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A weighted version

of Journé’s Lemma

Donald Krug and Alberto Torchinsky

In this paper we discuss a weighted version of Journé’s covering
lemma, a substitute for the Whitney decomposition of an arbitrary
open set in R? where squares are replaced by rectangles. We then
apply this result to obtain a sharp version of the atomic decomposition
of the weighted Hardy spaces H2(R2 x R%) and a description of their
duals when p is close to 1.

A nonnegative locally integrable function w(z,y) on R? is called a
weight. A weight w is said to satisfy Muckenhoupt's A,(RxR) condition
on rectangles, or plainly the A, condition, 1 < p < oo, provided that

o) o)
sup | — w(z,y)dz d )(— // w(z,y) PV d, <ec,
v (i /], TR S J Y g

where R runs over all rectangles with sides parallel to the coordinate
axes. When p = 1 this condition reduces to

1
W//R w(z,y)drdy < ¢ (cfz)iéllfz w(x,y), all R.

We say that w satisfies the A(R x R) condition if it satisfies the A4,
condition for some p < co. The constant ¢ that appears on the right-
hand side in the inequalities above is called the A, constant of w, and a
property is said to be independent in A, provided it depends on ¢, and
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364 D. KruG AND A. TORCHINSKY

not on the particular weight w in A, involved. By the Lebesgue differ-
entiation theorem it readily follows that if w satisfies the A, condition,
then w(z, -) satisfies Muckenhoupt’s A,(R) condition, uniformly for a.e.
z, with constant < ¢, the A, constant for w; similarly for w(-,y).

The same holds for As: an Ao, weight w is uniformly in Ao (R) for
a.e. z, or y, fixed. By well-known properties of Ao, weights, if w(z,-) is
an Ao (R) weight uniformly in z, then the following holds: given z € R
and 0 < € < 1, there exists , 0 <5 < 1, such that if A C I and

!
w(zx, A) S then w(z', A)

!
(1) w(z, D) 7, w(z’, 1) >¢ fora.e. z' €R.

It is clear that we may always choose n > 1/2 above, and we do so.

Under the assumption that w is uniformly A for a variable fixed
and uniformly doubling for the other variable fixed, the weighted strong
maximal operator Ms ., f(z,y) given by

1
Ms wf(z,y) = sup ——// |f(u,v)|w(u,v)dudv,
(=.v) (z.per W(R) R ( |
is known to be bounded in L% (R?), say, c¢f. [JT] and [F1].
Given a bounded open set & C R?, z € R and ¢ > 0, following [J],
let
E.i={yeR: [z—-t,z+1t] x {y} CQ}.
Each E; , is open, because (2 is open, and, for each z, E; ; is decreasing
in t. '
Let E;: = Us Jf,, denote the decomposition of E;, into open
interval components, and let ¢(k,z) be the infimum over those 7 > ¢
such that

(2) w(:r., J:,t N EJ:,T) < 77“’(11 Jf,t) s

where 1/2 <7 < 1 corresponds to the value ¢ = 1/2 above.

Proposition 1. Given a bounded open set §2, let

Q = U (‘T _— t(k,.‘L‘),.’I‘ +f(k,.’l')) X Jf" ,

z,t.k

and assume that the weight w(x,y) is uniformly A(R) for a variable
fized, ‘and uniformly doubling for the other variable fized. Then w(£2) <

cw(QY), where ¢ is independent of Q.
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PROOF. As it is readily seen by the containment relation between the
sets involved, we have

3) w(((z=s,z+s)xJ5,)NQ) > w((z—s,z+3) x (Jf,t NE;,)).

Now, if s < t(k,z), from (2) and (1) it follows that
(4) w(z', JE,NE; ) > %w(x', IE), ae. z' €R.

Thus, integrating (4) over (z — s,z + s), combining the resulting
expression with (3), and setting R = (z — s,z + s) x Jf,t , we obtain

6 [ xanuEndd> s [[ wenddy.

Now, if (z',y') € €, there exist z,, k such that 2’ € (x—t(k,z),z+
t(k,z)), and also s < #(k, z) so that (z',y') € (z —s,z +s) x J¥, = R.
Whence, by (5),

QS {Msu(xg) > %} ,
and by the continuity of Mg ,, in L?‘,(Rz),
w(Q) <cw(Q),
‘with ¢ independent of Q.

Proposition 2. Suppose 2 and w are as in Proposition 1, and that
¢ 18 a nondecreasing function with ¢(0) =0. Then

+oo ) )
A /]RZ_/]k ¢(t(kt x))w(-'l?,y)dyd:l,‘%{ S C'll’(Q)/(; ¢(3)-(—if-’
k z,t )

where ¢ i3 a constant independent of Q and ¢ .

PROOF. From (2) it readily follows that

1
U)(-’l‘, J:,t) S —7 “’('T» ']:n’:,t \ EI.t(k‘l’)) :

1
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Thus, save for the factor 1/(1 — ), the left-hand side of the above
expression does not exceed

oo t dt
LLL S 008 vl § v

-/ /m B(z,y) w(z,y) dz dy,

say. We want to show that

1
B(z,y) < ch(:r,y)/0 ¢(S)%-

Clearly if (z,y) ¢ 2, then B(z,y) = 0. Also, if (z,y) € @, at most
one summand in the above sum does not vanish, the one corresponding
to the index k, say. Thus,

B B too ( t dt
(l',y) - XQ(T’y)/O XJ.:,:\Ez,t(k,z)(y) ¢ t(kq .'L')) T )

Let T(z,y) = sup{s : [z — s,z + 5] x {y} C Q} Since J}, is
an interval component of E; ;, from this definition it readily follows
that ¢ < T(z,y). We may also assume that T(x,y) < t(k,z), for if
t(k,z) < T(z,y), then it follows that y € E, 4k ), and the integrand
above vanishes. Whence

T(zy) t . dt

, < : —

B(Tyy) —_ XQ(T,U)A XJ:.;\Er,t(k,z(y)¢(t(k,-‘r’)) t
Tew) p dt
< yol(z, —
<xale) [ o) 3

! ds
= xn(r,y)/ $(s) —.
0 s
Replacing this in the expression above gives the desired estimate.

Now we pass to discuss the discrete version of Journé’s covering
lemma. For Q as before, let M,(§2) denote the collection of those rect-
angles (dyadic) R = I x J so that I,J are dyadic and J is maximal
with respect to the inclusion property in Q.
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Given arbitrary intervals I, J, not necessarily dyadic, let
J={yeJ: Ix{y}CQ}.

If by rI we denote the interval concentric with I with sidelength
7 times that of I, we define I as follows: it is the smallest interval I’
concentric with I, I' O (1/8)I, such that

w(z,JII)S%w(x,J) for a.e. z € R.

Proposition 3. Suppose the open set Q, weight w and the function
¢ are a3 in Proposition 2. Then

Y w(®)¢ ( )< / 6(85) 5 ) (@),

ReEM>(2)

PRrROOF. Let Z,, denote the collection of those dyadic intervals I such
that R = I x J € M,(Q?) for some dyadic interval J, and |I| = 2
n=0,+1,+2,... Then, since J! > J for R = I x J € M,(f), the sum

we want to estimate does not exceed

;%}/2/ o(i) i) drdy
-

<Z/2 pS // ,,/ w(z, y)(h'dyqﬁ(H)T.

Fix nown,and I € I,. Let S={zx e€I: [z —tx+1t] €I},
and note that for ¢ € (2772,2"72), since |I| = 2", 2§ D I. Thus by
the uniform doubling property of w(-,y), the above expression does not
exceed

2n2 l

7S 5

I1€1,

Furthermore, since ¢ > 2"~3 = |(1/8)I|, and since z € S, it readily
follows that y € J, ;» one of the components of E,;, and the above
expression is dominated by

2712

Z/;n s ]§/Z/Jk u’(m 7/)dy!1’v-d—t_
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Since in the above expression |I| £ 8t, and since [z —t,z +t]C I
and consequently J = J! C J¥,, we see from the definitions of t(k,z)

and |1| ( recall that 1/2 < 5 < 1) that these quantities are essentially
the same. Moreover, since in the definition of ¢(k, z) the right-hand side
is larger, so must be the left-hand side, and consequently t(k,z) < |I].
Thus we may continue our estimation by

on- 2 dt

Z/zn a 1;/2/ t(k 2) ) w(z, y)dydz—

ch/”/Z/ﬁ t(k w(ag,y)alydz%IE

<[ LS, ot

Then the proof proceeds exactly as that of Proposition 2.

w(x y)dy dz ﬂ .

Proposition 4. Under the conditions of Proposition 3, we have

w( U Ix J) <cw(Q), c independent of Q2.
REM,(2)

Because the proof is similar to that of Proposition 1 it is omitted.

As a first application of the weighted version of Journé’s lemma
we discuss the atomic decomposition of the weighted Hardy spaces
HP(R%Z xR%),0<p<1.

Given a smooth function ¢ supported in (—1,1) with nonvanishing
integral, put

1

Poste) =290 (L), st>0,

and for a distribution f in R2, let

f*(:r,y)= sup |f*1/’51.€2(1ay)|-

€1,62>0

Then HZ(R% x R%) consists of those distributions f such that
f* € L2 (R?), and we set ||fllgz = ||f*||.2. We would like to discuss
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the so-called atomic decomposition of elements of these spaces when
we€ARxXxR),1<r<2.

A function a(z,y) is called a (p, w)-atom, if

a) the set where a(z,y) # 0 is contained in a set 2, with
lallzg, < w(@)"*7 < teo,

b) a =3 ag, where the subatoms ap have the following properties:
i) if ar(z,y) #0, then (z,y) € R=3Ix3J,and RC Q,
il) R =1 x J is a dyadic rectangle, and no rectangle is repeated,

iii) for all integers a < [r/p —1],

/m“an(ty)dr =/y“aﬂ(r,y)fly=0,
1 J

iv) (EI|GR||2Lgu)l/2Sw(Q)l/p_l/z,

The atomic decomposition states that f € HE(R x R) if and only
if f =3, Xia;, where the a;’s are (p, w)-atoms, the sum is taken in
. the sense of distributions and in the norm sense, and 3, A? < c||f[/%;, -
‘That f € H? can be decomposed into such sum is very similar to the
unweighted case considered by R. Fefferman in [F2], and the proof is
not discussed here.

Thus, we propose to prove the following result

Proposition 5. Suppose that w € A, and that a 3 a (p,w)-atom.
Then ||a|| gz, < c, where c is independent of a and independent in A, .

PRrooF. Given R =ﬂI x J C Q, let I now denote the interval which is
the largest between I from Journé’s lemma and 27I; and similarly for J.

Let R=(Ix HUI x J)=IxJ. If

a=|J &,

-RCQ

then by Proposition 4 above, w(Q) < cw(Q), where c is independent
of Q and w.
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In order to estimate ||a||Hp ||a*”Lr we break up the integral

that gives the L?, norm into  and R? \ . The contribution over
is readily handled indeed, if Mg denotes the strong maximal function,
then since w € A3(R x R), and a*(z,y) < ¢ Msa(z,y), by Propositon
4 it follows that

/ a*(z,y)P w(z,y) dz dy
Q

<e / Msa(z, y) w(z, y)/? w(z,y)' /? dz dy
Q

/2
o[ Msatew wizdzd) (@)
)
<cllal|lf. w(Q)l—p/2
< cw(Q)p“/z_]/p)w(Q)l_p/2
<ec.

Next, if a =} _ag, we consider each subatom ap separately; by
translation if necessary we may assume that ap is centered at the origin,
and if R =1 x J, we estimate the larger expression

/ /aR*(:p,y)T’ ll’(f'«',y)(].’l‘dy_
R\ JR

For this purpose we show that the following two estimates hold:

R |R|>p
6 arp*(z.y) w(zr,y)dedy <c|— ) ,
(6) /m\f/m\jR( y)? w( J)Ty<c<|1?|

and

(7 / / zy”wa‘ydz(ly<(‘(l |>
R\ 7 ]

We do (6) first. Let py(1), -) denote the Taylor expansion of degree
N of ¥. By the moment condition on ap it readily follows that

|aR *dﬂ 82(‘7" ?j !

- 6152/
v
“-”N(d”"é—z)l lag(w,v)| dudv

N+1
- 6162 // (l l) <| ) lap(u,v)| dude.

u
pN(d’v _Z)I
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Notice that if z ¢ 2I and u € I, then |z|/2 < |z — u| < 2|z, so
that if &; < |z|/2, then 9., (z — u) = 0. We may thus assume that
€1 > |z|/2, and likewise that e, > |z3]|/2. Therefore, since |uv| < |R],
the above expression does not exceed

C|R|N+1

W/ _ |aR(u,v)lw(u"U)]/2w(u’ v)-l/Zdu d'U

< ey Vi ] oo tauan)”

Now, by the bound on ag, and since w € A3(RxR), this expression
does not exceed

/2

|R|NH! 1 |R|
(|1||yl)N+2 w(Q)]/p—l/2 ur(R)Iﬂ .

Thus

/ / ay(z,y)P w(z,y) dr dy
R\T JR\J ‘

(8) < IRI(N+2)JJ / / u)(r 1 de d
<ec zdy.
w(Q)] —?/2,, ”/2 r\7 Jr\J (7] |y]) (|| [y])(N+2)»

In order to estimate the integral in (8) note that if w € A, (R xR),
then by the choice of N, N(p + 2) > r; the argument proceeds now
using well-known estimates in the case of the line, ¢f. [T, Proposition
IX, 4.5 (iv)], and the fact that the restrictions of w are uniformly in
A,(R) for each variable fixed. Indeed, the expression in question does
not exceed

// w(w,y) dx dy
(sl T2 4 17D '

w(z,y)
/ dx dy
e e

1
Fl(N+2)p J(N+2)p w(z,y) de dy
l | R (Jy| + | |

w(z,y)
= dy dz
lII(N”"’/ I (ol + T+ ™
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1 1
i i dzd
B c|I|(N+2)p |J|(N+2)p /j/j"’(l',y) T ay

A~

w(R)
C—r—x .
(] |J))(N+2p

Thus, replacing this estimate in the right-hand side of (8), and by
Proposition 4, we obtain that the left-hand side there does not exceed

(R w(R)
c —
w(Q)l_p/zw(R)p/2 (]| J])(N+2e

N —
<o (1R (CRLY (BT (121
R 11171/ \w(@) |R|
which, of course, gives (6).
We show now estimate (7). By the moment condition on ar we

get
Ir—u
JiJJi €1

< /('“')NHM2 (u,y)d
< — — ap(u,y)du,
€1 Ji \ &

where M? denotes the Hardy maximal operator in the second variable
only. Thus

lan*¢sly€2($$y)| S ) —pN(d’,_;ul-))

v) ap(u,v)dudv

II”|N+1
ap(z,y) < CMT“ /]\420-12(%3/)(1"»,
i

and consequently,

/ /a’}}(m,y)w(m,y)(lx dy
R\[ JJ
< o |J|(N+1)p 1 2 )
< c|I] m\im ; i.M ap(u,y)du ) w(z,y)dydz

1 s w(z,y)
< I(N+2)”/(—r/11/12a u, d) / — = drd
<cl 3 I Ji r(u,y)du R\ |z|(N+2)p zay

(N+2) 1 2 w(z,y)
< eIl P/jM (M2ag)(z,y)? /m\i iy 4 dy.
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where M! denotes the Hardy maximal operator in the first variable

only.
As before, by the usual A,(R) properties it follows that for y-a.e.

w(z,y) c
— " < -
/];\j |17|(N+2)p T S ]I’(N+2)P /iw(z,y) dr,

and consequently,

[ [ antewy wia.y) dzay
miJJ

|I| (N+2)p
<c <m> //AII(A'12GR)(m,y)p w(z,y)dydr.
1JJ

Note that the above integral looks similar to the first expression
we estimated, and, in fact, since w € A3(R x R), it does not exceed

cllar||P: w(R) P2 < cw(QP/*Yw(R) P2 < ¢,
L2, )

which completes the proof of (7).

We would like now to improve on these estimates; following R.
Fefferman, put

w(R)l/2—l/p

ar(z,y),
larllrz

bR('Tv y) =

and observe that bp(z,y) is an atom supported on R, and that the
above estimate applied to bp gives

. 11\" 1R[\" 11\"
br(x,y)Pw(zr,y)dydr <c (—A- +ecl—=) <c|—=]) .
/m\f/m 7 7 i

Thus, replacing br by its expression in terms of ag, it readily
follows that

4
/ /a}}(w,y)” w(z,y)dz dy < cllag||}, w(R) P/ (ﬂ) .
R\7 JR w |Z]
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This is all we need, as we are now ready to sum over the collection
of all the maximal dyadic rectangles R contained in Q. In fact, by
Holder’s inequality and the properties of atoms, it follows that

Z/ /a'k(%y)”w(z,y)dwdy
7 JR\I JR
P 1-p/2 ,I! P
< llarll, w(R) 2 =
R v 1]

p/2 e p(2/p)'\ 1/(2/p)
<e(Slentiy) (Swmewrmem (1))
R

R

1| p(2—p)/2\ 1-p/2
< cw(Q)P/*! (Zw(m(m) )

R

We now invoke Journé’s lemma with ¢(s) = s?2~P)/2 and note
that the above expression is then dominated by

cw(Q)P 21 w(Q) P12 < ¢,
and the proof is complete.

To complete the results discussed here we consider a description
of the duals to the Hardy spaces HI,(R% x R%), r/2 < p < 1, when
w € A-(R x R); by known properties of weights the case H (R2 x R?)
when w € A3(R x R) is included.

Given a real-valued function b on R?, and a weight v € A, (R x R),
consider the following expression: if 2 is a bounded open set in R?, and
R runs over the collection of the maximal dyadic rectangles contained
in , then set

. 1 1/2
o =5yt (e 3210 el )
R

where bp runs over the family of functions of the form

bR(‘T"a y) = bl(y) +c2 bZ(‘T) )
suppb; CJ, suppb, CI, R=IxJ.

We then have
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Proposition 6. H(R% x R%)*, the dual of the Hardy space HE(R% x
R?), /2 < p < 1 can be identified with By;,_ 1/ (RxR), the collection
of those square integrable functions b such that ||b||2/p—1,1/w < +00.

PROOF. We begin by showing that each b € By/,_1,1/w(R X R) induces

a bounded linear functional on H?(R% x R2), with norm less than or
equal to c|[bll2/p-1,1/w -

Suppose, then, that a = Y, ag is a (p,w)-atom in HE(R% x R?),
and let b € By/p_1,1/w(R X R). Then, by the properties of atoms, a
judicious choice of the bg’s, and Cauchy’s inequality,

}/A a(w)b(z,y)drdy]

< r(z,y)b(z,y)drd
_; //RGR(T,J) (z,y) y‘
ap(z, b(z,y) —br(z,y)|w(z,y) ? w(z,y) " dz dy
S%//RIR(JJZ/)II( y) — br(z,y)|w(z,y) /" w(z,y) dy
1/2
< (Starlty) (ol )
R R

1/2
< u,(Q)(1—2/P)/2<Z 16— bRIli?/w)
R

1/2

< bll2/p-1,1/w -

Next, if f € HE(RY x R%), then it admits an atomic decompo-
sition f = Y7;Aja;, where the a;’s are (p,w)-atoms and ||f||gz ~

(32, 1AiP)!/7 . Thus,

I //mz f(z,y)b(z,y) dz dy

< 2]: |Aj] //1;2 aj(z,y)b(xr,y)dxdy
1/p
< (Z l’\]lp) ||b||2/p—1,l/uv s
J

and the assertion follows.
Conversely, suppose that L € HE(R% x R%)*. Then on a dense
subset there, consisting of smooth functions, L can be represented by
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b(z,y) in the form
1) = [[ ey de dy.

Let now Q be a bounded open set in R?, and suppose that =
\Ug R, where the R’s are the maximal dyadic rectangles contained in
Q2. Now, given a function g € L2 (R?) and R =1 x J, set

gr(z,y) = T}—I/g(u,y)(lu+rz/g(r,v)dv

glu,v)dudv.
“m /.

Then
/(f/(m,y) —gr(x,y))dr = /(g(r,y) —gr(x,y))dy =0,
I J

and

lg —9grllLzry < cllgllLz(r) -

The first assertion is readily verified, and to see the second we
consider the first term in gpg, the others being handled analogously.
Note that since w(-,y) € A2(R) uniformly in y,

2
//(|I|/ u,y) (lu> w(x,y)drdy
' 1
S// <m/g(u,y)2w(u,y)(lu) (%/; T (I”)“'(-T,y)d:r(ly
//J(u Y) 2w(u,y (|[| /] w(u,y) u><|}] /u:(r y)(lr)du dy.

Now, since w(-,y) € A,(R), uniformly in y, the above expression
involving the inner integrals does not exceed the A, constant of w, and
the whole expression is less than or equal to ¢||g||72 , as claimed. The
other terms are dealt with in a similar fashion.

Suppose now that Q is a bounded open subset in R?, and that

f € L¥(Q) is such that

1/2
(Z ”.flﬁ,ﬁ.m)) =1.
R
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Then, by the above remark, there is a constant ¢ such that

a(z,y) = c——=77 3 (F(x,9) = Fale, ) xp(2:9).
w(Q) R

is a (p, w)-atom of norm 1, and consequently,

IZ]l 2 I L(a)

:c;—(b—)ll_/;——l/; %//R (f(z,y) — fr(z,y)) b(z,y)dz dy

1

=CW//;?f(x,y) (b(z.y) — br(z,y)) dz dy.

Since this estimate holds for all such f’s, by duality it readily follows
that

1 1/2
| —==—= ) lb—"brl3: ) <Ll
(w(n)”” “‘R: 0

which is precisely what we wanted to show.
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