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1. Introduction.

In this paper we study the Hilbert transform and maximal function
related to a curve in R2. For I'(t) = (¢,7(t)) with v(0) = 0, we define
the Hilbert transform associated to I'(t) by

' ! dt
(1) Hef(@)= [ fle-Te)F -
Similarly we define the maximal function by the formula
1 [t
) Mrf(@)= sup 3 [ 1ftz =TIt
o<h<1 7 Jo
We are interested in obtaining L? estimates of the form
(3) IHr fllp < Ap [ fll5 »
and
(4) IMrfllp < Ap 11l -
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A first stage in this study was completed in the 1970’s due to the efforts
of Nagel, Riviere, Stein and Wainger. Their work led to the following
theorem (see [SW]).

Theorem A. Suppose I'(t) is C*° and the curvature of I'(t) does not
vanish to infinite order at the origin. Then

(5) Mo fllp < Ap lIfllp » 1<p< oo,
and
(6) IMrfllp < Apllfll,»  1<p<oo.

Much effort has been devoted to the study of Hr and Mr without
the assumption that the curvature of I does not vanish to infinite order.
See for example, [CCVWW], [C1], [C2], [CCC], [DR], [NVWW1] and
[NVWW2]. In particular, we have the following theorems (see [CCC)).

Theorem B. Assume ~(t) is convex for t > 0. If for some C > 1,
7' (Ct) > 24'(t) fort >0, then

IMefllp < Ap llfll,»  1<p<oo.
If in addition, I'(t) is even or odd, then
IHr fllp < Ap Il fll l1<p<oo.
The hypothesis of the next theorem is expressed in terms of the
functional h(t) =t+'(t) — v(t) (see NVWW]1] and [NVWW2]).

Theorem C. Assume «(t) is convez for t > 0. If for some C > 1,
h(Ct) > 2h(t) fort > 0, then

[Mrfllz < Allfllz -
If in addition T'(t) is odd, then

|Hr fll2 < Allfll2 -
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In this paper we wish to remove the convexity assumption. The
fact that there should be some positive results is suggested by exam-
ples worked out by Wright, [W]. In [W], positive results are obtained if
for example (t) is ¢ sin(loglog(1/t)), t* sin(1/t#) and e=1/* sin(e!/?).
These examples and Theorem B suggest the following provisional hy-
pothesis. Let

u(t) = sup |+/(s)
0<s<t

and assume for ¢t > 0, u(Ct) > 2u(t) for some C > 1. The fact
that this hypothesis must be modified can be seen by considering cer-
tain “staircase” examples. That is, we define y(t) = 2-2" on E} =
[27F,27%(1 + 6;)] and make « linear on the complementary intervals,
Fr = [27%(1 4 6;),27%!]. Here 0 < 6§ < 1. These examples are a
slight variant of examples considered in [SW].

For these examples we calculate Mr on the characteristic func-
tion of a rectangle with corners at (—1,0), (0,0), (=1, —¢) and (0, —¢).
This calculation which is similar to that in [SW] shows that Mr is
not bounded in L? if } 6 = 4oo. It is easy to see that in these
examples u(2t) > 2u(t), and so the provisional hypothesis must be
modified. Furthermore, it is not difficult to see that if Y67 < 400,
Mr is bounded in LP. In fact

h 1 h
Mef(@) < sip [0 |f(@=T@)lde+ sup o [ 15 —T(e))at
o<h<1 Jo 0<h<1 0
tEUE} teEUFy
= M3 f(2) + Maf(z).

M; can be shown to be bounded in L? by using a square function
argument as in [C2] while M, is bounded in L? by arguments in [CCC].
In fact the argument shows that Mr is bounded in L? no matter how I
is defined on the intervals { Ex}. Thus these staircase examples suggest
that we must add some hypothesis but that we need not require any
hypothesis on a suitably small set E. The staircase examples further
suggest that if I = {t : 27% <t < 27%+1} then the correct assumption
on the size of E should be that (2% |I N E|)? < +oo.

It is interesting to note that although > (2F|Ix N E|)P < 4o is
the correct assumption on the size of E for the maximal function, it
is not the correct size for the Hilbert transform. To see this let us
consider the following variant of the above staircase example. That is,
define v(t) = 972% on Ex = [27%,27%(1 4 é)] and make 7 linear on
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the complementary intervals Fy = [27%(14 6;),27%+1]. Extend  as an
odd function on [—1,1] and write

Hefe) = [ fa-Te)G+ [ fa-TO)F

UE} UF}
= H,f(z) + H2 f(z),

where E,:i = Ex U FE_j and F,: = Fy U F_i. As before H; is bounded
in all L? (p > 1) by arguments in [CCC]. On the other hand, H; (and
thus Hr) is bounded in all L? (p > 1) if and only if } 6 < +oo.
It is easy to see that if Y ér < 4oo, then Hy is bounded in all L?
(p > 1) by Minkowsky’s inequality for integrals. However suppose that
>~ éx = 400 and consider the multiplier for Hy

m(en) =3 [ sintet+n2() T
Ex

Set ¢ =0 and = (7/2) 92" for some large N and note that

dt
m(0 92N—-) = Z /sm(92(N Ol + Z /s1n(92(N ") 7r)

k<N g, k>N g
Since
., dt
,;VE/SIn 92(N k)2) <092Nk;v6 9-2k<Cg2NI§V9—2k<C
and i 1) dt dt 1y~
Z /sm(g Z /—t— 2 5

k<N g, k<N g,

we see that m(&,n) is an unbounded function and so H; is not bounded
in L? and hence unbounded in all L?. This example therefore suggests
that the correct assumption on the size of E for the Hilbert transform
is 3228 |, N E| < +oo.
Since we want to impose no condition on ¥(t) in E, we modify u(t)
to
o(t) = sup [7/(s)].
s<t
s¢E
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If 4(t) is convex, v'(t) is monotone and v(t) < t+'(t). So if we set

¢(t) = sup |[v(s)l,
s<t
s¢E

we add two more provisional hypotheses, namely that outside of E,
7'(t) > ev(t) and (1) < Cto(t).

Thus one has modified the provisional hypothesis to the following;:

A) There is an exceptional set E such that for the maximal func-
tion, S°(2¥ |Ix N E|)? < 400 and for the Hilbert transform,

> 2F LN E| < 4o0.

B) Outside of E, ¢(t) < Cto(t).
C) Outside of E, v(At) > 2v(t) for some A > 1.
D) Outside of E, |¥'(t)| > ev(t).

. Unfortunately, for the example v(t) = t*sin(1/t), the hypothesis
D) is not satisfied. So we replace D) by

D') Outside of E, [y(t)| +t[y"(t)| > e v(2).

It turns out, as we shall see by an example later on, that A), B), C)
and D') do not suffice for the L? boundedness of the Hilbert transform
(if T is extended to be an odd curve).

If one attemps to prove a positive result, one naturally divides I
into various subintervals; subintervals which belong to E, subintervals
which do not belong to E and |y'(t)| > e v(t), and subintervals which
do not belong to E and |y'(t)| < ev(t) but 4" is large. Thus Ii is
partitioned into a possibly large number of subintervals. Qur examples
show that at least in the case of the Hilbert transform, our hypothesis
must depend qualitatively on the number of such subintervals. If the
number of subintervals into which we have divided Iy is N, we might
then expect to modify B) to

B’) On I\ E, tv(t) > €9 Nk 4(2).
This latter assumption however is not satisfied for certain examples

like v(t) = e~/ ** sinel/t. Examples such as this can be incorporated
by modifying B’) to tv(t/2) > €9 Ni ¢(t/2). It turns out that the proof
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requires one additional hypothesis, namely that the sequence {2%¥N;}
is sufficiently spread out. In fact we will assume that for all n,

1

1
(7) Z k SC n
k2n2 Ny 2N,

where C is independent of n. (7) holds whenever {2¥ Ny} forms an in-
creasing lacunary sequence. However condition (7) allows for situations
where the Ni’s might not be monotone. With the above remarks in
mind, the following theorem seems reasonable.

Main Theorem. Let I'(t) = (¢,7(t)) € C%(0,1] with v(0) = v'(0) = 0.
Suppose
I, = E,UF, UG

18 a disjoint union with Fy, and G each a union of at most Ni open
intervals.
Assume that for some gg > 0,

(8) v(At) > 2v(t) for some A >1 on I\ Ex
and
(9) tv(%) 250 Nk ¢(é) on Ik\Ek .

Suppose also that for some g1 and g2 >0,

t
(10) [¥'(t)] > e1v(t) and [t4"(t)] < e Ni U(E) on F}

and
t
(11) lty"(t)] > e2 N v(i) on Gi.
Finally assume that (7) holds. Then if Z(Zk |Ex])? < +oo,
k
(12) IMrflls < Ap I fllp -

Also 1f T'(t) is extended to the interval [—1,1] as an even or odd curve
and 3", 2¥ |Ex| < o0,

(13) IHefllp < Apliflls,  1<p<oo.

We add six further remarks.
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REMARK 1. In view of Theorem C we might be tempted to replace the
hypothesis v(Ct) > 2v(t) by w(Ct) > 2w(t) (at least in the case p = 2)
where
w(t) = sup|sv'(s) — 7(s)|-
s<t
s¢E

We shall show by an example that this can not be done.

REMARK 2. Examples show that the complement of the set {t € I; :
[¥'(t)] < eu(t)} is too large to be contained in Ej .

REMARK 3. The staircase curves can be modified to show that for any
Po, 1 < pg < 00, there is a smooth curve I'(t) so that Mr is bounded
in L? for p > po and unbounded for p < po. Other examples have been
pointed out by M. Wierdl.

REMARK 4. We are not sure if the conclusion of the main theorem
holds if v(t) is replaced by u(t) and the Ni’s are omitted. However,
the hypothesis of such a theorem would not be satisfied by staircase
examples with very steep slopes in E, for which we know the conclusion

is true.

REMARK 5. We do not know whether the quantitative hypothesis on
Ny is necessary for the conclusions concerning the maximal function.

REMARK 6. For convex curves, the hypotheses of the main theorem are
satisfied whenever v/ is infinitesimal doubling, i.e. 4'(t) < Ct~"(¢).
2. Proof of the main theorem.

We consider first the maximal function. Let us first reduce the
problem to obtaining the L? estimate for

Mf=81,:P|Mkf|,

where

Mif(z,y) = 2* / f(z =ty — () dt,

I\ E;
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by using the square function argument alluded to above. In fact if pux
denotes the positive measure such that

1
w(H) = [, Fe @),

then for f >0, Mrf < C (Mf + sup(2¥ |[Eg| f * px)). But
: k

1/p
I5up (2* B £« )llp < O3 l12¥ 1Bl £ » uel)
’ k
1/p
< (3@ IBY) lfly < Clflp
k

Therefore it suffices to prove that M is bounded in LP. In fact we will
show that M is founded in L? for all p > 1. This will be done by
following ideas from Christ [C3] and Wright [W].

We will decompose M} into a sum of four operators. To do this,
let

Ry = {C = (f,n) cR?: v(z‘k—N) < |€/n| < 0(2—k+N)},
where N is some large number to be determined later and define

Sef = (xr. - )V
o 0
Te = ( Ok ﬂk) ’

o = Z 2].‘le and Br = Z

k<j k<j

Next choose ¢ € C°(R?) such that ¢(0) = 1 and define & = (poT})V.
Write

Also let

where .
v(2"’“1)

7N,

My = @ x My + (6 — ®i) * (I — Sk)My + (6 — ®i) * Si My,
Py« My + M} + M7,

where § denotes the Dirac mass at the origin. Since ®; * M} will not
in gencral be dominated by the usual maximal functions, we will also
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apply a g-functions argument to it by further writing ®; * M} as a sum
of two operators. To do this, let w € C°(R) with w(0) = 1 and define
Kk by

Rile,) = 2w(un) [ et
I \E:

Write o = ® x My — K so that ®; x M = Ki + o . Finally we have
the desired decomposition,

Myf=Ki+xf+or*f+Mif+MEf.

Note that |Ki * f| < C M,f, where M, denotes the strong maximal
function, since K} is dominated pointwise by

1 1 1
2=kB 14+ |2kz|2 14 |y/Bk|?

Thus we have
Mf< C(Mf+ (Y lows )
+ (O IMEFE) + (D 1M A1)

By an argument used in [NSW], we will prove the L? estimates for M
by repeated applications of the following three lemmas.

(14)

Lemma 1. M is bounded in L2.
Lemma 2. If

1O 1M £e*)llpo < Copo IO 1£51) 2 lpa
for some po < 2, then M is bounded in LP for po < p < 2.

Lemma 3. If M i3 bounded in LP° for some py < 2, then

IO 1M £eP) 21l < Gl PP

for .
(p—o +1).

L <
p .

N —
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Lemma 3 follows from interpolation since the operators { My} are
positive and uniformly bounded in L?, 1 < p < oo, as in [NSW]. The
main estimates needed in the proofs of lemmas 1 and 2 are contained
in the following two lemmas.

Lemma 4.
a) |6x(¢)| < C|Tid| .
b) 16%()| < C|Tk-3(]-

PROOF. Recall that 6x(¢) = o(T¢)Mi(¢) — Ki(¢) where
Ki(€,7) = 2¥w(Brn) / etdt .
L\E,

Note that
2k Ny < 1

2’“] e€tdt| < C <C )
’ I\ Ex ‘ €] akl¢|

The last inequality follows from (7) since

1 1
= - < .
(15) ak Z o, < C 7w,
k<j

Also |w(Bkn)| < C|Brn|™! and so |Ki(¢)| < C |Ti¢|™*. Furthermore
(@5 * M)NO| = le(TeO)Mi(¢)] < C ITi¢| ™,

which gives us part a). For b) note that

pilEttn v(0) gp _ ok /

e*ét dt)
I \Ex

24(0) = o(T0) (2 [

I \Ex
L / et dt (cp(TkC) - w(ﬂkn))
I\ E;
_ (€0 4(D) _ i
= ¢(Tk() (2k /b,\E,c (EHm) - e dt)
+ 9k / et dt ((p(Te¢) — 1) — (w(Brn) — 1)),
I\ Ex

and so

010 (2 [ ol + md)
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< € (Inlé(t.) +17eC1)
1
<C (|’7|m_—2 v(ts) + |TkC|)

< O (Il ge=g v(@*) + ITic])

Ui
<C (l’?l Br-3 + ITk—sCl) < C|Te-3(|,

where t, € Ix—; such that 2¢, € Ix_3 \ Ex_2. The third inequality
follows from applying (9) on Ix_3 \ Ex—2 . The second to last inequality
uses the fact that the sequences {a;} and {fx} are monotone and the
estimate 2ij < C2¥N; for j < k which follows from (7). This gives
us b) and thus completes the proof of the lemma.

The next estimate is based on a lemma of Van der Corput whose
proof can be found in [Z].

Van der Corput’s lemma. Let f € C%[a,b] be a real-valued function
such that |f"(t)] < X on [a,b]. Then

b
; 1
lf(t)dtl<('__
/;e \/X’

where C i3 independent of f, a and b.

Lemma 5.
a) M) < C|Ti(].
b) | ML(C)| < C|Tw¢|™Y/2.

PrROOF. Note that

(16) M) = (1= @(Tk)) (1 = xR () Mr(€),
where
Mk=2’°/ (et (1) dt=2'°/ o F(0) dt+2k/ G I g
. I \E} Fy G

and f(t) = & + ny(t). The estimate in a) is clear from (16) since
©(0) = 1. We turn now to the proof of b). We may assume ¢ ¢ Ri.
We will consider two cases.
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Case 1. v(27%*N) < |¢/n|. On It \ Ex,
If'@®)] = €] = Inlv'(®)]
v(27k+1) )

17
v > 16~ o) 2 el (1 - 2

From assumption (8) and the fact that E is “thin”, we see that

v(27 k1
(18) v((z_—k_Hv)) < 5

for N sufficiently large. So from (17) and (18) we see that
(19) OER

for N sufficiently large.
Since F} and G} are open sets, we will write

Lk MI:
Fio=J(a,be)  and  Gi=|J(ce,de)
=1 =1

where L and My are at most Ni. Integration by parts gives
( SR
o [ roa | [0
Fy ; ag
2Nk | e [T 1)
2k ok / dt)
@ tr L), e

k k Ly b,
28Ny 2FNi|n| / v(t/2) dt)
=1

GRRNGE :
KN, 2N w(2Tk) A Mt
= v(z-k+N>Z}/a, )

1
< <C < CI|Tw¢|7t.
SO < Cag =Cm

The first inequality uses (19) while the second inequality uses both (10)
and (19). The second to last inequality follows from (15). To prove the
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last inequality, note that it suffices to prove that fx/ax < C|€/7| in
this case. But since v(27¥*N) < |¢/n],

—j—1
ﬂkzz% Sv (2_k+N)221N —a"’ﬂ'

k<j J k<j

Next note that

M,
,2"/ e"f(‘)dt|=’2" / 'f“)dtl
G =1"Y¢t

2N e [ L)
SC( ot ;/c[ oG dt)

k M de g1
o eS| [ )

23

2k N, 1
<C—— < C|Tu(|}.
SO S Cqg S Ol

The second equality holds since (11) implies that f'(t) is single-signed
on each (cg,dy). The first and third to last inequalities follow from
(19). The final inequality was already used in the treatment of the Fy .
Thus [M}(¢)] < C|T(| ™"

Case 2. |€/n| <v(27*"N). On Fy,
'O 2 Iny' (O] = [€] 2 e In] v(t) — €]

(20) =1 fnlo(t) (1~ ﬂ ) = = Inlo(t)

g1 v(t)

for N large enough. Integration by parts shows
E [ s eSS [ s
2 /er dt| = |2 Z/ e at)
C( 25Ny zkz/b' £ ()]
(@ %) Fi?

2k Ny 2 Nk In| be v(t/2)
¢ (@ * @ e Z/ )

IN

IN
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2k N,
<C—— < C|T(|.
roe-®y < C 1Tl

The first inequality uses (20) while the second inequality uses both
(10) and (20). To prove the last inequality, note that from (15) and
€/11 < o2 * M), arle] < CEENL)HE] < C(2Ni)o(2) |n).
Also Bk |n] < v(27F%) (2K Nk)~!|n|. Hence the last inequality follows.
On G, |f"(t)| = €2 |n| Nrxv(t/2)/t and so by Van der Corput’s

lemma,

Mk dl (
o [ eral =S [* o
' Gk i; Cy

1
<C2kN,
=T A N v
2k Ny .
o2V -1z,
=C\sarygy = 1

The proof of the last inequality is the same as in the treatment of Fy .
Thus |M}(¢)| < C|Tx¢|~*/? in this case as well which finishes part b)
and thus the lemma.

We turn now to the proofs of lemmas 1 and 2. First observe that
our family {T}} satisfies the norm estimate

(21) |7 Tl S < 1.

In fact,

-1 _ ak+1/ak 0
Tk Tk+l - < 0 ﬂk-}—l/ﬂk)

and so to prove (21) it suffices to show that there is an a < 1 such that
for all k,
Gt oand PR,
af ,Bk
This however follows easily from (7).

To show that M f is bounded in L? we see from (14) that it suffices
to prove that (3 |ox * f|2)1/2, (3 |MLf|?)/2, and (3 | M3 f|?)'/? are
bounded in L2. With the aid of Plancherel’s Theorem, the L? estimates
of the first two square functions reduce to showing that 3 |6%(¢)|? and
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3 | M} (¢)|? are bounded functions of ¢. This easily follows from lemmas
4 and 5 together with (21). For the third square function, note that

(22) M}f < C (MpSkf + MMSif) < C MM Sif.
Then since ) xr,({) < 2N (where N appears in the definition of the
Ry’s),

I ety <c Y [ansgr <o Y [1msgr

<c [IsuP=c [ Y xu@IFOF &
52Nc/|f(c>|2d<=2Ncnf||§.

We have used the fact that the strong maximal function is bounded in
L? and that the M}’s are uniformly bounded in L2. Thus (3 |M? f|?)!/?
and hence M f is bounded in L2.This completes the proof of Lemma 1.

We turn now to Lemma 2. Note that
IO IMfi P21, < GO 1A Pl s Po<p <2,

by interpolation and so by (22),

O IMEFI) 2], < Co IO IMMeSe £IP)2l,
<SGyl IMeSkFIP) 2,

<G IO 1Sk 1)l
<Cpllfl,, Po<p<2.

We have used the fact that the strong maximal function satisfies vector-
valued estimates, see [FS]. The last inequality follows from [NSW] and
[CF] since the sequence {v(27%)} satisfies (18). Hence by (14), it suf-
fices to prove that (3" |ox * f|?)'/? and (3 |M} f|*)'/? are bounded in
L?, py < p < 2. This is proved by an argument used in [CCVWW].
We will only sketch the argument here (the interested reader should
consult [CCVWW] for more details). The argument is based on a
general Littlewood-Paley decomposition developed in [CCVWW] and
[CVWW].
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Suppose that we have a family of invertible linear transformations
on R", {A,} ez, which satisfy the Riviere condition

(R) A7 Ajll Sa <1,

See [R]. Choose a smooth function ¢(z) such that ¢(£) = 1 for |¢] < 1
and ¢(€) = 0 for |£] > 2. Now define the multipliers

m;(€) = $(45416) — H(456)
and the corresponding linear operators
P;f(z) = (m;f) ().
The following theorem can be found in [CVWW].

Theorem D. Under the conditions stated above, we have

I PR ), < Collfly s 1<p<oo,
JEL

and

I Pifil, <G I IR, 1<p<oo.

JEZ JEZ

Y omi(6)=1.

JEZ

Also for each € # 0,

We will use our family of invertible linear transformations on R2,
{Ty} and note that (R) is simply (21) in this case. To prove the L?
estimates, for say (37 | M} f|?)!/? (the same reasoning applies to (3 |ox*
fI?)*/?), we will decompose f with respect to the operators {P;}. Write

Mif =My Pif =) PiMif,
JEZ JEZ
which implies

A = (]| L Pesats]) "
k k

JEZ
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1/2
<3 (X 1pmMif?) =3 6if,
J€L  k JEL
where G f = (3, |Pj+xM} f|?)}/?. We will prove that

@) 1Gifllpo < Cllfllpo » and

b) IGifllz < C27<bl||f])2
for some € > 0 and C independent of j. For a) note that

|M3 fi| < C (MoMifi + M SeMifi) -

Therefore using the hypothesis of Lemma 2 that the family of operators
{M,} satisfy an £2-valued LP° estimate, we obtain the same conclusion

for the family {M}},

IO IMEFelP) 2 llpe < C IO IMoSeMi fi*) 2 1pa
< CNC ISkMi fil*)! 2l
< CIO 1M fil?)lpo
<CIC 1A o -

Again we used the angular Littlewood-Paley theory developed in [NSW]
and the fact that the strong maximal function satisfies vector-valued
L? estimates. Using Theorem D, we see that

1G5 fllpo = I IME P2 F)1*) 1o
k
<O 1Pk B P llpo < £ llpo -
k

which gives a). b) is proved by using Lemma 5 and (21). See [CCVWW]
for details.

By interpolating the estimates in a) and b), we see that ||G; f||, <
c27% il |||, po < p < 2 for some €p > 0. Summing these L? esti-
mates for G; gives us the desired L? estimates for (3 | M} f|?)'/2. This
finishes the proof of Lemma 2. The treatment of the maximal function
is now complete.
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We turn to the Hilbert transform. Note that

Hef(@) = [ fe-ranG+ [ fe-Te) T
UE} UE?

L Hef(2) + Hof(),

where Ei =E U (—Ek) and E? = (Ik \ Ek) U (-—(Ik \ Ek)) The L?
estimates for Hg f follow from Minkowski’s inequality for integrals and
the assumption that 3 2¥|Ex| < 4+oco. For Hg f, write

() = [ 1 -ran g
E2

and note that ), , Hyf(z) = Hgf(z). We will decompose Hif into
a sum of several operators. First let us consider a variant of the kernel
K. Denote by By the function such that

2 e d
bk(f,T]) = Bk(éa 77) - W(ﬂkn) / e'ft Tt
E'2

where (i and w are the same as in K. Note that By = Cy — Dy where

Ci(€,m) = w(Bkn) / ict 4t

t
Lyu(=1)

and

. o d
De(en) = w(pen) [ 5.
E;

Since the L! norm of Dy is no larger that 2*|E;|, we see that the
operator ), Dy * f is bounded in all L?. Also

a) [|Ckl* f|<CM,f, and
b) |Ck(&,m)| < C min {27F|¢], (27*I¢) 7"}
We may apply Theorem D' in [DR] to the operator }_, Ci * f and find

that it is bounded in all LP, p > 1. Therefore it suffices to estimate the
operator Y, (Hy — By). Write

(Hr — Bk )f(z) = Sk(Hx — Bi)f(z) + (I — Sk)(Hk — Bx) f(z)
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def .21 2
= H, f(z)+ Hif(z).

The L? estimates of ), (Hy — By) will be based on the following lemma.

Lemma 6.
[|(k221 mhl) | <6, ”(; 20 <<,
and

I(Smr)”| <o (S, 1<r<n

E>1 k>1

PROOF. We shall first derive the estimate for Hy. This will be proved
by an interpolation argument. In fact we will prove that

(S mear)”, = el (),

k>

for certain 1 < p,q < 0o. Since the operators Hy are uniformly bounded
in LP, 1 < p < oo, we see that (23) holds for p = ¢ > 1 and so in
particular we have the lemma for p = 2. If 4 is even, we have the
pointwise estimate

(24) sup [ fel(z,y) < C(M(sup|ful)(z,y) + M(sup |f}])(~2,v))
k>1 k>1 k>1

where fl(z,y) = fi(—z,y). Also if 7 is odd, we have

(25) sup |Hyfel(z,y) < C(M (sup fil)(a,y)+ M (sup | £2])(~2,~y))
k>1 k>1 k>1

where f#(z,y) = fx(—z,—y). Therefore from the L? estimates for M,
we see that (23) holds for ¢ = oo and p > 1. Interpolating between
L'(£') and LP(€>), p > 1, establishes the lemma for 1 < p < 2 and
then duality gives us the full range. The argument for the operators
{Bg} is similar. We must only replace M by M, in (24) and (25).
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Lemma 6 is sufficient to give the L? estimates for H}. In fact for
1<p< oo,

|3 b, = |3 s~ o], = | S sz ]

(26) <G [(XiH - Bk)Skf|2)l/2”p

E>1

<G (X 1s?) | < coifl

k>1

where we have used again the results of [NSW] and Lemma 6. For HZ,
we will need the analogous estimates to Lemma 5 for the multiplier hZ
of the operator HZ. Note that A2(¢) = (1 — xr,({))(h(¢) — bk ().
Here hi is the multiplier for Hy, i.e.,

m(Q) = [ et ® S kEQ)+ 7 (0)
E}

where

def ; dt — o def ; dt
O [ o, o [l

Ik\Ek _(Ilc\Ek)

and by is the multiplier for By defined above. A direct consequence of
Lemmas 4 and 5 is the following lemma.

Lemma 7.
a) |h3(Q)| < C|Tk-3(],
b) |R3(C)| < C|TeC|7Y/2.

PRrROOF. Note that
he(C) — bi(C) = / (ci(EtHn (D) _ gigty % +a _w(ﬂkn))/eift%
E}

E}

and so as in Lemma, 4,

() = ()1 < € (2lal [ o(t)dt + Il ) < C1Tesq].
I
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This gives us ). For b), integration by parts shows that Lemma 5
implies that b) holds for h;:. If v is even, we see that h; (£,7) =
R{(—¢&,n) and if v is odd, ki (&,9) = ki (—€,—n). Therefore b) also
holds for A, and thus for ht. Similarly for by and this completes the
lemma.

Now if we follow the same arguments for the maximal function,
using Lemma 7, we see that Y, H? is bounded in LP, p > 1. This
completes the proof of the main theorem.

3. Examples.

In this section, we will construct the two curves mentioned in the
introduction. We will first construct an odd monotone curve I'(t) =
(t,~(t)) on [—1,1] which satisfies A), B), C) and D') in the introduction
but whose Hilbert transform is unbounded in L?. We begin with a
continuous piecewise linear curve. For r > 0, we will construct v on

[2-2""" 2727). For 2" +1 < k < 27+ write

Ni—1 N -1 det
2k ot = | b, 810 | B ek R U B,
£=0 =0

- - r42_
where af =27F, ok, =27%*1 and N = 2% ~2F 50 that

1 1
Ak:bf—af=.—(1 ) for 0< €< Np—1,

2N, " k2
and
6k = af —bk=——1——-— for 0 << N -1
+1 £ Qka kz 9 — —_ :
On [af, b}], define
™ def —
7/ 22r+2A =mg ~ 2 k
On [bk,af_l_l], define
! T My ~ k? 2k,

Y = e
227+,
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Then

(27) 7(5) = (af) = mile = 57
and

(28) 7(af+1) - ’Y(bf) = Mié = 2T7r+2 .

This will now define 4 uniquely on [0,1/2] once we choose v(1/2). We
will do so to make v(0) = 0. Note that by (27) and (28),

Ni—-1
Y27 — (27 = Y (v(afr) — 1(85))
£=0
29 et
(29) + 3 (2(0k) = ~(ab))
£=0

7Ny 7Ny 27

= v+ T o5 = 97k -

Thus
N

1 Y on
1(3) - 2(ar) =L e e = Lo
£=2 =2
and so if 4(1/2) = 7 /6, v(0) = 0. We will show that Hr is unbounded
in L2.

Since the Hilbert transform is a multiplier transformation, it suf-
fices to show that the corresponding multiplier m is un unbounded
function. Since + is an odd function on [—1, 1], the multiplier reduces

to a sine integral,
T dt
m(en) = [ sin(re) T
where f(t) = £t — n~y(t). We will take £ = 0 and show that
1/2 ) dt
| sy 5
0

is unbounded as 5 — oo. Let us first note that

| [ sintaren 5| < CZ/

UE}
=1
< 022’°|Ek| <CY &<
= k=2

Now let 7 be a large integer and set n = 22%*
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Claim 1.
2,'
> [sntnre) s -+ 5 / sin(7()) % 1) + 11(r)
k=2 =2"+141 %

remains bounded as r — oco. In fact,

Ei<cn Y /7()dt<c Y AR

k>2"‘*‘1 k>2r+1
—-2k n
k>2r+1

The third inequality follows from (29) since

> ad 8r 1
2 k+1 2—[-{-1 _ 2—[ — 2—2[’ =
(30) ~( ) = ; y(27) —1(279) ZW; 3 5

Also by integrating by parts,

2' Nkl Nk22k
IM <C <C
()| ;;nmka_ Z .
T+1 27 22"+1
<C Y 1<C2 w7 <C.
k=2

The third inequality holds since Ny < 22" =2k for k< 27 and this
finishes the claim. For 2" + 1 < k < 27t write

Nk -1

[ =% / oty &

Fy

_ Z (Cos(nv(ae ) cos(nfy(bf))) 1

bf nmg
Ne—
-y /b‘ COS(m(t)) gt
=0 Jei t2nmy

def Ik + Hk
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Since
2k Ne—-1 22k
< C; Z/ #<C=—,
=0 Jai
we have
2r+l 1
Y m<ec=22@" <.
k=27 +1 n

Therefore it suffices to show that

2r+1
E I 1s unbounded as r — oco.
k=27+1

Claim 2. cos(nvy(ak)) = —1/2 for 0 < £ < Ni — 1. By (27) and (28),
it suffices to show that cos(n~y(2~ k'”)) = —1/2. By (28) and (30),

n7(2—k+1) — 8_; 22'+7—2k _ 8?7" Ny .

Note that for 2" +1 < k < 27!, 272 _ 2k = 2/ for some positive
integer ¢ and so

Ny (271 = g22e+3 - 1;_ (222D — 1)+ 2).

Observe that if p is a positive integer, 227 — 1 is a multiple of 3. In fact,

(1422420426 ... 4220y = (4 —1)(1 + 4+ 4% +---+ 4771
=4r —1=2% _1.

Therefore,
2
n7(2-k+1) = §(2 -3n+2) =2mn + __?:r

for some positive integer n. This gives us the claim.

From (27) and (28), we see that cos(ny(b§)) = 1/2for 0 < ¢ <
Ny —1 and so

Ne—1
1 1 1 N, 22k
Iy =— E (—k + —k> < —e=L
nmp = \a by N
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= —¢, for some > 0.
Thus
2r+1
D Ik' >eor
k=27+41

and this finishes the proof that Hr is unbounded in L?. By smoothing
out v on the exceptional set UE), we obtain a smooth curve whose
Hilbert transform is still unbounded in L?. Since in this case, ¢(t) ~ t2
and v(t) ~ t, it is easy to see that A), B), C) and D') are satisfied by
this curve.

We will now construct a curve I'(t) = (¢,v(t)) for 0 <t < 1 where
v(t) = sup,<, [7'(s)| is not doubling, w(t) = sup,«,|s¥'(s) — v(s)| is
doubling and otherwise satisfies the conditions of the theorem (the set
E is empty in this example). If v is extended as an odd function
on [—1,1], we will see that Mr and Hr are unbounded in every L?,
p > 1. We begin by considering a saw-toothed curve I';(t) = (¢,y1(%)),
0 <t < 1. We simply require that I'; be continuous, piecewise linear
and for each n > 1, 41(97("*1/2)) = 0 and 7;(97") = 97" /n. To see
that Mr, is unbounded in L?, take a large integer N and let fn be the
characteristic function of the parallelogram

Py = {(z,y)eRzz —2<y<0 and §Ny—9'2N stgNy}.
For N <n < 2N, consider smaller translated versions of Py ,

Qn = {(w,y)€R2= |

~1 gygo,gNy-g—“N“) < g -9~ (nt1/2) < gNy}

Note that the @,,’s are disjoint. Also it is not hard to see that there is
a positive 6 and ¢ independent of N such that Mr, fy > 6 on each @,
and |@Qn| 2 €|Pn|, N <n < 2N. From this we see that ||Mr, fn|5 >
€ 6P N |Pn| whereas ||fn|[} < |Pn| and so Mr, is unbounded in L?.

To see that Hr, is unbounded in L2, let us again consider the
multiplier

m(en) = [ sn(f(0) T
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where f(t) = £t — n~1(t). Note that in [9~("+1D 9-7],

1 3
1.1 t)=— t 9~—(n+1)
(31.1) "= i T e !

if 9—(r+1) <t < 9=(n+1/2) 5pd
3. 1 .
(312) W)= ot = 97",

if 9~("H1/2) <t <97
Let ngy be a large integer and set

n = mnd 9" and f:%n:iwn(ﬁ”.

Choose nj > ng such that n; 9"t < nf 9" < (n; +1)9™+!. Write

~(n+1/2)

1/9
| sincsn 5 - Z / sin( /(1)) &
+ Z/ sin(f(t))itf .

(n+1/2)

We will show that the second sum is unbounded as ng — oo. The fact
that the first sum is bounded as ny — oo is somewhat easier.

Claim 1.

nol

= [ dt _ it
n;1 /9'("‘“/2) /1) t and z [; (n+1/2) sin(£(#)) t

are bounded as ny — oco. To show that the first sum is bounded we
need the following relationship between ng and n;. Since

1 2 2
S0 cgmme < D <y
9n +1 ny

we have that

1
9log9

log ng

(32) log % <n;—np <

~ log9
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for ng large enough. The first inequality follows from the second in-
equality. Since

o ) dt o= $
’/ sm(f(t))—lS/ g_nﬂﬂldt
9—(n+1/2) t 9—(n41/2) t
nog ] n2 gno
<C( (1_7*'739”)’

we see that the first sum is bounded by a constant times

No gnoe
np 9™

14 (Tl]—no).

This term is bounded as ny — oo. One can see this from (32) and the

definition of n .
For the second sum, let us note that

f(t)"f 7771(t)=T n°(3 2"071(t))

3 no
= 57rno9"°(1 - 7)
for 9—(**+1/2) < t < 9=, Thus
377' ng —

Tl() 9"0

')z =

and so

[ s %] s le

(n+1/2) ng 9™ ng —n

by integrating by parts. This shows that the second sum is bounded
establishing the claim. Therefore it suffices to show that

n— -1 dt n]— -1
Z/ smf(t)—d—EfZI
n=ngo 9~ (n+1/2) n=ng

is unbounded as ng — co. From (31) we see that

3 wnogno
— — —— no _ o
f(t) =&t —nm(t) 5 ™09 (1 —)t+ 5 o
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for 9—(n+1/2) < ¢ < 9= Thus

n;—1 9 " ) 7""0 gno ny—1 o
n=zno " /9-("+1/2) st ( 2n9n ) Cngo 1o 9 ( —') <C.
And
’ :21 (sin (7r2n0§:°) - siﬁ (w;oggno))| <c nlz—jl ng 970" (1 _ %)
e n=ng
<C.

Therefore it suffices to show that |

(i . T no—n ny—no—1 ‘ r i

n; s1n(§n09 )= ,62:_0 s1n(§n09 )

=no —

is unbounded as ng — oco. Take ng = 9V for some N and note that
since k < n; — ng implies that k < N by (32), we have

ny—no—1

Z sin (g QN'k) =n; —ng 2 € logng
k=0

for some ¢ > 0 by (32) and this completes the proof that Hr, is un-
bounded in L2. It is easy to modify 4; to obtain a smooth 4 whose
maximal function and Hilbert transform is still unbounded in every L?
and such that v(t) ~ —1/logt does not have the doubling property, but
w(t) ~ —t/logt is doubling.

References.

[CCVWW] Carbery, A., Christ, M., Vance, J., Wainger, S. and Watson, D., Opera-
tors associated to flat plane curves: L? estimates via dilation methods.
Duke Math. J. 59 (1989), 675-700.

[CVWW] Carbery, A., Vance, J., Wainger, S. and Watson, D., The Hilbert trans-
form and maximal function along flat curves, dilations and differential
equations, to appear in Amer. J. Math.

[CCC) Carlsson, H., Christ, M., Cérdoba, A., Duoandikoetxea, J., Rubio de
Francia, J. L., Vance, J., Wainger, S. and Weinberg, D., L? estimates



THE HILBERT TRANSFORM AND MAXIMAL FUNCTION 121

for maximal functions and Hilbert transforms along flat convex curves
in R2. Bull. Amer. Math. Soc. 14 (1986), 263-267.

[C1] Christ, M., Hilbert transforms along curves, II: a flat case. Duke Math.
J. 52 (1985), 887-894.

[C2] Christ, M., Examples of singular maximal functions unbounded on L?.
Publ. Mat. 35 (1991), 269-279.

[C3] Christ, M., personal communication.

[CF] Cérdoba, A. and Fefferman, R., On the equivalence between the bound-
edness of certain classes of maximal and multiplier operators in Fourier
analysis. Proc. Nat. Acad. Sci. USA 71 (1977), 423-425.

[DR] Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular
integral operators via Fourier transform estimates. Invent. Math. 84
(1986), 541-561.

[FS] Fefferman, C. and Stein, E. M., Some maximal inequalities. Amer. J.
Math. 93 (1971), 107-115.

[NSW] Nagel, A., Stein, E. M. and Wainger, S., Differentiation in lacunary
directions. Proc. Nat. Acad. Sci. USA 75 (1978), 1060-1062.
[NVWW1] Nagel, A., Vance, J., Wainger, S. and Weinberg, D., Hilbert transforms
for convex curves. Duke Math. J. 50 (1983), 735-744.
[NVWW2] Nagel, A., Vance, J., Wainger, S. and Weinberg, D., Maximal functions
for convex curves. Duke Math. J. 52 (1985), 715-722.

[SW] Stein, E. M. and Wainger, S., Problems in harmonic analysis related to
curvature. Bull. Amer. Math. Soc. 84 (1978), 1239-1295.

[W] Wright, J., L? estimates for operators associated oscillating plane curves.
Duke Math. J. 67 (1992), 101-157.

[Z] Zygmund, A., Trigonometric series, vol. 1, second ed., Cambridge Univ.
Press, 1959.

Recibido: 18 de agosto de 1.992

James Vance
Wright State University
Dayton, OH 45435-0001, USA

Stephen Wainger* James Wright
University of Wiscosin-Madison Texas Christian University
Madison, WI 53706-1313, USA Ft Worth, TX 76129, USA

* Supported in part by an NSF grant at the University of Wisconsin-Madison



