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The sharp Poincaré inequality
for free vector fields:

an endpoint result

Guozhen Lu

1. Introduction.

The main purpose of this paper is to show a Pomcare type inequal-
ity of the following form:
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for all f € C®(B(r)) with ¢ = pQ/(Q —p), 1 < p < Q, where Q is a
positive integer which will be specified later, and X;,..., X, are C*®
vector fields on R? satisfying Hormander’s condition, B(r) denotes a
metric ball of radius r associated to the natural metric induced by the
vector fields,
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The first Poincaré type inequality for the general vector fields satisfying
Hormander’s condition was derived by D. Jerison. In 1986, D. Jerison
[J] proved the above type inequality in the case ¢ = p. When ¢ =p =2,
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this inequality is equivalent to finding a lower bound C~'r~2 on the
least nonzero eigenvalue in the Newman problem for L = " | XX,
on the ball B(r). Soon after, D. Jerison and A. Sinchez-Calle in [JS]
proved, among other things, the Poincaré inequality associated to the
subelliptic operators.

Recently, the author has shown in [L1] the weighted Poincaré type
inequalities for vector fields. One of the main ingredients of [L1] is
the pointwise estimate for functions (without compact support) over
the metric balls controlled by the fractional integral of certain maximal
function (see (1.2) below). A nonweighted Poincaré type inequality
(1.1) was also obtained, as a byproduct, in [L1] for all ¢ < pQ/(Q — p)
except the endpoint ¢ = p Q/(Q — p).

Jerison’s work [J] deserves some more explaination here. In [J] (see
also [JS]), he first showed an inequality of the following form:

m Y4
/B f - falP < Co(BY / ] (gj X.f] + Ifl) ,

where C is independent of f and B, 2B is the double of the metric
ball B. Then he got rid of 2 in the limit of the integral on the right
side (replacing 2B by B) and obtained the desired result by a covering
argument based on the Whitney decomposition. This argument was
motivated by an argument due to R. Kohn [K] in the case of the bilips-
chitzian image of a ball. This Jerison-Kohn type of covering argument
is by now fairly well-known.

In [L1], we were able to prove a pointwise estimate for any f €
C>=(B) of the following type (for any ¢ € B):

M(ZZ, 1Xif| +1f])
(12)  |f(€) - C(f,B)| < / ey,
where X; are the lifted vector fields of X; by the Rothschild-Stein lift-
ing theorem [RS], and B is the metric ball associated to {X;}™, in the
space with extra variables, and M is the Hardy-Littlewood maximal
operator in this metric space with metric p(£,n), and ¢ > 1 is an abso-
lute constant. Having obtained this pointwise estimate, we showed in

[L1] for f € C*°(cB) that

(I—;—l /| If(z)—fal"dz)l/q
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(1.3)
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foralll1 < ¢ <pQ/(Q-p),1 < p< Q, where B is the ball associated to
the original vector fields X;,...,X,, and p(B) is the radius of B. The
advantage of such pointwise estimates is that it also leads to weighted
Poincaré inequalities and sharper unweighted inequality (see [L1]).

The covering lemma argument in [J] also applies to the case p < ¢
(see [L1]). Thus by employing this covering lemma argument we were
able to get rid of the constant ¢ in the limit of the integral on the right
hand side of (1.3) (replacing ¢ by 1) and we proved in [L1]

(T;_l / |f(z)—f3|qdz>l/chP(B) (l—};' /. (}:“, |Xif|)p>]/p,

for small p(B) and 1 < ¢ < pQ/(Q — p). However, it seems that
such covering lemma argument does not lead to the endpoint result for
g =pQ/(Q — p) (see the discussion in [L1] and the remark at the end
of this paper). Thus the endpoint result still remains unproved though
it is expected to be true.

Thus the purpose of this paper is two fold. One is to show the
endpoint result for ¢ = pQ/(Q — p), the other is that we carry out a
different covering argument from the one in [J]. We like to point out
that the method we used here is motivated by B. Bojarski’s work [B] in
which he proved the Sobolev embedding theorems on domains satisfying
certain chain condition in the setting of euclidean space. This argument
can be extended to the weighted version for doubling weights, see for
example, Chua [C].

The following remarks are in order. First of all, when the vector
fields are free (see [RS] or below for definition), e.g. on graded nilpo-
tent group like the Heisenberg group, this endpoint result is sharp. Our
nonweighted Poincaré inequality proved in [L1] for all 1 < p < @Q and
1<q<pQ/(Q — p), and the sharp form for ¢ = pQ/(Q — p) here in
this special case have recently been used to prove a compensated com-
pactness result on the Heisenberg group by Grafakos-Rochberg [GR].
Secondly, as Professor M. Christ pointed out to us, for non-free vector
fields, even the exponent ¢ = p Q/(Q — p) may not be the optimal one.
We like to thank Professor M. Christ for bringing this to our attention.
However, we do not discuss further here. Thirdly, we should mention
that the Sobolev type inequality (for functions with compact support)
for vector fields can be obtained easily (see [L1]) thanks to the fun-
damental solution estimates of the sums of squares of vector fields by
Sénchez-Calle [Sa] and Nagel-Stein-Wainger [NSW] (for the more gen-
eral case by C. Fefferman and A. Sénchez-Calle, see [FeS]), see also [L1]
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for the weighted versions of Sobolev embedding theorem and [L2] for
the Rellich-Kondrachov compact embedding theorem with applications
to the estimates for the fundamental solutions of degenerate subelliptic
operators. The weighted Poincaré-Sobolev inequalities have been used
in [L1] to establish the Harnack inequalities for degenerate subelliptic
operators of divergence form, and as a continuation in [L4], for strongly
degenerate Schrodinger’s operators which contains the result in [CGLJ.
Fourthly, when 1 < p < oo, both weighted Poincaré and Sobolev in-
equalities hold for 1 < ¢ < pQ/(Q — 1) + 6, for certain é, > 0 in the
case of equal weights in the A, class (see Theorem B in [L1]). Thus in
the case of no weights, Poincaré and Sobolev inequalities hold as well
with such exponents p < ¢ as a special case.

2. Some preliminaries and the statement of the theorem.

Let Q be a bounded, open and pathconnected domain in R®, and
let Xi,...,X,, be a collection of C* real vector fields defined in a
neighbourhood of the closure Q of Q. For a multi-index a = (i1, ...,ix),
denote by X, the commutator [X;,, [X,,...,[Xi_,,Xi.]]...] of length
k = |a|. Throughout this paper we assume that the vector fields satisfy
Hormander’s condition: there exists some positive integer s such that
{Xo}|aj<s span the tangent space of R? at each point of 2. We can
define a metric as follows: An admissible path v is a Lipschitz curve
7 : [a,b] — Q such that there exist functions ¢;(t), a < t < b, satisfying
Somiei(t)? <1 and 4/(t) = Yo, ci(t) Xi(y(t)) for almost every t €
[a,b]. Then a natural metric on § associated to Xi,..., X, is defined
by

0(&,m) = min{b > 0 : there exists an admissible path
v : [0,b] — Q such that
7(0) =€, and y(b) =n}.

The metric ball is defined by B(€,r) = {n : o(§,n) < r}. This met-
ric is equivalent to the various other metrics defined in the work of
Nagel-Stein-Wainger [NSW]. Note that the Lebesgue measure is dou-
bling with respect to the metric balls as shown in [NSW]. Thus (£, o)
is a homogeneous space.

By the Rothschild-Stein lifting theorem (see [RS]), the vector fields
{X:}™, on Q C R? can be lifted to vector fields {X;}%, in Q= QxT C
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R? x R¥~4, where T is the unit ball in RV ~¢, by adding extra variables
so that the resulting vector fields are free, i.e., the only linear relation
between the commutators of order less than or equal to s at each point
of () are the antisymmetric and Jacobi’s identity. Let G(m,s) be the
free Lie algebra of steps with m generators, that is the quotient of
the free Lie algebra with m generators by the ideal generated by the
commutators of order at least s + 1. Then {Xa}|a|<s are free if and
only if d = dim G(m, s). We also define Q = E;’-:l Jjm; where m; is the
number of linearly independent commutators of length j.
Here is the statement of the main theorem.

Theorem 2.1. There ezist positive constants ro and p such that for

any f € C®(B(r)), and 1 <p < Q,1<¢<pQ/(Q — p), we have the
following

1/q
1
(IB(r)[ /Bm |f_fB(r)lq)

m 1/p
1 - )?
SCT(|B(7‘)[ - (X 1xaf1) ) ,

=1

provided p B(r) C Q and r < 7ry.

2. Boman chain condition for the metric space (2, 0).

We first introduce the notion of the so-called “Boman chain con-
dition” in the context of homogeneous space. This condition seems
slightly different from the corresponding version in the euclidean space.
However, it suffices for our purpose here.

Definition. Let (X, o) be a homogeneous space in the sense of Coifman
-Weiss. An open set E in X 13 said to satisfy the Boman chain con-
dition if there exists a positive constant u and a family F of disjoint
metric balls B such that

i) Y perX0p(T) S Mxg(z) forallz € X .

iii) There i3 a so-called “central ball” By € F such that each ball
B € F can be connected to By by a finite chain of balls By, ..., By py =
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B in such a way that 2B;(\2Bj41 # @ and 4Bj()4Bj+1 contains a
metric ball D; whose volume is comparable to those of both B; and
Bj+1 .

iv) Moreover, B C uB; for allj =0,1,...,k(B).

The above E is called a Boman chain domain. The explicit num-
bers 2,4 and 10 are not essential here. We define in such a way just for
the simplicity.

In the case X = R™ and p is the euclidean metric, it is the standard
chain condition. It is known that any euclidean cubes, balls, John’s
domain, bounded Lipschitz domains and (e, 00) domains are all Boman
chain domains. In the general homogeneous space, it will be hard to
verify if some domain is a Boman chain domain. However, we will
show below any metric ball in our (, p) associated to the vector fields
X;,..., X is indeed a Bomain chain domain.

Lemma 3.1. Let B = B(£1,r1) C §2 be a metric ball. Then B is a
Boman chain domain.

We like to point out that Lemma 3.1 is implicit in Jerison’s work
[J]. Indeed, the only thing we need to check is iv) in the definition above.
And, it also follows from Jerison’s work. For the completeness of the
presentation, we will show the details. We first need the following
Whitney decomposition whose proof can be found in Folland-Stein’s

book [FS] (see also [J]).

Lemma 3.2. Let E = B(&;,71), then there i3 a pairwise disjoint family
of balls F and a constant M depending only on the doubling constant
of the Lebesgue measure with respect to the metric balls such that

i) E=Uper2B,

i) B e F implies that 102p(B) < p(B,dE) < 10°p(B),

i) #{BeF: ne10B} <M.

Here p(B,0F) 1s the distance, in the metric o, from B to OE. #S

denotes the number of elements in the set S.

Lemma. 3.2 already provides more or less the first three conditions
in the Boman chain condition. For B € F, define yp as an admissible
path from the center np of B to £ (the center of E) of length less or
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equal than ;. Denote the subset of E defined by the image of yp by
~p as well. This path may not be unique, but will be fixed throughout
this paper. Denote F(B) = {A € F: 2A(\vp # @}. The following
has been proved by Jerison [J].

Lemma 3.3. Let B € F, then there are no elements of F(B) of radius
less than p(B)/100.

PROOF OF LEMMA 3.1. We select a central ball By € F such that
&1 € 2By and will fix it throughout the proof. As proved in [J], #F(B),
which is equal to the number of elements in F(B), is finite and with a
upper bound C'log(r, /p(B)) though it is not uniformly bounded on B €
F. We then order the elements of F(B) as F(B) = {A;,...,Axn)}
such that A; = By and Ayg) = B, and 24 (24441 # @ for all k.
Thus by the construction in Lemma 3.2, 444 ()4A41 contains a ball
D, whose volume is comparable to those of both A; and Ax4;. Thus,
the first three conditions in the definition of chain condition are already
verified. We will show B C pAyg, for some y > 0 and for all k. Now
let np be the center of the ball B and ni be the center of the ball Ag.
Then

o(ne.na,) < o(np,0FE) + o(na,,0F) _
< 10°p(B) + 10°p(Ax) < 10°p(Ayx),

for all k, by Lemma 3.2. Thus B C 10%4;, by Lemma 3.2 again.
Thercfore, we can take u = 108.

4. Proof of the main theorem.
We will need two technical lemmas.
Lemma 4.1. Given 1 < p < co. Let {B,} be an arbitrary family of

open metric balls in (2, 0) with pB, C Q and {aq}acr be nonnegative
numbers. Then

“ Za"\/"”a L () =€ ” Za"Yaa
[e a

where C 13 independent of {as} and {B,}.

b
Lr(S2)

The proof is standard. For completeness we include a detailed
proof.
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PROOF. Let ¢ € LP(Q), with 1/p+1/p' =1,1 < p' < co. Let
1
Ma(©) = sup = [ Jotn)an
¢eB |B| /s

be the Hardy-Littlewood maximal function of ¢(£) with respect to the
metric balls in Q and the supremum is taken over all balls B including
€. Then it is known that [|[M@|| /(o) < C ||$]| ., (q)- Hence

| [ eexun. @) de] =[S inBolg [ a6
< C}Eajaa /B Ma(€) de|
<C [ 3 aoxg, (€ Ma(e)de
<C “ Z%XB,. Hum) 1M Lo (@)

<o Yoo,

[ e

Thus the lemma follows.

Lemma 4.2. Assume p > 1, then for any metric balls I and B with

I C B CQ we have
_@) <_]_I_l>l/q_l/p
(&%) (m =¢

provided that 1 < ¢ < pQ/(Q — p) and p(B) < ro for some ro > 0.
This lemma is proved in [L1]. It is Lemma 6.12 in [L1].

We also note that by an easy covering argument we can reduce
(1.3) to (this is just for simplicity)

1/q
(ﬁ /;3 |f(x) — fB[q(l:v)

m 1/p
<cp(B) (ﬁ [ (Cix+ |f|)">
=1

(4.3)



THE SHARP POINCARE INEQUALITY FOR FREE VECTOR FIELDS 461

We note that (4.3) is equivalent to

m » a/p
(44) [ 17 = ol < C p(BY B0 (/ZB(le,-flﬂﬂ)) ,

i=1
foralll1 < ¢ <pQ/(Q —p).

We now start to prove Theorem 2.1. Fix the central ball By as in
Lemma 3.1. We have

If = f2Bollfemy <2771 D Nf = foBllSecan

BeF

(4.5) + 2071 Z | f2B — f230”1v(23)

BeF
=I+1I.

Replacing f by f — fap, in the inequality (4.4) we will get

(“13'/ F(r) - fgl"d-r)l/q

m 1/
”’””(,mf (Z:I-Yfflﬂf—fmol)p) §

for any given B € F. Now fix temporarily B € F and consider the
chain F(B) = {41,..., Axp)} constructed in the proof of Lemma 3.1.
Thus

(4.6)

k(B)-1
If28 = famollLsemy SC Y |lfaa; = foappllLeem

J-—

k(B)-1
|B| 1/q
=¢C Z (|4A nA,+,)

“|If2a; = faa; 0 laan;nen; 40

|B|\ /9
<c ,_Z.:l (l_le) If = foa; lneas;)
k(B)

B| \V/
+C Y (ITL—-J]_I) £ - Faagalliecaa; )
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k(B)—-1

<a2C Z( ) |f = f2a;l|Loan;) -

We observe that

Wf = Faa;llLacany) S Nf = fan;llean;) + 1 fan; — foa;llLeas;) »

and

1
1fin, = Fans o lleansy < [4A;1/9 / 1 = fan,|
|2A]l 2.4,'

1/q
o)

KB g
I f28 = f2BollLezmy SC Y (—) If = fan;llLocan;) -

2 \1g

Therefore, we get

Since, by the chain condition, B C pA; for each A; € F(B), we then
have

| f2B — f2B,l|La(2B) |B|‘(/€9) <C Z (lAl) If = faallLoaay X5, 4(6)

=CZG‘AX2,¢A'

AEF

In the above expression, a4 is notationally defined in an obvious way.
For the term II in (4.5), we have

U<CY [ ifn = fonllan 252

BeF

Since Y per x28(€) < C, we derive

H<C [ |3 anxy,,|"
@ peF
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By lemma (4.1), we then get

ch/Q]ZaAXA’v.

AEF

Since 3 4 X 4 (§) < C, we will have

<0y [xu©O<C X If ~ foalluiun -

A€EF AEF

Therefore, by the inequality (4.4)

m q/p
m<c S A~ p(a) ( [ (X xar+1r- f239|)”)
AEF 84 "im
m » q/p
< CIE["""Pp(E) ) (/ (Z IXifl +1f - f280|) )
AeF \/84A "oy

m » q/p
< C|E|"""7p(E)? ( /E (X 1XifI+1f - fomol) ) :
=1 .

In the last inequality we used the fact ¢ > p, 84 C Eand )_ 45 x4 4(€)
< C, and in the one next to the last we used Lemma 4.2.

For the term I in (4.5), the estimate is the same by replacing 44
by 2A in the estimate of II. Therefore we have shown the main theorem
if we use the Minkowski inequality on the right side above and letting
p(E) be very small in order to bootstrap the second term on the right.

Finally, we remark out that if we use the covering argument in [J]
(see [L1]), there will be a factor like

log (p(E)) (p(B))q ( |_B_|)“"’P
p(B) ) \p(E) |E|
In order to bound this term uniformly independent of B C E, we need
to require that ¢ < pQ/(Q — p). This will cause to lose the endpoint.

However, the argument in this paper does not produce the above factor
(without the logarithm term).
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Added in proof: The first draft of the paper was done and circulated
in September of 1992. After this paper was accepted for publication,
there have been some new embedding theorems established on various
function spaces associated with the general vector fields of Hérmander
type. Here are the details:

1) We mention here that when p = 1 and ¢ = Q/(Q — 1) the
nonweighted Poincaré inequality has been proved by Franchi, Wheeden
and the author [FLW]. It was proved by Jerison [J] when p = ¢ = 1.
Weighted inequalities are also obtained in [FLW] which improve the
previous two-weighted results of the author in [L1].

2) When p = @, besides the Poincaré inequality for 1 < ¢ <
pQ/(Q—1)+6,, we can even show that the exponential integrability of
the function (without assuming the compact support for the function).
This has been done by the author [L3] together with the embedding
theorems on the Campanato-Morrey spaces MP* (for 1 <p < A < Q).
The embedding theorems on the Campanato-Morrey spaces allow the
gap larger than that in the Poincaré inequality, t.e. 1/Q.

3) When p > @, then we can show the function itself belongs to
the local Lischitz spaces C'IOO‘: for y=1-Q/p. When Y}~ | |X;f|isin
certain Morrey spaces MP* (for p > 1), we can also show the function
itself in certain local Lipschitz spaces or of exponential integrability.
These have been shown by the author in [L5].

4) The Sobolev inequality for p = 1 and ¢ = Q/(Q — 1) for func-
tions with compact support has been proved in [FGaW] for general
vector fields. Weighted Sobolev inequalities for p = 1 are also proved
in [FGaW]. The Sobolev type inequality has been established on the
group earlier, see [VSCC] and numerous references therein.

[FGaW] Franchi, B., Gallot, S. and Wheeden, R., Sobolev and isoperimetric
inequalities for degenerate metrics, to appear in Math. Ann.
[FLW] Franchi, B., Lu, G., and Wheeden, R., Poincaré inequalities and reduced
isoperimetric inequalities, preprint.
[VSCC] Varopoulos, N. T., Saloff Coste, L., and Couhlon, T., Analysis and Ge-
ometry on groups. Cambridge tracts in Mathematics 100, 1992.
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