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1. Introduction.

In this paper, we will study the behavior of the R1esz transforms
associated with the Gaussian measure y(z)dr = e ~IzI* dz in the space
L!(R™). These transformations are defined by

R;f(y) = lim k;(y,z) f(z) dz,
e Jly—z[>e
where
1 2\ 1/2
1—r Z2j —TY; 2 2
ki(y,2) = ] J =lry—z|*/(1-1%) 4
o= [(g) wnene "
i=1...,n

The study of the boundedness properties of R; in the spaces
Lr( R") began with the work of B. Muckenhoupt [Mu], when the dimen-
sion is n = 1. He proved the boundedness of this transformation (in
this case it is only one operator) when p > 1 and the weak-type (1,1).
In higher dimensions the LP-boundedness, p > 1, was first proved by
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P. A. Meyer [Me], by using probabilistic methods. The same result was
also proved by several authors, [Gn], [Gt], [Pi], and [U]. The proof in
[Gn] is probabilistic, the others are analytic. Also, all proofs except
the one in [U] give strong-type constants bounded independently of the
dimension n.

The purpose of this paper is to show that R; are of weak-type (1,1)
in any dimension. The proof uses analytic methods, and it is carried
out by decomposing the kernel in several pieces and by studying each
piece in appropriate regions. Some of the ideas we use here have been
developed by P. Sjogren in [Sj].

We begin by explaining the notion of Riesz’s transforms for the
Gaussian measure. Let L be the differential operator defined by

1
2

and consider the set of eigenvalues A of the problem

L=—-A—z-grad,

Lu=A\u,
with boundary conditions
u(z) = 0([1?]"), for some k > 0 as |z| = +o0.

This set is discrete, the eigenvalues are of the form —m, m non-negative
integer, and the corresponding eigenfunctions are the multidimensional
Hermite polynomials H,(z), defined below, a = (ai,...,a,), with
|a| = m, where |a] = a; + -+ + an. The one-dimensional Hermite
polynomials are defined by

2 dn 2

= =ef —e™* >1.
Hy(z)=1, H,(z)=¢e el n>1

They have the following basic properties

+oo 2

H,(z)% * dz =2"n!\/7, n=01,...,
—00

+o0 2 +oo 2

Hy(z)e™® de = / e * dz = /m,
—o0 —00
and
+co

Hy(z)e = dz=0, for n>1.

—0o0
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Also
Hyiq(2) = =2(n+1) Hu(z),
Hppi1(z)+ 2zHp(z) + 2nHp_1(z) =0, n>0,
H-](IL’) = 0,
and

H!(z)— 2zH(z)+ 2nH,(z) = 0.

The multidimensional Hermite polynomials are defined by tak-
ing products of one-dimensional Hermite polynomials. Indeed, if a =
(ai,...,ay,), with a; non-negative integers, and z = (z;,...,z,), then
we define

Hy(r) = Hoy(21) ... Hap (220),

where H,, (z;) are one-dimensional Hermite polynomials in the variable
Zj.

The differential operator L is the infinitesimal generator of the
Ornstein-Uhlenbeck semigroup Ty defined by

T.f(e) = [ ko) £0) dy,

where
1 le~tz —y|?
w21 —e2)n/z CP\T 1 ezt )0

t > 0,z € R™. This means that if we set u(z,t) = T;f(z) then u is a
solution of the equation

k(t,z,y) =

U = §Azu— z - gradzu.

By using the properties of the Hermite polynomials mentioned above it

is easy to see that
L Hq(z) = —|a| Ha(z),

and
T, Ho(z) = e 1?1t Ho(2).

The measure 4(z) dz makes the operator L self-adjoint; therefore, it is
the natural measure to study the boundedness properties of the opera-
tors associated with L.
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In this frame the Riesz transforms are defined as follows. Given
J, 1 £ 3 < n, and Hy(z) a multidimensional Hermite polynomial, the
j-th Riesz transform of H, is defined by
1 0 2a;
——= =— Hq(2) = —%= Ho—¢; (2),

Vle] 0z; Vlal ’

where e; are the coordinate vectors in R". By linearity the definition
of R; extends to any polynomial in R".

We now show that this definition formally coincides, except for
a multiplicative constant, with the one given at the beginning of the
section. In fact, let H, be a multidimensional Hermite polynomial, we
have

tri-2\"1. 1
/kj(y,z)Ha(z)dz—/o (-—logr) g (1_,,.2)(n+1)/2

0 (/Ha(z)e_lry_zlz/(l_rz)dz) dr

Rj(Ha)(z) =

By;
1 1 a
“/0 T (logr)172 By, (L-tesr Haly)) dr
1 1 5
= — - Y (glallogr
A 27‘(—logr)1/2 0yj (6 Ha(y)) dr

_iH ( )/1 1 elellogr 7.
By oY) 27 (—logr)1/2 )

By making the change of variables r = e=t"/lel the last integral equals
to v/7/(2+/]a]), and the desired conclusion follows.

Instead of studying the operators R; it is enough to consider the
operator

K =sw| [ K fG)ds,
e>0 ly—z|>e

with kernel

1

- _ Z] _Ty] _ — |2 (1—1‘2)
(1.2) K(y,z)= A __—(1—r2)("+3)/2 e—Iry—z1?/ dr.

The kernels k; and K have basically the same behavior. In fact, we
shall show that the absolute value of its difference gives an integral
operator of weak-type (1,1) with respect to ydz (see Remark at the
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end of Section 2). Also, by symmetry it is enough to study the case
when j = 1.

Given R > 0 let

Nr={(y,2) eR* xR": |y < R and |z| <R,
or |z2| > R/2 and |y —z| < R/|2|},

and N}, = {z: (y,z) € Nr}. We define the operators

K =sp | [ K2 fe)d,
>0

ly—z|>e
Kif)=swp | [ K fe) s,
Iyivjlz>5
Kif) = [ K@)
Re\NY,

We clearly have
K*f(y) < K{f(y) + K3 f(y)-

We shall show that K}, :=1,2 are of weak-type (1,1) with respect to ~.

The organization of the paper is as follows. In Section 2 we prove
estimates of K} and that it is of weak-type (1,1). This done by show-
ing that K} can be pointwise controlled in terms of certain maximal
and singular integral operators appropriatly truncated. In Section 3
estimates of K} are shown as well as the weak-type (1,1). The proofs
requiere precise estimations of the size of various integrals in different
regions. In order to make the paper comprehensible we give most of
the details.

2. The estimate of KJ .

We begin by introducing the following operators.
Let b > a > 0, we define the maximal operator

i) = s s [ il s,

0<r<(a/\b/|y|) Y
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where B, (y) denotes the Euclidean ball with radius r and centered
at y. Also, given a function f € L}Y(R") and a Calderén-Zygmund
convolution kernel k¥ we define

o) Kfw=sp| [ k-S|
e>0
e<|y—z|<(anb/|y])

By x(y) we denote the characteristic function of the set E.
We have the following

Lemma 1. The operator K., is of weak-type (1,1) with respect to the
measure v dz, i.e. there ezists a constant C = C(n,a,b) such that

C
/ Y(y)dy < < IIflles
E»
where Ex = {y: K, f(y) > A}, for every A > 0.

PROOF. We first construct a countable family of balls F with bounded
overlapping, whose union is R" and on each ball B € F all values of
v(z) are equivalent. Given a > 1 we define the following sequence

1
T = o, Th41 =Tk +—, k>1.
Tk

The sequence {z} is strictly increasing and zx — 400 as k — co. Set
lo==z; and ly = Tp41 — zk, k > 1, then lp41 < lp < 21k41. Let

the width of R; is [;. Let B{, . ,B};, be a maximal disjoint family of
balls contained in R; and such that the diameter of B,{ is I; for all k,
1<k<N. I y,’c is the center of B,’C. then we have Iyi} = (zj41+15)/2.
It is easy to see that Uiv___l 2B£ D R;, where 2B denotes the ball with
the same center as B but twice the radius. Let us define B‘i = ZB,];.

The family F is the collection of all balls Ei and the ball B(0, z1).
It is obvious that the union is R". We show that F has bounded
overlaps. If z € ﬂ;c:l B then I < 4. This is because

l
B(z,21;) > |J Bi, .
k=1
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Let

- 1 1 .
Rj={a:eIR":xj—-%;SIzl<:v,'+1+2—;}, J21.

Then Ui\;l éi C éj. We have that
RkﬂRj=®, for k>j5+2,

which follows from the fact that

1
Tjp1 + 2-73]' < Tk — 2 7r
by the construction of z;. It remains to show that on each B € F all
the values of v are equivalent. In fact, for B(0,z;) this is obvious. If
B € F then B = B(yk,1/z;) for some j and |yx| = (zj41 + z;)/2.
Consequently B C B(yk,2/|yk|) and in the last ball all values of v are
equivalent.
Take o = b/a > 1 in the construction above and define

T = o | [ k-2 A
€>e>0 e<|y—z|<e’

We write
E, = U E\NB.
BeF

Suppose B = B(0,a), if y € Ex N B(0,a) then the integration in K f
is over the set |y — z| < a and consequently

K, f(y) < Txg,,,, 0 f)©)-

If ly| > o then the integration in K., is over |y —z| < b/|y|. If we assume
that B = B(yk,1/z;) with |yi| = (zj41 + =;)/2 and y € B(yx,1/z;)

then ; ) (a.b)
c(a,
|z =yl <z =yl +ly—y| < —+—< .
|yl T; Y|

This follows because since

1
r;>a and p < (1 - (%)2) |yl
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we have )
a,2
ly| > |yl T > (1 - (3) ) lyk| -

Analogously, (1 — (a/b)?) |yk| < zj . Therefore

A’7f(y) S T(XB(yk,c/|yk|)f)(y) H

for y € B(yk,1/zj), and |y| > a.
Consequently, by the weak-type (1,1) of T with respect to Lebesgue
measure (see [St]), we have

v(Ex N B(0,a)) < |ExN B(0,a)|
<l{y: Txg,,, @) > A}

C

- 2)| dz
SAAWMMﬂ”
< 1f(2)|7(z) d=.

B, 4574(0)

Also,

Y(Ex N {ly| > o} N B(yx, 1/z;))
< ev(ye) IEx 0 {lyl > o} N B(yx, 1/z;)
S 67(yk) |{y : T(XB(yk.C/lykDf)(y) > ’\}|

1
<erws [ £(2)]d=
B(yi,c/lyx)

c

< — dz.
A /B(yk,c/lykl) F(2)lr(z)az

By adding up and using the fact that the family of balls B(0, a), B(yk,
¢/|yx|) has bounded overlaps the lemma follows.

REMARK. Since M, j is pointwise dominated by the Hardy-Littlewood
maximal function defined with the measure v(z) dz, it follows from the
Besicovitch covering lemma that M, ; is of weak-type (1,1) with respect
to that measure.
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We define the following operators

niw =swp| [ K= X0 0),

|z|>R/2
e<]y-z|<2R/ly|

i@ =sw | [ =) 1@ Xy @),

[zI<R
e<|y—z|<2R

i) =sp| [ k=2 ) de] gy 0y 0).
€<||;|—Z=’|2$1

These operators are of the form (2.0).
We have the following

Theorem 1. Letn > 2, R > 4 and k(z) = z1/|z|**!. There ezist a
constant C = C(n, R) and kernels ki(y, z), k2(y, 2) satisfying

1/2
MNMZNSCW;%%FTﬁfy for |yl > R and |y —z| <2R/Jy|,
1
|k2(y,2)| < C for [yl <R and |y— 2| <2R,

ly — 2|1

and such that

6
K;£(y) < C (S Tif (9) + Maorf(y) + My f(3))

=1

where T;, 1 = 4,5,6 are defined by

= [ el Xy @,
|z|>R/2
ly—z|<R/|z|

T = ([ Bl 1)) xgy 00,

lz|<R
ly—z|<2R
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and

T = [ Il xpy 00

|z|>R
ly—zI<R/|z|

Corollary. Letn > 2 and R > 4. The operator K} is of weak-type
(1,1) with respect to the measure v dz.

2R
PROOF OF THEOREM 1. Assume |y| > Rande < |y — z] < —. We

_ |yl
write
Klu 2y — ! 1 “iry—2?/(=r%) 4
K(y,2) = (21 — 1) o (1— 7.2)(n+3)/2 € "
1
(2.1) 1 —Iry—z|2/(1=r)
+ 0 | (1‘T)(1_r2)(n+3)/2 e dr
= Ki(y,2) + K(y, 2).
Note that oR
vz (2R 2y for R>2
|y lyl

Then we have

1
1 2
C - —lry=z|f/(2(1-7))
Ry, 2)] < lyll/; (1= r)(tD/2 e v dr

1
- |y1|/ _(rTj—]W e—11=Py=2/(2r) g,
o T

ly—=1/lyl 1
<yl (/ +/ ey € )
0 ly—zl/ly] T

e=rlul?/2 dr) ov-(y=2)

2R ly—z|/lyl 1 ly—=[?/(2r)
—|ly—=z T
< eyl (/O D7z ¢ dr

[o o]
+/ —l—dr)
ly—zl/ly] T/

2(n+1)/2 oo
S e2R ‘yl ( — / un-—-Z 6_"'2 du
ly — 2| (ly—=11y1/2)1/2
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2 |yl \(-D/2
+ n—1 (|y - z|)
(n+1)/2
< Cu(R) ( vl vl ) _

y=zpT Ty = oo

We also write

1-|y—=z|/lyl 1
- — —_ e~lry=z*/(1-r%)
I\l(y,z) = (21 yl)/ﬂ (a- ,.2)(n+3)/2 € dr
o ) ' ! —lry—2I/(1=1?) 4
21—y r
1-ly—zl/ly) (1 = r2) (472

= I\’3(ya Z) + I{4(ya Z) .

As in the estimate of K, we get

1
- 1 _ _22 .
‘I\3(y, Z)I _<_ €2R |zl - yll Iy—z'/ly' m e Iy I /(2 )dT
(I3l ly—21/2)*/?
21 — 1 —u?
< ou(m 2k ume=e* du
y ly—z1/V2
< Co(ry MLl = 27
—_ n
ly — 2|
ly|!/2
= Cn(R) T
Let
1
(22 v = G5emr eTl0=my=af/@-0n) - g<t<o,

Since |y — z|/|y| < 1, for R > 2 we write

i ly—zl/1y| 1
Ka(y,2) = (21 = y1)/ﬁ r(n+3)/2 $(0)dr

ly==z1/lyl 4
+ (21 —yl)/o m(%(r)—lﬁ(O))dr

= Ks(y, Z) + I\’G(ya Z) .
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Observe that for 0 <t <r <1

1— — 2
[%'(t)] < ¢a (1 + K——Qf’—”-) o= l1=r)y=z2/((2=1)7)
<en e—|(1=r)y—z|*/(4r)

This follows since there exists ¢ > 0 such that
(1+s)e™/C D <ce™®* for 0<t<1.

Hence

=zl/ll g \
IKG('Q,Z)‘ S Cn IZI - yﬂL m e_l(l—r)y—zl /(41') dT

1
1 2
— e~ ly==l"/(an)
< C,,(R)A eyl dr

< Cu(R) s

zln—l

To estimate K5 we write

==l i
I\'5(y, Z) =Cp (Zl — yl)ey (y—=2) /0 m e—r|y} /2
1

. e—ly=zl?/2r) g,
)

— ly—=l/lyl
=2¢ zl__yle,,.(,,_z)/ 1 —rlvi?/2
0

n ly — 2|2 r(n=1)/2
.di (=) ar.
T

By integrating by parts we get

21— Y1 ly| (n=1)/2
Ks(y,z) =2¢q P ¥ (v=2) g=lylly—2| (——-)

ly — ly — 2|
21— Y1 | 12 _y(y—2)

+ cn — [y ¥t
"y -z

ly—z|/lyl
: / _(1_”/2 —lu=212/2r) —rlal?/2 g,
0 rin=
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21— Y
—1)e, 291
t-Dey
ly=21/lyl
./y N1 —aeny—erren g,
0 7.(n+l)/2

= K7(y7 Z) + I{8(y, Z) + KQ(y’ z) .
We have
pl2

|K7(yaz)| S Cn Iy — zl(n+])/2 ’

and

ly—z1/lyl
¢ or 121 —Y1| | 2 1 ly—zl?
Ka(y, )| < en ™™ T =5 [yl /0 e T dr

In the last estimate we have considered the cases n = 2 and n > 2
separately and used the fact that

+o0
/ um e du < ¢
(ly—=l lyl/2)1/2 = (lylly = =2])*/2

forn > 2.
To estimate K¢ we define

(2.3) $(t) = e~l0-0y=:1"/2) = g<pcq,
and write

ly—zl/1y]
- _ 21 — W 1
Ko(y,z)=(n—1)cn ————fy s /0 ey #(0) dr

_ ly—=/1yl 1
+(n—1)cn |271—_yti2 /0 w7z (9(r) = #(0)) dr
= Ki0(y,2) + K11(y,2).
Observe that 1
¢'(t) = - (1=ty—2)-yé(t),
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and consequently for 0 <t <r <1 and |y — 2| < 2R/|y| we have

Wl —ty=e2ramy
\/F

o1 < W E=2 =2 g < o(my

Hence

w=l/lsl 4
|K11(y7 Z)l S Cn(R) Iy—lgljl / ;;1-/—2 e"ly—zlz/(4r) d,,.
- 0

lyl oo —3 —u?
SCn(R)—— u" e du
ly = 2" Jgy—s11ais2rr2

ly|!/?
S CulR) o=

Now we write

+oco

z —_—

Kio(y,2) = ¢, -—%—1 / u"2 e du
[y = 21" Jag—s11y1/20172

o A1~ Y

—z 2)1/2

. zm—u (ly—=|1y1/2) ne?

Co T TniT u" "% e™™ du
ly — 2| 0

_ g A1 -
—Cnm-f-f\m(y,z),

and we obtain

Koy, 2)] S en e (fy — 21 )2 = e 2L
12\ Y, = Cn |y_zln n |y_z|n_1/2 .
. . . 2R
It is easy to see that in the region |y| > R and |y — z| < — the
® ]
y
kernels
|y|(n—1)/2 1 ly| |y|(rt1)/2
|y _ Z|(n+1)/2 ’ ly _ Zln—l ’ iy _ 2|n-—l ’ Iy _ Zl(n—l)/Z ’

are all dominated by
lyl'/2

ly — z[»=1/2
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Consequently, in case |y| > R and € < |y — z| < 2R/|y| we obtain that
(2.4) K(y,2) = ca k(y — 2) + k1 (y, 2)

where

ki =Ki+---+ K2,
and
ly['/2

k1(y, 2)| < Cn(R) 'ly _ zln—1/2 ’

We now assume |y| < R,and ¢ < |y — z|] < 2R. By (2.1)

I\’(ya Z) = I\’l (y7 Z) + A’Z(ys Z) )

and
K. <R 1—1 —lry=z|*/(2(1-7)) 4
l \Z(y’z)l = 0 (1 _ 7‘)("+1)/2 ¢ r
< R 2R’ 1 _ 1 ~ly==|?/(27) 4
= e , rFD/z € r
1
<Cpn(R)———.
< Cnl )W—ZP*
We write

1
- 1
I\l(yvz) = (zl - yl)/ r(n+3)/2 '1[)(0) dr
0

L |
+(5—w) / ez ($(r) — 9(0)) dr
=K3(y,2) +.I—\’4(y$2) )

where 1(t) is defined by (2.2).
As in the estimate of K¢(y, 2z) we obtain

1

A < -
,1\4(3/,2)' = CH(R) ly _ zln_l
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If ¢ is defined by (2.3) then

1
= 1
Ks(y,z) = cn (21 — yl)‘/0 ey #(0)dr
11
+en (=) [ sy (60) - 9O dr

SRR Sk 1N /+°° u" e du + Ke(y, 2)
=cp ,
ly = 2" Jy—z1/v2

~ 21 — Y1
"y — 2|+

_ ly—z1/V2 _
—Cn 2 L N / u" e~ du + Ke(y, 2)
0

Iy _ z'n+l
.z
= Cnm;g +Ks(y,2) + Ke(y,2) -
We have
Rs(y, )| < —er
5(Y, = | zln T _n=1>
and

1
o 1 e |2 r
Ro(4,2)] < CalR) |21 — wal Iy / e =<1/ 47 i

C(R)ll '|1 u e du

z|" ly—=z|/2
Ca(R)

Ty -zttt
Therefore, in case |y| < R, and |y — z| < 2R, we obtain
(2.5) K(y,z) = k(y — 2) + kao(y, 2)

with
ks = K1(y,2z) +---+ Ke(y,2) ,
and

Cn
C—
|k2(y,2)' —= |y zln_l
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If ly| > R then (y,z) € Ng if and only if |z| > R/2 and |y — z| <
R/|z|. Hence |y| = |z|, i.e.

41 4
— < < —
(1+5) Elswi<(+g)H,
in particular |y| < 2R for R > 4. Then by (2.4)

/ K(y,z) f(z)dz = ¢, / k(y — z) f(2)d=

N |z|>R/2
ly—z|>e e<|y—z|<R/|z|
n / ki(y,2) f(2) d=.
|z|>R/2

e<|y—z|<R/|z|

Therefore

sup | [ K, f(z)d:

<cn sup / k(y — z) f(2)d=|

>0
Nk l:I>R/2
ly—z|>e €<|y—ZlSR/|z|
[ @l
21> R/2
e<ly—2I<R/l2]

Since R > 4 then |z|/2 < |y| < 2|z] and so

R _R_IR
200l = T2l = Tl
We have
Hy-af@d= [ k=2
121> R/ 21> R/2
e<|y—z|<R/|z| e<|y—z|<2R/|y|

Ky - 2) f(2) d=.

[z|>R/2
R/|z|<|y—z|<2R/|y|
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To estimate the second integral on the right hand side we write

L= / k(y — 2) f(2) dz
21> R/2
R/|zI<ly=I<2R/ly|
< / Ik(y — 2)| 1£(2)] dz
R/2|y|<|y—z|<2R/|y|
1

<c |f(2)|d=
ly — 2["
R/2)yl<|y—z|<2R/|y|
C
<—% (=) dz.

(Em) ly—z|<2R /|yl

It easy to see that e=I** ~ e~ 19" for ly — z| < 2R/|y| and |z| < 2|y|.
Therefore
c

L £ ———7—
Y(B2r/191(Y)) JBaoryyy (9

<cMasrf(y),

|£(2)[+(2) dz

since |y| > R.
Consequently if |y| > R then

sw| [ Kwaf@d]sase| [ k-

e>0
N} |z]>R/2
ly—z|>e e<|y—z|<2R/|y|

+ M3 2rf(y)

+ / ks (3, 2)| £(2)] d .

[z|2R/2
e<ly—z|<R/|2|

Let us consider the case |y| < R. We write

| Kwas@a= [ Kwoiee

Ng jzI<R
ly—z|>e ly—z|>e
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+ / K(y,2) f(z)dz

|z|>R
e<|ly—z|<R/|z|

and |z| < R implies |y — z| < 2R. Consequently we may apply (2.5)
and get

[ Ewaf@d=c [ k-2

|zI<R |2|<R
ly—z|>e e<|y—z|<2R
v [ k).
[z2|I<R
e<|y—z|<2R
Thus,
sw| [ Kwof@d|<ase| [ -2
e>0 >0
[z2|I<R |z|]<R
ly—z|>e e<|y—z|<2R
v [ el .
[2|[<R
ly—z|<2R

If |2/ > Rand |y — z|] < R/|z| then |y — z| < 1 and since |y| < R
we may apply (2.5) to write

[ Emear@e= [ -9

|z2|>R |z|]>R
e<|y—z|<R/|z| e<|y—z|<R/|z|
+ / ka(y,2) f(2) dz
|z|]>R
e<|y—z|<R/|z|
= J] + Jz .

We have
2] < / lka(y, )| |F(2)] d .

|z|>R
ly—zI<R/|z|
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Since R/|z| < 1 we write

5 = / Ky — 2) f(z)dz — / Ky — 2) f(2)dz

lz|>R |z|>R
e<|y—z|<1 R/|z|<|y—z|<1
=J3—Js.

In the region |z| > R and R/|z| < |y — z| < 1 we have that || <1+ R.
Since |y| < R we have el x e"ylz, for z € By(y). Consequently

! +R) ! ()] 2(z) dz

R ¥(B1(y)) JB.(y)
< CrMirf(y).

[Js| <C <

Therefore

swp| [ K@) )|
>0
> |z|>R
e<|y—z|<R/|z|

< ¢, sup / k(y —z) f(z)dz

e>0
|z|>R
e<|y—z|<1

+ / lka(y, 2)] 1£(2)] dz
|z|]>R
ly—z|<R/|z|
+ My rf(y).

Then for |y| < R we obtain

sup / K(y,z)f(z)dz]gc,, (?;;g’ / k(y—z)f(z)dz\

>0
Ny l5I<R
ly—z|>e e<|y—z|<2R
+ow| [ k-
>0
|z]<R

e<|y—z|<1
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+ / lka(y, 2)| | (2)] d=

[z|<R
ly—z|<2R

+ / lka(y, )| £ ()] d=

|z|]>R
ly—zI<R/|z|

+M1,Rf(y)>-

This completes the proof of Theorem 1.

PROOF OF THE COROLLARY. By Lemma 1, the operators T}, T and
T3 are of weak-type (1,1) with respect to the Gaussian measure.

We shall show that the operators Ty, Ts and T¢ are bounded in
L},(R"), and consequently of weak-type (1,1) with respect to the Gaus-
sian measure. Let us first consider Ts and Tg. We have

[omsmeta= [ et [ i) dedy

lyI<R |z|<R
ly—z|<2R
< echn(R) —M e~ 1#1* 4z dy
- ly — z|*~1
ly|<R|y—2z|<2R
< cn(R)/ 1£(2)] el 1 i
B REr ly — z|*~!
ly—z|<2R

< Cu(R) [Ifllzs -

If lyl < R < |z|, and |y — z| < R/|z| then |2|> < 1+ 2R + |y|* and
consequently

/ Ts f(y) eI’ dy < !*?R¢ (R) e~ lul’

_f& eldl’ =11 gz gy
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< ca(R) / F(2) el
m'l
1
/ T e
ly—z|<1
< Ca(Bfllns -

Let us now consider Ty. If |y| > R, |2| > R/2, and |y — z| < R/|z|,
then |y| = |z|, and by (2.4) we have

ly|!/?

|k1(y, 2)| | f(2)|dz < Cr(R) Ty |f(2)|dz
l:|>R/2 :1>R/2
ly—2I<R/|2| ly—zI<R/l2|
=T.f(y)-
We have
/ Tuf(y) e dy < ca(R) / elol
lyI>R lv|>R
12|12 I_mfvT)—lTE =15 g gy
y -z
ly—I<R/l2]
< ca(R) / F(2)] 1= 2172
R»
1
PR
ly—2I<R/|2]

< Cu(R)||fll1 -

This ends the proof of the corollary.

REMARK. We show here that the kernels k; and K have basically the
same behavior when j = 1. The remaining values of j are treated in a

similar way. We set
1-r2\/2
(p(?")— (—lOgT) .
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The function ¢ is increasing in (0,1), (1) = V2, and the inequality

1—r2
272

—logr <
valid for 0 < r < 1 implies that ¢(r) > v/2r and consequently
(1)~ p(r) < V2(1 - 7).
We write

ki(y,2) = ki(y,2) — V2 K(y,2) + V2 K(y,2)
=H(y,z)+ V2 K(y,z).

We have

1
_ 90(1) —(,0(7‘) —|z=ry|?/(1=r?)
—H(y,z) = (21 —y1) o (1—r2)(n$3)/2 € dr

1
1) — (7 e
0 (1‘P_£r)2)(n_-£3))/3(1—7‘)e lz—ryl?/(1=12) 4

+ U
= Hl(y,z) + Hz(y,Z) .
We have

1
1 2 2
_ ~le—ryl?/(1=1?)
IHl(ywz)l < C|21 yll/o (1 _ ,,.)(n+1)/2 e Y dr

= ﬁl(yvz) )
and

1
1 2 2
- = e lz=rylf/(1-r)
|H2(y’z)| < cl:”'\/() (1 _ ,,.)(n—l)/Z e Y Tldr

= fIQ(y,Z).

We now proceed as in the proof of Theorem 1. We first assume |y| > R
and € < |y — 2| < 2R/|y]. We begin by estimating H;. As in the
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estimate of K5 in Theorem 1 we get

. ly—zl/lsl 1 ) 2
Hy(y,z) < |yl(/ +/ _—e—ly—zl /(27)
0 ly—z1/ly) T2

v
e~y /() dr) eV (y=2)

ly==1/1sl 1
2R - -ly=z? /)
e |y|(/0 (n-1/2 € v dr
1
1
ly—z1/1y 77D

2R Cn e n—4 —u?
s e Iyl 'I—_—In—_:;' u € du
y—= (ly==|lyl/2)*/?

(n=3)/
G )

c 1
ly — 2"~ (Jy|ly — z])!/?

()

We now estimate H 1. We write

< o)

. 1-ly—z|/ly| ! .
Hi(y,z) = |21 — yll/ 2)(n+1)/2 e~ Iry==1"/0=") gp

1
1-ly—zl/1yl (1 = r2)(n D7z ©

= H3(y,2) + H4(y,2)-

+ |21 — v e—lry=z1?/(1=7) 4.

We estimate Hj in the same way we estimated K3 and get

|1/2

Hj(y,z) < cn(R),ylezln_—s/z .

We also have

|y zI/Iyl 1 Iz (1 ’_) |2/(2T)
3 —lz=(1-r)y
Hy(y,z) < |1 yll/; (ntn/2 © dr
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ly—=z|/]yl 1
Sl yl'/ gz e e0 ar
0 r
+oco
z -

y (ly—2lyl/2)1/?

1
< C(R) ———— .
= ¢ )lz—yl"‘2

In the region |y| > R and |y — z| < 2R/|y| the last kernel is dominated
by
lyl'/

ly —z[»=1/2

C(R)

In the region |y| < R and € < |y — z| < 2R we proceed as in the
proof of Theorem 1 to get

1
Hi(y,z) < Co(R) ——— ,
l(y ) ( )ly_zln_l
and )
< —_—
HZ(y’z) = Cn(R) ]y _ z’n_g

Now by arguing as in the proof of Theorem 1 we obtain that

Hl*f(y)=§1;g‘ / H(y,Z)f(Z)dZ|SCiT.-f(y),
e

=4
R
ly—z|>e

and therefore Hy is of weak-type (1,1).
We also define

Hf(y) = / \H(y,2)||f(2)] d=,
R\ N,

and since ¢(r) < /2, we have that

1
: |21 — Ty —|ry—z[?/(1=12)
|H(y,z)lsc/0 (—l—me dr.
The right hand-side of last inequality is the kernel of the operator con-
sidered in Lemma 2, Section 3, which restricted to the region R™ \ N}
gives an integral operator of weak-type (1,1) for R sufficiently large.
This will be proved in Theorem 2.
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3. The estimate of K3 .

For z # 0 set n = |z|. Given y € R" there exist unique £ and v
such that
z
y=§{—+v.
n

Given y,z € R" by a(y,z) we denote the angle between y,z, 0 <
a(y,z) < m. We shall show that the set R® x R"® \ Ng can be written
as a disjoint union of the following sets:
Dy, ={(y,2) ¢ Nr: £ <n, and a(y, z) > 7/4},
D; ={(y,2) ¢ Nr: £>n, and |y —z| 2 B(ly| V |2])},

D3 ={(y,2) ¢ Nr: ly — 2| < B(ly| V|2]),
or both £ < and a(y,z) < 7/4},

provided 3 > 0 and sufficiently small.
We set

D3 ={(y,z) ¢ Nr: ly—z|<B(ly|V |z])},

and
D2 ={(y,2) ¢ Nr: £ <nand a(y,z) < 7/4}.

We clearly have that D3 = D} U D2 D, N D, =@, D, N D3 = &, and
D, N D? = @. Observe that if |y — z| < B(|y| V |2|) then |y| = |z|, with
constant in the equivalence only depending on . Therefore

{(v,2): ly =z < Byl VIzD} C{(y,2): |y — 2| < Cpl=l}.
If B is sufficiently small then C3 < 1/2 and we have
{(v,2): ly—2[ < Byl VIzD} C{(y,2): aly,z) </4}.

Then by taking 8 > 0 sufficiently small we obtain that D; N D = &,
and R™ XR"\NRZDl UDQUD:}.

Lemma 2. Let K be the kernel defined by (1.2). Given § > 0 suffi-
ciently small, B; > 0, and B, > 2, there ezist R > 0 sufficiently large
and a constant C depending only on 3, R, By, By and n such that the
following estimates hold.



WEAK-TYPE ESTIMATES FOR THE RIESZ TRANSFORMS 255

a) If(y,z) € D, then

|K(y,2)| SCef", g, =¢€Vo0.
b) If (y,z) € D, then

|K(y,2)| < C.
c1) If (y,2) € Dy and |y — 2| 2 B(Iy| V |2]) then
|K(y,2)| < Cef".
¢2) If (y,2) € Dy, ly — 2| < B(Iy| V |2I), and |o] < By [y then
K (y,2) < Cn™ (1A ef’-ﬂ’) .

¢.3) If (y,2) € D, |y — 2| < B(|y| V |2]), and |[v| = By /n then

|K(y,2)| < Cl—}l—; (1 A 652—"2) .
v

PROOF. We define

1
. lz1 —ry1l ey /1=r?)
Ki(y,z) = o (1— TZ)(n+3)/2 e~Iry=sl/ dr.

Clearly |K(y, z)| < K1(y, z) where K(y, z) is defined by (1.2).

Case a). Suppose first y - z < 0. This implies £ < 0, and consequently
&+ = 0. We also have

ly =2 > yl? + |2* = 2y -2 > (12" + [y[*) > (B(ly| V 2]))?,

and since (y, z) ¢ Ng, we obtain that |y — z| > SR. In this case we also
have y-(y —2) > 0.
We write

1/2 IZ] -Tr
- _ y1| —|ry—z|2/(1—r2)
Ki(y,z) = /0 ] e dr

i |21 — ry1| 2 2
=7 Il —fry—z|*/(1-1%)
+ /1/2 (1 — r2)(n¥3)/2 € dr

= Ka(y,2) + K3(y,2).
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Since y - z < 0, we have
1/2 |z _
- _ 1 Tyll
Ka(y,z) = /0 A= o
e~ (PlylP 4772 ~2ry-2)/(1=r?) g o —n®
1/2
< (g)(ws)/z (|21|/ e‘(”‘)z/z dr
0

1/2 ) )
+ |y1|/ e~ (rn1)°/2 d,.) e "
0

+oo —u? 2
<cn e " du)e™ .
0

Also, since y - (y — z) > 0, we have
M da = (= :
K _ 1 1 —l=ny=z*/((2=)7) 4
\3(y, 2) /(; (@ =)o e r

1/2 1
< _
S Izl yll/; ((2 _ T)T)(n+3)/2
e~ ly=21/((2=n)7) 2y-(y=2)/(2-7) g,

+/1/2 lv] o—rlul?/2-n 1
o ((2=r))n+3)/2 r(n¥1)/2

. e_ly—zfz/(ﬂ—r)r) 62 y-(y—2)/(2—7) dr

(4/3) y-(y—2) 1z 1
<9 y(y—= — S
=ce ('zl y"/o CEDDRE

e—ly=I?/((2=r)r)

a-r

1/2 1
+/o (2= r)r) =172

e—ly=2/(2=ryry __ (1= 1)

By making the change of variables

ly — 2|
((2=r)r)1/2
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the last expression equals to

+
C /3 v (y=2) ( 21—l [T
ly — 2|™*! Jay—zi/v3

1 o0
+ m / "l e_“2 du)
ly —z|* J21y—z1/v3

<Ce/Mv-n __ L —aly—zPsn
- ly —z["
“(Paa(ly = 2]) + Pa2(ly = 20)),

—_ 2
ue " du

where P,_; and P,_; are polynomials of degree n — 1 and n — 2 respec-
tively. Therefore

Ks(y,2) < Co(R) /3y (y=2) =t ly==I*/3
= Cr(R) e(4/3)yz —412%/3
S Cn(R) e—'lz ,

since |y — z| > BR.

Second, we assume y - z > 0. In this case we have 0 < ¢ < 5. Since
a(y,z) > /4, we also have £ < |y|/v/2. In addition, for 0 < ¢ < 7 and
0<r<1,wehave n—r€fl=n—-r€ 7.

We write

‘ z
=2 =l
In(.%z):/ A= e

e~ le=ral*/(1=r?) g €297
= I] 862—1’2 .

We shall show that the integral I; is bounded by a constant independent
of £,n and v.

In fact, let us first assume that n < R/2. Since (y,z) ¢ Ng,
ly| > R, consequently

lv|=,y—£§‘2|y|—£> (1—%)R.
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Therefore

1
1 2
. —— O L Ay C e Rty
I STI/O (l—r)("+3)/2e dr

! |rv1| 1 2 2
~(rlsD?/(1=r?)
+ o (1—r2)1/2 (1 —r2)(n+2)/2 € dr
1
<Ca+R) [ — 2t sa-m 4,

o (1—r)n+3)/2
1/2 1
< C(l + R)([) m dr
+ /1 1 -wP/asa-ny d,)
172 (1 —r)n+3)/2
< Cu(R) (1 + Jo| D / T am e du)
0

< Cn(R).

In case n > R/2, we have

1
1 2 2
—_— (D /(4(1=7)) —€—rnl*/(2(1—7))
I1SC77/(; (1—r)("+3)/26 e dr.
If £ is near to 0, t.e. (1—/3/2)np <& < n, thenn— ¢ < Bn/2, and we
claim that

Iy - z| 2 ﬂ?’] ’

for A > 0 sufficiently small. In fact, we obviously have |y — z| > |y| —n,
and by the assumptions y-z > 0 and a(y, z) > 7/4 we have £ < |y|/V/2.

Then
ly—z| > [\/i(l—g)—l]n.
It A F-1)
P

then the quantity in brackets is greater than or equal to 3, and the
claim follows. Consequently

R
pl2ly—el-ln—e> (8-5)n=p1>5%.
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Hence,
Ch)? B
4(1-r)~ 4 41-r"
therefore
r<cn [ 1 ~(Brn)? /(16(1-7)) 4
1221 ) A= pmarz © r

1/2
< 02(n+3)/2n// e—(ﬂrn)zl(s) dr
0

1
1 2
—_— e~ (BW*/(64(1-1))
+C'77/1/2(1_r)(n+3)/2e dr
Cn /. n
< Zn
<3 (1+ n"+‘>
< Ca(B,R).

If0< &< (1-p/2)np then n — €& > Bn/2, consequently

1
1 2
—_ - le=ml*/(-r)
IISCT]‘/O (l—r)("+3)/2e dr

1-(n—¢€)/(2n) 1 le—rn|2/(2(1~7))
B e -r
- C"/o (T—rymr © !
1 1

1— 7.)(11-0—3)/2

e~ le=ml*/(2(1=7) 4.
1-(n—€)/(2n)

+Cnq

=I1+4+1I.

259

FO<r<1—(n—-2¢&)/(2n),then 1l —r > (n—€)/(2n) > /4. Hence,

4 (n+3)/2 1 .
I<cC (3) n/ e~ &= /2 gr < Cu(B).
0

H1-(n—-¢)/(2n) <r <1,thenrn—& > (n+€)/2—€ > PBn/4. Therefore

I 1 _ 2 r 1
U< Cn [ gy 506520 dr < Co(B) o < CulBL ).

This completes the proof of case a).
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Case b). Since (y,z) € Dy, it follows that n < ¢ < |y| and |y — 2| >
B(ly|V |z]) = Bly|. Also, (y,2) ¢ Ng implies |y — z| > BR. So,

+L <1,

| IS
2ly|

2ly|

Nlm
N =

Then we have

1
1 2
— = o—lry=z|*/4(1-7))
Kl(y,z)SC/; (l—r)("“)/ze dr

' 2
=C e~ 1A=m)y=z1*/(4r) 4.

0 ,,.(n+2)/2
1 — 2 /4
4C  amyw-n [
T ly-z o r(n=/2
d
= (e—ly—zl’/(m) dr
r=1
40 amy-2 (___'_"L —ly—z|?/(4r)
|y — zl r("-2)/2 =0

1 —r|y|?/4
_ A (RN s g,
o dr\ r(n=2)/2 )
For n = 2 the last expression equals to

40 /2yy—a) a4 g—ly—2l/

ly — z|?
2 1 2
+ c -1 'yl - / —l(1-r)y— z| /(4r) dr < Cl + |y|2
ly — | ly — 2|
<C(B,R),

and in case n > 2 equals to

1
4C e—l2l?/4 4 ¢ |yI2/ __}_e—ly—z—rylz/(‘ir) dr

ly — 2[? ly — 22 r(n=2)/2
2C(n-2) ' 1
ly—=z2 Jo rn/2

<L 14 (14 |yl? 1 —ly=z=ry|*/(47) 4
<= (1rarwd [ oge r).

e~ ly—z=ryl*/(47) 4.
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To estimate the last integral we write

1 ly—:l/2la) 1
/ nl/z e—ly=z=ryl*/(a7) g =/” ! +/
o T 0 ly==1/(2ly])

ly—z1/(2]y])
< L ymmral?/tan) g,
~Jo rn/2

n/2
2
+ ( lyl )
ly — 2|
FO<r<|y—=z|/(2ly|]) then |y — 2 —ry| 2 |y — 2| — rly| = |y — 2|/2,
and consequently

ly—=|/(2[y]) 1
/ 1 e—ly—z—rylz/(‘“) dr < / -—1/2 e—ly=z1?/(167) 4
0

rn/2 o T
Cn
Ty -z~
Therefore for n > 2
1 1+ y[* | 14yl

Ki(y,2) < Ca(B) ( ) < Cu(B,R).

ly—z* " ly—=z?  |y—z[

This completes the proof of case b). .
If (y,z) € D3 thenn > R/2 (otherwise D = &), and since (y,z) ¢
Npg, we have |y — z| > R/n.

Case c.1). Since (y,z) € D3, we have £ < n and a(y,z) < /4. So,
ly—z| > Bn, 0 < € <n, and n > R/2. Then by arguing as in case a)
when y -z > 0, and n > R/2 we obtain

Ki(y,2) < Ca(B) 8’7"

Case ¢.2). Let us first assume that £ > 5. We claim that there exists
R = R(B;) large enough, such that if £ > n then

(3.1) 1<€<ll<yig.

and

1
(32) f—T]>;.



262 E. B. FaBEs, C. E. GUTIERREZ AND R. ScoTTO

In fact, |y| < Bly| + n implies (3.1). Next, suppose that £ —n < 1/n

then R B
v| >y —z| - (€ - >—> !
lv| > | |=(—n)2 ; "

If R > B, + 1 we get a contradiction with the fact that |v| < B;/n.

We write

21
I = ré) n —rol (rleD?/(1=r?) —|rE—n|?/(1=1?)
- _ —(r|v -r —|ré— -r
Ky(y,2) = f (1—r2)nraz © € ! dr

< [M 1 =ro) 1
~ Jo (1=r2)1/2 (1 -r2)(n+2)/2
. "(’|v|)2/(1—r2) _|r5_n|2/(1_rz)dr

r|v] 1
o (1—r2)1/2 (1 —r2)(n+2)/2
e (rIo)?/(1=r) —IrE—a*/(1=r7) 4.

1
1 2
- = —lrg-nlf/(a(1—1))
<ef (=)o © o

1—(&—n)/(2€) 1
~(/ =y

1
1 .
+/ R S /(4(1—r)>d,,)
1-(¢-n)/2¢) (1—r)("¥D/2

=I141I.

f n/2
I<en (E—_n> < en(B) 0"

F1-(-m/(2)<r<lthenrf—n>(E+1n)/2—n=(£—n)/2
Hence

(&—n)/(2€) 1 )
1< / 57 e~ l6-nl*/(167) g, <
0 r(nt2)/ 1€ _UI"

We have

< Cnn".

Therefore in case { > 1 we obtain

Ki(y,2) < Can™.
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Second, suppose now that £ < 7. We claim that for R sufficiently
large, i.e. R > B; + 1 and

R? 1-53
R—1>8(1—2ﬂ)’

we have

n
(33) n—§&< 20-5)°
and

1
(34) n—&> ; .

In fact, first observe that in the region |y — z| < B(|y| V |2|) we have
€ > 0 for § < 1/4. Then

B B R—-1
=z <|ly—=z|+ ++v<—++——,
n=lel Sly—zl+lyl < Tgn i+l gt —

and consequently
1-28 R-1
<E+—
=3 " £ -
R-1
<€+ 2R j7B
R11-2p
< -~z
_£+221—ﬂ
11-28

and (3.3) follows. The proof of (3.4) is similar to that of (3.2). Now we
have

e—rn|2 .
I‘-l(y»z)<0((n E)/ Tm le=ral2/(2(1=7) g
1 2
—_ e le=malf/(2(1-7))
+£A (1—r)m 07z © dr

1
1 2 2 2
- —l&=ral*/(2(1-1)) £ —n

+/(; A= r)~For e dr) e

= (I + IV + V) &7
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We have
1-(n—€)/(2n) 1
m< -6 [ e
1
1 .
+(n— g)/ Ll g,
1-(n=)/(2q) (1 —1)(n+3/2

FO<r<1—-(n—¢&)/(2n) thenn—€ <2n(1—r). Also,if 1 —(n—
€)/(2n) <r<lthenrp—¢=n—€—(1—r)p > (n—£)/2. Therefore

1-(n—£€)/(2n) 1
(n=¢) /0 A=z &

1—(n—§)/(2n) 1
< - -
_277/(; (1_7-)(n+1)/2dr

(n—1)/2
U
<ean | ——
" (n - 6)

<Cpn",
and
! 1 le—rnl?/
(n—€) / ey
1—(n—€)/(2m) (1 — 1) F3)/2
(n=€)/(2n) —(€—n)?/(87)
<(p— —_d
<(n f)/{; r(n+3)/2 r
n—=¢&
<ec
" (= E)nt!
<enn™
Also
1-(n—§)/(2n) 1
< —————————————————————
IV_n/O T dr
+,7/1 1 —-wrsa-n) g,
1=(n=8)/(2n) (1 —r)(n+1)/2

(n—1)/2
n_ 1
S o (n(n—€> +(n—£)"“)

Scﬂnna
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and

1-(7-€)/(20) 1
Vs /0 (1- r)(n+2)/z' dr

1

1 .

+ / 1 —e-mrea-n) g,
1-(n-)/(2m) (L= m)n*¥D/2

< (_L)W{P_i__
=" \\n-¢ (n—&)"

Scn'r]n-

This completes the proof of case ¢.2).

Case ¢.3). We shall first assume that |v| > B,|€ — n| and consider two
cases: n < £ and n > £. Let us first consider the case n < £ and
|v| > B2(€ —n). We claim that

o] _ 28

—<__

& 1-8°
in particular by taking 0 < 8 < 1/5, we obtain |v|/§ < 1/2. In fact,

1 1
n<£$|y|<1_ﬂn<1_ﬂ£

which implies

253 < 28
—B"=1-38

ol < ly =2l +1E=nl < Byl +&) <281yl < 5 £,

and the claim is proved.

We have

1
1 2 .
‘ S —— L I L e I ICICE)
le(y,z)Sc/O A=y © e dr

1-]v]/§ 1
)
0 1-|v|/¢

= VI + VII.
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H0<r<1-—|v|/€, then
1
n=rt=(1=nE=(E=n)>l-E-n> (1-5) kI,

(we take B; > 1), therefore

1
1 —clof?/(1=r)
VIS/O(]._—T)('H'—Z)/Ze dT‘SCnW_

On the other hand, since 1 — |v|/§ > 1/2 we obtain

1
1 :
1 -pP/asa-n)
VHf{A T dr < en p -

Second, let us consider the case that { < n and |v| > By(n —£).
Then we have
bl _ 2

n 1-8°
In fact,

1
o] < Iy — 2| + € — n] < Bﬂn+(n £) < fﬂn+g2lvl-

If we choose By > 2 then

|v] g
— < ——
2 S1-8"
Consequently
_n=rll - —le—ral? /201-r))
Ki(y,z) < (/ (1 —r)("+3)/2 e dr
|ro1 ] —(r]oD?/(2(1=7))

. e—le—rnl?/2(1-m) d,.) £

1
1 2
- —_ e~ (rlvD*/(2(1=7))
— C ((77 g)A (1 _ r)(n+3)/2 €
. e~ lE=ml?/(2(1-7) g,
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1
1 2
—_ e~ (rleD*/(2(1-7))
+ 5/0 (1— @z ©

e~ le=mal’/21-7) g,

1
[ 1 —thdran-m)
o (1—r)nt2)/2

. e—le=rnl?/20-m) d,.) 70"

and
1__1 2/(2(1 2 /(21
(n—&)/ D=l e (rlvD?/(2(1-7)) —le=ral?/(201-7) 4.
-7 n

1—|v|/q 1 —le=rq|?/(2(1—7))
<(n- 6)(/0 A= © dr

1
1 2
1 —ehbrea-m g ).
* .[—Ivl/n (1—r)nt3)/2 ‘ 7‘)

If0<r<1-|v|/n then

E-rn=(=rn-(m-&> (1-5) bl.

Also, 1 — |v|/n > 1/2 by taking § < 1/5. Hence, both summands on
the right hand side of the last inequality are bounded by

1
1 : —¢ 1
B —o]2/(c(1-7)) "
(n 5)/0 (1—r)n+3)/2 ¢ dr < cn [o|nt1 < en Elia

The conditions 0 < r < 1 — |v|/n, and |v| > Bz(np — ) imply that
n — & < ((1 — r)n)/Bs, therefore

E—rn=(1—r)n—(n—£)>(1—-1%>(1-r)n2(—1—_2r—)77,

since By > 2. Then we have

5/ = (r1eD?/(2(1=7)) ~le=rnl*/(2(1-7) g

r)("+1)/2
1-|v|/n 1
. — ¢ S L L
= ”/0 (1 —r)@+/z © dr
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1
1 2
— e~ F/ea-m) 4
e r
/1—-|v|/n (1- r)(n+1)/2

1
1
—nlv|/8 -
<ne /Ivl/n 7 dr

-9 2
2 e du

77 o0
+c, Tt / u
o] /4
(""1)/2 —nl|v|/8
<c, (,, (l) glolys eV )
|v] oIt \/nlv]

n e—'l|v|/8
< Co (ko)™ D/2 + (nlol)*/?) =
<Com

ol

Also,

1
1 2 2
- = (b /ai=r)) —lE—Tnl?/(2(1—7))
|, w 6 o

1-lol/n 1
- = e-lE=ral®/(2(1-1))
= /0 (1 —r)(nt+2)/2 € dr
+ 1 1 —(rlo])*/(4(1=7)) g4
—_—Y 5 € r
1=fol/n (1 —r)+2/2
<C ' 1 —clo|?/(1-7) 4
=Y ), @=r)mrz € r
1
T
||

Therefore, if |v| > B2|¢ — n| we then have
1

£2—p2
|v|”e K

I\’l(ya Z) S Cn

From now on we may assume |v| < B;|{ —n|. We may also assume
that ) B
|6 —n| > = and |v|>—2.
n n

In fact, if | —n| < 1/n then |v| > B; |€ — n|, which falls into the case
previously considered.
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Let us first assume £ —n > 1/n and |v| > By/n. Wehave {—n < B¢,
this is because

lyl <ly—zl+ 12| < Byl VIz]) + 1zl = Blyl +n

and so |y| < (1 — #)~'n which implies n < £ < |y| < (1 = B)"1p. I
0 <r <1/2then

1 1 /1
n-ré=(1-nE=(E-n>(3-6)¢> 5 (3-6) 1,
and by arguing as in the case when n < € and |v| > B3(€ —n), we obtain

1
1 2 2
¢ - = —(rD*/(a(1=7)) —|rE—n|*/(4(1~T))
I\l(y7z)SCA (1—7‘)(n+2)/26 € dr

VI L pemapsaasny)
= C/O (1—r)m+7z © dr
ol 1 ~(rloD)?/(4(1=7) g

* 1/2 (1- 7')("+2)/2 ‘ "

co [ L —cwrinyg

- 0 r(n+2)/2 € r

< Cprr.

el

Second, let us now assume n —§ > 1/n and |v| > By /n. We have
: 3
— £ < —_ —_—_—
n=E<ly—z <7= 5"

(this follows because |y — z| < B(|y| V |z|) and by analizing |y| > n or
ly| < n) which implies
n—¢
n
by taking 8 < 1/3. We write

k)

=

B
1-38°

1
] In =€l _je—rnl?/2(1=r))
I\l(y,z) < C( o (1— 7‘)(n+3)/2 €

L e=(roD?/2a-1) g,
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1
v [ — 1 leral/ea-n)
o (1—r)n+2)/2

. e=(rloD?/(8(1=m) dr) e

1-((1-8)/(28)) (1=8)/n  [1-B(n—8)/n
-<(J g/
0 1-((1-8)/(28)) (n=€)/

+ /1 In —r o—l€=rnl?/(2(1=r))
1= (n—g) /g (1—r)("*D/2

L e=(rleD?/(21-7) g

vror le—rnl?/(201-7))
—|&—rq -r
*/o +/1/2(1—r)<"+2>/26

. e—(rlvD?/(a(1=r)) dr> -

If0<r<1/2 then

. R . B )
therefore
1/2
S Sy Y S
o (1- 7')("+2)/2
' 1 ~(roD)?/(a(1=7)) 4
! 1 —c|o|?/(1—7)
< C,/o (1 _ ,r)(n+2)/2 € dr
< G
lvln
If 1_5 ¢
— 7] —
0<r<l - ———
28
then

n=rél=n-¢+a-ne< (14725) A=,
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and
e=rn=(-n1-(-9> (1-725) a-n.

Therefore

1=(1=8)/@P) (1=0/n | _ | J—le=ral?/2(1-m) g
A (1—r)n+3)/2

.e—c(l—r)n2 dr

1-((1-8)/(28)) (1=€)/n 1
an/

° (I =@z
1

1

<Cy / 1

((1=8)/(28)) (=€) /n r(nt1)/2

(n-1)/2
<Can (;ﬂ_) e—c(m=&)n

dr e=c(n—8&n

-£
< Cn
(n—¢&"
< Cn
v|™
The case P ¢ ¢
1-81q n—
- — <r<l-p
28 n
is equivalent to
n—¢& 1-B8n-=¢
— <1 < —
b n 28 g

Then

m—rel=n—€E+(1-r)E< (%H)(l—r)n,

and consequently

/I—B(n—E)/n In — ré|
1-((1-8)/(28)) (n-8)n (1 = 7)("¥D/2
- e—le=ral/2a=r)) g~ (rlvD?/20-r)) g,
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C 1-B(n—€)/n )
< / 1
((1 ﬂ)/(Zﬂ) (n—8€)/n (1 —r)(ntD)/2

e lé- ral? /(2(1=r)) 7. e—¢-7|0|2/(vl-£)
n (n+1)/2
<cn (%)
n—¢

/((l—ﬂ)/(2ﬂ)) (n=€)/n
B(n—&)/n

(n+1)/2

/((l—ﬂ)/(2ﬂ)—1)(n—£)

—(1-B)(n—-¢€)

(n+1)/2 1/2
<C ( " ) (77__5) e—cnlel*/(n—8)
n—¢§ n

n/2
(L) e—calvl?/(n—6)
n—¢§

H1-8(n—-¢&)/n<r<1then
m—rél=n—-rf=n—€(+(1-r){<(1+8)(n—¥§)

e—calrn—(n=17/(1=€) g. —cnlvl*/(n—¢€)

e—cne? /(=€) g, e—cnlvl*/(n—6)

and _
m—§=n—-§—-(1-r)n>1-=-B)n-§).
Therefore

1

_In=rll  le—rniza-n) (oD g,
1 — r)(n+3)/2

1-8(n-6)/n (1= T)

1
1 2
S@+B)M=¢ P ) /(RO A
1-8(n-g)/n (1 = T)n /2
< _91___
(n=&)"
Chn

= ol
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Hence
Cn ,2__2
Ki(y,=z < SR 8T
)= R

This completes the proof of the case ¢.3) and therefore Lemma 2 is
complete.

Theorem 2. The operator Kj i3 of weak-type (1,1) with respect to the
measure y(z) dz, provided that R is sufficiently large.

PROOF. We decompose K3 in the following way

Kif)= [ K@)
= / K (v, )| |f(=)] dz + / K (v, 2)| |£()] dz
DY DY
(y, z ) d
+[)g K (v, 2)||f(2)] dz

= Kprf(y) + Kif(y) + K f(y)-

We shall first show that K%, ¢ = 1,2, are bounded operators in L}Y(R").
Let f € Lfr(]R"), we may assume f > 0. We have

1Kk Ay = [ 5 [ 1w dy s,
B D;
and by Lemma 2, part a)

[ Ko mas e, [ ey
{y: £<n,a(y,2)27/4)}
<C, e~ / e=lul’ dy
{y: £<0}
+ / e e—lvl’ dy)
{y: 0<£<|yl/V2}

< Cne_lzlz.
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Hence K}, is bounded in L}(R™). Also

IKR Sy = /m f@) /D K ) s
=/ f(z)/ |K(y, 2)|7(y) dy d=
|z|<R D;
* /|z|>R f(2) /;,; |K(y,2)|v(y) dy dz,

and by Lemma 2, part b)

/ |K(y,2)|v(y)dy < C / e v dy
DZ
? {y: >0}

=C e_"’lz/ e ¢ d¢ dv

Rn-1 n

1 R? —1z12
<C (ﬁ XB;(O)(Z)+6 XBR(O)(Z)> e 12

Therefore K} is bounded in L}(R™).

To show that K% is of weak-type (1,1) we shall dominate its kernel
by a kernel which is constant on certain cubes. We split R" into a
non-overlapping sequence of open cubes Q; with center z;,7=1,2,...

such that
Cn (1 A i) <diam(Q;) <1A —1— .
|zl |z

The sequence of cubes can be chosen such that {|z;|} is a non-decreasing
sequence. We set

R’g(y, Z) = !I{(yv Z)l XDa (y7 Z) )

and we define

Ra(y,2) =) xq,(¥) up Ka(y/,2).
y'E€Qi

=1

We claim that K3(y, z) satisfies the estimates of Lemma 2, part
c.t), ¢ = 1,2,3, with new constants.
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In fact, first observe that for y,y' € Q; we have

y=£Z 40, y =624,
7 U]

with )
€ —¢€'| < |y —y'| < diam(Q;) < (1 A T;‘l) )
and 1
E+E <yl +Iy'| <2 <I$i| + (1 A m)) :
Therefore,

2
€ — €% <2 (1/\—1——) +|a:.-|(1/\i) <4,
|zl |

and consequently
65'2—712 < 64652_"2 .

For given  and R we set D3 = D3(3, R), where Dj is defined at the
beginning of this section. Observe that if §; < f; then D3(81,R) C
D3(p2, R); and if Ry < R, then D3(B,R;) C D3(B,R;). The fact
(y,z) € D3 implies that |z| > R/2. We want to show that K3(y, 2)
satisfies an estimate like in Lemma 2, part ¢.1). Suppose first that
(v,2) € Ds(B, R), ly—2| 2 B(lylV2]), and y,y' € Qi. In case [y' — 2| >
B(ly'| V |z|) we may apply Lemma 2, part c.1), to obtain

(3.1) K3(y',z) < cet’ "

In case |y’ — z| < B(|y'| V |z|) we shall show that for R sufficiently large
we have

(3.2) ly' — 2|2 (1-8) (ﬂ—%)(ly’lﬂzl%

In fact, in such case we have

] 1 ]
(1—ﬂ)|y|<|2|<m|yl,

and

2 2
W =2l 2 ly =2l =y =y 2 Byl VIeh - %12 2 (8- =) Il.
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Now by analizing the cases |y'| > |z| and |y’| < |z| we have that

(8-2) 121> (8- 2)-B)('1V 12D

and (3.2) follows. Consequently, if (y',z) € D3((8 — 2/R)(1 — B),R)
then we may apply Lemma 2, part c.1), to obtain (3.1). If (v',2) ¢
D;3((B — 2/R)(1 — ), R) then by taking B small and R large we get

(v,2) € Di((8 = 5)(1 = B), R)U D((8 — 2)(1 = ), ).

If (y',z) € Di((B —2/R)(1 — B),R), since [y’ — z| < B(|y'| V |z]), we
then have ¢’ > 0, and by Lemma 2, part a), we get (3.1). If (y',z) €
D2((B —2/R)(1 — B),R) then ¢’ > 5 and by Lemma 2, part b), we
obtain (3.1).

Next, let us assume that (y,z) € Da(B, R), ly — z| < B(lyl V |z]),
and y,y’' € Q;. In this case we have

(1-=8)l=l <yl < |21,

1
1-5
and since |z| > R/2, we have |y| > (1 — f)R/2 > 3 for R sufficiently

large. This implies that if y € Q; then |z;] > /2, and consequently
ly| = |zi|. It is easy to see that

' — =< (264 2) W1V I=D).

Therefore (y',2) € D3(28 + 2/R, R). If |v|] < B/n then

c B+c¢c B
W <ly—y+| <=+ < -2
n n n

Then taking B small and R large, by Lemma 2, part ¢.2), we have
IK(y',z)| < Cn” (1 A 6512_"2) <Cqpg" (1 A eéz—nz) )

If |v| > B/n then [v'| > |v| — |y — ¥'| = |v| — ¢/n and so

B—c_&

o'l >
n n

and  |o'| > (1 - %) lo].
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By Lemma 2, part ¢.3), we obtain

Ky, 2)] < 2 (1 /\ef”-"’) < Cn (1 /\ef""z) .

B i
This proves the claim.

Clearly

Kif@ < [ Rolw2) £2)dz = Bf(w),

and —If:;zf(y) is constant on every ;.

In order to prove that .—T\.—'; is of weak-type (1,1), given A > 0 we
shall construct a set E with the following properties:

0) ECEx={yeR": Knf(y)>A}.

b) / e~ lyl? dy < c/ e~ lvl? dy.
E\ E

c) fU(z) = /Ef;.,(y,z)e"‘yl2 dy, then U(z) < ce~ =" in R

The last two properties imply the weak-type inequality, in fact

/ e~ gy < c/ e~Ivl” gy
FE . E

<5 [Frswe ay

=§/E[K Ki(y, 2) f(z)dz e dy
=§/m f(2)U(z)dz

<< Ifly -

The construction of the set E is done as in [Sj]. We recall the
construction here.

Given a positive integer j we define the cone

K;j={z: a(z,y) <7/4 for somey € Q;}.
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To each cube Q; we associate a forbidden region Fj defined by

Fj=|J{Qi: i>j and QiN(Q;+K;)+#2}.

The set E is constructed as follows. Let Q;, the first cube that intersects
E\. Since f;f(y) is constant on each cube @; we have that Q;, C Ej.
Next we pick Q,,, ¢; < i3, the first cube that intersects E) and is not
contained in the forbidden region F; . Continuing in this way, Q;; is
the first cube that intersects E) and is not contained in the forbidden
regions F;, for any @;, already selected. The set E is by definition the
union of the cubes Q;;, j = 1,2,... Property a) above is obvious. The
proof of property b) can be found in [Sj].

Let us prove c). Let S, denote the support of K3(-,z). The set S,
consists of the union of those @; that intersect Di. Let [, be the line
parallel to z and passing through v, with v L 2. We have

U(z) =/ K3(y,2) e~ ll* dy
]Rn

— ]2 — V4 <2
=—./ eIl / K3(s—+v,2)e™* dsdv,
Rr-1 1,NENS, n

I(v) :/ F3(s-z-+v,z) e ds.
l,NENS, n

Let w € [,NENS,, then there exists a unique 7 such that w € Q; N Dj.
The angle between w and z is less than 7 /4, and therefore z € K;, K;
being the cone defined before. In fact, if a(w,z) > 7/4 and (w,2) € D3
then |w — z| < B (Jw| V |z|) and for B small this implies a(w, z) < 7/4.

Every element of [, is of the form s z/n+v, and if Q; NI, # & then
every cube @); with j > ¢ that intersects l, is included in F;. Therefore,
for every fixed v, [, N EN S; is the line segment I determined by the
intersection between @; and the line [,. We shall estimate the size of
I. Let y,y' be the endpoints of such segment, with

and we set

y=€i+v, y'={'i+v, and 0<é<t.
n n
Hence

I:{sf+v:£<s<§'}, |§——£'|§<l/\i),
n |zi
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where z; is the center of @;. If |z;| > 2 then
5
E<yl <y =il +lail < 7 ail,

and
5

€<t et

If |z;] <2then ¢ < |y—zi|+2<3and & <E+1 < €+3/€. Therefore,
I is included in the line segment

J={s%+v: {Ssﬁ{-}—c(l/\%)}.

Now we shall estimate I(v). Let us first assume that w € I and
|lw—z| > B(Jw| V |z]). We have

K3(w,z) = K3(y,2) < Cet'—n" .

If @; intersects part of the circles
ly—z{<pfn or Jy—z|< . n
—_ —_— 1 I[} b

then one can get the same estimates, i.e. Z'.efz"”z, by applying lemma
2, part ¢.1), with |y — z| > én and 6 < .
Hence

[(v) <C (1 A _2_) 652—1;2 6—52 < e—lzlz .

Second, we assume w € I, |lw — z| < B(|w| V |z]) and |v| < B/n.
We have _ . .
Kj(w,z) = K3(y,z) < Cn" (1 Aes ) .

Consequently

I(v) < gn" (1 A cfz_"z) et < cn"_lc"’2 ,

since £ > n (see proof of Lemma 2, part c.1)).
Third, we assume w € I, |lw — z| < B(|w|V |z|) and |v| > B/n.
Then

—_— — C 2 2
- 2) = > < - E -7 .
K3(w,z) = K3(y,2) < o (1 Ne )
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Consequently
E _];— (1 /\ 662_"2) e_€2 S cE i 6_’72 ,
£ v n [o*

since £ > n (see proof of Lemma 2, part ¢.3)).
Therefore, in the first case above we have

U(z)<c (/ eI’ dv) e~1=I° ,
Rn-1

and in the second and third cases above we obtain

I(v) <

U(z) = / e~ I"F I(v)dv + / e~ 1" I(v) dv

[vln-1<B/n [oln-1>B/n
n—1 1 1 _|z|2
<cen n dv+ - —ndv e
U |v]
[v|ln-1<B/n [vln—12B/n
<cn e~l=l

This completes the proof of property c), therefore, Theorem 2 is com-
plete.
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