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Hilbert transforms
and maximal functions
along rough flat curves

Anthony Carbery and Sarah Ziesler

Introduction.

Let I' : R — R" be a continuous curve of class C'(R\{0}) with
['(0) = 0. It is a question of considerable interest to find necessary
and/or sufficient conditions on I' so that the operators Hr and Mp

defined by
+oco

Hef(e)=pv. [ S =T G

bl o}
and

1 T
Mef(e) =sup~ [ 1z =Tt at

are bounded on LP(R") for certain 1 < p < oo. The case when T is
well-curved at the origin (i.e. {I'(0),...,T'®)(0)} spans R™ for some
k with £ > n) is by now very well understood (see [SW]) and when
n = 2 and T is flat and convex (or “biconvex”) a great deal is known
too, (see [CCC...], [CCVWW], [NVWW1], [NVWWZ2]). However, in
higher dimensions, the case of flat curves is much less well-understood
(for known results see [NVWW3|, [CVWW], [Z2]) even to the extent
that it is not clear which basic class(es) of curves one should be study-
ing. In the three above-mentioned papers, the following substitute no-
tion for convexity was proposed: the curve I'(t) should be of the form
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(t,y2(t),...,7n(t)) where each «; is of class C™(0,+o0), and for each
J =2,...,n the determinant

Lo "
0 72 7]
D; = det ) ) :
0 4P 4D

should be positive on (0, +00). (A similar condition would be supposed
on (—00,0).) In two dimensions this reduces to v5 > 0, that is, convex-
ity of (¢,7(t)). Associated with curves in this class there are auxiliary
functions hj, ( =1,...,n) defined by

t @) o ()
hn— L g Loyl o 7y
i(t) = —Dj_] y det : E E

0 W) .. APV

where Dy = 1. In [NVWW3] it is shown that this convexity condition
is equivalent to the positivity of h; and k) for 1 < j < n. (Note that
when n = 2, hy(t) = t and ho(t) = tv5(t) — v2(t).) It is also shown
in [NVWW3] that a necessary and sufficient condition for odd curves
of this class to have Hr bounded on L? is the bounded doubling of
each of the functions kj, that is the existence of a constant C' > 1 so
that hj(Ct) > hj;(t). In [Z2] it was shown that doubling of the h;’s is
sufficient for L? boundedness of Mr, while in [CVWW] it was shown
that a slightly stronger condition (k;’s “infinitesimally doubling”) is
sufficient for L? boundedness of Hr (for I' odd) and Mr for 1 < p <
0o. Thus a reasonably complete theory is available for curves of this
class. Nevertheless the theorem of Nagel, Stein and Wainger [NSW]
concerning differentiation in lacunary directions implies that if T is the
polygonal curve obtained by joining points on (¢,t2,t*) of the form
+27, (j € Z), by straight line segments, then the associated Hr and
Mr are bounded on L?, 1 < p < oo. These T" do not fall under the
scope of the theory of the curves considered in [CVWW]. The purpose
of this paper is to provide a theory which includes these curves as a
special case. It will turn out that while our theory does handle these
curves, it does not handle curves which near the origin behave like
(t,e"/Itsgnt, e=1/1llog(1/|t|)sgnt) in which the ratio of derivatives
of coordinates varies slowly. Such curves do fall under the scope of
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[CVWW]. It should be pointed out that in 2-dimensions a result of
Ziesler [Z1] includes both results. It turns out that the analysis in the
present paper is much simpler than that in [CVWW]. Probably the
reason is that for curves like (t,e~!/Itlsgnt, e~1/1t log(1/|t|)sgnt) the
intrinsic geometry just is more complicated.

Let us say that a curve I' : R — R™ is of class (K) if T is con-
tinuous, I' € C}(R\{0}), T'(0) = 0, and if T'(t) = (m(2),..-,7a(t)),
then

Vit1

I, ‘ it l, G=1,...,n—1)
j

are increasing for ¢ > 0 and decreasing for t < 0. We say that T is

balanced if for some C > 1, all 1 < j < n, and all t > 0 we have

’YJ( t) l (%) <1
‘Y:(Ct) - 7i(=C1) '

Theorem. LetT' : R — R" be a balanced curve of class (K). If T also

satisfies

(D) ’7J+1(’\t)| ‘7;_H(t)

73(At) 73(t)

for1 <j <n-—1,30me )X >1and allt #0, then Hr and Mr are
bounded on LP(R™), 1 < p < o0.

REMARKS.

1. When n = 2 and 74(t) = ¢, this theorem is in [CCC...]; see also
[C6RdeF]; note that class (K) in this case reduces to monotonicity and
single-signedness of 44 on (—o0,0) and on (0, +00). Thus class (K) gives
an alternative variant of convexity in higher dimensions.

2. The behaviour of T for t < 0 is irrelevant for Mr. So in (K)
and (D) no assumptions are necessary for t < 0, and balance is dropped
when considering Mr.

3. The C! assumption in (K) can be relaxed to allow, for example,
the piecewise linear curves discussed above. That the theory applies
to flat curves is clear since we require no more than one derivative to
exist.

4. Even when n = 2 there are curves satisfying the hypotheses
of our theorem for which it is not true that the map ¢t — £I'(¢) has
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boundedly many changes of monotomc1ty in any dyadic interval. For
example, let T'(t) = (¢2/2,13/3 + [ " sin(s~3/6) ds). We thank Jim
Wright for pointing this out to us.

5. As in [C6RdeF], balance is necessary for a curve v in class (K)
to have Hr bounded on any L?. Indeed, if Hr is bounded on LP(R"™)
and 7 is a projection onto any subspace of R"®, then H,r is bounded
on L?(7R") and hence on L%(7R™). In particular,

+o00
|/ eiekmt)_‘?lsc, (1<k<n).

But if p: R — R is continuous, satisfies p(0) = 0 and |p’| is increasing
for t > 0 and decreasing for ¢ < 0, and if p also satisfies

‘/ cicon) 4t dt _C,

then for any s,t > 0 such that |p(t)/p(—s)| = 1, we must have |log(s/t)|
< 8 + C; see [CoRdeF] (where p'(0) = 0 was assumed but not used).
An additional feature of this present paper is the clarification of the
role of balance as being the condition necessary to ensure compatibility
of the two Calderén-Zygmund theories naturally associated to the two
halves of the curve corresponding to¢ > 0 and ¢t < 0.

6. If v1,73,... are odd and 42,74,... arc even, then (D) is neces-
sary for a curve of class (K) with 4;,,(0)/7;(0) =0, j =1,...,n—1 to
have Hr bounded on any LP. Indeed it is enough to see that if I'(¢) =
(71(1),72(1)) in R? with 41 odd and 72 even, v5(0)/41(0) = 0, 71, v2/7
increasing on (0, +00), then doubling of 43 /4] is necessary for Hr to
be bounded on LP(R?). When 7,(t) = ¢, this was done in [NVWW1];
see also [CCC...]. The argument of the latter paper easily adapts in the
present situation.

7. If T : [0,400) — R" is convex in the sense that its D;’s
are positive and also I satisfies certain normalisation conditions at the
origin, it is not difficult to see (¢f. [Z1, Lemmas 3.3 and 3.4]) that
after applying an appropriate lower triangular matrix with ones on the
diagonal to I, (not affecting its convexity) we may assume that 7} is
positive and increasing for j = 1,....n and that v}, /7] is increasing
for j =1,...,n — 1. So (K) is satisfied by this modified curve. If this
modified curve is extended to be odd, doubling of the vj,,/v; (j =
1,...,n — 1) now implies doubling of the h;’s for the modified (and
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hence the original) curve since this latter condition is equivalent to L?
boundedness of Hr for such curves.

2. Proof of Theorem.

We define the measures o and pj by
Qk+1

/fdllk = 2%/2 f(T(t))dt,

k

[ran= [ sewg.

2kt L2kt
We decompose H., f as
Hrf= Z ok * f
kEZ

and majorize Mrf by

Mrf < C sup uk * |f].
k

Notice that

R 1 2 2mig-T(1)
(€)= ¢ . © dt
and
Gx(£) = (2TET (1) i{
2k L[t <2k+! t

In keeping with [CCVWW] and [CVWW] we shall introduce to the
problem a family of dilation matrices which allows us to normalize the
measures pup and o so that the Fourier transforms of the normalized
measures have uniform decay estimates (save for certain exceptional sets
of directions which we shall handle separately, as in [CCC...], [C6RdeF],
[NVWW?2], [Z2].) Indeed, a combination of the ideas of [CCVWW],
[CCC...], [DRdeF], and [Ch] yields the following proposition, which may
be found essentially in [Z0, Theorem 2.4.1, p. 22].



384 A. CARBERY AND S. ZIESLER

Proposition. Let n > 2. Suppose that {Ax}rez i3 a family of matrices
in GL(n,R) satisfying

(1) lA5L Akl S a < 1.

Suppose {vi}rez 13 a family of measures such that

(2) A;ilsupp nw CBHB

(where B i3 some fized ball). Suppose that

(3) / dvg =0

and that
[9k(€)] < C|AREITY,  ezcept when
¢ belongs to a cone Cy .

(4)

—— ~

Letting (T f)(€) = X¢, (€) f(§), we further suppose that
/
6 [(Smee) ] <l a<p<oo.
k

Then f — > vi* f 1s bounded on LP(R™), 1 <p < 0.

The differences between this proposition and Theorem 2.4.1 of [Z0]
are that in [Z0], the conclusion was stated directly in terms of Hr (for
I’ odd) and Mr, and that an auxiliary Littlewood-Paley inequality

|yl <e|(Smar)”

was required there also. However, when T} corresponds to the charac-
teristic function of a cone, this inequality follows from (5) as may be
seen by taking Sy = T} in the following standard lemma whose proof
is omitted.

Lemma 1. Assume H(Z[Tkﬂz)]/z“pl < C|lflly for all f € L7,
k

Then

| nsa, <c ()],
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Corollary. If o
[(Smre) | <oy
k

and

[(Sisese) ], < sty

forall fELP, 1 <p< oo, then

|(Smser?)™| <chifly,  1<p<oo.
k

ProOOF. Take fr = £ f in the lemma and average over the choice of +
in the usual way.

Notice that if ® is a fixed C* function of compact support in R"
then the measures ®4(z)dz = (det Ax)™'®(A;'z)de satisfy (2) and
(4) (with no exceptional set of directions).

To handle the maximal function we set Ay = A(2F) where, for
t>0,

0 A 0
ao=| L 0
6 0 7,7.(1‘)

(in keeping with the diagonally invariant nature of the problem), and
vk = £[pur — ®x dz] where @ is normalized so that [ dv; = 0 and so (3)
holds. Then (1) and (2) follow from the fact that each |v}] is increasing.

Let M > 1 be large and fixed and let

= |J o

1<i<j<n
where
B 1 A/,I'(-Zk) 6 ,7,1'(2k+1)
o A PLNANIES Il 1l Iy ¥ ) PLF AR I O
C {6 M lyi(26)1 = 61" ! 7‘5(?“')”

We shall show that if £ ¢ Ci, then

R C
lak(€)] < R
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(¢.e. (4) holds for ui, see Lemma 3 below), and that (5) holds for {C4}.

Assuming we have done this we have then

Mrf < SUp pui + If]

1/2
S(ijmk*f—q’k*ﬂz) +sup @i+ f].

the first term is controlled on LP by averaging the conclusion of the
Proposition over all choices of arbitrary + in the standard way, while the
second is controlled by the Hardy-Littlewood maximal function (defined
with respect to the dilations A(t)) as in  [NVWW2] or [CCVWW]. Thus
Mr is bounded on L?”.

Before proceeding to prove (4) and (5), let us see what differences
are involved when we instead consider Hr. We repeat the above argu-
ments, but now with oki in place of j; where

d
[rat= [ feeng
2ks,52k+1

and o, = a,': — 0. For U;:- we have matrices A'{ and for o, we have
A, ; the same arguments as for Mr allow us to conclude that both

Z(o’:*f—@:'*f)

and

E(Uk_*f—@;*f)

are bounded on LP, 1 < p < oo, once the estimates corresponding to
(4) and (5) have been established. Hence

Za’k*f=2(a,':—a;)*f
differs from an L? bounded operator (1 < p < o0) by
D (B —2)+f.

This latter operator is easily seen to be a Calderén-Zygmund operator
(with respect to the dilations A(t), as in [CCVWW]) and so is L?
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bounded (1 < p < o0) and of weak type 1 if and only if it is L2
bounded; this occurs if and only if

| > - 70| =| 3 drate) - d(4i7e)
k
defines a bounded function on R™.
Lemma 2. If there i3 an r > 0 so that j — k > r implies that
I4f ARl <1 and 47T AT <1

for all 3, then

sup Zcb (Af*€6) — d(A¢)

EER™

18 fintte.

The easy proof is left to the reader. (Note that this lemma provides
a compatibility condition between the two halves of the curve so that
the two Calderén-Zygmund theories generated should be consistent.) In
our present case, the hypothesis of this lemma reduces to the condition
that I" should be balanced.

So, the proof of the theorem will be finished once we have estab-
lished the estimates (4) and (5).

Lemma 3. If £ ¢ Cy then

C
lk(6)] < e

PROOF. We first observe that € ¢ Cj implies the existence of an
m, 1 < m < n, such that for 2F <t < 2¥+! and j # m, we have

7;(t)
© wolsmlel
7711 A‘[ f]
Indeed, € ¢ Ci implies that if 1 <7 < j < n, then either
'rj(t)’ 7,("'“)‘ o 1 _Ei-l

7i(2) &l
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for all ¢ such that 2F <t < 2k+1 or

7}(t)
()1~

for all ¢ such that 2F <t < 2k+1,

Thus of the functions ¢ — [{;||7j(¢)] (1 £ j < n), one exceeds all
the others by a factor of at least M uniformly on [2F,2%+!]. If this is
the function |€m| |y (?)], (6) follows. Now, with £ ¢ Cx and m fixed

and satisfying (6) we can write

ARl
<[l < el

ok+1

1 .
ir(§) = ﬁ/ e2mie T gt
2k
L (2k+1
_ i ¥m ( )627”,5_1,07;‘1(3) ds .
26 Jymi2h) Vi © Yrm' ()

Letting
¢(s) = 27€ -T oy, (s)

we see that

7](7,"’(3
? f:éj Vi (7 ()

which, by virtue of (6) satisfies

#(5)1 2 27 eml (1= 22) 2 Clem

(if M is sufficiently large), for all v,,(2%) < s < ¥m(2%*1). We now set

eio(s)

w(S) = ¢'(3)7:n 071;1(3) )

so that

 oi®(8) ig(s) '
, 2e e 1 )
w(s) = — + — ) (38)
) Vi 0ym (s)  ¢'(s) (7$n 0 Ym'

B ei¢(s) d’"( )
('(5))2 ¥l © ' (3)
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and

A1) < o [0(rm(2*)) = w(rm(2")|

C 1 '7'm(2 )
o e
2% 1€m| ¥m (2%) Ym ©Ym

2k+1)

Cc 1 Tm( "
+ ok 2 ] |¢ (le d's
28 [6m[? Jym2t)y Ym0 vm (8)]
=I1+1I4+1II,

by the Fundamental Theorem of Calculus and the fact that |¢'(s)| >
Cllm|-

Now

C 1
1= el @]
< C
ST SR TAIICL]
C C
S S ER S A

(by (6) with ¢t = 2F)

(since each |y}| is monotonic).

Similarly

C 1 C
T 26 |&m] Iy (25)] T AR

since 4/, 0 y;;! is monotonic on [2%,25+1].

II<

Finally, for III, it is enough to show that for each j # m,

1€l /""'(ZW)!(WS"D’Y;‘) )! ds < C
1€ml Jyni2ry AL 0 ym! b o ymi(s)] T I (2%)]

and then argue as for I. But since |y}, 075, (s)| > |71, (2%)] and (v} /75, )0
v} is monotonic, this estimate reduces to

]
"é_;ll 7]( k+1) ‘;Y,] (2k) SC,
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which follows from (6). This completes the proof of the Lemma.

Finally, to establish (5), we first note that
XCk = ZXC.',' + Z XC.',' Xclm
i<i - i<j £
<m
(1,5)#(,m)
+... % H XC,';" .
1<j

—

Setting (T,:jf)(ﬁ) = X (é) f({), we see that, using the Corollary to
k

Lemma 1, it suffices to prove
ij 2172
|(Zmzse)™) <l 1<p<w.
k

But this is now a two-dimensional inequality, and as such follows from
the following lemma and assumption (D).

Lemma 4. If M > 1, p > 1 and Apy1 2 A p (k € Z), and we define
for £ € R?

; L A [G]
— — < 22 M
Fe O T s <,
0, otherwise,

then
[(Sirese) ™) <oty 1<p<oo.
k

PRrOOF. It is a standard exercise, using the Marcinkiewicz multiplier
theorem and the theorem of Nagel, Stein and Wainger on Differentiation
in Lacunary Directions, see [NSW]. The proof of our main theorem is
complete.

3. Concluding Remarks.

1. By projection on the first co-ordinate, the following assertion is
contained in the theorem: if y(t) satisfies |y/(#)| increasing for ¢ > 0 and
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decreasing for t < 0, 4(0) = 0, and |y(—t)/v(Ct)|, |v(t)/¥(-Ct)| <1
(all t > 0, some C) then

+o0

foo [ fe-a) L

— 00
is bounded on LP(R), 1 < p < oo. Indeed more is true: this opera-
tor is of weak type 1. (The corresponding fact for maximal functions,
and the L? boundedness of this operator are well-known -see [W] or
[C6RdeF] and [W] respectively.) Since we already know that the oper-
ator is bounded on L? it is enough to see that the convolution kernel
satisfies an appropriate variant of the Hormander condition. As in the
proof of the main theorem, the balance condition allows us to reduce
this to verification of a Hormander condition for ¢ > 0. Now, formally

+o0
fle=20) 5 = K+ f(2),

where
1

Y (N z) v (e)
and we may clearly assume without loss of generality that 4’ is positive
and increasing on (0, +00) so that I is decreasing. Although we have

no estimates on the derivative of K, monotonicity is enough to allow
us to apply the Hérmander criterion in the form

K(z) =

sup  sup / |K(z)— K(z —y)|dy < C
JEL 0<y<3 (%) A
z25(2/)

(see [CCVWW, Theorem 2.3]). Indeed, for j fixed and y < 3+(27),

+o0 oo
|K(z) — K(z —y)|dy = / K(z)dzr — /5+ K(z)dzx

5v(27 )~y ~(29)

5~(27)
< / K(zx)dz
24(27)

z2>5(29)

where v(t0) = 24(27), and ~(t;) = 54(27). But 4 increasing implies 7
doubles, so log(t;/to) is bounded.
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2. Finally, we ask the following question: is there a condition

involving at most one derivative of an odd curve I' which gives L2
boundedness of Hr but not L? boundedness for all 1 < p < c0? (In

R?,

4" doubling is strictly stronger than h doubling for convex curves.)
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