assume that
u(z) > u(y). Suppose first that d(z,y) > ro. Let v be a minimal
geodesic from z to y, and let ¢ > 2 be an integer such that (¢ —
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1)79/2 < d(z,y) < €r9/2. Then there are points zo = z,21,...,T¢ =y
on v such that d(z;,ziy1) < ro/2 for all ¢+ = 0,1,...,£ — 1. Hence
B(zi,r0/2) N B(zit1,70/2) # @ for all : = 0,1,...,£ — 1. The local
Harnack inequality (3.4) implies that

u(z) < sup u<c

o inf
B(zo,7m0/2) B(zo,m0/2)

<c sup u<c: inf
B(z1,r0/2) 0 B(z1,70/2)

<ct sup u<ct'! inf  u < cElu(y).
B(z¢,70/2) B(z¢,70/2)

Hence £ + 1 > (log cg) ™! log(u(z)/u(y)), and so

d(z,y) > cqmo logz(_z) —To,

(v)

with ¢4 = (2logcg)™?. If d(z,y) < ro, there exists a point z € M™"
such that z,y € B(z,7¢/2). Then u(z) < cou(y) by (3.4), and so
carolog(u(z)/u(y)) —ro < —ro/2. The theorem follows by applying
the same reasoning to the function 1 — u.

4. A criterion for the Liouville D, -property.

Manifolds which admit non-constant harmonic functions with
bounded Dirichlet integral can be characterized by means of 2-capaci-
ties; see [G]. The purpose of this section is to generalize this criterion
to the non-linear case (Theorem 4.6). It should be noted that M™ need
not be of bounded geometry in this section.

A condenser is a triple (F1, F3;G), where Fy and F;, are disjoint,
non-empty, and closed sets in G. Its p-capacity is the number

cap (Fy, FyiG) = iaf [ [Vul dm,

where the infimum is taken over all functions u € L;(G) which are
continuous in GU F} U F, with u =0 in F; and v = 1 in F;. Such a
function is called admissible for (Fy, F3;G). If the class of admissible
functions is empty, we set cap,(Fi, F2;G) = +oo.
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Let {B;}{2; be an exhaustion of M™ such that B; € B;4 for every
1. We say that a set A C M™ is unbounded if A has common points
with M™ \ B; for every i. For an open set 2 C M™ and a compact set
F C Q, we define

cap,(F, 00; Q) = ,lirgo cap,(F, Q\ B;Q).

Note that the limit exists and is independent of the exhaustion since
the assumption B; € B;4; implies that

cap,(F,Q\ Bi; Q) > cap,(F,Q2\ Biy1;9).

Definition 4.1. An unbounded open set & C M™ s called p-hyperbolic
if there ezists a compact set F' C ) such that cap,(F,o0;{2) > 0.

We remark that any open set ' is p-hyperbolic if there exists a
p-hyperbolic subset 2 C Q'. We also observe that cap,(F, Q\ D;Q) >
cap,(F, 00; ) > 0 for each open D € M™ if 2 is p-hyperbolic and F' is
as in the definition.

Definition 4.2. An unbounded open set @ C M™, with O # O, i3
called D,-massive if there ezists a p-harmonic function u in Q which
i8 continuous in §), with u = 0 in 0R2, supgu =1, and

/ [VulP dm < +o0.
Q

It is clear from the definition that the sets {z : u(z) < a} and
{z : u(z) > b}, and even all components of these sets, are D,-massive
if u is a non-constant bounded p -harmonic function in M", with |Vu| €
LP(M™), and infu < a < b < supu.

Next we explain the connection between D,-massive and p-hyper-
bolic sets.

Lemma 4.3. Every D,-massive set is also p-hyperbolic.

PROOF. Let §2 be D,-massive, and let u be as in Definition 4.2. Suppose
that {B;}$2, is an exhaustion of M™ such that B; € Biy;, and that
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capp(F,Q \ B2;Q) > 0, where F = B; N 90 # @. Next we choose
admissible functions w; € Wp1 (2N B;), i > 2, for condensers (F,Q \
B;; Q) such that 0 < w; <1,

(4.4) / [Vw;|? dm < cap,(F,Q\ B;; Q) + l ,
QNB; t

and that w; = 1 in all those components of 2N B; whose closures do not
intersect F. We choose these functions in the following way. Suppose
that w, is chosen. Let v, be the unique p-harmonic function in QN B,
such that v, —w; € W) (2N B;). We set v =1in Q\ By. Then

/ |Vv,|P dm S/ [Vws [P dm
QNB; QNB;

and v, > u in Q. Next we choose w3. Then the set A = {z € Q :
wz(z) > ve(z)} is a subset of QN B,. If A # @,

/]V'Uzlp de/ |Vws|P dm,
A A

since vy is p-harmonic in A. We redefine ws by setting ws = vy in A.
Clearly (4.4) still holds. By continuing similarly, we get a decreasing
sequence of functions {v;} such that v; is p-harmonic in QN B;, v; > u,
and that
|Vv;|P dm < / |Vw; [P dm .
QNB; QNB;

To finish the proof, suppose that (2 is not p-hyperbolic. Then cap,(F, Q\
B;;Q) — 0, and so [o 5 [Vvil? dm — 0. Since v; > u and supg u = 1,
the only possibility is that v; — 1. This is a contradiction since {v;} is
decreasing. Hence 2 is p-hyperbolic.

Note that the assumption [, |[Vu|P dm < +o0o was not needed in
the proof. The converse of Lemma 4.3 is not true, that is, there are
p-hyperbolic sets which are not D,-massive. Indeed, let p < n and
let @ C R™ be the upper half space {z : z, > 0}. By symmetry,
cap, (B™(r)NQ,00; Q) = cap, (B™(r),00;R™) /2. Tt is well-known that
cap, (B"(r),oo;R") = cr™ P > 0. Hence 2 is p-hyperbolic. On the
other hand, § can not be D,-massive. Otherwise, the lower half space
would be D,-massive by symmetry. But this implies that R™ does not
have the Liouville D,-property (see the end of the proof of Theorem 4.6)
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which leads to a contradiction with [H1, 5.9, 5.11]. The exact relation
between D,-massive and p-hyperbolic sets is given by Theorem 4.5. It
says that D,-massive sets are, in general, “broader” than p-hyperbolic
sets. Indeed, a D,-massive set (! must contain a p-hyperbolic set (2,
such that cap,(9Q,08:;Q) < +oo. This is the meaning of Theorem
4.5, although we have formulated it in a slightly different way to avoid
difficulties with boundary regularity.

Theorem 4.5. An unbounded open set @ C M™, with O # O, 1is
D,-massive if and only if there ezists a p-hyperbolic 1 C Q and a
continuous function v in Q which is p -harmonic in Q\ Q;, with v =0

in 0Q, v=11inQy, and [, |Vv|’ dm < +oo.

PROOF. The idea of the proof comes from [G]. Suppose first that € is
D,-massive. Let u be as in Definition 4.2, and let 0 < ¢ < 1. Then
the set {r € Q : wu(x) > €} is D,-massive, and hence p-hyperbolic.
Furthermore, the function v = min{u, e} /¢ satisfies the assumptions of
the claim.

To prove the converse, let {B;}2; be an exhaustion of M", with
B; @ Bjy;. For 1 > 2, we write

Q,'=QI\B,', G1=Q\Ql, G,'=Q\Q,', and G?=G,‘0Bk.

Let u¥ be the unique p-harmonic function in G¥ with boundary values
uf —v € W), (GF). We set uf =vin Q\GF. Now 0 < uf < v and
uk; < u¥in Q. Since the sequence {u¥}$2, is uniformly bounded, it
is equicontinuous in G; by the Holder-continuity estimate [T, Theorem
2.2]. By Ascoli’s theorem, there exists a subsequence, still denoted by
{u¥}22,, which converges locally uniformly in G; to a function u;. We
set u; = v in ©\ G;. Then u; is p-harmonic in G; and the sequence
{u;i}$2, is decreasing. By Harnack’s principle [HK, 3.3], the limit func-
tion u = lim; oo u; is p-harmonic in Q. If we set v = 0 in 92, then u
is continuous in 2 since 0 < u < v and v € C(R), with v = 0 in 9.
Next we shall show that u (multiplied by a suitable constant) satis-
fies the conditions in the definition of D,-massiveness. First we observe

that
/ |Vul|” dm =/ |Vut P dm+/ [Vol? dm
Q G* Q\G*

S/ |Vol? dm+/ |Vo|? dm
G* Q\G*



ROUGH ISOMETRIES AND p-HARMONIC FUNCTIONS 161

=/ |VolP dm < +o0.
Q

Passing to a subsequence we conclude that there exists a vector field
X € LP(Q) such that Vuf — X weakly in LP(Q2) as k — oco. But the
convergence of uf implies that X = Vu;. Now u; —v € L} 4(f) since
uf —v € L} (). This in turn implies that

/qu,-l” dm:/ [Vu,|P a'm+/ [Vv|P dm
Q G; Q;

g/ Vol? dm+/ Vol dm
G; Q;

=/|Vvlp dm < +00.
Q

By repeating the above reasoning, we get that [, |[Vu|? dm < +o0 and
u—v € L} o(R). It follows from Maz’ya’s lemma [M, Lemma 2], which
obviously holds in our situation, that

IVu; P72 Vu; — |Vulf "2 Vu

weakly in LP/®=1(Q). It remains to show that u # 0. Since Q; is p-
hyperbolic, there exists a compact set F C Q; such that cap,(F, 00; (1)
> 0. Let U € M™ be a sufficiently large connected neighborhood of F'
so that U\ Q is non-empty. We write Q) = Q; UU and F; = U\ Q. Now
Q] is also p-hyperbolic, and cap,(Fy,00;;) > 0 since F; and F lie in
a same component of Q. For each i, u; is admissible for the condenser
(092, 09; G;). Using this fact and well-known properties of capacities
we get that

L Vuil? dm > cap (09, 09; Gy)

= capp(Mn \‘Q7 Qi; Mn)
2 Ca'pp(FhQ’I \BHQ'I)
> cap,(F1, 00; Q)>0

if 2 is large enough. Furthermore,

/[Vu,»|p dm=/<|Vu,-|"’—2 Vu;, Vv) dm
Q Q

-—>/<|Vu|p_2 Vu, Vo) dm,
Q
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and so Vu can not vanish identically in . We conclude that u is
non-constant. Multiplying u by a suitable constant, if necessary, we
get a function which satisfies all the conditions in the definition of D,-
massiveness. The theorem is proved.

_An open set G € M" is called regular if, for all functions h €
C(G)n WPI(G),
lim u(z) = h(y)
z—y

holds at every boundary point y € OG whenever u is the unique p-
harmonic function in G with u — h € W, 4(G). We refer to [M], [KM],
and [LM] for the results concerning the boundary regularity. For ex-
ample, all domains @ @ M™ with C?-boundaries are regular for all

p.

Theorem 4.6. A Riemannian n-manifold M™ admits a non-constant
p -harmonic function u, with f,,, |[Vul? dm < +oo, if and only if there
ezist two p-hyperbolic sets Ry, Qa C M™ such that cap,(21,2; M™) <
+o0.

PRrROOF. If M™ does not have the Liouville D,-property, there exists a
non-constant bounded p -harmonic function u in M™, with f, . [Vu[Pdm
< +oo. Let inffu < a < b < supu. Then the sets ; = {z : u(z) <
a} and Q2 = {z : wu(r) > b} are D,-massive, hence p-hyperbolic.
Moreover,

o 1
- M™ - P
cap, (1, Q2 M™) < Ty /M |Vul? dm < +oc0,

since the function

v =1nax{0,min{z:s,l}}

is admissible for the condenser (Q;, Qq; M™).

Suppose then that §2; and Q, are p-hyperbolic, with capp(Ql,
Q2; M™) < 4+0o0. Then there exists an admissible function w for the
condenser (Q;,Q,; M™). By taking slightly larger open sets Q) and
Q) with smooth boundaries and containing Q; and ,, respectively,
such that Q) C {zr : w(r) < 1/4} and Q) C {z : w(z) > 3/4},
we obtain p-hyperbolic sets Q] and Q), with capp(f_l’l, 0y, M™) < +oo.
Now there exists a continuous function « in M™ which is p -harmonic in
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M™\(Q,UQ)) withu = 0in Qf, u = 1in ), and ;. |[Vul? dm < +oo.
By Theorem 4.5, the sets {z : u(z) > b} and {z : u(z) < a} are dis-
joint Dy-massive sets for 0 < @ < b < 1. Call them G; and G,. Let
{Bi} be an exhaustion of M™ such that B; is regular for every :. Let
uj, J = 1,2, be a p-harmonic function in G; satisfying the conditions
in Definition 4.2. We extend u; to M™ by setting u; = 0 in M™ \ G;.
Let v; € C(B;) be p-harmonic in B; such that v; = u; in 0B;. Then

up Svi<l—u

in B;. Furthermore,
/ |Vv;|? de/ [Vuy |P de/ |[Vuy [P dm < 4o00.
B; B; Mn

Thus there exists a subsequence, denoted again by v;, which converges
locally uniformly in M™ to a p-harmonic function v. Now u; < v <
1—uy in M™ and [, |Vv[’ dm < +oo. Since supu; = supup =1, v
can not be constant. The theorem is proved.

EXAMPLE 4.7. We close this section by an example where the Liouville
D,-property essentially depends on p. Let M™ = S*~! xR be equipped
with a metric
f2d9? + dt?

where d¥? is the standard metric of the sphere S®~! normalized so
that m,—1(S"™!) = 1. We assume that f is a positive C*°-function
of M™ which depends only on t-coordinate of (9,t) € S®™! x R and
f(-,—t) = f(-,t). We abbreviate f(t) = f(-,t). Then

Mp—1 ({(ﬁ,t) EM™: t= r}) - f(r)n—l

for every r € R. We claim that M™ has the Liouville D,-property if
and only if the integral

I= /oo f(t)(l—n)/(p—l) dt
1

diverges. To show this, suppose that I < +oco. Let Q = {(J,t) € M™ :
t>1}, F={0,t)e M*: t =1} (= 0), and B; = {(9,t) € M" :
[t| < i} for i =2,3,... If u is an admissible function for (F,Q\ B;; ),

we have
/ |Vu| ds > 1
L]
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for each curve vy : [1,i] — M™, v5(t) = (9,t), where 9 € S*~1. By
Holder’s inequality,

P
1< < |Vul ds)
70

: P
= (/ |Vu(9,t)] f(£)~DIP f(1)a-m/p dt)
1
p—1

<(/ (@, 0P £ a) ([ a0 @)

and so

/1i [Vu(d, ) f(t)" " dt > (/1l £ty 0= dt)l—p

Integrating with respect to 9 yields

i 14 n—1
/Q|vu]" dm > /Sn_l (/1 IVu(d, ) £() dt) dv
i 1-p
> (/ f(t)(l—m/(p-l)dt) S50
1

since we normalized f5n-1 d9 = 1. Taking the infimum over u and
then letting ¢ — oo yields cap,(F, 00; ) > 0, that is, § is p-hyperbolic.
Similarly, ' = {(9,t) € M™ : t < —1} is p-hyperbolic. Further-
more, cap,(Q,Q'; M) < 400, and therefore M™ has a non-constant
p-harmonic function v with [ . [Vo[? dm < +oc0.

Conversely, suppose that the integral I diverges. For each r > 0,
let D(r) = {(9,t) € M™ : |t| < r}. Fix r and R such that R > r > 0.
For each integer k > 1 and : = 0,1,...,k, let t; = r + (R —r)/k. By,
for instance [HKM, Section 2],

(cap,(D(r), M™\ D(R); M™))"/* 7"
k-1
Z capp(D(t ), M™\ D(t;41); Mn))l/(l—p)

We get an estimate

cap,(D(t:), M™ \ D(ti1); M™) < (ID(ti1)] — ID()]) (tia — £:) "
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by choosing an admissible function u such that u(9,t) = (¢t —t;) /(i1 —
t,') in D(t,'.H) \ D(t,'). Hence

(cap,(D(r),M"™ \ D(R); M)/ =P
(+8) > kz_:l (ID(t;+1)| — ID(ti)l)l/(l—p) Y

tiv1 — &

Next we observe that

Lm ID(t + E)l - ID(t)' =Mp_y (8D(t)) — 2f(t)n—1 .

e—0 £

Thus the right hand side of (4.8) tends to an integral
R
91/(1~p) / FRA—™/ =1 gt

as k — oco. Hence limp_. o ca.pp(D(r), M™\ D(R); M™) = 0 if the inte-
gral I diverges. Since r is arbitrary, this implies that cap,(C, 0o; M™)=0
for every compact C C M™. It follows from [H1, Section 5] that every
p-harmonic function v on M™ with [}, |Vv|’ dm < +oc is constant.

5. p-hyperbolic nets and the main result.

Throughout this section we assume that M™ and N” are complete
Riemannian manifolds with bounded geometry, and that P C M™ and
Q C N are k-nets, with £ < min{inj M™,inj N*}/2.

We shall define p-hyperbolicity on nets, and therefore we need a
discrete counterpart for p-capacity. For each ¢ € P (or @) and a real-
valued function u in N, we set

Dutgl = ( X (ula) - u(q)f)m

q’ENq

In many occasions we use the fact that, for a uniform net P,

it Y fuld) —u(g)l” < |Du(g)
¢'€EN,

(5.1)
< 3 Jule) —u(@)l

q'E€N,
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where ¢4 = sup{#N, : ¢ € P}. Suppose that § C P (or Q) is a
connected infinite subnet. We say that S is p-hyperbolic, with 1< p <oo,
if there exists a finite non-empty set E C S such that

cap,(E,00;5) = i%fz |Du(q)” >0,
g€S
where the infimum is taken over all finitely supported functions u of
S UGS, with u = 1 in E. Such functions are called admissible for
(E,0;S). Recall that 0S5 = {q: é(¢,5) =1}.

Lemma 5.2. Suppose that S' C P is a connected subnet, ) = {z €
M™: d(z,5'UdS") < Tk}, and that S = {qg € P: d(q,) < k}. Then

Q i3 a domain and S 13 a connected subnet.

PRrROOF. Let z and y be any two points in 2. Then there are points
q,q' € S'U-0S' such that d(z,q) < Tk and d(y,q') < Tk. Since also
S'UQS' is connected, we can find a path in S’ U9S' from ¢ to ¢’. Then
the 7x-neighborhood of this path is a connected subset of @ which
contains both z and y. This shows that {2 is connected and therefore
a domain since clearly €2 is open. To show that S is connected, let ¢
and ¢’ be any two points of S. Then there are points z,y € Q such
that d(z,q) < « and d(y,q') < k. Since © is a domain, there exists
a rectifiable curve which connects z and y in 2. As in the proof of
Lemma 2.13, we see that the k-neighborhood of this curve contains a
path in P, and hence in S, from ¢ to ¢’. Thus S is connected.

Next we shall study how p-hyperbolicity of nets is related to p-
hyperbolicity of open sets and vice versa. Although some parts of the
following could be found in Kanai’s paper [K2], we include all details
for the convenience of the reader. We assume that S’, 2, and S are
as in 5.2. First we attach to each continuous function u € W},,.(?) a
function u* of S’ U 0S’ by setting

(5.3) u*(q) =][B( \ )udm.
q, K

Then we have the following.

Joc

Lemma 5.4. Let u and u* be as above. Then there exists a constant
c¢=c(n,k, \,p) such that

Z |Du*(q)[? Sc/ [Vul? dm.
Q

ges’
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PROOF. In the following c will be a positive constant which is not nec-
essarily the same at each occurence but, however, may depend only on
n,k, K, and p. For each ¢ € §'U0S’, the volume estimate |B(q, 4x)| <

Vi (4k), Holder’s inequality, and the local Poincaré inequality (2.12)
imply that

P
VK(4H)”_1/ |Vul® dm > / |Vu| dm)
B(g,4x) B(q,4x)

>c (/};(q,u) lu(z) — u*(q)| dm) .

Let ¢ € S’ and ¢' € N,. Then ¢’ € §' U 9S’, and by the previous
estimate,

/ [Vul® dm > 1 </ [Vul? dm—{-/ |Vul? dm)
B(g,7x) 2 \JB(g,ax) B(g' 4x)
P
>e ( ([ u@-w@dn)
B(q,4x)

(5.5) +(/}3(q"4'€) lu(z) — u*(q")] dm)p)

y4
> e / [u*(q) — u*(¢")] dm
B(g,4k)NB(q',4K)

> c(vok™ )P |u*(q) — u*(¢")F .

We recall that #N, < c4, with ¢4 independent of ¢. Using this fact and
(5.1), we obtain from (5.5) that

|Du*(q)|P < c/ |Vul? dm.

B(q,7k)

By (2.15), every point z € § belongs to at most ¢ balls B(q, 7«), where
g € P and c is independent of z. Thus

Z/ [Vl dmgc/ [Vulf dm,
qGSI B(q,7l€) Q
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and so

> 1Dw@F <c [ 1VuP dm
q€S’ @
as claimed.

Conversely, for each function v of SUJS, we define a function v €
C*>(R2) as follows. For each ¢ € P, we choose functions n, € C§°(M™)
such that 0 < ny < 1, ny = 1 in B(q, &), ng = 0 outside B(q, 3x/2),
and |Vn,| < 4x71. For z € Q, we set P, = P N B(z,2x). We remark
that #P, < ¢4 + 1 since P, C Ny U {q} for some ¢q. Then we define
v:§l > Rby

_ 2qgep, (2)nq(2)
(5.6) v(z) = quP, 7a(@) )

The function v will depend on the choice of 7. Observe thaty_ c p 14()
> 1 since every z belongs to at least one B(gq, k), with ¢ € P;.

Lemma 5.7. If v and v are as above, then v € C*°(Q) and there ezxists
a constant ¢ = ¢(n, Kk, K,p) such that

Vol dm < ¢ Du(q)|? .
/Ql P dm <3 |Di(g)

g€S

PROOF. Again ¢ may vary even within a line but it can depend at most
on n,k, K, and p. Let z € Q. First we note that P, C SU3S, and
thus v(q) is defined for every ¢ € P,;. This means that v is defined in
Q. To show that v is a C*°-function, we observe that d(y,q) > 3x/2 if
y € QN B(z,£/2) and ¢ € P, \ P;. This implies that n,(y) = 0, and
therefore it is sufficient to consider only functions 7y, with ¢ € P;, in
the definition of v(y) if y € QN B(z,x/2). Hence v € C*°(Q). To show

the inequality in the claim, we abbreviate

ng() .
q'EPz 77q’ (m)

£q($) = Z

Then .
V(@) < V(@) ( 3 ne(2))
q'€P;
) (X (@) X V(@)
q'€P; q'€P:

<4k (1+¢),
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where ¢ = sup{#P, : y € M"}. Suppose that z € B(q,«) N2, where
q € S. Then

Vo(z)= Y 9(¢") Vég(a)

q'€EP;
(5.8) = Y 9(q)VE(a)
¢'€N,U{q}
= Y (3(g") - 9(g)) Vég(2).
qleNq

On the first line in (5.8) we used the facts that P, C N, U {q} if
z € B(q,k), and that £y (z) = 0 if ¢' ¢ P,. For the last equality in
(5.8), observe that

> W@V @ =@V Y &) =0

g'€N,U{q} ¢'€N,U{q}

since Zq'eNqu{q} €y (z) = 1. It follows from (5.8) and from the uni-
formness of P that, for every =z € B(q, k),

V@) < 3 1ae) - o(a)])”

¢'€EN,
2 S N 2 p/
< o ((#N,)? max Io(a") ~ o(a)[")
p/2
<c(Y o) - @) =cDu(g) .
7' €EN,
Finally,  C UgesB(g,«) and |B(q, k)| < Vk(x), and therefore
/ Vo(2)]? dm < Z/ Vo(@)? dm < eVie(x) 3 [Do(a)” -
geS g€ES

The lemma is proved.

Lemma 5.9. Let S', Q, and S be as in Lemma 5.2. Then ) is p-
hyperbolic if S’ is p-hyperbolic. Conversely, if Q2 is p-hyperbolic, then S
18 p-hyperbolic.
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PROOF. Let {B;} be an exhaustion of M™. Suppose first that S’ is p-
hyperbolic. Then there exists a finite non-empty set E C S’ U35’ such
that cap,(E,00;S') > 0. We set C' = UgeeB(g,4k). Let u € L(Q) be
continuous in QUCUQ\ B; such that v = 1in C and v = 0 in Q\ B; for
some (not fixed) i. We observe that 1 — u is admissible for (C,Q \ B;).
We define u* : §' U3S’ — R by (5.3). Then u* is admissible for
(E,00;S"), that is, u* = 1 in E and it has a finite support. By Lemma
5.4,
/ |[Vulf dm > ¢ Z |[Du*(q)” > ccap,(E,00; S").
Q g€S’

Taking the infimum over all such functions u (and ¢) gives
cap,(C,00;Q) > ccap,(E, oo; S >o0,

and so {2 is p-hyperbolic.
For the proof of the second claim, we choose a compact set C C
such that cap,(C,00;) > 0. Let E = {¢ € SUOS : d(¢q,C) < 2k}.
Then E is finite and non-empty. Let ¥ be an admissible function for
(E,00;S). We define a function v € C*°(Q) by (5.6). Since v has a
finite support, v = 0 in 2 \ K for some compact set K C M™. For each
z €C,
2qep, WD) ng(z)

quP, () =1

since P, C E and 9(q) = 1 in E. Hence 1 — v is admissible for (C,Q\
B;; Q) whenever K C B;. By Lemma 5.7,

v(z) =

Z |Da(q)P > c/ |Vo[? dm > ccap,(C,00;Q) > 0.
q€S Q2

Since this holds for all admissible functions o we get
cap,(E,00;5) > ccap,(C,00;Q) > 0.
This ends the proof.

For the next two lemmas, let ¥: M™® — N” be a rough isometry.
Then it induces a rough isometry ¢: P — @ with respect to the com-
binatorial metrics of P and Q. Let a and b be the constants of ¢ in
(2.12).
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Lemma 5.10. Let S C P be connected, and let S' = {q¢ € Q :
6(q,p(SUBS)) < a+b}. Then S' is connected. Furthermore, let
v be a function of S'UJS' and u =vop. Then

S IDu@)P <¢ 3 [Du(g)P

z€S g€S’

where ¢ 13 independent of v.

PROOF. Let ¢ and ¢’ be are any two points in S’ and let z and y
be points in S U 85 such that 6(q,¢(z)) < a + b and 6(¢',¢(y)) <
a + b. Hence there exist paths in S’ from ¢ to ¢(z) and from ¢’
to o(y), respectively. Since also S U 0S is connected, there exists a
path ¢o = z,¢1,...,¢t = y in SUJS. For every : = 0,1,...,1 — 1,
6(¢(g:i), ¢(gi+1)) < a+ b, and thus there is a path in S’ from ¢(g;)
to ¢(git1) for every ¢ = 0,1,...,1 — 1. Hence S' is connected. To
prove the other part of the claim, let v be any function in S' U 985".
We abbreviate c¢ = a+b. Let 2 € S and y € S U 0S be such
that 6(z,y) = 1. Then §(¢(z),¢(y)) < cs. Thus there is a path
g0 = @(),q1,..-,9¢ = ¢(y) in S’ of length £ < ¢6. Now u(z) — u(y) =

v(go) —v(q1) + v(q1) — -+ + v(ge—1) — v(ge), and therefore
-1
u(z) —u()P <& > Jo(a) — v(gita) -
1=0

Since @ is uniform, the number of points ¢ € @, with 8(q,qo) < cs, is
bounded by a constant which is independent of go. Hence we get, by
also using (5.1), an estimate

u(z) —u(y)|P <c¢ max Du(q)|? .
uz) ~u(w)P Se, max  Du(o)

Now the uniformness of P implies that

P P
(5.11) |[Du(z)|” < e7 6(“1:%3%5“ |Dv(g)|P .
Next we sum both sides of (5.11) over all £ € S. Then some terms
|Dv(q)|P may appear several times on the right hand side. However,
since ¢ is a rough isometry and P is uniform, there is a constant cg
such that, for each ¢ € S, there can be at most cg points z' € S with
6((z), p(z")) < 2c. Hence

> IDu(@)f <er )y o max_ | Du(g) < e cs > IDv(g) .
€S

<
ey (g,¢(2))<ce €5
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Lemma 5.12. Suppose that @ C M™ is connected and p-hyperbolic.
Let S = {qg € P: d(q,Q) < k}. Then the set Q' = {y € N” :
d(y, (S U BS)) < co}, where cg = max{3x(a + b),a + b} + 7x, i3 a
domain and p-hyperbolic.

PROOF. Clearly 2 is open. To show that it is connected, let z and y
be any points of Q. Then there are points ¢ and ¢' in SU S such that
z € B(p(q),c9) and y € B(p(q'),c9). Both of these balls are contained
in Q'. Futhermore, since S is a connected subnet by (the proof of)
Lemma 5.2, so does S U 3S. Thus there exists a path in S U 0S5, say

9 = 4,91,---,9¢ = ¢', from ¢ to ¢'. By (2.14),
d(0(4i), p(gi+1)) < 368(0(qi), 0(git1)) < 3r(a+b) < ¢y,

and therefore U{_B((gi),¢9) is a connected open subset of Q' con-
taining z and y. This implies that Q' is a domain. It remains to
prove that Q' is p-hyperbolic. First we observe that S is p-hyperbolic
by Lemma 5.9. Thus there exists a finite set E C S U 35S such that
cap,(E,00;S) > 0. Let v be an admissible function in S’ U 85’ for
(¢(E),00;8"), that is, v has a finite support and v = 1 in ¢(E). For
each ¢ € SUJS, we set u(q) = v(p(g)). Then u = 1 in E. Since
the support of v is finite, there is a point § € S and 8y > 0 such that
u(g) = v(p(q)) = 0if 6(¢(4),¢(q)) > bo. Since ¢ is a rough isometry,
there exists §; > 0 such that, 6§(¢(§),¢(¢q)) > 6o, and so u(q) = 0,
if 6(4,q) > 61. The uniformness of P implies that there can be only
finitely many points ¢ € P with 6(§,q) < é;. Hence the support of u is
finite and u is admissible for (E, 00; S). Lemma 5.10 then implies that

Z | Dv(g)|? .Z CZ |Du(z)” > ccap,(E,00;5) > 0.
qeS'’ T€S

This is true for every admissible v. Hence cap, (¢(E),o0;S") > 0 and
S’ is p-hyperbolic. It follows from Lemma 5.9 that the 7x-neighborhood
of S'US' is p-hyperbolic. Hence also Q' is p-hyperbolic as a larger set.

We are now ready to prove the main theorem.
Theorem 5.13. Let M™ and N” be complete Riemannian manifolds

with bounded geometry and roughly isometric to each other. Then M™
has the Liouville D,-property if and only if so does N”.
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PROOF. Fix £ < min{inj M™/2,inj N"/2}. Let P and @ be k-nets in
M™ and in NV, respectively. Since M™ and N” are roughly isometric,
there exists an induced rough isometry ¢: P — Q. Let ¢:Q — P be a
rough inverse of . Suppose that M™ does not have the Liouville D,-
property. By [H1, Section 5|, there exists a non-constant bounded p-
harmonic function v in M™ with [}, |Vul? dm < +00. We normalize u
such that infp» v = 0 and sups» u = 1. Since being roughly isometric
is an equivalence relation it is sufficient to prove that also N” admits
a non-constant p-harmonic function with LP-integrable gradient. For
each a,b €]0,1[, we denote by Q, and 2% any component of sets {z €
M": u(z) < a} and {z € M™: u(x) > b}, respectively. Then Q, and
Q% are p-hyperbolic domains. Let 0 < s < 1/4 and 3/4 <t < 1. We
write Sy = {g € P: d(¢q,Q) < k} and S* = {g € P: d(q,) < k}.
Then the sets Dy = {z € N” : d(z,¢(S,UdS,)) < co} and D* = {z €
NY : d(z,9(5'UdS')) < cy} are p-hyperbolic by Lemma 5.12. We
claim that, for some 0 < s < 1/4 and 3/4 <t < 1, capp(Dl,Dz;N") <
+00 which then proves the theorem by Theorem 4.6. Let

v = max {0, min{2(u — 1/4),1}}.

Now v =0in /4 and v =11in Q3/4. Then we set, for each ¢ € P,

v* =][ vdm.
B(q,4x)

Next we define w : Q — P by @ = v* o1, where % is a rough inverse
of ¢. Finally, we attach to w a function w € C*°(N") as in (5.6). By
lemmas 5.4, 5.7 and 5.10, we have

/ Vwl? dm < c/ Vol? dm < 2%/ Vul dm < +oo.

It remains to show that w is admissible for (D,, D; N¥) if s and t are
properly chosen. Recall that

quQy w(q) ne(y)
quQy nq(y)

w(y) = )
where Q, = Q N B(y,2x) and n, € C§°(N") such that n, = 1 in
B(q,x) and n, = 0 outside B(q,3x/2). Since 3 is a rough inverse
of ¢, there exists a constant c¢;o depending only on a,b, and « such
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that _d(a:,z/J(cp(a:))) < ¢y for every z € P. Let g € Q be such that
d(q,D,) < 2k. Then there is y € D,, with d(q,y) < 4k. Moreover,
d(y,¢(z)) < 2c¢q for some z € S, U 0S,, and so d(q,¢(2)) < 2¢co + 4k.
Since 9 is a rough isometry, d(¥(q),¥(¢(2))) < c11, where ¢1; depends
only on a,b, and k. Hence d(4(q),2) < c10 + ¢11. On the other hand,
there is 2’ € S, such that d(z,z') < 3«. Finally, d(z,z) < & for some
z € ,. Hence, for every y € B(¥(q),4«),

(514) d(y, :l') <cio+c1 + 8 défclz 5

where c;2 is independent of ¢ and z. Thus we can attach to each g € Q,
with d(g,D,) < 2k, a point ¢ € Q, such that d(y,z) < ¢;2 whenever
y € B(¥(q),4«). By Theorem 3.10,

1
d(093,691/4) > cC4To logZ; —Tg-

Hence we can choose 0 < s < 1/4 such that
(515) d(aQs, 691/4) Z 2 C12 -

It follows from (5.14) and (5.15) that B(%(q),4x) C ;4 whenever
g € Q, with d(q, D,) < 2. But this implies that w(g) = v*(¢(¢q)) =0
for such ¢, and so w(z) = 0 for every z € D,. Similarly, we can choose
3/4 < t < 1 such that d(8Q*,09%/*) > 2¢;5. Then B(v(q),4k) C Q3/4
if ¢ € Q and d(q,D?) < 2k. Hence w(z) = 1 for every z € D*. We
have showed that w is admissible for (D,, D!; N*) which then proves
the theorem.

FINAL REMARK 5.16. In [H1] we proved that there exists Green’s
function for (2.22) on M™, that is, a certain positive solution of

—div A(Vg) =6,

where y € M™ and A is of type p, if and only if cap,(M™,C) > 0 for
some compact set C' C M™. In the light of the previous consideration,
it is clear that Kanai’s Theorem [K2, Theorem 1] is true for every
1 < p < oo, that is, for a fixed p €]1,00[, the existence of Green’s
function for equation (2.22) is preserved under rough isometries between
Riemannian manifolds of bounded geometry.
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