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On singular integrals

of Calderén-type in R",
and BMO

Steve Hofmann

Abstract. We prove L? (and weighted L?) bounds for singular inte-
grals of the form

p.v. / E(A(z) - A(y)) Uz —v) ¢y,

lz -y |z —y|"

where E(t) = cost if Q is odd, and E(t) = sint if Q is even, and
where VA € BMO. Even in the case that Q is smooth, the theory of
singular integrals with “rough” kernels plays a key role in the proof. By
standard techniques, the trigonometric function E can then be replaced
by a large class of smooth functions F'. Some related operators are also
considered. As a further application, we prove a compactness result for
certain layer potentials.

1. Introduction.

In this note we extend to R™ some 1-dimensional results of T. Murai
(see, e.g. [Mul], [Mu2], [Mu3]). We are concerned with n-dimensional
singular integral of “Calderén-type”, defined by

) T =p. [ F(HEEE) SO g,
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where F is a suitably smooth function defined on the real line, A is real-
valued and belongs to the BMO Sobolev space I;(BMO) (I; denotes the
usual fractional integral operator of order 1, suitably defined on BMO),
and Q is homogeneous of degree zero and bounded on the sphere. In
applications (2 is usually smooth, but one of the main themes of this
paper is that even in the smooth case, singular integrals with rough
kernels will arise in a natural way when one extends to R™ certain
1-dimensional perturbation techniques of G. David (as described, for
example, in the survey article of Coifman and Meyer [CM]), and Murai.
We recall that BMO is the Banach space of locally integrable functions
modulo constants with norm

ol = /Q b= ma(®) ~ (157 /Q b—mag(b)]?)

where 1 < ¢ < o0,

1/q
b

1
mq(b) = @_'/Qb’

and where the comparability of the various L? means is a very well
known result of John and Nirenberg. Then A € I;(BMO) if and only
if A is a continuous function with a locally integrable gradient (in the
weak sense) and VA € BMO (see Strichartz [Stz] for more on the
BMO Sobolev spaces). We remark that in fact one can show that A
is absolutely continuous in the sense of Tonelli, so that VA exists a.e.
Since the kernels that we shall consider are anti-symmetric, the case
that A is Lipschitz can be reduced to the 1-dimensional setting by the
method of rotations, but of course this method is not applicable for
A € I;(BMO). Furthermore, for at least one of the applications that
we have in mind, it will be necessary to prove weighted estimates which
can only be obtained by an intrinsically n-dimensional approach.

Statement of results.

We define an operator T by

Az) — A(y)) Nz —y)
lz—yl / |z—yl

a2 Ti@ = [ B( f(y) dy.

where (2 is homogeneous of degree zero, essentially bounded, and either
odd or even; A € I;(BMO), and E(t) = cost (if 2 is odd) or E(t) = sint

(if 2 is even). Our main result is the following
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Theorem 1.3. There ezists an absolute constant p > 0 (we shall in
fact observe that we may take p = 1) such that the operator T defined
in (1.2) with Q, A and E as stated, satisfies the norm inequality

(14) T fllpw < C(n,p Ap) (1 + [IVAL)H 19|00 | Fllp,w »

for all1 < p < oo and w € Ay, with constants C(n,p, Ap) depending
only on n, p and the A, constant of w.

Here we shall interpret the principal value in the following weak
sense -we shall prove that all (double) truncations of T satisfy (1.4) with
a uniform constant independent of the truncation. For anti-symmetric
kernels, the principal value limit of the mapping T : D — D' exists by’
a well known device.

A variant of (1.2) which can be treated by the same techniques and
which is useful in applications is

é@ﬂ@)
|z —yl

7f(e) = pv. [ (Ba) - B(w) B(

Sz —y)
|z — y|m+1

where B is Lipschitz, A € I;(BMO), Q € L°°(S™"!), but now E(t) =
cost if 2 is even and E(t) = sint if  is odd. We have the following

(1.5)
f(y)dy,

Theorem 1.6. For T defined in (1.5) (again we make the same weak
interpretation of the principal value as in Theorem 1.3), there exists an
absolute constant i > 0 such that for all1 < p < oo, w € Ap, we have

A7) T fllpw < Cln,p, Ap) (1 + VAL IVBlloo 1200 111, -

Given Theorems 1.3 and 1.6, we will then be able to obtain, by
rather standard methods, the following corollaries. The first will be an
easy consequence of Theorem 1.3.

Theorem 1.8. Let p be the same as in Theorem 1.3, and let T[A]
be defined as in (1.1) where € L®°(S™™!) and Q is odd if F is even
or vice versa. Furthermore, we assume that A € I;(BMO), that F €
C**%(R) and that F and its first u+2 derivatives belong to L' (so that
F(§) SC(1+[]~®+2). Then

(1.9) [IT[Alfllp,w < CA+ VAL Qoo [ fllpw,  1<p<oo,
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for all w € Ap, where C depends on dimension, p, F, and the A,
constant of w.

A corollary of Theorems 1.3, 1.6 and 1.8 is the following

Theorem 1.10. Let v = max{y, i} (with the same p, i as in Theorems
1.3 and 1.6). Set

T4, Blf) =sw | [ (B@)-B)-VBW @)
lz—y|>e

|z —y| |z — y|n+?

where A,B € I;(BMO), Q € Lipa(S™?!) for some 0 < a <1, F €
C"*2, with F and its first v + 2 derivaties belongig to L', and F and
Q are either both odd or both even. Furthermore, we now suppose that
F(t) < C(1+|t])~!. Then for all1 <p < oo, w € A,, we have

ITu[A; Blfllp,w < C(n,p, Ap, F, Q) [[VB|l« (1 + [[VAIL)” [ fllp,w -

REMARK. We point out that were we interested only in proving The-
orem 1.10, we could have done so without invoking Theorems 1.3, 1.6
and 1.8. The point is that if A and B are Lipschitz, then the operator
norm of T,[A, B] is not changed if A and B are perturbed by a linear
function. For B this is obvious, and for A it is a consequence of the
method of rotations. The perturbation techniques of David can then be
used to extend to the case that A, B € I;(BMO), because for {2 € Lipg,
and for F' satisfying the mild decay assumption, the kernel is almost
(although not quite) a “standard” kernel. We are motivated to prove
the sharper results given here (especially those for the trigonometric
kernels, Theorems 1.3 and 1.6) by analogy to the 1-dimensional work
of Murai.

A special case of particular interest is the double layer potential
for Laplace’s equation. The boundedness of the trace of this operator
on the boundary of a BMO; domain (i.e. a domain whose boundary
is locally the graph (z, A(z)) of a function A € I;(BMO)) is a special
case of results for singular integrals on surfaces (see, e.g., the papers of
Semmes [Se|, David [D], or David and Jerison [DJe], but it can also be
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obtained as a very easy corollary of Theorem 1.10. In fact the boundary
double layer potential in (local) graph coordinates equals

oy [ AR AW -VAWY)-(e-y) _ fy)
Kf(w)—P- ./];" (1+ (A(Tz:;(y))2>(n+1)/2 Ix_y|n+l

dy .

Thus, if we set @ =1, A = B, F(t) = (1 +t2)~("*1/2 we may deduce
that

(1.11) NK fllzery < C(n,p, [IVAIL) | fll e Ty

where I' is the hypersurface (z, A(z)), and where C(n,p, ||[VA|«) — 0
as ||[VA|l. — 0. The inequality (1.11) is an immediate corollary of
Theorem 1.10 and the following observation:

Lemma 1.12. Surface measure on I' equals an A, weight times Lebes-
gue measure, if VA € BMO, 1i.e., the weight w = /1 + |V A|? belongs

to ﬂl A,, and furthermorc, the A, constant of w is nor larger

than C’(l + IVA].)-

PROOF OF THE LEMMA. Since w = 1+|VA|, it is enough to show that

(1.19) S‘lép (Té-l- /Q(1+ |b|)) (I_Clj_l /Q(1+lb’)—1/(p—1))P—1
<SC+blls),

forall 1 < p < o0 and b € BMO.
We set bg = ﬁ fQ b. The left side of (1.13) is no larger than

(l% _/;?(1 + Ib-—le)) (ﬁ/(l_{_ Ibl)_l/(p—l))p_l
|b | 1/(p—1)\ p—1
'Ql/ o))

The first term in (1.14) is no larger than 1 + ||b]|.. We split the
1/(p — 1) power of the second term in (1.14) into

rl /Q o /Q —I+1L

(81> b |/2 BI<lbql/2

(1.14)
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Trivially, I < 2/(P=1)_ Now II equals

1 |bQ| 1/(1’_1)
1.15 — —_— .
(1.15) ] /Q (3)

bl<|bq /2

But the restriction on the domain of integration implies that |b—bg| =~
|bg|, so (1.15) is no larger than a constant times

1/ _
— [ |b=bg|V/PV),
QI Jo" ¢

and the lemma follows.

As another corollary of Theorem 1.10, we will use the techniques
of Fabes, Jodeit and Riviere [FJR], to prove the compactness of the
boundary double layer potential on “VMQO;” domains. That is, domains
whose boundary is given in local coordinates by the graph of a function
whose gradient belongs to VMO. We define the space VMO (R") by the
property that v € VMO if and only if there exist continuous v; with
compact support such that ||[v—wv;|| — 0 (z.e. VMO is the BMO closure
of the continuous functions with compact support). Let D be bounded
VMO, domain in R™*! and let T be its boundary. The boundary double
layer potential on I' is defined by

KF =lmK.f,

where

a)  kgp - [ =R @),

{IP-Q|>e}nT
and Ng is the unit outer normal. We will prove the following

Theorem 1.17. Let D C R™! be a bounded VMO, domain with
boundary I'. Let K. be defined as in (1.16). Then Kf = lim._,o K.f
ezists almost everywhere on I' and in LP(T") norm, and K is a compact
operator on LP(I'), 1 < p < co.

The paper is organized as follows. In the next Section we state some
known results which be used in the sequel. In Section 3 we prove our
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main result Theorem 1.3. The proof of Theorem 1.6 is virtually identical
to that of Theorem 1.3 and is left to the interested reader. In Section
4 we prove Theorems 1.8 and 1.10 and in Section 5 we discuss the
compactness of the double layer potential on VMO; domains (Theorem

1.17).
2. Some useful known results.
We first recall a well known corollary, via the method of rotations,

of the corresponding theorem in dimension one. Let T be the singular
integral in (1.2), i.e.

A0 — Ay A=) g

2.1 Tf(z)= “p.v.”/E
(1) (*) ( lz—yl / |o—yl
with E and § as in (1.2), but where we now take A to be Lipschitz.
Let T be the singular integral defined in (1.5), again with A Lipschitz.
We then have

Theorem 2.2. For T and T as above, and for all 1 < p < oo, the
following norm inequalites hold:

(i) IT£ll» < C(n,p) (1 +[[VAl0o)* [[Lloo | Fll

and

@) Tl < Cln,p) (1 +[IVA[l00)* VBlloo 12l o [1 115 »

where u and [i are absolute constants.

PROOF. The method of rotations. By invoking the 1-dimensional result
of Murai [Mu2], we may take u = 1 in (i). Alternatively, one could
give an intrinsically n-dimensional treatment by invoking the results
in [H2] and following the argument in Section 3 below to bootstrap
the Lipschitz constant. We also remark that in the Lipschitz case, the
principal value exists almost everywhere, but we shall actually use only
the fact that Theorem 2.2 holds for all truncations of T and 7', with
bound independent of the truncation.

We shall also use a T'1 theorem for rough singular integrals proved
by the author in [H], although in the present paper we shall require a
less general version than that in [H]. In order to state this theorem, we
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first need to set some notation. Let ¢ € C§°(|z| < 1) be radial, non-
trivial, real-valued, and have mean value zero, and set (with slight abuse
of notation) ¥,(|z|) = s™™¥(|z|/s). We assume that 1 is normalized
so that oo p
B(s)? = =1.
0 s
If Q.f = ¢, * f, then @, satisfies the “Calderén-reproducing formula”
+oo d
(23) Q= =1,
0 s .

where the operator-valued integral converges in the strong operator
topology on L%, as may be verified by Plancherel’s Theorem. Choose
a non-ne§ative @ € C5°(1/4,1) so that ¢ defines a smooth partition of
unity 30727 @(279r) =1, 7 > 0. Set

(24) K]'(.’E, y) = K(.?),y) ‘19(2_”‘7: - yl) )

and define
T3f(0) = [ Kia0) S0 dy.,

where K satisfies the size condition
(2.5) |K(z,y)| < Cilz—y|™".

We also impose the following weak smoothness condition: assume
that for all ), as above and s < 27, we have, for some € > 0

(26) 1Q:Tj1lleo < C2 [l9]1:(2775)°

and

(2.7) 1Q:Tillop < Cs ll$ll2(2775)%,

where | - ||op denotes the L? — L? operator norm. We then have

Theorem 2.8. Suppose that K(z,y) i3 anti-symmetric (i.e. K(z,y) =
—K(y,z)), that K(z,y) satisfies the size condition (2.5) and that Tj
satisfies (2.6) and (2.7). We define truncated operators

M
Tnm = Z T;,
j=N
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and assume that | Tn ml||« < Cs (uniformly in N and M). Then for

all1 < p< oo, and w € A,, we have
ITN,mfllpw < C(nyp, Ap) (Cr + C2 + C3 + C4) | fllp,w -
In particular, the bound i3 independent of the truncation.

A much more general version of this theorem is proved in [H] (see
also [H2], where these ideas were implicit) but the above will be suffi-
cient for our purposes.

For the safe of self-containment, we will sketch the proof of the
special case used here. We will argue formally, and refer the reader to
[H] for the details. Using the Calderén reproducing formula, and the
partition of unity as above, we write

too pteo ds dt
T= TNM / / ZQ2 JQt'E_

It is enough to consider the case s < t (the other case is dual to this
one). By the extrapolation Theorem for A, weights (see, e.g. [GR)),
it is enough to consider the case p = 2. It suffices to show that for all
w € A, and f,g € C§° we have

[ Z @.TQ3, Q) 2 &

< C(n, 42) (C1 + C2 + Cs + Co) | Fllz,w llgll2,1/w »

In the left side of this last inequality, we split the sum into D, +3°,,
where ), runs over j: 27 > s%417% and 0 < § < 1 is to be chosen. By
an idea of [DR], it can be shown that (2.5), (2.7) and an interpolation
argument imply a weighted version of (2.7) with a smaller ¢, i.e.

1QuT; fll2,w < C(n, A2) (C1 + C3) (2779)° | f 2, -

An application of Schwarz’s inequality and weighted thtlewood-Payley
theory now yield the desired estimate for ).
Next, to handle }_,, we consider

+oco
1+11+111_/ /QZ(T T,1)Q%f, Q sg>d“f
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[ [ @aneinen 22

too ds dt
"/0 /0 <Q321Tj1 Q?faQag> ? T .

The term III can be handled by a straightforward application of
(2.6), Schwarz, and weithted Littlewood-Payley theory. In II, we use

that +
o0

Qi —

is “nice”, so the fact that Ty »1 € BMO, combined with (weighted)
Carleson measure theory yield the desired estimate in this case. Finally,
to treat I, we write the kernel of Q, ) ,(T; — T;1) as

J[0e =Y Kooy =) = e — ),

which we claim is dominated in absolute value by

Cn Oy (%)et_nxux—ylscn )

(so that the corresponding operator is controlled by (s/t)¢ times the
Maximal function, and the theorem follows. To prove the claim, we
first observe that by definition of },, we have |z — u| < s%¢1~%. Thus,
the integrand is unchanged if we multiply it by a smooth radial cut-off
function n(|z — u|/(s%t~?)), where n = 1 on {|z| < 10} and vanishes
if |z| > 11. Furthermore, it is well known (see, e.g, [DJo]), that (2.5)
plus anty-symmetry imply the Weak Boundedness property

(WBP) [(h,Tg)| < CCy R*(||hlloo + R [[VEloo) (llglloc + B IIVllo)

for all h,g € C§° with support in any ball of radius R. The claim then
follows by (WBP), with

_n+1+5

, 0<exl,
n+2

and

Mo = hle—2), o) = Wil — )~ btz — ) n ().
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There is one more result which we shall find useful in the sequel. It
is an unpublished theorem of Mary Weiss, and the proof can be found
in a paper of C. Calderén [CC, Lemma 1.4]. We define a maximal
operator

(2.9) D,A(z) = sup A +h) = Ae)] .
h#0 |R|

We have the following

Lemma 2.10 (M. Weiss). Suppose that ¢ > n, and VA € Ll _ (the

loc

gradiend being defined in the weak sense). Then, for all v > 1,

o 1A() - A 1 Aeds)
®) |z -y SCq"’(lac—yl"l_|</I_||VA( )Id) ’

and

(i) [1D+Allg < Cq VAL, -

REMARK. Since BMO C L | a standard argument involving Lemma

loc?

2.10.ii shows that if A € I;(BMO), then VA exists almost everywhere.

Proof of Theorem 1.3.

Using the same notation as in Theorem 2.8, we set

Az) - A(y)) Uz —y)
lz — yl |z —y[m

(3.1) K(z,y) = cos (

where (2 is odd and bounded, so that the size condition (2.5) and the
anti-symmetry condition K(z,y) = —K(y,z) are immediate (we will
prove explicitly only the case E(t) = cost,  odd, as the proof in the
other case is identical). We will prove that the truncated operators
Tn,m satisfy (1.4) with a bound independent of the truncation. With-
out loss of generality we may take |||/ = 1, so by Theorem 2.8 it is
enough to verify the smoothness conditions (2.6) and (2.7) with con-
stants C2,C3 < Crn(1+ ||VA||4), and to show that Ty y1 € BMO
with

(3.2) ITnm1lle < Ca (1% [VA]L)*,
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uniformly in N and M, with the same u as in Lemma 2.2.i. The proof of
(2.7) will be deferred until the end of this section. We note in passing
that in contrast to the case that A is Lipschitz, the kernel K(z,y)
need not, in general, satisfy- “standard” smoothness estimates when
A € I;(BMO), even if @ € C°°. It turns out that when one perturbs
A by an appropriate linear term in order to get nice (local) estimates
for A, one introduces a factor that is homogeneous of degree zero and
which may have uncontrollably large regularity estimates. We will be
forced then, to prove (2.7) with a bound depending only on the size of
Q. We shall return to this point below.

We now proceed to prove (3.2), and in the process we will also
verify (2.6). '

In order to prove (3.2), we first recall a characterization of BMO
which appears in a paper of Stromberg [Sbg, Lemma 3.1 and its corol-
lary] where the idea is attributed to F. John.

Lemma 3.3 (John-Stromberg). Let b be measurable and assume that
there ezist @ > 0 and 0 < v < 1/2 such that for every cube Q) there 13
a constant Cq with

{z € @: [b(z) —Cql| > a}| <~[Q].
Then b € BMO and ||b]|. < Cya.

We will prove (3.2) by verifying the conditions of Lemma 3.3 for
b= Tn M1, and with a = C (1 + ||VA||+)#, a, v independent of N, M.
We note that the use of Lemma 3.3 to treat T'1 via bootstrapping
has appeared previously in [CM]. We fix a cube @ with center z( and
side length s. Let n € C§°[-11+/n,11+/n], and suppose = 1 on
[-10+/n,10/n]. We write

Tnml= /" cos (A(a:) — A(y)) Uz —y)

lz -yl |z —y|"
- @N (lz — yl) (1 - n(l—z—;—yl)) dy
(3.4) +/ cos (A(w) - A(y)) Qz —y)

lz—yl 7/ |z -yl
"t_
@ (e ) n(E=2) ay

=U(2) +V(2),
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where ®¥(r) = E,Nizv ¢(279r), with the same ¢ as in the definition of
K (see (2.4)).
We treat U first. Let Q; be a cube with center z, and side length
10-27. Set
Aj(@) = A(e) — -5,
where @j = ﬁ fQi VA. By an elementary trigonometric identity, U(z)

equals (in polar coordinates)

M

+oo .
Sn_191(9)/0 e(277r)

o (ALl (1)) &

r S

(3.5) =N

where Q;(6) = cos(d; - 6) (6), minus another term with sine in place
of cosine in (3.5) and in the definition of ;. We discuss only (3.5), as
the other term can handle by the same argument, and for simplicity we
again designate (3.5) as U(z). We now claim that

(3.6) /Q U(2) - U(zo)| d < Cu [ VAL Q).

Note that the integrand in (3.5) is zero unless 2_j > 104/ns. But by
Lemma 2.10, for r ~ 27 and |z — z¢| < /n's < 27/10, we have for any
q>n,

|4j(z) — Aj(zo)| + |4j(z — r8) — Aj(zo — r0)]|
1/q
< Cplz — 0| (|x — x0|_"/ |VA|9)
Qj
< CpstTr/12in/1 )| v 4, .

The claim now follows by a straightforward computation (the reader
should bear in mind that the j-th summand is vacuous unless 27 > C,, s;
the same argument also proves (2.6) -in that case we treat what is
essentially a single j term in (3.5)).

Thus, by Tchebychev’s inequality and (3.6), we have

(37 leeQ: W)~ Ul > A1+ VAL < 161,

for 5, large enough and depending only upon dimension.
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We now consider V(z). For z € Q, we write

V()= [ eos (H=20) 2B ait(1a — g, ) o
+ / cos (A(I) - A(y)) Uz —vy)

lz—yl 7 |z —yl"
@ (le - yl) (n(|$ n yl) — X100(®)) dy

The domain of integration in Y (z) is contained in an annulus centered
at z with inner and outer radii comparable to s, so

(3.8) Y (z)| < B2 = Ba(n),

uniformly in z € Q.
The term W will be treated by a variant of the perturbation tech-
nique of G. David. We set

Aq(z) = Ale) —dg s,

where )
adg = —— VA.
97 20Q Jaq
Then
Ag(z) — Ag(y)\ Li,0(z —y)
3.9) K(z,y)=cos : = K1 go(z,y),
( ) ( y) ( |x—-y| ) lm—yln 1,Q( y)

where Q4 g(z) = cos(dg - z/|z|) (z), minus another term K3 g with
sine in place of cosine. This splitting of K into K; g — K3 g give rise
to a splitting of W into W; — W,. Since each term can be handled in
the same way, we concentrate on

Wia) = [ Ks ooy ¥~y X100 dv-

Since z € Q and y € 10 Q, we can replace Ag in this last expression
by a function A; which agrees (modulo and additive constant) with Ag
on 10 @), is supported in 20 @), and satisfies

(3.10) JZOEY= 2T
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(see Cohen [Co, p. 698] for the details of the construction of such an
A;; see also A in Corollary 5.6 below). Now by (3.10) and Lemma 2.10,
we have that for ¢ > n and L a large number to be chosen

{z € (10Q)°: D.,A;(z) > L||VA|.}|

1
(3.11) < yoarys | P
L Cal@l _ 610l
- L — 100 °’

for L = L, large enough and depending only on dimension. The Set
G={z€(10Q)°: D.A; > L|VA|.}

is open, and A;|ge is Lipschitz with constant L ||V A||.. We can there-
fore make a Whitney extension [S, Chapter 6] of Ay, call it A;, such A,
and A; agree on G°¢and A is Lipschitz on R" with constant C,, L IVA|
We set 3 5

A(z) - Aly)

R’l = cos (
9 |z —y]

) Oz —y)

(€1, as in (3.9)), define
(312 Wio)= [ Kiole,)8¥(le — v x00(0) o,

and let W, be the analogous term with sine in place of cosine (the cosine
in Q, g is of course also replaced by a sine). Then

Wl(x) = Tl(Xlo Q)(z)v
Wa(2) = Talx,p o)(2).

for appropriate (truncated) singular integral operators Ty, Ty, each with
L? operator norm no larger than Cp, (1 + ||V A||«)* (see Theorem 2.2.i).

Let G = UI; be a truncated Whitney decomposition of G into
non-overlapping cubes I; with

diam I; < dist {I,‘,Gc} < 4diamI;,
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and set G* = U6I;. For z € G** N @, we have that

Wi(z)—Wiy(z) = Z/;(cos (Al(l') - A1(y)) — cos (A1($) — fi(y)))

|z —y] |z —y]

qu(.’t—y) M
CZLRY Y $ M1 _uldy
|.'l,'—y|" N(I yl) Y

where we have used that A; = A on G°. By the Whitney construction,
we can select y; € G such that dist {y;, I;} < 4diam I;, so that the first
term in the integral is bounded in absolute value by

[Ai(y) = A)| _ [41(v) = Awd)l | [A®w:) — AW)]
(3.13) S L ool
< (DuAr(y) + Co L||VA||) o

|z —y|

If we set 3
Ry = |W; — W4],

then by (3.12), for z € G*¢, we have

d;
Bi(e) < Z (di+ |z —

CoL||IVA|. + DuAx(y))dy,
st [ (CoLIV AL+ Ds(i) dy

where d; = diam I;, and we have used that for z € (6I;)¢, we have
|z — y| = |z — yi|. Then

Ri(z)dz < Ch, / (LIIVAl. + D.As(v)) dy
G*cNQ ul;

< Cu (LIVAIQ| +/ D.Ax(y)dy).
10Q
By Holder’s inequality, (3.10) and Lemma 2.10, we have

(3.14) / Ry(z)dz < C. L|IVA. QI
G.ch

and the same estimate holds for || Ra|| 11 (G+<ng), Where Ry = |W, —W,|.
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By the definition of G* and (3.11), we have that |G*| < |Q|/100.
We now take Cq = U(zo) in Lemma 3.3. Then, by (3.7), for 83 to be
chosen, and with 31, B as in (3.7) and (3.8) respectively,

{z € Q: |TN1—U(zo)| > (B1 + B2+ Bs) (L x| VA| 4}

<O, O e c@ne: W@+ i)
IR+ Ro)] > A1 + VAN,

If we take (3 large enough and depending only on dimension, the con-
clusion of Lemma 3.3 will follow by Tchebychev s inequality, (3.14) and
its equivalent for Ry, and the fact that for 1 = 1,2, W; = T(X10Q)

where ||T;|lop < Cn(1+ ||VA|l«)1t. The details are left to the reader.

This concludes the proof of (3.2).
To finish the proof of Theorem 1.3, we need to verify (2.7); i.e.
with @, as in (2.3), we will prove that for s < 27 and for some ¢ > 0,

(3.15) 1Q:Tllop < Call¥oll1 (2775)° (1 + || VAl.),

where we recall that T, f(z) = [ K;(z,y) f(y) dy, and

Az) - A(y)) Qz —y)

K;(z,y) = cos (

The proof of (3.15) follows some ideas of Christ and Journé [CJ,
estimate (5.4) and its proof, and also personal communication]. More
generally, we shall consider kernels K(z,y) which have the following
property: we assume that for every cube I (with sides parallel to the
coordinates axes), the kernel has the following interpretation:

(3.16) K(z,y) = %ﬁz or(z,y), (z,y)eIxI,

where (21 is homogeneous of degree zero and essentially bounded on the
sphere and where o has compact support and belongs to the Sobolev
space L2(R™ x R™), for some ¢ > 0 and with L2 norm C|I|'=¢/". We
observe that for (z,y) € I x I, the kernels of Theorem 1.3 can be written
in the form (3.16) as a difference of two terms, the first of which has

Q1(8) = cos(d@r - 6) Q(9),
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and
(3.17) i(a,y) = cos (L) 11(a ),
where

Q

m/IVAI, Al(z)=A(z)—ds -z,

and where for (z,y) € I x I we are permitted to multiply by a smooth
cut-off function n; which equals 1 on I x I and vanishes on the com-
plement of 2I x 2I. The second term is the same as this one but with
sines in place of cosines. By Lemma 2.10, it is routine to verify that
the particular o in (3.17) satisfies, for all 0 < e < 1,

_ 2
////UIm+uy+v)2n:22(z 12 dz dy du dv
(3.18) Jr» Jr~ Jr- /- (Juf + o)

< C PO /M1 + || VA2,

with a constant C, independent of I (as long as 7y is defined in terms
of translates and dilates of some fixed “mother” n). We remark that in
particular, (3.18) holds if

] / (o1(z + hyy) — o1(2,v)* + lo1(z,y + h) — o1(z, y)[?) de dy dh
z,y,hel
|h|<s

<C|I|2(|I|1/n) !

for some § > ¢ and C independent of I. The latter estimate is [CJ,
(5.4)]. It is now enough to prove the following

Lemma 3.19. Let (as usual) Kj(z,y) = K(z,y) p(277|z — y|), where
for all I, K(z,y) has the representation (3.16), with ||Qr]|cc < 1, and
lozll 22 xmmy < Co |I*~5/",

for some € > 0 and Cy independent of I. Then, for

T;f(a) = [ Kya,) f0) dy,
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we have that for some € > 0,

S &€ .
1QTillop < CaCollvli(55) » s <2

ProOF OF LEMMA 3.19. By dilation invariance, it is enough to con-
sider the case j = 0. We decompose R" into a mesh of non-overlapping
unit cubes, R® = UI;, so that f =), fx ;. almost everywhere. Then

for s <1, QsTo fx, is supported in 10y/nI;, so that the terms
@sTo fx; have “bounded overlaps”. Thus we have the orthogonality

property
/'ZQST"fXI,-r < CnZ/leTOfXI,.|2-

It is therefore enough to prove that for f supported in any unit
cube I

/ QuTof[? < Cu Co [[$]15° / 72

We now fix such a unit cube Iy, assume that f is supported there,
and write Ko(z,y) = K(z,y)¢(|z — y|), where K(z,y) has the repre-
sentation (3.16) with I = 5y/nI,. By the Sobolev space estimate for
o, we have ’

ey [ [ leEnPaie I dar < i,

where for simplicity of notation we will now write ¢ = o7, since I is
fixed. We can then decompose o(z,y) = g(z,y) + h(z,y), where

g(w,y) = ( 5’(6,7‘))‘(.'1),3/)

X(lel+171>5™5)

and

h(z,y) = ( 6(&, 7)) (2,y),

6 > 0 to be chosen. then by Plancherel and (3.24),

X el+Irl<s=)

(3.21) 9]l £2(mn xBny < Co 5%
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We are now ready to estimate ||@,T, f||3. By Schwarz, the part of
this expression with ¢ in place of ¢ is dominated by

J(J] wite = llotz, 0 dz )

(3.22)
(Jfwite =21 dudz) do.

The second factor in brackets equals ||9||;||f||5- By (3.21), we then
have that (3.22) is no larger than C Co||Q||co||®]|? s%%¢ || fI|2, which is
the desired estimate for this term.

We now consider the part of ||Q,T f||2 with & in place of 0. By
the definition of A and Minkowski’s inequality, this term is bounded by

J[ e ([][[oe-aemeei—u)

(3.23) lel+Ir|<s—®
: 2 \1/2
CeTITT f(y) du dzl d:c) dé dr,

where

(3.24) Ka) = ‘f(f) o(lz)

(Here we have taken Q = Qj, since I is fixed). We write

/ Yol — 2) e 72" Ek(z — u) dz
(3.25) _ /1/)3(z —2) (6—21riz-£ _ e—zm'rf) k(z —u)dz
+e 2T, x k(z —u).

By Fourier transform estimates of Duoandikoetxea and Rubio de Fran-
cia [DR, Section 4], the L? operator norm of f + %, * k * f, for k of
the form (3.24), is dominated by

Ca”d)”ysa, 0<ax<l.

We note that this last estimate does not require that  have mean value
zero. The desired estimate for the part of (3.23) corresponding to the
second term in (3.25) then follows easily if we take § small enough.
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The first term in (3.25) is bounded in absolute value by the pointwise
estimate

C |E| S ||¢||1X{|z_uls2} )

and a routine computation yields the conclusion of Lemma 3.19.

4. Proofs of Theorems 1.8 and 1.10.

We prove Theorem 1.8 first, by means of a well known technique
(see, e.g. [CM, pp. 33-34]). We consider only the case that F' is even
and 2 is odd, the proof in the other case being virtually identical.

Once again, we interpret the principal value in a weak sense, treat-
ing truncated operators and obtaining bounds independent of the trun-
cation, and without loss of generality we take ||| = 1. We set

M
j=N
where T; has kernel

@27z —yl).

Az) — A(y)) Nz —y)

Kj(z’y)=F< |z -yl lz —y|"

Following [CM], we write

A = AW\ _ o [ pe oo (¢ AZ) = AW)
F(=pyro) =0 ) Fees(e=5 =

where in the Fourier inversion formula we have used that F' is even.
But by Theorem 1.3, the operator Ty a,¢ defined by

) de,

M
Tnef(@) = Y foos (6 X220 HE=D)oaila—y) flw) dy
j=N

satisfies, for all 1 < p < co and w € A,

(4.1) 1T, M5 llpw < C(n,p, Ap) (1+ IVAIIED* [ fllp,w -

The Theorem then follows by a straightforward argument involving
Fubini’s Theorem, Minkowski’s integral inequality, (4.1) and the fact
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that we have imposed enough regularity upon F that |F(£)] < C (1 +
1) s

PrROOF OF THEOREM 1.10. We first state a lemma which can be
deduced from Theorem 1.6 in exactly the same way that Theorem 1.8
followed from Theorem 1.3. The proof is left to the reader. We recall

that @M (r) = EinNcp(Z_jr).

Lemma 4.2. Let Ty m[A, B] be defined by

Tuld, Bl f(2) = [(B(o) - By F(AL=2)
(4.3)
' &ET_lngi)l &N (lz - yl) f(v) dy,

where B is Lipschitz, A € I;(BMO), and Q € L°(S™71). We also
assume that F' and ) are either both odd, or both even and that F €
C#*2 where F and its first i +2 derivatives belong to L' (for the same
i as in Theorem 1.6). Then for all1 < p < oo and w € A,,

”TN,M[A’ B] f”p,w

(4.4) ]
< C(n,p, F, Ap) [VB|loo (L + [[VA[)* [l oo [ fll,w 5

uniformly in N and M.

In order to apply G. David “good-\” techniques to prove Theorem
1.10, we shall want to control certain appropriate maximal singular
integrals. We let T,[A] be the maximal singular integral corresponding
to T[A] in (1.1), i.e.

LIA)f() = sup | / F(A(Tz = ;(y)) ﬁ(f ;|Z

(4.5)
@ (o — ) f(v) dy]

where we now suppose that Q € Lipa(S™™1), that F(¢) < C (1 —[¢|)~!
and otherwise A, F and (2 are as in Theorem 1.8. We also define

(46) T*[Aa B] f = sup |TN,M{A7 B] fl )
N,M
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with Ty m[A, B] as in (4.3) but again with Q € Lipa(S™~!) and F(t) <
C (1 —|¢|)~!. Even though the kernels of these operators are not quite
standard (since A need not be Lipschitz) the decay of F at infinity still
permits us to prove

Lemma 4.7. With T,[A] and T,[A, B] defined in (4.5) and (4.6) re-
spectively, and now assuming that Q € Lipo(S™ 1) for some 0 < o < 1,
and F(t) < (14 [t])™! we have, for all 1 < p < oo,

(4.8) I T:[A] fll, < C(n,p, F,2) (1 + [[VA[)* [ fll»
and

(4.9) |4, Bl fll, < C(n,p, F, Q) [[VBlloo (1 + [VAIL)® [I £l -

PROOF OF LEMMA 4.7. We prove only (4.8) as the other inequality
has the same proof. The proof will be based on a well known inequality
of Cotlar, which can be obtained by a very slight modification of the
usual arguments for standard kernels. We begin by observing that for
f € LP, the limit

Tn[Alf = lim TnmlA]f

exists pointwise as an almost everywhere convergent integral, and by
Fatou’s Lemma and Theorem 1.8,

(4.10) ITn[A] fllp < C(n,p) (1 + [[VAIL)* |0 1 £1l5 »

even without imposing the smootness assumption on 2 or the decay
condition F(t) < C(1+ |t|)~!. Furthermore, the difference between
sharp and smooth truncations is controlled by the maximal function,
so it is enough to consider the maximal singular integral

T.f =sup|T.f|,
e>0

where

A(z) - A(y)) Qz —y) fy)dy.

(4.11) T.f(z) = / F( Iz —y] |z —y|"

lz—y|>e

Now, by (4.10), T, is uniformly bounded on L?, so by Banach-Alaouglu,
there exists a subsequence €; — 0 (depending on f), such that T, f
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converges in the weak-* sense to something which we call Tf, and
furthermore T'f satisfies the bound (4.10). With this definition of T'f,
we claim that the following Cotlar inequality holds almost everywhere:

T.f(z) < C(n, 6,0, F) (MTf(z)

(4.12) L
+6

+(L+VALL)#M(IF1*) () VO

for all § > 0. In fact (4.12) can be proved by a small modification of

the argument in [Jo, pp. 56-57], once we establish the following lemma.

The lemma says essentially that in the present setting our kernels are

almost standard.

Lemma 4.13. Let

A(z) - A(y)) Qz —y)

Ko = F(=L =) o

with F', A and Q as in Lemma 4.7. Then

|K(z,y) — K(z',y)||f(y)| dy
lz—y|>2 |z—z'|

< C(n,8,F, Q) (1 + [V AlL) (M(F1)(2)) 0+,
for all 6 > 0.

PROOF OF LEMMA 4.13. We set r = |z — z'|, and split the integral

o )

I=1y; r<|z—y|<2 t1r i=1 By
It suffices to show that
| 1K@ - K@ lliwdy

J

< C(n,8,F, Q) (1 + [[VA]l.) (M) (z)) /0 2-i8

for some § > 0 and depending on é. Let B be the ball of radius 3r and
center r, and set -

1



ON SINGULAR INTEGRALS OF CALDERON-TYPE . 491

There are three cases.

Case 1: |mp(VA)| < 27¢(||VA||« + 1), where we have fixed 0 < ¢ < 1.
In this case, Lemma 2.10 implies that, for ¢ > n,

|A(z) - A(z)] < Cgpn |z — '|' /2 r"/1
1/
(e / VA - m5(V4) +ma(VA)T)
B
< Canr(142°)(14VA|L),
and also
|A(z) — A(y)| < Cygpn |z — y|
(—L—/ VA~ my 5(VA) + mzs n(VA)7)
(271)" JyiB »E 28
<Conlz—yl(1+7+27)(1+|IVA].),

where in the last inequality we have used a well known property of

BMO to obtain the bound

g p(VA) = my 5(VA) — mp(VA) + mp(VA)
< Crj||VA|l«+27¢(1+ ||VA|l.) .
The claim follows in the present case with § = min{1 —¢,a) and § =0,

by a standard argument using the smoothness of 2 and the fact that
F' is bounded (since ¢ F(€) € L).

Case 2. |mp(VA) > 275(1+ ||VA|.) and

z—y mp(VA)
lz—yl [mp(VA)

I 2 2—j€/2 .

In this case

2L ma(VA)| 2 291+ [V ALL),

But by Lemma 2.10,
|A(z) — A(y) —mB(VA)(z

—Wl < ¢, |v4].
(4.15) = —l

< |[==L . mp(v4)|.
|z -y
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Thus
|A(z) — A(y)l

|z -yl
The same estimate holds also for (A(z') — A(y))/|z — y|, and by the

same argument, since

> Cp 27721 + ||[VA].).

mp(VA) T—y ' —vy .
) _ < j
' z—y mp(VA)

z—y| |ma(VA)

<|

if € < 1. Thus, by the decay assumption of F,

2)— A Ale") — Aly) C,
]F(é%_‘gx@)‘ +|7( B 2)| < 2772 (11 [VA].)

We then obtain (4.14) in the present case, with § =0 and 8 = ¢/2.
| z—y mp(VA)
lz—yl [mp(VA)

In this case, with Wy = mp(VA)/|mp(V A)|, by Holder’s inequality
and a change to polar coordinates we have

Case 3.

| S 2—]’5/2.

/ K (2,y) f(y)|dy
Ry 12 <2312
1 2ty 5/(1+6)
< —_— -l
s [
16-B] <2-i¢/2

NF oo M1 £+ YO ().

By the first inequality in (4.16), a slight variation of this argument can
be used to consider K(z',y). This concludes the proof of Lemma 4.13,
and in the present case § = 6/(1+ 6).

The Cotlar inequality (4.12) can now be deduced by a rather
straightforward adaptation of the argument in [Jo, pp. 56-57]. We
leave the details to the reader. Lemma 4.7 then follows immediately.
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With the maximal singular integrals under control, we are now in
position to apply the “good-\” perturbation techniques of G. David in
a rather straightforward way to establish Theorem 1.10. Since the ideas
are familiar, we shall be as brief as possible.

As usual we perform a Whitney decomposition of the set

Ex={T.A,B]f >} = uQ; ,
where the @;’s are non-overlapping and
diam Q; < dist {Q;, ES} < 4diam@); .

Here T,[A, B] is defined in Theorem 1.10, with A, B € I;(BMO). We
fix @ = Qj, and it is enough to prove

{z € Q: T.[A,B]f > 3X M(|f[***)V/0+0) <42}

(4.17)
S C(n397F56)50 'Qla

for any fixed § > 0 and for some suitably small, fixed €¢, and v to
be chosen depending upon €y, where without loss of generality we take
IVB]« = 1.

We may assume there is an z¢ € @ such that

M(|F*0)OF D (20) < A,

or else the left side of (4.17) is zero. For an appropriate € Ef, we let
B be the ball with center # and radius 10 diam Q. We write f = f, + fs,

where

f1=fX§3 f2=fX5c'
If Z € Ef is chosen so that

dist {#,Q} < 4diam @,

then, by essentially the same argument as that used to prove Lemma
4.13,

ITE[AaB] fz(l’) - TE[Av B] f2(5")|
(4.18) < Cn M(|f|*+8)1/0+8) ()
+C(n,8,F,Q) (14 |VA|l.) M(|f]'*°) /00 (),



494 S. HOFMANN

because z,  and z¢ are all far from the support of f. The details are
left to the reader, but we do point out that when following the proof of
Lemma 4.13, we write

B(z) — B(y) — VB(y) - (z —y) = (B(z) — B(y) —m(VB) - (z —y)
+(mg(VB) = VB(y)) - (z —y),

where Q is an appropriate dilate of Q. The first term on the right side
of the las expression is “locally standard”, and the term (mg(VB) —
VB(y)) f(y) can be handled by Holder’s inequality. We also men-
tion that when treating (4.18), there is an error term, controlled by
M(|f|**+6)1/0+48)(z¢), which arises when integrating over an appropri-
ate symmetric difference. Since Z € Ef,

(4.19)  T.[A, B fo(z) < A+ (4.18) S A(1+7C(1+|[VA|.)).

To handle f;, we set

Bg(z) = B(z) — (IIQQ_F /10Q VB) -z =B(z) —m1q(VB) -z

and we write

TIAB () = [ (Bolw)-Bot) F(HL=)

[z—y|>e
Qz —
e W dy
A(r) - A Qz—y)(z —
(4.20) 4 / F( (li - y‘(y)> ( - _y?)/‘(n+1 y)
|z—y|>e

- (m10@(VB) — VB(y)) fi(y)dy
= T.[A, Bq] fi(z) + Te[A] ((m10o(VB) — VB) f1)(z).

By a direct application of (4.8), the supremum in ¢ of the absolute value
of the second term in (4.20) is bounded in L? norm by the 1/p power
of

aor) Cmp EDOHIVAL)” / (Imi0a(VB) = VB |1y

< C(n,p, F, Q)(1+||VA|l)*?|Q| | VB2 M(| f|*+°)1/ 048z,
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for p chosen sothat 1 <p<1+434.
To handle the first term in (4.20), we repeat the argument used in
the proof of Theorem 1.3 to approximate Bg by a Lipschitz function B
with 5
IVBl|loo < Cr L||VB||«=C, L,

where L depends only on ¢ and dimension, and such that

~ 6"
H{r €10Q: B#BQ}|§%0Q|-EO.

(See (3.12) and the related discussion). Then, for = in a subset G*° of
Q with measure at least (100 — £¢)|@|/100, we have

sup IT.[A, Bg] f1(2)| £ Rf(z) + T.[4, B] fi(=),
where by (4.9)

[ @la By
< C(n,p, F,Q) (1 + VA" OLIQI M(|£"*)(z0),
and, for z € Q N G*°,
d;
Rf(z) < C(n, “F”oo)zi: A Y

. /1 (CnL+D.Bo(y) If(y)ldy,

where d; = diam I;, and UI; is the Whitney decomposition of the set
G={z€10Q: B#Bg}.
Thus

@2) [ Rf(e)ds < CuLIFlle MUS 0 a0) @),
QnGtc
By combining the estimates (4.19), (4.21), (4.22) and (4.23), and us-

ing the fact that M(|f]**+%)1/(+8)(z4) < v A, we can deduce (4.17) by
standard arguments; we take

v = &
(1+||VA][.)» L

for a suitable ¢y .
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5. Compactness of the Boundary Double Layer Potential on
bounded VMO; domains: Proof of Theorem 1.17.

Given Theorem 1.10, the proof is a relatively straightforward mod-
ification of the techniques of Fabes, Jodeit and Riviere [FJR]. We will
essentially follow their argument, except for some small technical dif-
ferences which arise in the VMO case.

We begin by proving a series of elementary lemmas, which say es-
sentially that a VMO; function A can be approximated (locally) by
Co® functions, 0 < a < 1. Here Cy"* = {compactly supported f €
L! with |Vf(z) — Vf(y)| < C|z — y|*}. Although by definition there
exists a sequence of compactly supported continuous vector fields con-
verging to VA in BMO norm, and each term in this sequence is in turn
uniformly approximable by Cg§° functions, it is not immediately evident
that these smooth vector fields are conservative. That is why we take
this more circuitous route.

Lemma 5.1. Let b € BMO. Fiz a cube I and choose a smooth function
n such thatn =1 on I, n =0 o0n (2I)5 0 < n <1 and ||Vy|le <
C,(diamI)~1. Then n(b— mb) € BMO, with

In (b — mb)lls < Ca ]
where myb = |I|7! [, b.

PROOF. Let @ be a cube which meets 2I. There are two cases. The
first is trivial: if |@| > 2™|I|, then

@1, 1nG=miv) < g [ b=l < Gl
Case 2. |Q| < 2™|I|. We set by = b — mb. Then
1 1
@/mel—mQ(an)l < @/an(bf—mobf)l
+ ‘flﬂfqlnmobf —mq(nbr)|.

Since mgby = mgb—mb, and 0 < 7 < 1, the first term in the last
expression is trivially bounded by ||b||.. We re-write the second term
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Té‘,/QKﬂmeI—(an)(meI))

+ ((mgn)(mqbr) — mq(nbr))| .

(5.2)

The absolute value of the first expression in brackets is equal to

G
1 L 12) = ) dy (mab = mib)| < € G tog bl

where in the inequality we have used our assumption about ||V7||.
and also a well known property of BMO. Since |Q| < 2"|I|, the desired
estimate follows for this part of (5.2). The second expression in brackets
is dominated in absolute value by

ﬁ\/qin(y)‘ lme— myb — (b —myb)| < ||b]|. .

Corollary 5.3. Let I and n be as in Lemmea 5.1. Then v € VMO
implies that n(v — myv) € VMO.

PROOF. Choose v; continuous such that v; — v in BMO norm. Now
apply Lemma 5.1 to n((v — v;) — m(v — v;)).

Corollary 5.4. Let v € VMO, and letn, I, be as in Lemma 5.1. Then
there ezists {u;}, u; € C§°, such that ||n(v — mv) — ujl|« — 0.

PROOF. By the previous corollary, n(v — mv) can be approximated
in BMO norm by continuous functions with compact support, which in
turn are uniformly approximable by functions in C§°.

Corollary 5.5. Letn, I, v and uj be as in Corollary 5.4. Let S be any
standard Calderdn-Zygmund type convolution singular integral operator
with a smooth kernel. Then

|Su; — S(n (v ~mv))l — 0.

PROOF. Immediate by standard Calderén-Zygmund theory and the
previous corollary.
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Corollary 5.6. Suppose VA € VMO(R™). Let I and n be as above, so
that n(VA —m(VA)) € VMO. Set

A(z)=A(z) —mp(VA)-z.

Following [Co, p. 698], let 7 be a point on the boundary of 5/m I, and
set

A =1(2) (Ar(z) — A1(20)).

Then there ezists a sequence {A;} C I;(BMO) such that VA; €
Lipy, for any given 0 < a < 1, and ||[VA; — VA, —= 0.

PROOF. Let R = (R1,Rs,...,R,), where R; denotes the j-th Riesz

transform. A well known classical identity says that
A=_-R-RA=-I,(R-VA).
By definition,
Vi(z) = Vn(z) (Ar(z) - Ar(z0)) + n(z) (VA(z) — mi(VA))
= @(z) + b(z) .

By Corollary 5.5, there exist @; € C§° such that ||S@; — Sb||, — 0, for
any classical convolution type singular integral with a smooth kernel.
Furthermore S@; € Lipa, 0 < a < 1, for all such S (see, e.g. Taibleson
[T]) (here Lipo = {f : |f(z) — f(y)| £ C |z —y|*}). By Lemma 2.10,

l@llec < CrnlVAlx,
and also, for z,y € 2I, and for all ¢ > n,
|A1(z) — A1(y)| < Cy |z — y[* 91|V Al .

Thus @ is continuous with compact support and belongs to Lip,, 0 <
a < 1, so again Sd € Lip, by [T]. We now define

Aj=-L(R-(@+1;)).

The conclusion of the lemma then follows by Corollary 5.5, the result
of [T] and the identity

o _ - .
5o, NE=R;E,
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where S = Rjﬁ is a classical singular integral.
REMARK. We have thus shown that A can be approximated by C1:®
functions. The improvement to C(} ** will arise in the proof of Theorem

1.17.

We are now in a position to follow [FJR] and prove the compactness

of
Kf=lmK.f,
where p N
kip= [ =T @@
{IP—Q|>e}nl’

(Here we have dropped the dimensional constant).
By a partition of unity argument we may change to local graph
coordinates and treat the Euclidean operator

(5.7) Kf=lmK.f,
where
K.f(z) =
(5.8) A(z)-A(y)-VA(y) - (z—y)

e~y HAG) - AP0 T &
[z—y|2+(A(z)—A(y))? >e?

with VA € VMO(R"). Since surface measure is an A, weight (1 <
p < o0) times Lebesgue measure (see Lemma 1.12), and since we have
localized, it is enough to show that K is compact as an operator L? (1),
for a cube I and w € A,. The almost everywhere existence of the
principal value in (5.7) will be shown in the course of the proof. As a
first approximation, we consider

(5.9) T[4, Al f = im T.[4, 4] f,
where
T.[A,B] f(z) =

(5.10) / B(z) - B(y)— VB(y) - (z — y)
(lz — y|? + (A(z) — A(y)?)(nt1D)/2

fly)dy,

le—y|>e
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Theorem 5.11. Fiz a cube I C R", let A € I;(BMO), with VA €
VMO. Then for suppf C I, the principal value T[A,A]f ezists
almost everywhere in I and in L2 (I) norm, and furthermore T[A, A]
i3 @ compact operator on LE(I), 1 <p< oo, w € Ap.

PROOF. Suppose supp f C I, and let 2,y € I. Then for A defined as
in Corollary 5.6, we have

A(z) - A(y) — VA(®y) - (z —y) = A(2) — A(y) - VA(y) - (z —v).
It is therefore enough to consider

T[4, "‘i] f= ll_i% T[4, A] f

where T,[A, B] is defined in (5.10). We will use the techniques of [FJR],
but with Theorem 1.10 in place of Calderén’s Theorem.

We begin by observing that for B € Cé '* 0 < a < 1, the pointwise
existence of T[A, B] f = lim._o T[4, B] f is trivial, because the extra
smoothness of B weakens the singularity. Furthermore, we claim that
for B € Cy*®, T.[A, B] converges to T[4, B] in the operator norm of
L? . To see this, we use the smoothness of B to write

T[4, B] f(2)~T.[A, B] f(z)| < C / 'f(yyli' _dy < Ce®Mf(z),
[z— yI>E

where the last inequality is implied by a well-known result for approx-
imate identities (see [S, pp. 61-63]). The claim follows. Thus the
compactness of T[4, B] on L2(I), for B € C;* follows immediately
from the compactness of T,[A, B] for each ¢ > 0. But the latter fact
may be deduced by a standard argument (see, e.g. [Tor, pp. 429-430])
and the fact that

|'T - yl_nlf(y)l dy S Cp,w,e Ilf“P,w
lz—y|>e

(see [GR, p. 416]). The details are left to the reader.

We now proceed to prove the compactness of T[4, A]. By Corollary
5.6, there exists a sequence A; € I;(BMO) with VA; € Lip,, and such
that VA; — VA in BMO norm. If we define A in the same way as A
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(see the statement of Corollary 5.6), then A; € Cy**, and for « € I and
suppf C I, 5
T(A, Aj] f(z) = T[A, A;] f(=).

By our previous remarks, the principal value operator T[A4, fij] exists
and is compact on L% (I), so the same holds for T[A, A;]. Let us assume
for the moment that the principal value T[4, fi] exists. The compact-
ness of T[A, A] is then a consequence of the fact that T[A, A;] — T[4, A]
in the operator norm of L? | and the latter fact may be deduced by writ-
ing _ 5
T[A,A] —T[A,A;] =T[A,A - Aj],
applying Theorem 1.10 with B = A — A;, and using the fact that
VA - VAj|l. — 0.
To see that

T[A, A] f(z) = im T[4, 4] f(z)
exists almost everywhere in I, for supp f C I, we write
Te[Aa “i] f(.'l)) = Te[Aa A- Aj] f(.T) + Te[A, A]'] f(:L') :

But we have already observed that lim._o T.[A, A;] exists, and by The-
orem 1.10, the operator

T. A, A—Aj]f = sup IT.[4, A — 4] f|

goes to zero in operator norm on L? .

The almost everywhere (and norm) convergence of T.[A, A] f as
¢ — 0 now follows by standard arguments. This concludes the proof of
Theorem 5.11.

We now finish the proof of Theorem 1.17. Let supp f C I. We
write, for z € I,

(5.12) K.f(z) = (K.f(2) - T[4, A] f(2)) + T[A, A] f(2) -

By Theorem 5.11, T[A, A] f = lim.—oT:[A, A] f exists almost
everywhere and defines a compact operator on L? (I). Thus, it is enough
to show that K.f — T.[A,A] f — 0 almost everywhere and in L2 (I)
operator norm, as € — 0.
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To control this error term, we will consider a more general expres-
sion. Set

R.[A, B] f(z) =

B(z)-B(y)-VB(y) - (z-y)

(le—y[*+(A(z) - A(y))?)(m /2
lo—yl2+(A(2)- A(9)? 22 2|z —y[?

f(y)dy.

Lemma 5.13. Let R.[A,B]f = sup.so|R:[A,B]f|. Then for all
6>0

Ru[A, B] f(z) < Cns [|VB|l.(M(|f]*+8)(z)) O+

PROOF. Let @ = Q(e, z) be the cube with center z and side length e.
Then in R, we may replace B by Bg, where

Bo(z) = B(z) — (ﬁ /Q VB) .z = B(z)—mg(VB) z.
By Lemma 2.10,

|Bo(z) — Bo(y)| < Calz —y| log 7——— HVBH* :

Thus, with U, = {y : [z —y|? < 2 < |z — y|® + (A(z) — A(y))?}, we
have

Bo(z) — Bo(y)
b ’ /U (Iz — yI> + (A(z) — A(y))2)" D72 f(y)dy‘

Cn
<sw(Z [ VBl s = 1wl dy)

|z—yl|<e

< Ca |VBIl. Mf(c),

where the last inequality follows by [S, pp. 61-63]. By Holder’s inequal-
ity

VBo(y) (= ~v)
I/= lz —y)? + (fi(i) - A(y!;)2)(n+1)/2 f(y)dy
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1 6/(1+6)
< (L (1+6)/6
<(z [ 1vBawia+r?)

lz—y|<e

1 146 1/(1+6)

(& [ e,

lz—y|<e

and the lemma follows.

We now return to the matter of showing that R.[A, A] f — 0 almost
everywhere and in operator norm. As it was the case for T[4, 4] in
the proof of Theorem 5.11, we have that as an operator on L% (I),
R.[A, A] = R.[A, A], with A as in Corollary 5.6. Furthermore there
exist A; € CH* with |VA; — VA|« — 0. Now

R.[A,A] = R.[A, A — Aj] + R.[A, Aj].

Since R.[A, A;] = R.[A, 4;] (as operators on L?,(I)), where 4; € Co,
it is easy to see that for each 7,

R.[A,Aj] f(z) — 0, ae.inl,ase =0,

and in L? (I) operator norm, by virtue of Holder’s continuity of VA;
(in fact, for almost everywhere z,

|Re[A, Aj] f(z)] < C|IVA;jlLip, €* M f(z))-
Finally, by Lemma 5.13,

IR.[A4, A = Aj] fllpw < C(n,p, Ap) IVA = VA |L4]| fllp,w

and Theorem 1.17 follows by letting 7 — oco.
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