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A characterization
of 2-knots groups

F. Gonzalez-Acuna

An n-knot group is the fundamental group of the complement of
an n-sphere smoothly embedded in S™*2,

Artin gave in 1925 ([A]) an algebraic characterization of 1-knot
groups:

Theorem ([A]). A group is a 1-knot group if and only if it has a pre-
sentation (z1,...,ZTp: :c;-'lﬂj, 1 <5 <n) such that

1) For j = 1,...,n p; is conjugate to x,(;) in the free group F
generated by z1,...,Tn,
n n
)M Bi=1I]zjnF, and
J=1 =1
3) p i3 the permutation (12---n).

M. Kervaire gave in 1965 ([K]) an algebraic characterization of
n-knot groups for n > 3.

Theorem ([K]). Let n > 3. A group G 13 an n-knot group if and only
if

i) G 1is finitely presented,

i) G is normally generated by one element,

iii) H1(G) =Z, and

iv) Hy(G) =0.
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We remark that if we drop the smoothness asumption in the defi-
nition of a knot, then their groups do not satisfy ii) in general. There
are examples of wild 1-knots whose groups are free products Z * H that
cannot be normally generated by one element (see [D] and [AF, exam-
ple 2.1)). It is a conjecture, known to be true for n = 1, that (smooth)
n-knot groups cannot be free products. Condition i) does not hold in
general for groups of wild knots. In fact the group of a wild knot is a
(smooth) 1-knot group if and only if it is finitely generated ([GHM]).

The problem of characterizing algebraically 2-knot groups has been
posed several times (see for example [Su, Problem 4.7]). Ribbon 2-knot
groups have been characterized algebraically by Yajima [Y].

We will give here a characterization of 2-knot groups in terms of
presentations. It has the flavor of Artin’s characterization of 1-knot
groups. S. Kamada has independently, obtained another characteriza-
tion of 2-knot groups ([Ka]).

A presentation & of non positive deficiency —h is saddled if it is of
the form

(*) Qs:{.’L’],...,.’En: ‘7:2—.'1_]'7721'9 ‘Tj—lﬂjv 1§2Sh, IS]Sn}a

where
1) For j = 1,...,n pB; is conjugate to z,(;y in the free group F
generated by zi,...,zn,

2) [1B8i=1]lzinF.
1=1 7=1

If, in addition, the permutations y and v = H?=1(2i —1,27) gen-
erate a transitive group of permutations of {1,2,...,n} then we call &
connected.

The genus of the connected saddled presentation ® is 1 — (|u| —
h + |uv|)/2 where |7| is the number of cycles of the permutation =.

The saddled presentation (*) is unlinked if
(‘1:17"'11"" : xJ_l/B] 1 S] S n)

and
(1, ,n 1 2585 1< <)
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present free groups, where

BiBix1B;',  ifjisoddand j < 2h,
Bi= Bji-1, if j is even and j < 2h,
B, if j > 2h

(Notice these two presentations are saddled of deficiency 0. Also 8;8;4+1
BJ-'I can be replaced by z;4, ﬂj+1zj__:1).

Theorem 1. A group i3 a 2-knot group if and only if 1t has a connected,
unlinked, saddled presentation of genus 0 (c.u.s.p. 0).

PROOF. A saddled presentation (*) determines, in a constructible way,
a compact orientable 2-manifold S properly embedded in $3 x [-1,1] as
follows. First one can construct a (unique) braid 3 on n strings whose
corresponding automorphism sends z; to ;. (See Birman’s book [B,
Corollary 1.8.3 and proof of theorem 1.9])

Let L C S be the closed braid determined by 3.

N

LuB

Figure 1
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Let B be the union of the bands joining the (2¢ — 1)-string to the
2i-string, ¢ = 1,..., h indicated in figure 1. Let L' = LUOB — LN B,
h

that is, L' is the closed braid determined by 8 H 02i-1.

=1

Then S = L x [-1,0)UB x {0} UL' x [0,1] C S x [-1,1]. The
fundamental group of S® x[—1,1]— S is presented by &. S is connected
if and only if & is connected and if this is the case, the genus of S is
the genus of &.

Every compact orientable 2-manifold properly and smoothly em-
bedded in S* x [—1,1] with no elliptic points is isotopic to a surface
determined by a saddled presentation. (The proof is similar to that of
Alexander’s Theorem ([B, Theorem 2.1}))

The group of S® — L is presented by (zy,...,2, : a:j"lﬂj j =
1,...,n) and the group of $® — L’ is presented by (z1,...,Zs : :cj'lﬂ;- j
=1,...,n) so L and L' are trivial if and only if & is unlinked. If this
is the case then L bounds D, a union of disjoint disks in S, and L'
bounds D', a union of disjoint disks in S3, so that, if in addition, & is
connected and of genus 0, then

?2=Dx {-1}UuSUD' x {1} C §* x [-1,1] C §(B* x [-1,1]) = §*

is a 2-knot whose group is still presented by &.

Every smooth 2-knot in S* is isotopic to one constructed as above.
Hence G is a 2-knot group if and only if it has a c.u.s.p. 0.

Figure 2 describes a deformation of a description of the spun trefoil
by a link with two bands so that a c.u.s.p. 0 can be read in Figure 3.
Group generators are numbers, 7@ denotes the inverse of n and z¥ =
y lzy.

It is easy to decide if a given finite presentation & is saddled and
connected and, if so, to compute its genus. Since one can decide whether
a given link is trivial ([H],[S, Satz 4.1]), one can decide whether & is
unlinked. Hence the set of c.u.s.p. 0’s is a recursive subset of the set of
finite presentations.

Thus the set of smooth 2-knots is recursively enumerable (Markov’s
Theorem (see [B, Theorem 2.3]) helps to do the enumeration a little less
inefficient). It is then possible to construct, from a given presentation
of an 2-knot group G a 2-knot with that group: recursively enumerate
all finite presentations of G until one finds a c.us.p. 0 & and then
construct the 2-knot determined by .
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Band relation

curve representing
34

Band relation
curve representing -
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Figure 3



A CHARACTERIZATION OF 2-KNOT GROUPS 227

Theorem 1 can be generalized to treat the case of embeddings of
a given compact orientable 2-manifold with empty boundary in S*.
Consider the saddled presentation (*) and the permutation

h

v =[](2i -1,2).

1=1

Denote by Tj,..., T, the orbits of the elements of {1,...,n} under the
action of the group generated by u and v. For k¥ = 1,...,r let ux
and v; be the restrictions of y and v to T} and let h; be the number of
nontrivial cycles of vx. Write gx = 1—(|pk|—hi+|uxve|)/2. We call the
unordered sequence (g1, ...,gr) the type of the saddled presentation.

Theorem 2. Let M? = [[ M,, be the 2-manifold with components
M,

=1
g1r-+ > Mgy, where My denotes a closed orientable surface of genus g.
Then G is the group of the complement of a smooth submanifold of S*
diffeomorphic to M? if and only if G has a saddled unlinked presentation

of type (g1,--,9r)-
The proof is similar to that of Theorem 1.

Similar characterizations can be given to deal with groups of 2-
manifolds M properly embedded in D*. One would require the saddled
presentation to be only “partially unlinked”: (zq,...,z, : x;lﬂj 1<
J £ n) should present a free group but (z1,...,Z, : .1:1_1[?; 1<j3<n)
should present a free product L x Fj,,|—|am| the second factor being a
free group on |uv|—(number of components of M) generators.
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