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1. Introduction.

The classical Paley-Wiener Theorem for the Fourier transform on
R™ which characterises compactly supported functions in terms of their
Fourier transforms plays an important role in many problems of Fourier
analysis. It is therefore desirable to have analogues of the Paley-Wiener
Theorem for compactly supported functions on general Lie groups
whenever there is a group Fourier transform available. For the case of
the spherical Fourier transform on semi simple Lie groups an analogue of
the Paley-Wiener Theorem is known. In 1976, Ando [1] proved a Paley-
Wiener type theorem for the Heisenberg group which is the simplest
example of a nilpotent Lie group which is nonabelian. Recently, we
have proved another Paley-Wiener theorem for the Heisenberg group,
cf. [4]. In both papers the explicit form of the representations on
the Heisenberg group has played an important role in formulating and
proving Paley-Wiener theorems.

It is an interesting open problem to establish Paley-Wiener theo-
rems for general nilpotent Lie groups. The aim of this paper is prove
one such theorem for step two nilpotent Lie groups which is analogous
to the Paley-Wiener theorem for the Heisenberg group proved in [4].
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2. Some basic facts about nilpotent Lie groups.

In this section we briefly recall some basic results from the rep-
resentation theory of nilpotent Lie groups. A general reference is the
book [2] by Corwin and Greenleaf.

Let G be a nilpotent Lie group of dimension n and let g be its
Lie algebra. Denote the dual of the Lie algebra by g* and the centre
of the enveloping algebra u(g) by ((g). Every coadjoint orbit in g* is
even dimensional. Let 2k be the maximal dimension which occurs and
let ¢ = n — 2k. Then there exists a nonempty Zariski-open subset T’
of R? and for each A € T there is a unitary irreducible representation
7 of G realised on L?(R¥). Moreover, there exists a rational function
R(X) regular on I" and unique up to multiplication by —1 such that the
Plancherel Formula holds with du(A) = |R(X)|dA; ---dA,,

(21) /G (o) dg = /F Ima()ls du(y)

for f € LY(G) N L*G). Here dg is the Haar measure on G and HS
stands for the Hilbert-Schmidt norm.

We let K stand for the Hilbert space of Hilbert-Schmidt operators
on L?(R¥) with the inner product (T,S) = Tr(T'S*) and let L*(T, K)
be the space of L? functions on I' with values in K taken with respect
to the measure dyu(A). Then there is a unique bijective isometry, @ :
L*G) — L*(T,K) such that for every f in L'(G) N L*(G), &(f) is
the function A — 75(f). Here and in (2.1) mx(f) is the operator defined
by

(22) m(f) = /G £(9)mr(g)dg

The function @ is called the group Fourier transform.
Now each representation 7, of G defines a skew adjoint represen-
tation, also denoted by my, of the Lie algebra g by the formula

d
(2:3) m(X)g= 2| ma(eptX)s,

where exp : @ — G is the exponential map and ¢ is a C* vector for
7. The skew adjointness of my means that 7)(X)* = —my(X). Let
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X1,X2,...,Xn be a basis for the Lie algebra g . It then follows that if
for each £ € R™ we define U,(§) by

(2.4) Ur(§) = exp ( =3¢ WA(XJ')) )

=1

then Uy,(§) becomes a unitary operator. This operator valued function
is crucial for formulating a Paley-Wiener theorem.

We now specialise to the case of step two nilpotent Lie groups. In
this case the group admits a dilation structure. By this we mean the
existence of a family {6, : r > 0} of algebra automorphisms of g of the
form é, = exp(Alogr) where A is a diagonalisable linear operator on g
with positive eigenvalues. In the case of step two nilpotent Lie groups
the eigenvalues of A can be assumed to be 1 and 2. The maps exp 0é, 0
exp~! are group automorphisms of G and are called dilations of G. For
facts about groups admitting dilations we refer to the monograph [3] of
Folland and Stein. A function f defined on G is said to be homogeneous
of degree a if f(é,9) =r%f(g) for all » > 0.

If G is a simply connected step two nilpotent Lie group then the
exponential map is a global diffeomorphism. Using exponential coor-
dinates we can identify G with R®"™™ x R™ and the group law can be
written in the form

(2.5) (2,8) - (y,9) = (z +y,t + s + F(z,y)),

where F' is a bilinear form from R"~™ x R*~™ — R™. Let Y; be the
right invariant vector fields agreeing with X; at the origin. Recall that
X; and Y; are defined by

(2.6) X;f(9) =d£t o, (9 exptX;),

(2.7) Y;f(9)= %Lﬂ) flexptX;-g).

We then have the following lemma.
Lemma 2.1. Let G be a step two nilpotent Lie group admitting dila-

tions as above. Then there ezists polynomials Pjr(z), j = 1,2,...,n,
k=1,2,...,m on R*™™ homogeneous of degree one such that

" 1)
(28)  (GI-XN)=Y Pa@pr, i=12..n.
k=1
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PRrOOF. This lemma can be easily proved using the definitions (2.6)
and (2.7). Expressions for X f and Y} f have been obtained in [3] (see
Proposition 1.26). That Pj; are independent of ¢ follows from the fact
that they are homogeneous of degree one. (For details see [3]). We also
remark that for some j it may happen that X; =Y;.

The above lemma is very important for our purpose and its im-
portance will become apparent soon. First we make some observations
and a definition. Direct calculation shows that

(2.9) (=X f) = ma(f) ma(X;),
(2.10) mA(Y;f) = —ma(X;) ma(f) -
Together these two equations imply that

(211) M f = Xif) = [ma(f), ma(X,)],

where [T, S] stands for the commutator T'S — ST. On the space of
bounded operators on L?(R*) we can define n derivations é;(\) by

(2.12) 6;(MT = [T, ma(X;)] -
Given a multi-index a = (a1, az,. .., a,) we define
(2.13) S(A)¥ = 61(A)*t -+ - ba (X))o

We say that an operator T is of class C* if §(1)*T is bounded for all &
with |a| < k.

Now from Lemma 2.1 and equation (2.11) we have the interesting
formula

(2.14) m (3 Pir(a) ) = 8500 malh)-
k=1

The operations 6;()) are derivations in the sense that
8;(A)TS)=T6;(A)S+6;(ANTS.

The above formula connects multiplication by polynomials on the func-
tion side and derivations on the Fourier transform side and may be
considered as the analogue of the formula

o

o f(©

(2.15) (=2miz; )N€) =
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for the euclidean Fourier transform. In the next section we formulate
and prove a Paley-Wiener theorem using formula (2.14).

3. A Paley-Wiener theorem for smooth functions.
For the sake of simplicity we consider functions in the Schwartz

class S(G). Let f be a function in S(G) and let f stand for the partial
Fourier transform in the central variable,

(3.1) fe,t) = / =279 {2 5V ds.
Rm
The formula (2.14) applied to f takes the form

(3.2) 8;(N) ma(f) = —2mima((Pif)™),

where the function Pj(z,t) is defined by

(33) Pj(x,t) = ink(.’r) tk .
k=1

We now define the modified Fourier transform of f in the following way.
For each ¢ € R", f(£) takes values in L?(T', K) and is given by

(34) FEX) = Us(€) ma(F) Ua(—¢).

Recalling the definition of Ux(), taking derivative with respect to ¢;
and using (3.2) we obtain the interesting relation

J : .
(35) == f(§) = =2mi(P;if)"(£),

0¢;
which is the analogue of (2.15) for our modified Fourier transform on
the group G.

The classical Paley-Wiener Theorem forthe euclidean Fourier trans-
form follows immediately from (2.15). If f is supported in |z;| < B,
j=1,2,...,n, then it follows that |9gf(¢)] < C(2nB)l®l and this
leads directly to the extendability of f(ﬁ) as an entire function on C"
satisfying the estimate

(36) f(O)l < mBImdl
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In the same spirit we would like to set up an isomorphism between
functions f supported in a set defined by the inequalities | P;(z,t)| < B,
Jj=1,2,...,n and a class of entire functions on C".

To this end let Hg(C™) stand for the space of entire functions F(()
taking values in the Hilbert space E = L%(T', K') which agrees with F (€)
on R" for some f € S(G) and satisfies the estimate
(3.7) IF(Olle < CerBlimel.,

Let Gp stand for the set defined by
(3.8) G ={(z,t) € G: |Pj(z,t)| < B, j=1,2,...,n}.

Then we have the following theorem. Let C*°(G p) stand for the set of
all smooth f supported in Gp.

Theorem 3.1. The modified Fourier transform sets up an isomorphism
between S(G) N C*(Gp) and Hp(C").

PROOF. The direct part of this theorem is easy. If f € S(G)NC*(Gp)
then iteration of (3.5) gives us

(39) ¢ f(&) = (=2mi)l*(P=£)"(&),
where P*(z,t) = Py(z,t)% -+ Pp(z,t)*". It then follows that
(310) g = @x* [ Ima (P s i,
which by Plancherel Theorem gives the estimate
0z F €)% = 2m?! [ 1P(a) (o) do

(3.11) ¢
< @nBe! [ |f(o)d.

G

From these estimates it follows that the series

ae f(o
(3.12) FQ) =Y ‘—(f,(—) ¢
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converges in the norm of E and represents an entire function. Moreover,
the expansion

oe f
13  FO=Y2 6y coerm,

a!

gives the estimate
(3.14) IF(Q)lle < C e2Bltmel,

This proves that F({) € Hg(C").

We now turn to the converse. Let F' € Hp(C") and let f be the
Schwartz class function such that f(f) = F(§) for £ € R™. We need to
show that f is supported in Gp. This will follow immediately if we can
show that

(3.15) /G IPy(z,8)P* |f (2, 8)? dg < B | 2

for all k. Again in view of the equation (3.11) it is enough to show that

(3.16) |GGe) fol, < cxmy iz

In order to establish this we proceed as follows.
Let § € C§°(R™) be a real valued function supported in |z| < 1

and [ [8(z)|? dz = 1. For e > 0 let 8.(z) = e "/26(z/¢) so that 6.(£) =
e"/2(e€). (Here § stands for the euclidean Fourier transform on R™).

By the classical Paley-Wiener Theorem we know that f. extends to an
entire function which verifies the estimate

(3.17) 16:(¢)] < C, e*melmdl

As 6 € C° we also know that ¢, € L(R™).
We now consider the function M,(¢) = 6.(¢) F(¢). Thisis an entire

function taking values in E and satisfies
(3.18) IM(O)|E < Ce e?mtBHlimel,

Moreover the calculation

19y [ @I de =115 [ O d = 1115
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shows that M, € L?(R", E). Now we can appeal to the classical Paley-
Wiener Theorem to conclude that there is a function T, € L?(R"™, E)
supported in |z| < (B + ¢) such that

(3.20) M. (&) = /]R" e 24T, (z) dz .

Differentiating this k times with respect to {; we get the relation

(3.21) (5%) kMe(é) = /mn =2 E(_omiz VT, (z) dz .

By the euclidean Plancherel Theorem this gives the estimate

J.

(a%)’“Me(f)H;de = [ I@re, T (@)l da

(.22 <@rB+e)* [ T} de

= (2n(B +¢))* / M6 de
]Rn
= @2n(B +e)* |IfI2.

Finally, as M,(§) is the product of ée(f) and F'(£) we have by Leibnitz

Formula the relation

k

(3.23) M) =3 ( ’;) 840.(6) 94 £(8),

£=0

where 0; stands for 9/9¢;. From the above relation we calculate

k k
(3.24) 107 Me(©lzs = 3D (2) (f) 056:(£)30:(¢)
) £=0 i=0
- Te ((OF4£(€))(OE F(€))").
But now

Tr (8]~ F(©))(0; 7 F(6)") = Te (95~ £(0))(@F* £(0))")
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and we have the inequality
L

>3 (5) (5) ([ oo
[T F )0 F0))7) duh

< (2n(B +e)**|If113 -

As 0.(€) = €™/?6(c€) it follows that the integral

/m ) 8%6.(€)0:0.(¢) de = &' /m ) (46)(¢) (9i6)(¢) de

(3.25)

tends to 0 as ¢ — 0 unless £ = 2 = 0. Therefore, if we let ¢ — 0 in
(3.25) the only surviving term is the one with £ =7 = 0 and we get

(3.26) /F Te (94 £(0)) (8% £(0))*) du(A) < (2x B || I3 ,

which proves (3.16).
This completes the proof of the theorem.

4. Some remarks and an example.

We have established a Paley-Wiener theorem for Schwartz class
functions that are supported in sets of the form Gp and this class
includes C§°(G). The sets Gp are not compact and this is in sharp
contrast with the classical case where one has to consider C§° functions
for the holomorphic extendability of the Fourier transform. Neverthe-
less, we can say something more about the sets for a class of nilpotent
Lie groups of step two which includes the famous Heisenberg groups.

Let G be a step two nilpotent Lie group with one dimensional
centre so that G = R®! x R. Then the polynomials P;(z,t) take the
form

(41) Pj(z,t) = pj(2)1,

where p;(z) are homogeneous of degree one. Let

(4.2) pj(z) = i: Cik zk
k=1
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and further assume that the matrix (Cy;) is invertible. Under this as-
sumption the conditions |z;| < B, j =1,2,...,n—1, will be equivalent
to |pj(z)] < aB, j =1,2,...,n —1, for some a > 0. In this situation,
though the set Gp is not compact its projection onto R""f is compact
for each fixed t. Therefore, if F € Hp(C") and F(§) = f(§) then for
each fixed t, f(z,t) will be compactly supported in a set of the form
|zj] < aB,j = 1,2,...,n — 1. But regarding the support of f as a
function of t we could say nothing.

The above situation is well explained by the example of the Heisen-
berg group H, = R?" x R. In this case the group law is given by

(4.3) (z,t)(z',t')=(z + ', t +t + F(z,z'))
with
1 n
F(z,z') = 5 Z(x'] Tipn = T;Tipn)-

=1

The left invariant vector fields are given by

0 1 0
(4-4) Xj=07j+§$n+j§, i=12,...,n,
0 1 0
4. Xjpn = — 1.2 _19.
( 5) jtn axn+j 2‘7:] ot J 1>27 ,
A calculation shows that
0 .
(46) }G—ijxndl-ja, ]=1,2,...,n,
0
(47) }/j+n—Xj+n=l'ja, ]-1,2,. ,n

As Xont1 = Yap41 = 0/0t we neglect the difference X5,41 — Yon41.
Thus pj(r) = Tnyj, 7 = 1,2,...,n, pj(z) = zj_a, ] =n+1,...,2n,
and we are in the above situation.

Another interesting feature of the Heisenberg group is the fact that
ma(z,t) = ma(z) ' and each 7y(z) defines a projective representation
of R?®. Therefore, one could completely discard the variable ¢ and
consider functions on R?" and define the so called Weyl transform.
For the Weyl transform we have proved a Paley-Wiener theorem in [4]
and there the isomorphism is between C$°(R%") and a class of entire
functions taking values in K.
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