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Interpolation of infinite

order entire functions

Robert E. Heyman

Introduction.

In [2] and [3], Berenstein and Struppa studied the relation between
Dirichlet series and solutions of convolution equations. In [3], they
considered the equation

pxf=0,

where f is an analytic function on the upper half plane and p is an
analytic functional on the complex plane C. It turns out that if y
satisfies a “slowly decreasing” condition, then f can be represented by

a series
o0 J k

F(2) =3 Pru(z) e,

k=1 Il=1

where fi(ax;) = 0, Pi,; are polynomials and j represents the Fourier
transform of p. This is a representation of a generalized Dirichlet se-
ries. Under certain conditions, “gap” theorems similar to the Fabry gap
theorem for Dirichlet series may be proven. We refer the reader to [3]
for further remarks. '

In [2], they consider the case where f is holomorphic in a cone I
contained in the right half plane with vertex at the origin and p can be
described by integration against a measurable function with compact
support in that cone. In this case, with u slowly decreasing, f can be
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represented as a Dirichlet series, in its simplest form
oo

flw) = ch(w) e kY, wel,
k=1

where cj is a polynomial of degree less than mj and i vanishes at zj
with multiplicity m;. We again refer the interested reader to [2] for
further details.

The point of this approach to Dirichlet series is that, while the
clasical Fabry gap theorem requires that the frequencies

0<|z1| <|z2| < ...

satisfy the addititional finite density condition

-_— k
lim — < 400,
k—oo Izkl

and my = 1, and other convergence theorems require finite density, in
[2] and [3], one can alow for the existence of a constant a > 0 such that

kh—I»Iolo |zk|* < Foo,
(as well as no assumption on the zx being real or my = 1). Clearly,
this condition is weaker than the previous one when a > 1. It leads to
the study of interpolation problems for holomorphic functions of finite
order a.
On the other hand, a sequence like 2z = In k will not satisfy such
hypotheses for any a > 0. Nevertheless, such sequences are of great in-
terest since the family of ordinary Dirichlet series includes the Riemann

(-function
= 1
((2)=), T
k=1

In order to study such problems, one must have some knowledge
of infinite order functions. This article, which is based on the author’s
Thesis, provides the framework necessary in order to extend the theo-
rems of [2] and [3] to the infinite order case.
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Let f be an entire function which vanishes at the points z; with
multiplicity mj and nowhere else. Then, given a doubly indexed se-
quence of complex numbers {ak,1}x>1,0<i<m, satisfying

mk—l
> lakg| < AeBe) . A4,B >0,
=0

when does there exist an entire function A(z) such that

M(z)| < Ay eBiP(®) ] Ai,B; >0,

and

Here p is a subharmonic function satisfying other conditions to be ex-
plained in the paper. The new contribution is for the case when p grows
fast enough so that A is of infinite order.

The plan of this paper is to extend the results of [1] to the infinite
order case. One possibility is to allow an extra constant inside of p, i.e.
let

If(2)] < AeBPCD A B .C>0.

It turns out here that the proofs are the same and only the statements
are presented here in Section 2. In Section 1, the main part of this work,
we do not allow the extra constant. Theorem 1.1 is the major result,
which precisely calculates orders of infinite order functions. The rest
of the section presents ramifications of this result which should lead to
methods to attack the problems mentioned above.

Throughout this paper, we let N denote the natural numbers,
M¢(r) denote the maximum modulus of f on a circle of radius r, and
D(z;r) denote the circle of radius r centered at z.

1. Interpolation for infinite order functions.

Let {zx}32, be a divergent sequence of complex numbers and
{mi}%2, be a sequence of positive integers. We start with the following

definition.

Definition. V = {(zx,my)} 1s the multiplicity variety for an entire
function f if it vanishes precisely at the points zx, k > 1, with mul-
tiplicity my. We write V = V(f) when V 1is the multiplicity variety
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for f. More generally, V = V(f1,..., fm) 18 @ multiplicity variety for
fiy-oos fm if {2k} 18 the set of common zeros of the functions f1,..., fm
and the functions vanish at those points with multiplicity at least my,
and one of them with multiplicity ezactly my .

A well known theorem is the following [1, Theorem 3].

Theorem 1.A. Let V = {(zk,my)}x>1 be a multiplicity variety. Let
{ax,1} be any sequence of complex numbers, where k > 1 and 0 < I <
my — 1. Then there ezists an entire function A such that

AD (2
By Theorem 4 in [1], in order to study the interpolation problem,
we first study the corresponding problem of zeros.
We are interested in putting growth restrictions on the sequence
{ak,1} and the function A in Theorem 1.A. We make the following

Definition. Let f be an entire function. For r > 0, ng(r) is defined
to be the number of zeros, counted with multiplicity, of f in the circle
of redius r, excluding those at the origin. When the function being
considered i3 clear, we will drop the subscript.

The growth of f depends upon the growth of ny. The relationship
is provided by Lemma 1.A. First, let us review what happens in the
case of finite order functions and discuss the differences and difficulties
encountered for infinite order functions. Our source for this discussion
is the book of Levin [4, Chap. 1].

Let {a,}32, be the set of zeros of an entire function (excluding
those at the origin), arranged in order of increasing modulus and re-
peated according to multiplicity. The starting point is the infinite sum

(1.1) >

n=1

Pn+l
)

z

Qn

where p, is a sequence of non-negative integers chosen so that the sum
(1.1) converges uniformly on compact sets. Then we can consider the
infinite product

[e’e} Pnl

(1.2) E(z) =] (1- f;) exp (Z Z(f;)) .

n=1 Ja=1
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In the case of finite order functions, the numbers a, satisfy the
following suplemental condition: there exists a positive number A such
that

converges. In this case, let p denote the smallest integer for which

1
1.3 S
(1.3) 2

converges. Setting p, = p for all n in (1.1) will be enough to assure
convergence of (1.1). Here, then, is the first complication for infinite
order functions: no such simplification (1.3) is posible.

The first step in finding an upper bound for the product (1.2) is
finding an upper bound for each term. Taking logarithms of both sides
of (1.2) will turn the infinite product into an infinite sum. We will
obtain an upper bound for each term in the sum. Adding together all
the upper bounds will result in another sum which can be written as a
Stieltjes integral. It is this integral which must be evaluated to obtain
a formula for the growth of (1.2). ‘

The upper bound for each term is given by Lemma 2 in Chapter
1 of Levin [4, p. 11]. We modify it for our purposes and restate it as
Lemma 2.A.

Lemma 2.A. For p, > 1 and all complex numbers z,

A Pn+1
z P12y a
1 |- e (X ()]s AR
(1.4) In|(1 - exp ZZ - <A, .
=1 + a

where
Ap, =3e(2+Inpy).

If p, = 0, the sum i3 empty, so we have

lnl(l—a—zn-)

.

an

Sln(l-i—
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Summing (1.4) over all n gives

ppntl

1.5 In|E(z)| < i . L
(15) |B(z) Z|a B
for |z| = r.

In the case of finite order functions, the numerator is independent
of n and may be taken outside the sum. Then, writing (1.5) as a Stieltjes
integral, we obtain

to°  dn(t)

(16) ln|E(z)| S AP ,’.p+1/0 m .

Integration by parts then gives the formula in Levin [4, p. 12] for finite
order functions

(1.7) In|E(z)| < kpr? (/O ;(3 dt +r /r+°° Z’(’Z dt)

for k, =3e(p+1)(2+1Inp)forp>1, kg =1, and |z| = .
In the infinite order case, the Stieltjes integral becomes

(1.8)

/+oo Ap(t) rp(H+1 dn(t)
0 PO (t+r)

where p(t) is a continuous function such that p(t) = p, at t = n.

Such a simple integration by parts procedure is now impossible.
There is also the problem of convergence of (1.8) and chosing the correct

p(t) which will minimize the integral. We will see that it is easy to chose

the correct p(t). The integral is a Laplace-type integral in that most of
the contribution to the integral takes place in the region around ¢t = r.
This leads us to using the Laplace method to evaluate the integral.

Another diference between finite and infinite order functions can
be noted here. Inequality (1.7) shows that the order of E(z) is no larger
than one of n(r) (although, the type, of course, may be infinite). For
example, we know

|sin(mz)| < Ae™, for |z| =71,

and
<A eBr'ln r

| I(z)1 — ’

for |z| =r.
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Here ngjn(rz)(r) = 27 and nypey(r) =r.

This behavior leads us to believe that a function with zeros at Inn
should be bounded by e¢". However, this is not the case. We will see
that infinite order functions can grow much faster than n(r). The reason
for this is that the integral (1.8) contains the term dn(t). Very loosely
speaking, (1.6) and-(1.8) show functions grow at the rate r dn(r). Of
course, for finite order functions,

rdn(r) = Cn(r),

for the appropriate constant C. For infinite order functions, dn(r) can
be much larger than n(r). The dividing line is at n(r) = e", in which
case n(r) = dn(r). The growth rate of the infinite order functions that
we will consider can be somewhat sharpened using the Laplace method.

Before continuing, we first show that the choice of p(t) does not
cause any problems with convergence of (1.1).

Lemma 1.1. Convergence of (1.8) (and, hence, of (1.5)) implies con-
vergence of (1.1).

PROOF. Assume p,, is chosen so that (1.5) converges. Then, for large
enough ng > 1, we have that
had A, rPntl et pPntl

z_: fanltn (an] 1) = 2_: |an[P~ (2|ax|)

n=1

oo

- % g (larn|)pn+l

Roughly speaking, our conditions for Theorem 1.1 require Inn'(r)
to be convex (and therefore, of course, n(r)) and

8
n(r)<e” ,

for some 8 > 0.

Theorem 1.1. Let f(z) be an entire function of infinite order with
prescribed zeros at z = a,, excluding possible zeros at the origin. Let
n(r) be a majorant of the number of zeros in the annulus 0 < |z| < r
such that
dnglrk,rie1) = np(rie1) — np(re)
(1.9) < n(rk41) = n(re)
=dn[rk,"k+1),
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for every k > 1 where 0 < r; < ry < ... 18 the sequence of increasing
moduli of the zeros not at the origin. Assume for large enough r > ry,

(1.10) Inn'(r) is increasing and convez,
(1.11) Inr = o(lnn'(r)) asr — oo,

(1.12) (Inn")"((1 £ 6)r) < By (Inn")"(r),
(1.13) ((lnn')"(1 & 8)r)| < By [(lnn'y" ()],

where (1.12) and (1.13) hold for any 6 such that 0 < 6§ < 1 and for
some constants By, B; > 0.

Then there exzists an infinite product E asociated with those zeros
such that

Cln (r—g%) n'(r)

1) L () n"(r) — (W ()N
(r w(r) T ' (1)? )

for |z| = r and large enough r > 0.

In|E(z)| <

Proor. We will use the following notations and lemma for the proof
of Theorem 1.1.

p(t) =t (lnn'Y'(2),
$(t) = (lnr — Int) p(t) + Inn'(t),

ott) = S elnlolt)

Before we proceed, we establish a technical lemma. The conditions
(1.10), (1.11), (1.12) and (1.13) of Theorem 1.1 imply

Lemma 1.2. For the 6§ chosen in the proof of the theorem, and for
large enough r > 1y,

a) For every 0 < Cy < 1, there ezists 0 < Cy < (1 4+ C1)/2 such
that
Inn'(Cyr) < Cylnn'(r).

b) For some € > 0 and for every t > e?r, (t) < —elnn'(t).

c) For [t —r| < ér, |(Inn')'(t) — (Inn')(r)] < §Y/2B%|(Inn')'(r)],
for some By > 0.
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d) For |t —r| < ér, |(Inn")"(t) — (Inn")"(r)| < §*/2B2 |(Inn')'(r)|,
for some By > 0.
e) ¥ is increasing on (ro,r] and decreasing on [r, +00).
f) (Inn')"(r) < O(r™) and (Inn")'(r) < O(r"), for some N > 0.
(’,21'
o [ etd=00).
h) () € L(2r,+00).

i) sup ¢(t)=O0(np(r)).
[t—r|<6r

i) )y - O(1—y"(r)), for any n > 0.

PROOF. a) Follows from (1.9).
b) We have

Y(t) < (Inr —Ilne?r)t(Inn')'(¢) + Inn'(t)
< —-2t(lnn')'(€) + Inn'(t)

- _§ (Inn'(t) — lan'(t — 8¢) + lnn'(t)

- (1 _ %) Inn'(t) + -i- Inn/(t - §)

< (1 - %) Inn'(t) + %C Inn'(t)

= (1 - —?—) Inn'(t) + % (g“g‘é —¢) Inn'(t)
= -—2% Inn'(t).

The second line is the mean value theorem. The fifth and sixth lines
follow from a) with e = (14 C1)/2 - C;.

c) We have

(Inn')'(t) — (Inn')'(r)] = |(t — r) (lnn')"(r £ &;7)|
< 6r By |(Inn")"(r £ é2r)|
= §'2B, |(Inn')'(r £ 6'/%r) — (Inn')'(r)]
< 8135} (1) (7).
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The first and third lines follow from the mean value theorem. The
second and fourth lines follow from (1.12).

d) The proof is identical to a), using (1.13) instead of (1.12).

e) Obvious.

f) Condition (1.12) implies that (Inn')"(r) < O(r"), for some
N € N. Then

OUN)>(1—5V;qg%gmﬁm"9“s) (by (1.12))

2/( (Inn")"'(t)dt.

1-6)r
Evaluating the integral,
/(I_g) (Inn")"(t)dt = (Inn')'(r) — (Inn")'(1 = &)r)
> (lnn")'(r) — C(Inn')'(r)
=(1-C)(Inn")(r).

The second line follows from integrating (1.12) for C = B;/(1 + Bs).
The proof is complete since 1 — C > 0.

g) We have
2 2
/e ' (t)dt < C/e " Int dt (from part f))
0 14 0 t + r p
S C] r.
h) For t > 2r,
Clnr
)l < || <c.
i) We have
r+6r
[ et~ el di < 5Cretr) < 50 taptr).
r—or
j) We have
n'(r) > C r¥olr (by (1.1))
>Cr (for any N € N)
> (—1p"(r))/ 2™ (for some n > 0 and part f))

—"(rN1/2\ 1/n
2((i&3 )"
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The desired conclusion follows upon rearranging.

Note that (1.10) implies that both (Inn')(r) and (Inn’)"(r) are
non-negative. By (1.5),

oo
A, rPrtl
1.14 In|E(z)| < Pn .
(1.14) BOIS Y
We write (1.14) as two sums
w4, reet 0 Ay, rPn!

Z [anlte (r + Janl) Z | lanf?r (r + lan]) ’

where ng is the first integer such that |a,,| > ro. The first sum is finite
so we may chose ¢, = 1. Then, for r > 2]a,,|, the sum is bounded
above by
'no—-l
r |pntl
D
n=1

e

a
1 n

an

The second sum can be written as a Stieltjes integral

20 Ap(ey PO dng(t)
| tP(®) (t + 1)

Qng |

This is bounded above by

(1.15) / 20 Ay rPOH dn(t)
' | tp(t) (t + 1‘)

ang |

by (1.9). We rewrite (1.15) in the form

dt

+oo 4 (In r—In t)p(t)+1ln n' ()
(1€
(1.16) r / !
|

t+r

angl

and we ned to minimize this integral. Treat the exponent as a function
of two variables, p(t) and ¢, and let

po(p(t),t) = (Inr —Int) p(t) + Inn'(t).
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Taking partials,

Ot
Op(t)

_ O 1
—].IlT-—].Ilt, —57——?

n"(t)
D)

The partial derivatives simultaneously vanish at

o= 0.

By the second derivative test for partials, we find that this critical point
is a saddle point. Accordingly, we use a generalization of the Laplace
method to evaluate the integral (1.16). (See [11, p. 27] for a detailed
proof of the Laplace method).

We need to evaluate

+o0 +o00
/ o(t) ¥ gt — etb(r)/ o(t) e¥O=%(r) gp — V(]
|“no|

lang |

t=r,

Then

r+6r
/ / / / o(t) O =) gy
|ano| r+6r e?

=hLh+L+1;+ 1,

where 0 < 6§ < 1/2.
For I, by Holder’s inequality,

r—ér
I, = / (1) P D90 gy
|

ang |

< @l lle?® %)
< Cr(e¥r=8n—¥() (by Lemma 1.2.g)).

Now

n''(r — ér)

wpwﬂ—ﬂﬂ=ﬂm—hﬁ—&»@_6)(r6ﬂ

+Ilnn'(r —ér) —Inn'(r)

NG
)-8 T

S1“(1--
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+Inn'(r —ér) —Inn'(r)

=U—6ﬂnggﬁ>rm"ﬁﬁ—$ﬂﬁ—6ﬂ
+Inn'(r - 6r) —lan(r).

The £ in the fourth line is obtained from the mean value theorem, and
using the fact that (Inn')'(r) is increasing. It follows that

Y(r — 6r) — (r) = (1—;6 In (%) . 1)
-(Inn'(r) —lnn'(r — ér)).

Hence

P(r —ér) —¥(r) < —ny (Inn'(r) — Inn'(r — ér))
< —mi (1- C) Inn'(r).

In the last two lines, n; and C are constants such that n; > 0 and
0 < C < 1. The last line follows from Lemma 1.2.a) and e).
The above argument used the fact that ‘

lgéln(116><1.

This follows directly from the inequality Inz < z — 1 for z > 0, z # 1.
Thus, by Lemma 1.2.j), we have

In order to make our calculations more precise, we will further split
I,.

r+6r

I, = / o(t) ¥ =3(r) g4
r—ér

r+ér

r+6r
— <P(7‘)/ e¥O—¥() g 4 / (o(t) — o(r)) ¥ (=%(r) 44
r—6r T

—br

— L+
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From Taylor’s formula with remainder, for |t —r| < ér,

w(t) - vir) =) C5T

where t' = t'(t), and |[t'—r| < ér. Using ¢) and d) in Lemma 1.2 above,
we can make the following calculations.

[9'(t) —'(r)| = ‘(lnr —Int)p"(t) - % (Inn')'(t) — (Inn')"(t)
2 (') + (mn') ()
=[2(lnr —Int)(lnn')"(t) + (Inr — Int) ¢ (Inn')"(2)

— 2 (lnn'y(2) - (') (1)

+ H (Inn')'(r) — (Inn')"(r)|.
"
This can be estimated by

W) -0 < 210 (1) Q)]
i () )
+1(lnn")"() = (nn')"(r)
(1.17) + |% ((lnn)'(t) - (lnn')’(r))l
<8C (Inn')"(r) + &3 (lnn')"(r)
b1 2 () + 2 (') (r)
<e|> tnn')(r) + (nn')'(r)
= p"(r)].

In (1.17), e3 was obtained using the same method of proof in Lemma
1.2.c). Also, in the first term, the fact that

1 ‘N 6
1+61°

1
‘n 1+6
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was used. For I}, let ¢ > 0 be arbitrary. By the argument above, we
may choose § such that

(1.18) () — ()| < el"()],  for [t —r| < br.

So by (1.18),

r+ér " 5
o(r) / H () (=2 gy < It
"

r+6r " )
< o(r) / (A=) W () (t=r)?/2 gy

Using the fact that f0+°° e du = \/7/2, we conclude that

II ~ CP(T)
2 —pt(r)1/2
We will now consider I .
r+

ér .
e¥YO—9(r) 1

r—6r

11| < sup_ le() —o(r)l

t—r|<ér

r+ér
< C lnp(r) 6(1_5)'1’“(7') (t—-r)? /2 dt ,

r—ér

by Lemma 1.2.i), the mean value theorem, and (1.18).
Making the substitution

_(=P"(r) (1 =€)\ 1/2
oo (L0
we obtain
" C Inp(r) too a2
|I2| S (—’(p"(’,‘))l/2(1 —6)1/2 A € du.

Since the integral converges, we have
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The estimate of I3 is similar to I;, with ¢ decreasing on [r, +o0),

_ In p(r)
1=0 ()
For I, by Holder’s inequality,

SO

+ oo +oo ,
L [ a < oWl [ O ar,
e? e2r

r

for some n > 0, by Lemma 1.2.b). Thus e¥(") I, converges by Lemma
1.2.h) and (1.1) above.
Putting everything together, we have

lnp(r) n'(r
In | B(2)| < C b ez '(r).

Corollary 1.1. The conditions of Theorem 1.1 imply that lnn'(r) =
O(r™) for some N € N. Hence

n'(r) < e , for some N € N.
PROOF.
o(rY) = %r (Inn')'(r) (by Lemma 1-2 f))
> (Inn')'(¢) dt (since (Inn')'(t) is non-decreasing)

r/2
_ ey (T
=Inn'(r) —Ilnn (2)
>Ilnn'(r)—Clnn'(r)  (forsome0< C <1,

using Lemma 1.2.a))

=(1-C)lnn'(r).
The proof is complete since 1 — C > 0.

EXAMPLE 1.1. Let fo(z) be the function with zeros at a, = Inn for
each n € N. Then ng,(r) =€". So

In nlfo(r) =r, (lnn’fo)'(r) =1, (lnn}o)"(r) -0.
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It is clear that the conditions of Theorem 1.1 are satisfied. Thus

Clnre” -
In|fo(z)| < S = Cr'/%lnre”.

Note that the only estimation of any kind occurred in the use of
Lemma 1.A. The integral in Theorem 1.1 was evaluated fairly explic-
itly (i.e. up to the multiplicative constant term). Thus, the growth
obtained should be best possible.

EXAMPLE 1.2. Theorem 1.1 is independent of the argument of the
zeros. Let go(z) be the function with zeros at a, = (Inn)!/® e with
a@>1,0<6, <21 and n € N. Then n,(r) = e™ . It follows that

In n'go(r) =In(ar* 1) +r,
-1
(Inmj,)(r) = == +ar*?",

l—«

(Inng)'(r) = -+ a(a—1)r*"2,

Notice that for all a > 1, (Inng )(r) is eventually positive, so Inng (r)
is eventually convex. The rest of the conditions of Theorem 1.1 hold,
so

C 111(7‘ ln(a ra—l) + T.C!+1) ara_l eroz

In|go(2)| <

1— 1/2
— tar*?4 _2_a + a(a — 1)r°“2>
r r

<Cr*?e™ Inr.
Let p(z) be a radial non-negative subharmonic function. Then we

make the following definition.

Definition. A, is the space of all entire functions f satisfying the
growth condition

|f(2)] < AeBP) | A=A; B=B;>0.

In order to further develop the interpolation theory (see (1]), we
now turn to the question of minimum modulus. Again there is a com-
plication. We can no longer obtain the lower bound

f(z)| 2 ee™ ) for |2| =,
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outside some family of circles, as was done for finite order functions.
The reason is simple. This was obtained in the case of finite order
functions by [4, p. 21] and using the fact that p(2r) = O(p(r)). This is
no longer true for infinite order functions (see Example 1.1).

To handle this, and in order to provide the necessary Fréchet space
with which to study the interpolation theory, we make the following
definition.

Definition. Define h(r) to be some non-increasing function which sat-
1sfies the condition

(1.19) p(r + h(r)) = O(p(r))..

We will also assume that lim, .o h(r)/r = 0. This condition is
not a restriction for our purposes (i.e. infinite order functions) since
h(r) = C for some C > 0, implies f(z2) is a finite order function and this
case has been dealt with already (see [1], [7] and [8]). As an example,

1

R _
p(r) = p(r)e” implies h(r) = pyy

and assume that p(r) is non-decreasing, u(2r) = O(u(r), and p(r) =
O(r™) for some N € N. This is easily seen. First, it is clear that

u(r+ =) = OGu(r)

because of the upper bound on u(r). Since (1 + z)? = 1 + O(z), as
z — 0, we have that

() =r4(a4 5) =r2(1+0()) =+ 0.

e(r+r1_ﬁ)ﬂ < er"+C — O(erﬂ)'

This example leads to

Corollary 1.2. Assumming the hypotheses of Theorem 1.1,

(1.20) h(r) > ;—ﬂl_—l- , for some B> 0.
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PrOOF. Follows from Corollary 1.1 and the above calculation.
Let p(r) = r p(r)/h(r). Clearly we also have

(1.21) p(r + h(r)) = O((r))

by (1.19) and (1.20) since /h(r) is non-decreasing and 1 < r/h(r) < rP.

Further analogs of results in {1] require f™*(az)/my! < AeBe(me),
Since it is easily possible that h(r) < 1, Cauchy’s formula provides the
following bound on the multiplicities mg. We have

‘f(mk)(ak)| _ ’i / f(2)dz - A eBr(ry)
2w

my! (z —ap)™et1] = h(rg)me

|z—zk |=h(rx)

If h(r) < 1, we must have

( 1 )mksAeBP(Tk)

h(rk)
or .
< D
my In mre) S C+ D p(ry),
which implies
C+ Dp(re)

We refer to (1.22) as the automatic bound.
We make the following definition of a slowly decreasing function in

A,

Definition. A function f € A, is called slowly decreasing if the fol-
lowing two conditions hold:

i) There ezist € > 0, A > 0 such that each connected component
Sq of the set

S(fie,A) = {z: |f(2)| < ee™ 4P}

18 relatively compact.
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i) There ezists a constant B > 0 independent of a such that

B(¢)<Bpz)+B,  foranyz,( € Sa, any a.

Before we proceed, we need a lemma which gives an upper bound
on n(r). This is a modification of the proof given in [4, p. 15] to the
case of infinite order functions. Recall 5(r) = r p(r)/h(r).

Lemma 1.3. Let f € A, of infinite order. Assume
a) |f(0)| =1,
b) p(r+ h(r)) = O(p(r)),

c) lim hlr) =0.

T—0oo T

Then
ng(r) = O0(p(r)).

PROOF.

Colr+ 1) 2 5= [ Il + hir) )] a9

r+h(r) t
> / E(i—) dt (by Jensen’s inequality)
r+h(r) dt
> n(r)/ " (since n(t) is increasing)
=n(r)(In(r + h(r)) = Inr)
=n(r) In (1 + -h(—:l)
h
~ (rr) n(r) (by condition c))

which implies the statement of the lemma.

Notice that since p(r+h(r)) = O(p(r)), we also have ng(r+h(r)) =
0(5(r))

The following theorem also makes use of a theorem of Momm’s [6]
for lower bounds of an entire function.
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Theorem 2.A. Let f be entire with f(0) = 1. Then, for each 0 <r <
r + h(r), there 1s a Jordan curve ' in v < |z| < r + h(r) around the
origin such that

—C [ [T In My(2) ’
(123) ln|f(z)| > m (‘/(; m dt) , forzel.

Theorem 1.2. Let f € A, satisfy the conditions of Theorem 1.1 and
assume f(0) = 1. Then f is slowly decreasing and (f), the ideal gener-
ated by f in Aj is closed in the space A; (i.e. g/f entire implies that

g/f € Ap)~

PROOF. To prove slowly decreasing, it suffices to show that in every
annulus r < |z| < r 4+ h(r), there exists a Jordan curve around
the origin in that annulus such that on that curve, f(z) attains the
appropriate minimum modulus.

Let o(r) = Inp(r). Consider the integral in (1.23). With our
notation, it is estimated from above by

r+h(r) co(8)/2
—dt.
0 Vr+h(r)—t
Upon integrating by parts, we have
r+h(r) eo(1)/2

A S T Ik

—2y/r + h(r) — te” /2 r*“”
0

r+h(r)

+ Vr+h(r) =t o' (t) e ®/2 gt
0
r+h(r)
VTR [ dlerrar
0

r+h(r)

= 24/r + h(r) e”(t)/2|
0

< 2y/r F R(r) 7 HRO/2
< 2y/(r + h(r)) p(r + h(r))

< By/ro(r).

Plugging into (1.23), we obtain

—Cr
In|f(z)| 2 ) p(r) -
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This proves that f is slowly decreasing in A;. By Proposition 3 of
(1), (f) is closed in Ajp.

REMARK. Notice that both the minimum modulus theorem for an-
alytic functions with no zeros and Lemma 1.3 was used in the proof.
Independently, a multiplicative factor of r/h(r) appeared in both cases.
This leads us to believe that A; is the correct space in which to study
interpolation theory for infinite order functions.

EXAMPLE 1.3. Consider the fo(z) in Example 1.1. By Theorem 1.2,
fo is slowly decreasing and (fo) is closed in the space

{f(z): In|f(z)| <Cr¥*lnre’}.

EXAMPLE 1.4. Consider the go(z) in Example 1.2. By Theorem 1.2,
go is slowly decreasing and (go) is closed in the space

{9(z) : In|g(z)] < Cr®*/%e™ Inr}.

As a consequence, in view of [1, Proposition 3|, if f is slowly de-
creasing in A,, it is only invertible in the space A4;.
More generally, any theorem in [1] that mentions

If(z)] 2ee 4, |z =r,
must be changed in the infinite order case to
|£(2)] > e e 4P

to reflect the above facts.

Asociated to a multiplicity variety V in C, there is a unique closed
ideal in A(C),

I=I1(V)={F € A(C) : F vanishes at z; with multiplicity > ms}.

Two functions g and h in A(C) can be identified modulo Iif and only
if

O] 130
] (Zk)_ (Zk)_a“, 0<I<mi-1, k=1,2,...

(124) =" =
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Hence Theorem 1.A above states that the quotient space A(C)/I can
be identified to the space of al sequences {ax,;}. We will describe them
as analytic functions on V and denote that space by A(V). The map
Oy = 0
2: A(C) — A(V),

which takes g € A(C) to {ak,:} € A(V) via (1.24) above, is called the
restriction map.

Before we proceed, we need some definitions. In what follows, let

hi(r) = min{h(r),1}.

Definition. Let V = {(zx,mi)} be a multiplicity variety. Then A,(V)
i3 the space of all functions {ax,} € A(V) such that for some constants
A, B>0

my—1
(1.25) D lakglha(re)' < AeBe 0k >1,0<1<my .

=0
Note that when my = O(eBP(™)), then (1.25) is equivalent to
(1.26) lak il hi(re)' < Ay eBrem) -k >1 0< i< my.

Notice that because of the automatic bound, we may take (1.26)
as the definition for A,(V') whenever h(r) < 1.
We now define p(r;s) = p(r + hq(r)s).

Definition. The space A, oo(V) consists of those {ax,1} € A(V) such
that for some A, B >0 and all s > 1

my -1
(1.27) ) Jakgl (ha(ri)s) < AeBria) | g >1, 0<I<my.
=0

Note that because of the definition of h;(r), we can be more precise

about what is meant by p(rx; s). By repeating (1.19) [s]+1 times, where
[-] denotes greatest integer, we obtain

p(ri;s) < AeP(p(ry)),

for some constants A, B > 0.
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Definition. If o maps A, onto A,(V), we will say that V is an inter-
polating variety for A,. If p maps A, onto A, , then we will say that
V is a weak interpolating variety for A,.

Squires, in his Thesis, [7, Theorem 2] and (8, Theorem 3], provides
a purely geometric condition for a finite order function to be interpolat-
ing. That is, whether or not f € A, interpolated depended only upon
the geometry of V(f). That theorem has an analog in the infinite order
case, and we present that here.

Theorem 1.3. Let f € A,, where ng(r) satisfies the conditions of
Theorem 1.1 and assume V = V(f). ThenV is an interpolating variety
in A; if and only if there exists constants C, D > 0 such that

C p(lak]) + D
1.28 my < ZPIakl) + D
(1.28) ¢S T A(lax])]
h(lak|)
(1.29) / ﬂa"—tt-ﬁ dt < Cp(jax])+ D.
0

PROOF. By [1, Theorem 4], if V is an interpolating variety, then there
exist constants £, C > 0 such that

(1.30) '—ﬁﬂ)—({i}—' > ce=Callarl)
mi!

(Recall f is only invertible in the space A;). Now (1.28) follows from
Cauchy’s formula. (If h(r) < 1, this is precisely the automatic bound.)
We first show that (1.30) implies

(1.31) H lan — ax| > g e~ Chllarl)
lam—an[<h(lax) %!

anFay

Let f(z) = (z — ax)™*g(2) and write 1 = |g(ax)|/|g(ax)|-
For the numerator, note f(™*)(a;) = m!g(ax). For the denomi-
nator, write the canonical factorization of g(ax). We have

lan —ar| 1 ‘f("‘")(ak)l

o PiPP, | myl
an—ar|<h(as) 2 17278 k
anFag
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with

’

P, = 11 (1 - Z—:) E,, (fi)

a
lan —ak|>h(|ax]) n

ag
Py = E ( )
|an —ar|<h(lar])
anFag
a
P; = .

—|
lan —ak|<h(lax]) "
an#ag

Here, E,, represents the exponential part of the n*® term in the fac-
torization of f(z) from Theorem 1.1

We need only obtain appropriate upper bounds for the three prod-
ucts in the denominator. Note that P; = fr(ax), where

fi(z) = II (1 - 2'i) E, (2-’-‘-) :

a ag
lan —ak|<h(|ak]) "

We show that f(z) has the same growth as fx(z). First, it is
clear that dny, (t) = dng(t). Second, letting {b;}2, = Z(fx), we have
|bj| > |aj|. Then
>\ 2 | 2
SR <Xl5

Jj=1
so by the argument in Theorem 1.1, |fi(ai)| < A eBeloxD)
For the second product, we have

Pk

InP, < > Z

|an —ak|<h(|ax]) J=1

anFag

<

2% (Iakl Ta},:||akl))

lan —ak | <h(lax|)

anFag

It follows that

InP; < Z Clnp(lanl)(lak|+h(|ak|)

lan—ak|<h(|ak])

)P(]"-nl)
|an|
anFai

605
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< Z C Inp(|an|) (Jﬁ5|_+_h(|_ak_|))1’(lanl)+1

lan —ax |<h(|ax ) lan|
apFay

< Cp(lak| + h(lael))
< Cp(laxl),

since |ap| < |ak|+ h(|ak|) and using the arguments in Theorem 1.1 and
the assumptions on p.

For the last product, we have

lanl<( lak| )n;<|ak|+h(|ak|)>
= \|ak| — A(|ax])

ag
an—ag|<h(|ak])
ap#ag

IA

( |ak| )Clakll’(lak D/k(lax])
|ak]

— h(lakl)
h(lag]) N C laklolax))/A(lax])
<{l4+ —m——1
_( |ak|—h(|ak|))
h(lag])  \latl/ACaxDy CotlarD
<((+ Jax] ) )
h(|ax|)

< ¢2C p(lax])

We have just shown (1.31). Let n(ag,t, V') be the number of points
in V in a disk of radius ¢ centered at a, excluding aj itself. Inequality
(1.31) also implies

I lan = akl o _ ~catlarl)

Qg
lan—ak[<h(lak])
ap#ag

Taking logarithms,

Z In|an, — ak| — n(ak, h(|ak|), V) In|ag|

lan —ak |<h(|ax])
(1.32) by

> —C p(laxl) - D.
Upon writing a Stieltjes integral and integrating by parts, we have
h(lax])
/ n(a’Ht’ V) dt = Z ln h(lakl)
0

t an, —a
lan—ak [<h(|ax ) lan — ax|

an #ag
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(1.33) = n(ak, h(lar]), V)

- Z In|a, — agl.

lan—ar|<h(|ak|)
anFag

Now, (1.31) and (1.32) together give

lekl) p(q a
/"( I)._("’tt_"/)dtSCp"(lak|)+D+n(ak, h(lax)), V) In (h(' "')),
0 |ak|

which gives (1.29) for |ax| > h(|ak|).

Since f attains the desired minimum modulus on some Jordan
curve around the origin in every annulus r < |z] < r + h(|ak|), by
Jensen’s Theorem,

(mx) 1 27 .
h4L7$ﬂ4:§;A In|f(ak + h(jax]) ") d8

h(lax]) n(ag,t,V)
/0 — %

—mg Inh(|ak|)
h(|ax]) ’n(ak, £, V) P
t

> ~C ) -D - [
—mg Inh(|ak]).

Conditions (1.28) and (1.29) then imply
1n|i(:nk_)(_‘f£2‘ > —C j(lax|) - D
my! - PRIgk )

By [1, Theorem 4], V is an interpolating variety.

It should be aparent that the concept of a slowly decreasing func-
tion is very important in interpolation theory. Since the definition of
slowly decreasing means that f(z) attains a minimum modulus, that
implies that groups of zeros of f are “well” separated, in some sense.
The idea now is that convexity of n(r) should already imply that in-
dividual zeros of f are well separated, since the growth of n(r) is so
regular. That is, we should be able to show that, under certain condi-
tions, if n(r) is convex, then not only is f slowly decreasing, but each
component of S(f;e, A) contains only one zero of f.
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As a starting point, consider the diference quotient

n(re+1) — n(rx)

Tk41 — Tk
where {r;} is the increasing sequence of the moduli of the zeros. The
numerator is simply the multiplicity of the zero at z = ax. The idea is
that if the denominator has a “nice”lower bound, then each distinct zero
of the function f should be trapped in its own component of S(f;e, A).
To take a concrete example, consider the function fy(2) in Example 1.1.
There,

1y 1 1
Tk+l_rkzln(k+1)_lnk=1n(1+z)NENH, (rk).
fo

This is the kind of condition we would like for Theorem 1.4.

We introduce the following notation for Theorem 1.4:

ey = P
=6

i.e., the factor multiplied by n'(r) in Theorem 1.1,

v(r)r
h(r) In(rn'(r))’
h(r) = min{h(r), #(r)} .
Notice that since h(r) is always bounded above by h(r), (1.25) holds,
with h(r) replacing h(r). Also, (1.25) holds with n'(r) replacing p(r)
since n'(r) is bounded above by e™ for some 8> 0.

o(r)=

Lemma 1.4. For n(r) satisfying the conditions of Theorem 1.1,

C
7 > =
o(r) 2 —5

for some constants C, N > 0.

PROOF. Since h(r) < r, we have
v(r)r
h(r) In(r n'(r))

v(r)

~ In(rn'(r))

o(r) =

C In(r (Inn')'(r))
1/2 )
(2 mnry(r) + @any() " (i)
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For the numerator,
(1.34) In(r(Inn')'(r)) > C,

since Inn'(r) is increasing by (1.10). For the denominator,

1/2
(1.35) (-717 (Inn")'(r) + (In n')"(r)) <crV,

for some N > 0 by Lemma 1.2.e); and
(1.36) In(rn'(r)) < CrV,

by Corollary 1.1 for some (possibly different) N > 0. Now, (1.34),
(1.35) and (1.36) imply

. C
v(r) > o

Theorem 1.4. Let f(z) € A,, where n¢(r) satisfies the conditions of
Theorem 1.1. Assume

(1.37) mg <rTp, for some uniform m >0,

(1.38) Sre1—rk < for all k.

Tk
n'(re)’
Here vy is the modulus of a zero of f and my its multiplicity. Then

there ezists a family of circles Cy, each circle centered at a zero of f(z)
such that :

(1.39) CinCy =2, forj #k,
(1.40) In|f(z)| > -C p(r) - D,

for |z| = r and some constants C, D > 0 for al z outside the set of
exceptional circles UpCy.

PROOF. Recall we are assumming that the moduli of distinct zeros
of f are separated per the discussion prior to this theorem. We must
establish the circles satisfying (1.39). We first show that the definition
of h(r) is reasonable, in the sense that it is possible to have several zeros
of f(z) in any circle of radius 2 A(r).
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From (1.10), we have

1 1
(1.41) ) S e

for some v(r) such that lim, .o vo(r) = 0o. Thus it will be sufficient
if we can show

(1.42) h(r) > r% ,

for some 8 > 0 and C > 0. And A(r) satisfies (1.42) since A(r) and &(r)
do, by Corollary 1.2 and Lemma 1.4, respectively.
Now (1.38), (1.41) and (1.42) imply

(1.43) ree1 — 7k < Ch(ry).

Writing rx4+1 = rg + (rk+1 — &) and using (1.43), (1.38) implies

(1.44) Tke1 — Tk > for some B; > 0.

L
n'(ry)’

Then, a circle of radius, for example, B; /(3n'(r)) around rj will guar-
antee that (1.39) holds. Fix By = B;/3 for the rest of the proof.

The proof of (1.40) is a modification of that given in [4, p. 125].
Assume |z| = r and that z does not lie in the set of exceptional circles
just found. Let

(1.45) F)= ] (1_1).

_ a
lz—an|<2 h(r) "

Notice that, since |z — an| < 2A(r) and |an| > r — 2h(r), we have, for
r big enough,
2h(r)

S = <1
r —2h(r)

Iz-—an
Qn

and therefore

(1.46) In|F(z)| < 0.
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Now, for z outside the exceptional circles,

Fal= I |

lman|<2h(r) T
- |z-aﬂl|_512 A(r) ((r - 275:))n,(r)) (by (1.44))
n(z,V,2 h(r)
(1.47) ln|F(2)| > —C n(z,V,2h(r)) In(rn'(r)) - D.

We next obtain an upper bound for n(z,V,2h(r)). Notice that,
since (1.47) was obtained independent of the argument of the zeros,
it must remain true even if all the zeros lie on the same diameter
of D(z;2h(r)), the circle of center z and radius 2h(r). Thus, by
(1.39), the total of the diameters of the excluded circles in D(z; 2h(r))
must be less than the diameter of D(z;2#(r)). The total diameter of
the excluded circles in D(z;2h(r)) is bounded below by .n(z,V,2h(r))
times the smallest diameter of the excluded circles in D(z;2h(r)). The
smallest diameter is bounded below by

QB() Co
n!(r + 2 h(r)) STl

Since the diameter of D(z;2h(r)) = 4 h(r),

Con(z,V,2h(r))
n'(r)
(The arbitrary constant C accounts for the fact that some of the ex-

cluded circles may be only partly inside D(z;2h(r)). Thus, there exists
a constant B > 0 such that

< Ch(r).

n(z,V,2h(r)) < Bh(r)n'(r).
Now, since h(r) < i/(r), we have

Bruy(r)n'(r)  Bp(r)

(2 V,2h(r) < BHO)R(r) = ey ey = i)
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Plugging into (1.47), we get
(1.48) In|F(z)| > ~Cp(r)-D.

Let

F(z0= ] (1—2:4).

|z—an |<h(r) "

Fixing z and thinking of F(z;() as a function of the complex variable
¢, it is clear that (1.48) still holds for |¢| < A(r). Note F(z;0) = F(=z).
Let f(z;¢) = f(z+ ¢) and write

o0 = FEL, tor o] < 0.

By Theorem 1.2, there exists a rg, 0 < rg < E(r), such that
In|f(z+¢)| > -Cp(r) - D, for every || =r.

This remains true even if A(r) = #(r). Just repeat the proof with 7(r)
replacing h(r), and use

(2, V, 5(r)) < n(z,V, h(r)) < C 4(r)
Then, using (1.46), we obtain that
(149)  Infe(z Q) =In|f(z ()| - In|F(2¢)| > ~C 4(r) — D

Now, ¢(z;¢) has no zeros in |[(| < rq and by the minimum modulus
principle, it takes its minimum modulus on |(| = r¢. In particular,

In |¢(2;0)] = In|f(2)[ - In|F(z)| > —C 4(r) - D
Finaly, (1.48) and (1.49) together give

In|f(2)| > ~C (r) — D.

We close this chapter with propositions regarding the space 4, (V).
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Proposition 1.1. A, (V) C A,(V).
PROOF. Let s =1 in (1.27).

Proposition 1.2. The restriction map p : A(C) — A(V) maps A,
(with my satisfying the automatic bound) into A, (V).

PRroOF. From Cauchy’s formula, for 0 < j < mj — 1,

F9) 50
e [ g
|¢—z|=h1(rx)s

Then, taking the sum,

L) £(5) .
J-

mg
A eBr(reis)
hl(’”k))

< A P(’”k) + B,

J=0

A, eB2 p(1i) f B p(re;s)
—Ilnr;

<A eBe(rris)

REMARK. (1.27) and the automatic bound give the estimate

AeBe(re;s)
lak,d h1(re)' < —67-—
Compare with (1.26). Then A, (V) = A,(V) if and only if
(1.50) mk=0<inf 1+BP(Tk;5)“P(T'k)> ,
s>1 Ins

for some constant B > 0.

To see this, first assume (1.50). Note that because of Proposition
1.1, we need only show A,(V) C A, (V). This condition follows di-
rectly, taking into account that (1.50) implies s™ < A eB (p(reis)=p(re)),
Since A,(V) C Ap,oo(V), we must have

s™k 4 Bolr) < Ay eB p(reis)

Solving for m gives (1.50).
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2. The Spaces 4,.

We will now establish the theory regarding the spaces A,. The
proofs will be omited, as they are basically unchanged from those in
(1].

Let p(z) be a subharmonic function satisfying the following two
conditions:

(2.1.1) p(z) > 0 and log(1 + |2|?) = O(p(2));

there exist constants By, Cy, Dy > 0 such that

2.1.1i
S ¢ — 2| < 1 implies p(¢) < Bo p(Co2) + D .

We now define the spaces A,. The bold face p is to emphasize the
constant inside the argument of p.

Definition. Let f be entire. We say that f € A, if

If(2)| < AeBPCD | for some A, B, C > 0.

Condition (2.1.i) provides a minimum growth for the function f,
guaranteeing that all polynomials belong to A, for any p. We note that
the only entire functions that grow slower than a polynomial are the
constants, and nothing interesting happens there. Condition (2.1.ii)
controls the growth of p(z) in small discs. We also show below that
(2.1.11) guarantees that A, is closed under differentiation for any p.
Note that if p is radial, then subharmonicity implies that p is convex.
Furthermore, since (2.1.i) implies that p approaches infinity, we can
assume that p is increasing. If p is not radial, we can assume that p is
eventually increasing on any line.

There are two reasons why we would like to study such spaces.

EXAMPLE 2.1. One reason why we may need to consider the space
A, instead of the case where we do not allow the constant inside the
argument of p is that the zeros of the function are to dense, causing the
function to grow too fast for the later case. Consider a fiinction with
simple zeros at z = Inlnn for al n € N. In this case,

r

n(r)=e*,

which grows faster than the infinite order functions considered earlier.
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EXAMPLE 2.2. The other reason that we may need to use the space A,
is that while the zeros themselves may not be dense, the multiplicities of
the zeros may be too large. Consider the function with zeros at z = lnn,
for n € N and “pile up”the multiplicity in the following manner:

1) At z = 1, place a zero with multiplicity [e€] (where [ -] represents
the integer part).

2) At z = e, place a zero with multiplicity [e¢°].

3) In general, place the zero ay at e/**~1| with multiplicity [eelakl].

Here there are very few distinct zeros. However, the multiplicity
is so high - my = '™ for every k -that we are forced to deal with the
space A, .

Note that arbitrary derivatives belong to A, for any p (i.e. the
space Ap is closed under differentiation)

O L [ Lo
271

n! (¢ — z)ntl
lz—¢|=1/C
< A B maxXjz—¢i=1/c A(CC) ontl
< AeBe(Co)

Since we are only interested in the case where p(Cz) # O(p(z)),
most of the time, conditions (2.1.i) and (2.1.ii) will always hold. In
fact, if p(z) = p(|z|), it is easy to see that not only are we dealing with
infinite order functions, but (2.1.i) holds for arbitrarily rapidly growing
functions.

Our question is to study, for given p, the range of Ap(C) under the
restriction map . The addition of the extra constant in the argument
of p allows for a lot of “room to maneuver”. Putting it another way,
we are not putting a very precise growth rate on the functions in 4,.
However, this does have the advantage of simplifying the calculations
to the point that the proofs in this chapter vary only slightly from those
in [1]. In Section 2, we will study some clases of infinite order functions
in more detail.

We will begin with the A, version of the Semi-Local Interpolation
Theorem.

Definition. For fi,..., fm € 4y, ||f|l = (0, | £i]?)Y/2,
S(f;e,B,C) ={z € C: |f(z)| < ee BrC},
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We will use a bold f when we are dealing with a collection of
functions fi,..., fm.

Semi-Local Interpolation Theorem. Let \(z) be analytic on
S(f;e,B,C)
and satisfy
A(z)| < A'eB'HCD) for z € S(f;¢,B,C).
Then there exists an entire function A(z) € Ap, constants ey, By, C1 >0
and functions ay,...,an aenalytic on S(f;e,, By, Cy) such that for all

zZ € S(f;el,Bl,Cl)

) m Ures A (z
A(z)=/\(2)+20‘f(z)fi(z)v ond 2 1(! D l(! :

and |a;i(z)] < AeBPC?) for some new constants A, B, and C > 0.

Following [1], we now define the space of analytic functions with
growth conditions on a multiplicity variety V.

Definition. Let V = {(zx,m)} be a multiplicity variety. Then A, (V')
is the space of all functions {ax} € A(V) such that for some constants
A B,C>0,

mp—1
(2.2) > lakgl < AeBPCW . keN.
=0
If my = O(eBP(C#)) then (2.2) is equivalent to
(2.3) lag1| < AeBr(Cm)

We show below that p(A4,) C Ax(V). In general Ap(V) is much
bigger than g(A4,). We give an example here to show what can happen.

EXAMPLE 2.3. To take an extreme case, let n s(2) satisfy the conditions
of Theorem 1.1 with all the multiplicities one, ax = Ink and ax o = ax =
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0. Then (2.2) is certainly satisfied for any p, but we have seen (Example
1.1) that such a function f must satisfy

@) <em B for fo| =

One reason is that the growth (2.2) depends on purely local conditions.
Allowing more global conditions will give a sharper bound which in
some cases may be more appropriate. Therefore, we now let

p(Ciz;r) = f?f?ﬁ”(c (z+¢))
and make the following definition.

Definition. The space Ap (V') consists of those {ar,} € A(V) such
that for some A, B, C >0 and alr > 1

mi—1
(2.4) > lagalrt < AeBrGm),
=0

We then have the following propositions.
Proposition 2.1. 4, (V) C Ax(V).
Proposition 2.2. p: A(C) — A(V) maps A, into Ay oo(V).

We now seek growth conditions on {ax;} for A, (V) analogous
to (2.3).

Proposition 2.3. If p(z) = p(|z|) with r = |z|, then p(C;2z; D17 +
D,) < p(C';r) for some C', Dy, Dy > 0.

EXAMPLE 2.4. Let k(r) be some function of r tending toward infinity
faster than any linear function. Then (2.4), with r = &(r), gives the
estimate

A eBp(Ciziin(r)
w(r)!
Compare with (2.3). Then Ap (V) = Ap(V) if and only if

_ e L+ Bp(C;2k; 6(r) — p(Dzk)
(2.6) m =0 (igﬁ In &(r) ) ’

(2.5) lakl <
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for some B > 0. To see this, first assume (2.6). Note that by Propo-
sition 2.1, we need only show that Ap(V) C Apoo(V). Assume (2.2).
Since (2.2) holds for the sum, it certainly holds for each term. (2.6)
then implies

Al B p(Cliziin(r)) At oB' p(Ciz;k(r))

OO

A eBr(Cr) <

So,
(2'7) mk|ak,,| fc(r)l <mipA eB p(Cszk;3k(T)) )

Since (2.6) implies my = O(eP P(C3#i%(M)) "and (2.7) is true for each I,

we conclude
mg—1

Z |ak,il k(r)! < AeBr(Cizin(n)
=0
Now assume (2.2). Then

mi—1
z lag 1| () < k(r)™ A eBe(Cn)

1=0
Since Ap(V) C Apo(V), we must also have

K(T)mk AeBp(Cz;,) < Al 631 P(Cl;lk§'€(7‘j) .
Solving for my gives (1.10).
We now make the following definitions.

Definition. If p maps A, onto Ay(V'), we will say that V is an inter-
polating variety for Ap. If p maps Ap onto Apoo(V), then we will say
that V 13 a weak interpolating variety for A,.

Definition. If f1,..., fm € Ap then

Iloc(fl,---,fm)a

the local 1deal generated by (f1,..., fm), is the set of all functions g € A,
such that, for any z € C, there i3 an open neighborhood U of z and
functions g1,...,9m € A(U) with the property

g=2fjgj in U
J=1
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ItV =V(f1,...,fm) is the variety of common zeros of fi,..., fm
(with multiplicity) then foc(f1,-..,fm) = I(V) N Ap. Since I(V) is
closed in A(C) (with the topology of uniform convergence on compacta)
and A, — A(C) is continuous, it follows that loc(f1,..., fm) is closed
inA,. By (f1,..., fm) we will denote the ideal generated in A, by those
same functions.

Definition. We say that fi,..., fm as above are jointly invertible if

IlOC(fl,"'vfm) :(fla"'afm)'

For a single function f, we say that f is invertible if Iioc(f) = (f);
in particular, the principal ideal generated by f is closed. In general,
we do not expect these two ideals to coincide. We will see later that if
p(z) = p(|z|) then (f) is always closed. Se also [8, Theorem 7.1].

Hence, f invertible in A, implies that if g € A, and ¢g/f € A(C)
then g/f € A,. It also implies that (f) is closed and, consequently, the
map g — fg is an open map from A, onto (f).

Theorem 2.1. Let fi,...,fm € Ap and V = V(f1,..., fm). If, for
some €, B, C > 0, we have for all (zx,mp) €V

m (mk)
(2.8) Z |f] (Zk)l >€e_B,,(Cz)’

my! -
=1 k

then V is an interpolating variety. In the converse direction, if V is an
interpolating variety and the functions fi,..., fm are jointly invertible,
then (2.8) holds for some ¢, B, C > 0 at every point (zx,my) € V.

From the proof of Theorem 2.1, we obtain

Corollary 2.1. With the same hypotheses of joint invertibility as in
Theorem 2.1, the multiplicity variety V = V(fy,..., fm) 18 an interpo-
lating variety if and only if there exzist ¢, B, C > 0 such that

i) each zx €V 13 contained in a bounded component of S(f;¢,B,C)
with diameter at most 1.

ii) No two points of V lie in the same component.
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We now consider analogous results for weak interpolating varieties.
Recall that

p(C;zr) = max p(C(z+()).

For B> 0,0 <I<my—1,and {(zx,mz)} =V, let
- eBp(Cszir)

Yt = Ve(B) = inf ———
and
(2.9) Yk = V6(B) = Yk,my —1(B).
Notice the vx ; come basically from (2.4), i.e.

{aki} € Apoo implies |agi| < Ayki(B),

for some A, B > 0.

The following theorem gives a necessary condition for V =
V(f1,...,fm) to be a weak interpolating variety when fi,..., f,, are
jointly invertible.

Theorem 2.2. Let V = V(fi1,...,fm), fj € Ap. Supose that V 1s
a weak interpolating variety and that fi,..., fn are jointly invertible.
Then for each B > 0, there ezist constants €, Cy, Cy > 0 such that

m (me)
lfj (zk)| —C; p(Caz)

Next we give sufficient conditions. For each B > 0, let Ry =
Ry(B) > 1 denote a point at which

eB P(Cize;Re )

Rzlk—l < 27k )

(recall (2.9), the definition of 4%).
Theorem 2.3. Let fi,...,fm € Ap and V =V (f1,..., fm). Suppose

that for each B > 0, there ezist constants €1, C1, C3, C3, Cy, Cs > 0
such that for all (zg,mi) €V,
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i) mg < C1p(Cazk) + Cs,
i) p(2;2Ry) < Cy p(Cazk) + Cs, for all |z — zx| < 2Ry,

m (mk)
: z
111) z .I_fi_r_r_l_’;(‘_k).l. > e 7k(B) 6—04 p(Cs 2) .
j=1 )

Then V 13 a weak interpolating variety.
There is also an analogue to Corollary 2.1, with the same notation.

Corollary 2.2. If the hypotheses of Theorem 2.3 hold, then for some
constants €, B, C, Cy, Cy, C3, Cy > 0 we have

i) Each zp € V belongs to a bounded component of S(f;e,B,C)
and p(z) satisfies
p(C12) < C2p(C3() + Cy

for any z,( of that component.
il) No two distinct points of V lie in the same bounded component

of S(f;e,B,C).

Since A(V) is generally much larger than the range of the restric-
tion map ¢ : Ap — A(V), the next question is to try and find a
description of the subspace of A(V') which is the range of p. We start
with the concept of a slowly decreasing function.

Definition. A function f € A, is caled slowly decreasing if the follow-
ing two conditions hold.

i) There ezist constants €, B, C > 0 such that each connected
component S, of the set

S(f;e,B,C) ={z: |f(2)| < ee~Br(C2}

18 relatively compact.

i) There ezist constants Dy, D2, D3, Dy > 0, independent of a,
such that
p(D1z) < D, p(D3() + Dy,

for any z,{ € Sy and any a.

Proposition 2.4. If f is slowly decreasing, then f is invertible.



622 R. E. HEYMAN

Proposition 2.5. If p(z) = p(|z]), then any f € A,, not identically
zero, 18 slowly decreasing.

We need the following lemma. Most of the proofs are immediate
consequences of the definition of slowly decreasing.

Lemma 2.3. If f € A, 13 slowly decreasing, then there are rectifiable
Jordan curves I, with the following properties:

a) The sets Uy are pairwise disjoint and V =V (f) C U, Us where
Uy =intTy,.

b) For some constant A > 0, we have, for all a,
F2)] > 5 emArad,

for z € T,.

c) For some constants B, By > 0, we have, for any @, and any
pair 2, € Ug,
p(B1z) < Bp(B() + B.

d) If do 1s the diameter of I'y, then for some constant C > 0, we

have
do < C 9P

for any z € U,.
e) For some constant D > 0,
length (I'y) < D eP (P
for any z € Uag.

f) If n, denotes the number of points in V, = VNU,, counted with

multiplicity, then
ng < N N r(Nz) ,

for some constant N > 0 and any z € U,
For the U, obtained in Lemma 2.3 we make the following definition.

Definition. Let {ai‘j‘,)} = {ar, 1} N A(Vy). Then Apy4(V) consists of
those functions {ay 1} € A(V') such that, for ¢ € A(U,) and

la§ Mo = inf{llellos = @ € A(Ua) and oy, () = {af}},
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there ezist constants Cy, C2, C3 > 0 independent of a such that

(2.10) ||a§;”,)||a < €y eC2(Cs2) for any z € U, .

See also [5] for a discussion of these spaces.

Theorem 2.4. If the function f € A, is slowly decreasing, the map pv
induces a linear topological isomorphism between the spaces Ap/((f))

and Ap o(V) for V. =V (f).

Theorem 2.4 shows that even though A, (V') was defined in terms
of a specific family of curves I', Ap (V') is actually a subspace of A(V')
independent of the family {T',}.

We can obtain a characterization of A, 4(V') in terms of polynomial
interpolation if the following lemma holds.

Lemma 2.4. If p(z) = p(|z]) then c) in Lemma 2.3 can be replaced by

c') Let Wy = {z € C: dist {2, Uy} < 2dqo}, then for some constant
B >0, we have
p(¢) < Bp(Bz) + B,

for any a and any z,{ € W,.

To continue, we first restate some facts about the Newton interpo-
lation formula and divided differences (see [10, p. 326]).

Let (1,...,(n, n = n, stand for the points in V,, counted with
multiplicity. Then the polynomials

Po=1,
Pl(z)zz—<17

Pa() = [1 (-~ ),

form a basis of the space of polynomials of degre n — 1. There is a
unique polynomial ) = @, of degre at most n — 1 such that

oy, (Qa) = {alV}
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and it can be written as

n

Q)= Y AVP().

J
Q(z) is called the Newton interpolation polynomial. The coeflicients

A9 = A9 ({a})

are the j*h divided differences of the a(al)’s. They can be computed

’

recursively. For example, if (; = zj then A = aro. If (1,...,(m are
distinct points, then

m
ar

Alm) — L E—
; IT;(Ce = €5)
Higher multiplicities are handled by taking appropriate limits. For
example, if
===z,

then A® = ak,i. If Q(z) satisfies
(2.11) |Q(2)| < K, ¥z p(Ka2)

for some K, K,, K3 > 0, the above discussion shows that (2.10) holds

and hence there exists a function ¢ € A, such that gy, (¢) = {agf",)}.
This can be done even if we know the estimate for a single o since

{bk,1} € A(V), defined by

__{ak,(, if zx € Vq,
0, if 2 ¢ Vo,

isin Ap4(V). We can estimate the AU) by the following lemma, [10, p.
329).

Lemma 2.A. Let ¢ be holomorphic in the open set W C C, |p(2)| < M
in W, and (1, ...,(, be given such that for some § > 0, U;'=1 D((j;6) C
W, then

_ J
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(Here the AU are computed with respect to 0,,(Q), V the multiplicity
variety associated to (,...,(n).

Hence, assumming c') holds, if either Q@ = @, satisfies (2.1) or
(2.10) holds, we have, for some constants A, By, C; > 0,

(212)  |{a <°‘>}||C,_0<m<a,x AD({al}) di| < Ay B HOA)

for all z € U,, n = ny. This follows from Lemma 2.A with W = W,
and § = 2d, . In particular, if

{ak} € 4p4(V),

then (2.12) holds for every a with the constants independent of a.
Conversely, if (2.12) holds for a given a, then it is obvious from the
definition of the polynomials P; and Q. that, for every z € U, and
some new constants A,, By, Cy > 0,

|Qa(2)| < Ay B o(C1 2) nz—] I(z = ¢1)- (z = ¢;)l

& 4
< ng Ay eB1A(C12)

< A, eB2 P(C22)

The last inequality follows from Lemma 2.3.f). Hence, if (2.12) holds
with constants independent of a, then {ax;i} € Apq4(V). We collect
these remarks in Theorem 2.5.

Theorem 2.5. Let f € A, be slowly decreasing and the norms ||a,c ||'
of {ar} € A(V) be deﬁned with respect to some grouping {T's} sat-
isfying a)-c')-f) of Lemmas 2.3 and 2.4. Then Ap/((f)) is isomorphic
under the restriction map p to the subspace of A(V') of those {ak,} such
that (2.12) holds for some constants Ay, By, C; > 0 independent of a.

We close this section with some remarks on when each V,, contains
only one point of V.

Proposition 2.6. If f is slowly decreasing and there is a grouping
{Ta} for V = V(f) such that every V, contains a single point of V,
then Ap,g(V) = Ap,oo(v) *
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