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Introduction.

Let M be a smooth connected non-compact geodesically complete
Riemannian manifold, A denote the Laplace operator associated with
the Riemannian metric, n > 2 be the dimension of M. Consider the
heat equation on the manifold

(1.1) u—Au=0,

where u = u(z,t), x € M, t > 0. The heat kernel p(z,y,t) is by defi-
nition the smallest positive fundamental solution to the heat equation
which exists on any manifold (sce [Ch], [D]).

The purpose of the present work is to obtain uniform upper bounds
of p(r,y,t) which would clarify the behaviour of the heat kernel as
t — +oo and r = dist (z,y) — +oco. In the Euclidean space R”" the
heat kernel is given by the following well known formula

(1.2) p(Tyt)=;exp -
- T (4mt)n/? 4t

so that it decreases as C't~™"/% as t — 400 and its behaviour for large r

is determined by the Gaussian term exp (—r2/4t). In the n-dimensional
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396 A. GRIGOR'YAN

hyperbolic space H} (of constant curvature —k? < 0) the heat kernel is
known as well. It takes the simplest form in the case of the dimension
3,

1 kr r? 2
P(2:9:8) = (o7 simbier) P T ~F Y-

(1.3)

Its the most significant difference from the Euclidean heat kernel is an
exponential decay in ¢ given by the factor exp(—k?t).

The first question to be discussed here is which geometric proper-
ties of the manifold ensure decreasing of the heat kernel as ¢ — +oo
with a prescribed speed ? More precisely, when the heat kernel satisfies
the following estimate

(1.4) p(z,y,t) < f(1),

forall z,y € M, t > 0 where f(t) is a monotonically decreasing function
on the positive real semi-axis. This kind of a heat kernel estimate is
often referred to as an on-diagonal estimate because (1.4) follows from
the same inequality for 2 = y (see the Proposition 2.1 bellow). It is
well known and due to Nash [N] (see also [CKS]) that a heat kernel
on-diagonal upper bound is deduced from a suitable isoperimetric in-
equality. Consider, for example, a special case when f(t) = Ct~"/?
which takes place in the Euclidean space. Then the corresponding in-
equality

(1.5) p(z,y,t) < Ct™ /2

can be proved whenever we know, that for any smooth function v with
a compact support the following Sobolev inequality holds

(n—2)/n
(1.6) / |Vo|? > c(/ |v|2"/("_2))
M M

(of course we have to assume here that n > 2). This inequality is
close to the classical isoperimetric inequality between the volume of a
bounded region and the area of its boundary

Area (9Q) > ¢ Vol (Q)(~1/

for any bounded domain Q with a smooth boundary 0{2. Namely, the
isoperimetric inequality above implies (1.6) (converse is not true -see

[CL]).
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N.Varopoulos [V85] proved that the Sobolev inequality (1.6) is not
only sufficient but a necessary condition as well for the upper bound
(1.5) to be valid. On the other hand, Carlen, Kusuoka and Stroock
[CKS] found an alternative form of this phenomenon: the upper bound
(1.5) is equivalent to the Nash inequality

(16" ( /Mﬁ)m/" <c [ (/] |f|)”"

supposed to hold for any f € C°(M). This theorem has the advantage
that it does not require the hypothesis n > 2. Therefore, the upper
estimate (1.5) is equivalent to either Sobolev and Nash inequality.
The Gaussian factor in heat kernel upper bounds on Riemannian
manifolds appeared in the paper of Cheng, Li and Yau [ChLY] but
they considered the heat kernel behaviour only in a finite time interval.
For the whole range of time the on-diagonal bound (1.5) was shown by
several authors to imply the following Gaussian off-diagonal correction

2
(1.7) p(z,y,t) < Ct ™/ ?exp <—c It—> .

Apparently for the first time it was proved by Ushakov [U] in 1980.
He derived (1.7) from (1.5) by means of pure analytical tools without
appealing to geometry. Although he treated the case of unbounded
regions in Euclidean space his proof can be carried over to abstract
manifolds too. Another proof was obtainded by Davies and Pang [DP)]
(see also the preceding work [D87]) who used a logorithmic Sobolev
inequality which is equivalent to both estimates (1.5) and (1.7) (where
constant ¢ can be taken arbitrarily close to 1/4). Thus, we have that
each the of relations (1.5), (1.6), (1.6'), (1.7) is equivalent to the others.
The following questions arise:

1. To obtain an isoperimetric property which would be equivalent to
estimate (1.4) for a general function f without the polynomial or
other restrictions on the behaviour of f at infinity;

2. To obtain the corresponding estimate with the Gaussian off-diago-
nal correction term.

If the function f has at least a polynomial decay (which means in
this context that it satisfies the condition

f(t) <C f(at)
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for all t > 0 and a € [1, 2]), for example

t—n/2 ift<1
t =C b b
1) {t-mﬂ, ift>1,

then as it was proved by Davies (see [D89], [DP]) (1.4) implies

2
p(z,y,t) < C. f(t) exp <—m>

(where € > 0 is arbitrary). For example, this bound holds for the
Riemannian product M = K x R™, K being a (n — m)-dimensional
compact manifold.

There are some other works which treat the polynomial case. In
a series of papers of A. K. Gushchin (sce, for example, [G], [GMM])
heat kernel bounds are proved for the case of unbounded region in
Euclidean space with the Neumann boundary condition provided some
isoperimetric inequality is valid. He obtained the exaustive results but
also for the case when the heat kernel has a polynomial decay as t —
+00.

At the same time there exist many important classes of manifolds
whose heat kernel decreases faster than polynomially as t+ — +o0. For
hyperbolic space and for a wide class of negatively curved manifolds the
heat kernel has an exponential decay. There are examples of manifolds
-covering manifolds with a deck transformation group being a polycyclic
one- for which the heat kernel decreases as t — +00 subexponentially
but superpolynomially (see [V91], [A] for discrete counterparts).

In the present paper we adduce a new approach of obtaining the
heat kernel upper bounds which enables us to cover all results men-
tioned above, and, morecover, to get the corresponding estimates for a
larger variety of manifolds.

The theorem to be formulated below establishes equivalence in a
rather general situation between the on-diagonal estimate (1.4), the cor-
responding Gaussian estimate and some inequality of Faber-Krahn type
which we use in place of the Sobolev and Nash inequalitics mentioned
above.

Let A(v) be a positive continuous monotonically decreasing func-
tion on the positive real semi-axis.

Definition 1.1. Let us say that a A-isoperimetric inequality is valid
for a region Q@ C M, if for any sub-region D C Q the first Dirichlet
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ergenvalue A\ (D) i3 controlled below by A(Vol D),

(1.8) A1(D) > A(Vol D).

It is very natural to use A-isoperimetric inequality for evaluating
the heat kernel. Indeed, the heat kernel of a bounded region @ C M
decreases as t — +o0 as C exp(—A1(Q)t). If A{(M) = limg_.pm A1(Q) >
0 then one can hope that the heat kernel p(z,y,t) behaves itself as
C exp(—A;(M)t) for large t. Otherwise, if A;(M) = 0 one may expect
that the order of decay of p as t — +oco depends on the speed of
convergence A\;(2) to 0 on expanding of (2.

Note that the value A;(Af) is referred to as the spectral radius
of the manifold M and coincides with the bottom of the spectrum in
L?(M) of —A.

A A-isoperimetric inequality can be easily deduced from the fol-
lowing inequality between the volume and the area

(1.8") Arca(0D) > g(Vol D)

with some function g. Namely, if g(v)/v is a decreasing function then
(1.8") implies (1.8) where A is expressed through g by -

2
-3 (2)

(this is a consequence of the well-known inequality of Cheeger -sec
Proposition 2.4 below). Conversely, at least for a polynomial function
A(v) = Cv™%, v > 0 and for a manifold of non-negative Ricci curva-
ture the A-isoperimetric inequality implies the isoperimetric inequality
(1.8") with the function C g(v) -see [C].

For example, in the Euclidean space we have

(19) A(l.‘) =c, 1)_2/71 ,
while for the hyperbolic space Hj
(1.97) A(v) = max{c, v=2/" A}

where XA = (n — 1)2k? /4.
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For a class of covering manifolds Coulhon and Saloff-Coste [CS]
proved the isoperimetric inequality (1.8') which implies (1.8) with the
following function A having an intermediate magnitude

(1.10) A(v) = C (logv)™",

for large v where v is a positive constant.
Let us define a function V(t) by means of the following relation

V(t) v
(1.11) t=/0 %(v) .

Of course, we have to suppose that the integral here converges at 0.
This is not a strong restriction because for small values v the function
A(v) is expected to be as in Euclidean space. Obviously, V(¢) is an
increasing function on (0, +00).

The following theorem is one of the main results to be presented
here.

Theorem 1.1. Consider the following hypotheses,

1. A-isoperimetric inequality holds on M, 1.e. for any pre-compact
region  C M we have

A1(82) 2 A(19]) .-

2. Forallz,y € M, andt >0

C r?
: < _Z ).
p(‘Tvy7t) _— V(Ct) exp( Dt)

3. Forallz e M, andt>0

C
p(z,z,t) < VD

4. For any pre-compact region 2 C M we have

/\k(Q)ZCA(C%), forallk=1,2,...
and suppose that the function V(t) is reqular in some sense (see below).
We claim that
1=2=3=14
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where the constants ¢, C are positive and can be different in the different
items; D > 4 can be taken arbitrarily close to 4.

Let us note that the implication 2=>3 is obvious and included
into the theorem for the sake of completeness. This theorem means
that A-isoperimetric inequality is equivalent to either the on-diagonal
bound and the off-diagonal Gaussian estimate up to the constant mul-
tiples. Indeed, the item 4 of the Theorem 1.1 implies for £ = 1 the
A-isoperimetric inequality which differs from that of the item 1 only
by the multiples ¢,C. As a consequence we see that the isoperimetric
inequality for the first eigenvalue implies the corresponding inequalities
for the higher eigenvalues.

The regularity conditions mentioned in the Theorem 1.1 are the
following. The implication 1==-2 is proved in the Theorem 5.1 in Sec-
tion 5 under the hypothesis that for some T €]0,+o0] the function
tV'(t)/V(t) is increasing for ¢ > T and bounded for ¢ < 2T by some
constant. This hypothesis restricts, first, the behaviour of the function
V(t) as t — 0 -it may be equal to t¥, v > 0 but may not be equal to
e~1/t and, second, the function V(t) may not have too flat parts on
its graph if it grows superpolynomially as ¢ — +oco. For example, for
large t the function V(¢) may be equal to (log#)*t? exp(#¥) with the
arbitrary non-negative constants a, 3, . '

The implication 3==4 requires that, first, the function V(%) is ob-
tained by the transformation (1.11) from a function A (see Proposition
2.2 in Section 2 for the explicit conditions) and, second, its logorith-
mic derivative V'(t)/V(t) has at most a polynomial decay in the sense
mentioned in the discussion above. This condition holds, for example,
provided V(t) = t¥, v > 0for small t and the derivatives V'(¢) makes no
jumps for large t, for instance, the function (logt)®t? exp(t7) satisfies
it.

We see that the regularity assumptions does not restrict the rate
of increase of V(t) as t — +o0o. Note that the function V(t) defined
from (1.11) cannot increase faster than exponentially -the fastest growth
corresponds to the case when A(v) is a positive constant for large v.
This conforms to the fact that the heat kernel cannot decrease in t
quicker than exponentially that follows from the same property of the
heat kernel in a bounded region.

Let us also note that the implication 1=>3 does not require any
additional condition and this is the reason why we distinguish this part
of the Theorem 1.1 as a separate Theorem 2.1.
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EXAMPLES. 1. Let us set

p~2/n ifv<l
1.12 Alv)=C ’ ’
(1.12) () {v_z/m, ifv>1.

Then by the Theorem 1.1 we have the following estimate

Cp r?
t) < -} .
P(Jf,y, ) = min{t"/2, tm/2} exp ( Dt)

Taking here m = n we see that the heat kernel estimate (1.7) of a
Euclidean type is equivalent to the A-isoperimetric inequality (1.9).
On the other hand as was mentioned above (1.7) is equivalent to the
Sobolev inequality (1.6). Hence, the Sobolev inequality (1.6) and the
A-isoperimetric inequality (1.9) are equivalent. Of course, that can be
proved directly too, see [C].

2. If A is given by the formula (1.10) for large v (and is Euclidean
one for small v) then by the Theorem 1.1 we have for large ¢

2
(113) p(z,9,8) < C exp (—cutl/(”” _ %) |

In particular, if v = 2 as it takes place on a covering manifold with a
deck transformation group of the exponential growth (see [CS]), then
the heat kernel decreases for large t at least as fast as exp(—ct!/?).
This is a sharp order of the heat kernel decay as has been shown in [A].

3. Let A be the function (1.9') with some A > 0 as it holds on a
simply connected manifolds with a strictly negative curvature, then by
the Theorem 1.1

2
) < CtM2 exp(—c At — —).
p(z,y,t) < exp(—c¢ o7
This estimate will be improved in Section 5 for ¢t bounded away from
0, for example t > 1

7'2 14+n/2 1‘2
(1.14) p(z,y,t) < C (1+T) exp(—/\f—ﬁ).
The coefficient ) at the exponent is sharp as can be seen in the case of
the hyperbolic space. Note that the largest possible value of A here is
the spectral radius of the manifold A;(Af) .
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A part of the Theorem 1.1 which relates to behaviour of the heat
kernel in time variable is proved in Section 2 below (see the Theorems
2.1 and 2.2 which treat the cases 1=3 and 3==4 respectively). We
apply A-isoperimetric inequality in order to derive some inequality of
Nash type which we use in place of the Sobolev inequality.

The main efforts are directed to get estimates containing the Gaus-
sian factor. For this purpose we consider some weighted integral of p?
over the entire manifold (in place of the usual integral of p? over an
exterior of a ball -see Section 4 for details) which happens to decrease
in t. This property simplifies considerably the proof and makes our ap-
proach very flexible. To estimate this integral (Theorems 4.1 and 4.2 in
Section 4) we apply some mean-value type theorem which relies upon
A-isoperimetric inequality and is of independent interest (Theorems 3.1
and 3.2 in Section 3).

Having the integral estimates it is easy to pass to pointwise heat
kernel upper bounds using the semigroup property of the heat ker-
nel (see Section 5 ). The Theorem 5.1 completes the remaining part
1=2 of the Theorem 1.1. The method of proving of the Theorem 5.1
enables us to get heat kernel estimates not only in the case when a
A-isoperimetric inequality holds on the entire manifold but also when a
A-isoperimetric inequality holds with different functions A on different
parts of the manifold. We consider two kinds of such a situation.

1. Suppose that A-isoperimetric inequality is known to be true in
any geodesic ball but, possibly, with its own function A. Under this
hypothesis we obtain a heat kernel upper bound (see Theorem 5.2)
which is applicable, for example, to an arbitrary manifold and yields
the estimate (1.14) above where the C' has to depend on z,y. Another
example of applications of the Theorem 5.2 is the heat kernel estimate
on a manifold of a non-negative Ricci curvature

( t) < ¢ r >0
PR Y, )—VolB\I/- P\ aten) °

0
(where B}, denotes the geodesic ball with the centre x € M and of the
radius R) obtained first by P. Li and S.-T. Yau [LY]. A similar result

of B. Davies [D88] for a manifold of a bounded below Ricci curvature
is covered by our approach too.

2. On the other hand we are able to get an extra information
concerning the heat kernel behaviour whenever in addition to a global
A-isoperimetric inequality there is a stronger isoperimetric inequality in
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a neighbourhood of infinity. The Theorem 5.3 appears to be an example
of such a statement and yields on a Cartan-Hadamard manifold the
following estimate

pleant) < oz exp (= (7 = D= rk(r/2)) )

where —k2(R) denotes the supremum of the sectional curvature in the
exterior of the ball BY. What is new here is the third term at the
exponent

exp(—crk(r/2)),
which associates with the term

kr
sinh(kr)

in the case of the heat kernel (1.3) of the hyperbolic space. It can cause
the heat kernel to decrease as r — +oco faster than predicted by the
Gaussian term provided the curvature —k?(R) outside the ball of the
radius R approaches to —oo fast enough as R — +oc.

The results of this paper were partially announced in [G8TD],
[G8T7c], [G8T7a], [G88] and [G91a].

NOTATIONS.

Cap,... -a positive constant, depending on a, b, ..., maybe different on
different occasions;

dist{z,y} -the geodesic distance between the points z,y € M;

B% -an open geodesic ball of the radius R centered at the point z € M;
meas; A -k-dimensional Riemannian measure of set A;

Al = Vol 4 {measnA, if AC M,
Al =VolA =
meas,41 A4, fACMxxR.

Ae(2) -the k-th eigenvalue of the Dirichlet boundary value problem in
Q.
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2. Decay of the heat kernel in time.

The heat kernel on a manifold can be constructed by means of
the following process. For any relatively compact subset @ C M with a
smooth boundary one can define the heat kernel po(z,y,t) as the Green
function of mixed the problem the for heat equation in © x (0,+)oo
with vanishing Dirichlet boundary values. Let us denote by ¢i(z) the
k-th eigenfunction of the Dirichlet boundary value problem in Q, k =
1,2,... so that the sequence {¢x} is an orthonormal basis in the space
L?(Q), then the following eigenfunction expansion holds

o]

(2.1) pa(z,y,t) = 3 exp (~M()) (x) pi(y).

k=1

A proof of this expansion as well as a justification of other properties
of pq to be used in this Section can be found in [D] and [Cha).

The maximum principle implies that pg is non-negative and mono-
tone in 2: it increases on expansion of 2. At the same time the integral
of the heat kernel remains bounded,

/pn(r,y,f)dy <1,
Q

which implies that pg has a finite limit as @ — A where @ — M de-
notes an exhaustion of M by a sequence of relatively compact domains
Q. The limit
r,y,t) = li r,y,t
p(z,y,t) = lim pa(z,y,t)

is obviously the smallest positive fundamental solution to the heat equa-
tion i.e. the heat kernel on M. The function p(z,y,?) inherits from
pa(x,y,t) the following properties:

1. p(z,y,t) > 0 for all z,y € M,t > 0 and satisfies the heat
equation with respect to z,t for any fixed y ;

2. p(x,y,t) = 8,(r) in sense of distributions as ¢t — 0;
3. symmetry: p(z,y,t) = p(y,z,t);

4. boundedness of the entire heat flow

(2.2) / plz,y,t)dy < 1;
M
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5. semi-group property
(23) [ 2o 050,25 dy = ple 1t 4+

6. if ve LP(M),1 < p < o it follows that the following operator

(2.4) Tyo(z) = /M p(z,y,t) v(y) dy

defines a contraction semi-group in LP(M) and the function u(z,t) =
Tiv(x) is a solution to the Cauchy problem for the heat equation (1.1)
with an initial function v(z) (the latter means that

liry [lu(,£) = 0(@)ll () = 0,

see [S]).

It is standard now that to obtain pointwise upper bounds of the
heat kernel. One proves first a suitable integral estimate and then
applies the semi-group property (2.3). In the simplest setting this idea
is illustrated by the following proposition.

Proposition 2.1. The following inequalities are equivalent for any
fized t > 0.

1. p(z,y,t) < f(t), for all z,y € M.

2. p(x,z,t) < f(t), for allz € M.

3. / p(x,y,t)dy < f(2t), for all x € M.
M

This proposition is not a new one, nonetheless we shall prove it for
convenience of the reader. V

1 = 2. Evident.

2 = 3. According to the semi-group property (2.3) we have for

Tr =2z

/Mp2(1',y,t)dy =p(z,z,2t) < f(2t).

This argument implies, in particular, that the function p(z,y,t) as a
function of y lies in L%(M).



HEAT KERNEL UPPER BOUNDS ON A COMPLETE NON-COMPACT MANIFOLD 407

3 = 1. According to the symmetry property of the heat kernel
and by the Cauchy-Schwarz inequality we have

pant) = [ oo 5)pe.v3)de

) t 1/2 , t 1/2
<([ reepie) ([ Fueg)

< (FOF(1)'72 = f(1)

Let us note that , in addition, each of conditions 1-3 is equivalent
to each of the following hypotheses

4. Tl < OVl ary » for all v € L'(M).
5. [|Twllo < £ IVl f2¢ary » for all v € L%(M).

Next we shall assume that a A-isoperimetric inequality holds on the
manifold under consideration, the function A(v) being positive, contin-
uous and monotonically decreasing on (0, +00). In addition, we suppose
that the function A satisfies the condition

dv
(2.5) /0+ o A(0) < +o00.

This relation holds, for example, when A(v) = C v~ for small values
of v where v > 0, as it takes place in the Euclidean space.

Let us denote the set of such functions A(v) by £. For any A € L
we define a function V() as follows

V) g
(2.6) = [ s
o vA(v)

Equivalently, V() is a positive solution to the Cauchy problem
(2.7) V'(t) = VAV), V(0) =0.

Since A is decreasing, then

/+w dv oo
o vA(v) ’
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which implies that V'(t) is defined on the entire interval (0, +00).

A class of functions V() obtained by (2.6) (or (2.7)) will be de-
noted by V. More explicit discription of this class will be given below.
The mapping from £ onto V given by (2.6) will be referred to as V-
transformation.

Theorem 2.1. If the A-isoperimetric inequality holds on manifold M
with a function A € L then for all z,y € M, and t > 0 the following
heat kernel estimate 13 valid

2

(2.8) p(z,y,t) < V=)

where 6§ > 0 1s arbitrary.
Note that this theorem contains the part 1 = 3 of Theorem 1.1.

PROOF. Let 2 be an open pre-compact subset of M with a smooth
boundary. It suffices to proof that for ally € 2, ¢t > 0 and é € (0,1),

f)
' 2 -
(2.8") /QpQ(x,y,t)d.rS SV =201

Indeed, the integral in (2.8') is equal to pa(y,y,2t). Passing to the
limit as @ — M we get from (2.8') a similar inequality for p(y,y,2t)
which implies, in its turn, pointwise estimate (2.8) as it follows from
Proposition 2.1.

The proof of (2.8') relies upon the following lemma.

Lemma 2.1. For any non-negative function v(z) € C°(N) and for
any 6 > 0 the following inequality is valid
24?

(2.9) /ngv(" 2(1-5)31\(-5),

Az/v, B=/vz.
Q Q

PROOF OF THE LEMMA. The proof follows the arguments of A. K.
Gushchin [Gu]. For any positive 7 the following inequality is evidently
true

where

(2.10) < (v—1)3 +270.
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Integrating (2.10) over 2 we get

(2.11) /vZS/ (v—T)2+2'r/v.
Q {v>7} Q

By the minimax property of the first eigenvalue in the region {v > 7}
and according to the A-isoperimetric inequality we have

|Vol*
22 > ({v>T})>A(Vol{v > 7}).

Since

it follows that

v—rY2<cde
/{v>r}( )= A(ﬁ)

Substituting it into (2.11) we get
J
CAV IR
B < 1 +27A
A(Z)

and : 4
/ Vo> > (B-27A)A(=).
Q T

Taking here 7 = 6B/(2A) we obtain (2.9).

To proceed with the proof of Theorem 2.1 let us fix some y € M
and introduce the notations

u(z,t) = pa(z,y,t), I(t) = /Qu(r,t)2 dr .

Taking into account that [, u(x,t)dz <1 and applying Lemma 2.1 we
obtain

(2.12) /Q|Vu|22(1—6)1(t)/\( =

6I(t))'
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Note that although the function u(-,t) is not in C°(2) as required by

the Lemma 2.1, this lemma is nonetheless applicable because u vanishes

on 9N and, thereby, can be approximated in W!2(Q2) by an element of
On the other hand differentiating I(t) with respect to t we get

I'(t)=2/u,u=2/uAu=—2/|Vu|2.
Q Q Q

Substituting it into (2.12) we obtain a differential inequality

(2.13) I() < -2(1- ) 1) A(575)-

Integrating this inequality we have

I dl t
Ato) Tae/en) = 20 “5)/,0 dt = =2(1-6)(t — o),

where t >ty > 0. Changing a variable v = 2/(6 I) we get

2/(6 1(t)) dv 2/(61(1)) dv )
2.14 / z/ > 2(1—8)(t—to).
(2:14) 0 vA(v) T S8 1(t0)y ¥ A(V) ) °)

Letting here t; — 0 and applying the definition of the function V(t) we
finally obtain

2 2
WZV(QU—&)”, I(t)Sm,

which is equivalent to (2.8').

Now we are going to show that a A-isoperimetric inequality is also a
necessary condition for the heat kernel upper bounds of kind p(z,y,t) <
f(t). Let us start with the following observation.

Proposition 2.2. The class V contains all positive functions V() €
C'(0,+00) such that

1. V'(t)>0,

2. V(0)=0, V(4o00)=+00,
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V(1)

There are no other functions in V.

is monotonically decreasing.

Indeed, the fact that any function from V satisfies 1-3 is a simple
consequence of the definition (2.7). For example, the property 3 follows
from the monotone decreasing of A. Inversely, let V(t) be a function
satisfying 1-3, then we can define A(v) by means of the relation

V(1)

which is nothing but transformed (2.7). Since the function V(t) is
a bijection by 1-3 it follows that (2.15) determines a unique function

Ael.

Thus, the V-transformation has an inverse one define by (2.13)
which will be referred to as a A-transformation.

Definition 2.1. A positive function f(t) defined on (0,400) 13 said to
be of a polynomial decay if for some positive constant « the following
inequality holds for allt > 0, a € [1,2]

(2.16) flat) > af(t).

Note that any monotone increasing function as well as a decreasing
function f(t) = t~N satisfies this definition. It is easy to see that
the condition (2.16) holds whenever we have the following differential
inequality

(2.16) stz v 10

where a = 2N,
The next theorem is converse in some sense to Theorem 2.1.

Theorem 2.2. Let V(t) € V and suppose that

(2.17) the function (log V(t))' 18 of polynomaial decay.
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Suppose that for allz € M and t > 0 we have the estimate
(2.18) p(z,z,t) < ﬁ .

Then for any precompact open set @ C M

(2.19) Ak(Q) > c,,A(%) . k=1,2,3,...
where function the A is the A-transformation of V.

REMARK. The condition (2.17) does not restrict the rate of increase of
V(t) as t — 4o00. In any case such standard functions as

V(t) = exp(t”),t",(logt)”, (loglogt)”, etc,

where v > 0, satisfy (2.17). Let us notice also that Theorem 2.2 coin-
cides with the part 3 => 4 of the main Theorem 1.1.

Corollary 2.1. Suppose that under the hypotheses of the Theorem 2.1
the following estimate holds in place of (2.18)

(2.18") p(z,z,t) < VD)

then we have instead of (2.19)

(2.19") Ak(Q)zcabA(a'%), k=1,2.3,...

Indeed, this is a simple consequence of the following proposition
which, in turn, follows obviously from the definition of the V-transfor-
mation.

Proposition 2.3. Suppose that a function V'(t) is the V-transformation
of A € L, then the function bA(av) has the V-transformation a= 'V (bt),
where a, b are arbitrary positive numbers.

Corollary 2.2. Let a A-isoperimetric inequality hold on the mani-
fold where A € L and its V-transformation V' (t) satisfies the condition
(2.17), then for any pre-compact open set Q C M,

(2.20) A(R) > Cay Ay %), k=1,2,3,...
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where v > 2 can be chosen arbitrarily.

Indeed, by Theorem 2.1 we have

2
P@nt) S 5=y -

Since the A-transformation of the function (6/2) V((1—6)t) is the func-
tion (1 —6) A((2/6)v) (see Proposition 2.3) it follows from Theorem 2.2

that |
T )

SN

Me() > Co (1= 8)A(

which implies (2.20) with v = 2/6.

It would be interesting to find out to what extent the constants «
and Cq 4 in (2.20) can be optimized.

Finally, concluding the discussion around Theorem 2.2 let us notice
that property (2.17) of V' can be derived from the following one of A

(2.21) AD*A > N7'(DA)?,
where D = d/d(logv)

PROOF OF THEOREM 2.2. An idea behind the proof is close to that of
[ChL]. Let {¢k(z)} be an orthonormal basis consisting of eigenfunctions
of the Dirichlet boundary value problem in 2 C M. According to the
eigenfunction expansion (2.1) we have for z =y

[e ]

pa(z,c,t) =Y exp (= A(D)t) pr(7)?.
k=1

Integrating over {2 we obtain

(2.22) Apg(x,z,t) dzr = Zexp (= Me()1).

k=1

On the other hand as it follows from (2.18)

Apﬂ(z7zst)dm S “7(‘53 .
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Combining this with (2.22) and noting that for any k£ > 1

S exp(—Am(@)t) > k exp(~Ae(Q)t)

m=1
we get
k exp(—A(Q)t) < 190
i€
(2.23) M (Q) > %log k,‘glt) .

This inequality is true for all t > 0 and we can choose t arbitrarily. Let
us denote for the sake of simplicity v = |Q] /k, find 7 from equation
V(1) = v and take t = 27. For this t we get from (2.23)

M(Q) 2 5- (log V(2r) ~ log V(r)) = 5 £(0),

where

£ = S 1o V(1)

0 € (7,27) being a mean value. Since f has a polynomial decay it
follows that

f(0) 2 af(r).
Hence, A\ (2) > o f(7)/2. Since
fr) = e = M) = Aw) = A
it follows that 0
Ak(Q) > %A('—k—'),

which was to be proved.

In the conclusion of this section we present a sufficient condition
for the transience property of the Brownian motion on M which follows
from the arguments of the proof of Theorem 2.1. The Brownian motion
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is transient if for some (and hence for all) pairs of distinct points z,y €

M,

+ o0
(2.24) / p(z,y,t)dt < 400,
0

which means that there exists a positive fundamental solution E(z,y)
of the Laplace equation which is just given by the integral E(z,y) =
f0+°°p(z,y,t) dt. Of course, one can take the integral in (2.24) from
some positive to rather than from 0 because for z # y function p(z,y,t)

is bounded on any bounded time interval. Since

p(z,y,t) < /p(z,z,t)p(y,y,t)

(see the proof of the Proposition 2.1) it follows that the Brownian mo-
tion is transient provided for some ty > 0 and any y € M,

+ o0
(2.24") / p(y,y,t)dt < +o0.
to
As soon as we have an upper estimate for the heat kernel we can check
whether (2.24") holds. In fact we need for this purpose an upper bound
only for large t. That leads us to the following theorem.

Theorem 2.3 Suppose that for any open pre-compact region D C M
with the volume Vol D > V (where Vy i3 some positive number) the
isoperimetric inequality (1.8) holds with an arbitrary continuous de-
creasing function A, then the Brownian motion i3 transient provided

T dy
9 _—
(2.25) / T A(0) < +oo.

PRrOOF. Let us extend the function A(v) into the interval (0,V,) as
a constant: A(v) = A(Vy). Since A (D) decreases on expansion D
we can claim that the A-isoperimetric inequality is valid now for all
domains D. We cannot apply directly Theorem 2.1 because A ¢ L
but we can apply formula (2.14) obtained in the course of the proof of
Theorem 2.1 without using A € £. Putting there § = 1/2 and noting
that I(t) = pa(y,y,2t) we obtain that for any region 2 and for any
y €N, t>ty,

, 4/paly.y.2t) g,
(2.14") ->t—1.
4/pﬂ(yvy-2t0) v A(v)
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Let us introduce the function v(t) from the relation

v(t) dv
. t—ty = —_—
(2.26) to /vo YOR
where vg = 4/pa(y,y,2ty). As it follows from (2.14')

4 4
— > (t), a(y,y,2t) < — .
pe(y,y,2t) ®) Pa(y.y.21) v(t)

Hence, in order to estimate the integral (2.24") from above it suffices to
obtain a uniform in Q bound of ft-:oo dt/v(t). Changing a variable in
the integral we have

+oo +o0
/ . / 14,
o, v(t) w U dv

+oo 1 +oo 1
Y R / .
/vo v? A(v) 4/paly.y.2to) v? A(")

Thus, collecting all these relations together, we obtain

+oo +o00 1 -
/ paly, v, 2t) dt 34/ dv.

to 4/paly.y,2to) v? A(v)

Letting Q@ — M we see that the integral (2.24') is finite, which was to
be proved.

Let us compare this result with a similar one obtained earlier in
[G85]. Namely, the theorem of [G85] establishes transience provided the
following isoperimetric inequality holds for any bounded region D C M
with a smooth boundary:

(2.27) Area (0D) > g(Vol D)

and the function ¢ satisfies the inequality

+oo dv
9
(2.28) / o(0)? < +o0.

Recall first that as was mentioned already in Section 1 inequality (2.27)
implies some A-isoperimetric inequality . Indeed, the following is true.
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Proposition 2.4. Suppose that for any bounded region D with a smooth
boundary such that D C Q the inequality (2.27) holds, where Q is an
arbitrary Riemannian manifold and the function g 1s such that g(v)/v s
a decreasing one. Then the A-isoperimetric inequality holds in Q where
A 13 given by the relation

(2.29) Av) = %(é’ﬁ”—)y .

v

Indeed, let w be some sub-region in 2 and the closure of D lie
inside w. By the hypothesis (2.27)

Avea(2D) 2 g(10) = 1] L5 > D]

g(lw])
lw|

Thus, the Cheeger’s isoperimetric constant (see [Che]),

_ . . Area(dD)
h(w) = jnf D

satisfies the following estimate

g(lwl) ‘

M) 230

By the Cheeger’s theorem we have
1 2
’\l(w) Z Z h(UJ) )

which implies (2.29).

We are left to notice that (2.25) is transformed to (2.28) when
substituting ¢ from (2.29).
3. Mean-value type theorem.

In this Section we deal with a mean-value type theorem. We call so
a theorem which establishes a relation between a value which a solution

of heat equation takes at some point and an integral of the solution over
some neighbourhood of this point. This theorem will enable us to obtain
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a dependence on distance function when estimating the heat kernel. In
fact, the theorem is alredy proved in its the most important part in
[G91]. Here we are going to simplify the final result.

Let us introduce the following notations. Let A be a function of
class £. Since the function v/A(v) is strictly monotone on (0,+00)
and has a range (0,+00) it follows that it is inversible. Let us denote
the inverse function by w and define the functions 17(t), W(r) for ¢t >
0, 7 > 0 as follows

_ v ge _ W) ge

The following theorem was proved in [G91].

Theorem 3.1. Suppose that the A-isoperimetric inequality holds in
some ball By where the function A is such that the integrals in (3.1)
converge at zero and the functions 17, W are defined on [0,+oo[. Let
C = B3 x(0,T), T > 0 and suppose that a function u(z,t) € C>®(C)
satisfies in C the inequality

(3.2) uy — Au < 0.

Then

(3.3) u(z,T)2 < — 4 — /u.2
T min {V(eT), W(eR)} Je T

where ¢ > 0 13 an absolute constant, for ezample, ¢ = 0.0001.
EXAMPLES. 1. If A = av™2/™ then
V(t) = Coa™?4D/2 1 W(r) = Cpa"/?r+?

and (3.3) acquires the form

C,a"/?
(3.4) u(z,T)2 < - /u2 .
+ min{\/;f,R} 2 Je +

In the Euclidean space R™ this inequality was proved by Moser [M].
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2. If A = max{av™?/" A}, A >0, then

V(t) x a™/? min{t, A7'}("*2/2 exp(c At),
W(r) =< a™?min{r?, A71}("+)/2 exp(cVAT),
where < means “is in finite ratio with” and the constants bounding the

ratio of the right and left-hand sides in these relations depend only on
n.

3. Let us set

b [VolB%\?
A(v)=ﬁ( R)

v

with some positive constants b, 3. The A-isoperimetric inequality with
this function A holds in any ball Bf on a manifold with a non-negative
Ricci curvature with the constants § = 2/n, b = C, (see [G91] for
the proof). This A-isoperimetric inequality is in some sense a nat-
ural one when obtaining the heat kernel upper bound of the follow-
ing kind: p(z,y,t) < C/Vol B -see Section § below for details. But
when staying inside the ball B} the A-isoperimetric inequality in ques-
tion is essentially the same as that of the Example 1 provided we
take a = (b/R?)(Vol B%)?. Substituting into (3.4) and noting that
T Vol B} = VolC, we obtain .

2 Cn 1 2

(49)  WaTR S e e Yot /Cu+.
If T = R? then the first fraction in front of the integral in (3.5) does
not depend on T and R at all and (3.5) means that the value of the
function u at the top point is estimated from above by the L?-norm
of u over the cylinder C. This is why we call the Theorem 3.1 as a
mean-value type theorem. o

The purpose of this section is to replace the functions V, W from
the statement of the Theorem 3.1 by other functions which are more
convenient for applications. Next we assume that the function A under
consideration lies in the class £ and, moreover, V/A is also in £, then we
can consider the functions V(t) and W(r), being the V-transformations
of A and V/A respectively. The latter means that W(r) is defined by
the following relation

W(r) dv

0 v/A(v)

(3.6) r=
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Proposition 3.1. If A and V/A belong to L it follows that the functions
V(t) and W(r) defined from (3.1) egist for allt > 0, r > 0 and satisfy

the estimates
~ 1 1
(3.7) V()2 31V(;1),

(3.8) W(r) >t W(— r).

REMARK. The inequalities of the opposite direction are valid too
T <tV), W) <R W,

but we do not use them.
First we prove the following lemma.

Lemma 3.1. Under the assumptions made above the functions 1/V(t)

and 1//W(r) are convez.

PrOOF. Consider first the former of these functions. It suffices to prove
that ¢ as a function of the argument 1/V is convex. Let us consider the
derivative

a VvV
aw) - TV TR

where we have applied that V' = V A(V). When 1/V is increasing V
is decreasing, A(V') increasing, V/A(V') decreasing. Hence, dt/d(1/V)
is increasing and ¢ as a function of 1/V is convex.

Similarly one can prove that r as a function of 2/v/W is convex

because
_ | W
d2/vW)  \AW)’

PROOF OF (3.7). By definition the function w satisfies the relation

w(§)
w(€))

(3.9) §=7
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According to (3.1) we have

=) se-l sz

w
w1 dw AW(V)) gA
Ll ®
w(V)
(3.10) t=/ duo + I
o wAW)  Aw(V))

This implies, in particular, that the integral in the definition (3.1) of
the function V converges at 0. Moreover, since A(w) is a monotone
decreasing function it follows that

+o0o dw B
A oh@) T

which means that the function 17(1) is defined for all positive t. Let
us consider two cases. Let first the integral on the right-hand side of
(3.10) be at least as large as the second summand, then

</‘”(‘7) dw
~Jo wA(w)’

whence w(V(t)) > V(#/2) follows. Together with (3.9) and (2.7) this

implies

N o+

- V(t/2) | V(t/2)
(3.11) YO 2 3wy = Vi)

We are left to show that for all 7 > 0

1

57)

(3.12)

Vir)y .1 _,
i) 237

(it is evident that (3.12) for 7 = ¢/2 and (3.11) imply (3.7)).
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In order to prove (3.12) consider the function v(7) = 1/V(7). Due
to Lemma 3.1 this function is a convex one which means, in particular,

that

o(r) = o(r/2) o _o(r/2)
T/2 - /27
Substituting here v = 1/V we obtain (3.12).

Consider now the second case when the former summand on the
right-hand side of (3.12) is less than the latter, then

v'(r) 2

t 1 2 =~
§<m, ?>A(w(V))

Since the range of the function A covers the interval [A(w(V)), 4+o0] it
follows that 2/t lands into the range of A. Denote by u(t) the smallest
number u~for which A(u) = 2/t, then A(u) > A(w(V')) and, hence,
u(t) < w(V(t)). Using (3.9) we get

u tu(t)

It follows from (2.6) that

VY @ Vi dy v 1
t—/o vA(v) ~ /vu)/z vA() - VOAV(#/2)  2AV(H/2)

Replacing here t by t/4 we obtain

It yields together with 2/t = A(u(?)) and (3.13)
Lyd t) < u(t 2 V(t
SV(ED S ult) < 2T,

which coincides with (3.7).
The inequality (3.8) is proved in the same way. Let us sketch briefly
the main points of the proof. It follows from the definition (3.1) of the

function W that

« ) g, 2
3.14 = .
(3.14) " /0 vy/A(v) " \/A(w(ﬁ”))
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Suppose first that the integral on the right-hand side of (3.14) is greater
than or equal to the second summand, then w(W) > W(r/2) which
implies together with (3.9) and W' = W/A(W) that

(3.15) W(r) > Wﬂ(’/ 2)

Next we use the facts that the function v(r) = 2/4/W(r) is by the

Lemma 3.1 a convex one and for such a function

, v(r/2)
v (T) 2 _T_/2 .

W3/2(r)
m 217G

Taking here 7 = r /2 and substituting into (3.15) we obtain (3.8).
Suppose now the integral in (3.13) is smaller than the second sum-
mand, then we have

Hence, we obtain

(616 A<, o) ur), T >,

where the function u(r) is defined from the relation A(u(r)) = 16/r2.
On the other hand (3.6) yields

> __1—
2\/A(W(r)/2)

or, replacing r by r/8

AGW(ET) > 12

which implies W(r/8)/2 < u(r). Collecting all these inequalities to-
gether we obtain finally (3.8).

Now the Theorem 3.1 can be reformulated as follows.

Theorem 3.2. Suppose that the A-isoperimetric inequality holds in
some ball By C M with the function A(v) such that VA € L. Let
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C = By x (0,T), T > 0 and suppose that a function u(z,t) € C>(C)
satisfies in C the inequality

u; — Au <0.
Then
c
2 < 2
1) ul=Di < o {TV(cT), R W(cR)} /c"‘“ ’

where ¢ > 0, C are absolute constants.

4. Integral estimates with Gaussian term.

We start this Section with some auxiliary properties of the A-trans-
formation which are going to be used in obtaining upper bounds of the
heat kernel containing the factor exp(—cr?/t). Let us assume that A
is a function of class £ and, moreover, VA € L. Let V(t) and W(r)
be V-transformations of A and v/A respectively. Let us denote by R( t)
the function W=1oV, i.e.

V(@) v
(4.1) R(t) = /0 v\/dm .

Lemma 4.1. For allt; > t; > 0 the following inequality holds

(R(t2) — R(t1))* V(i)
(4.2) tz — tl S lOg m .
PROOF. Let V; = V(t;), then (4.1) implies
LI ?
— 2 = —
(R(t2) — R(t1)) ( v vm)

Va2 dy V2 do
S /;/1 vA(v) /;/1 v

V2
= (t; — t;)log —
(2 l)og%v

whence (4.2) follows.
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Proposition 4.1. Let T > 0 and 6 € (0,1) be given.
i) If the function

V()
(4.3) Vi

i3 bounded above by a constant N for t < T (where T may be equal to
infinity) then for any t < T

R%(t)

(4.4) -

<Cngs.

1) Suppose that the function V(t)/V(6t) is monotonically increas-
ing for t > T, then for any t > T the following inequality holds

< Cjs log 140) +Crs,

R(t)
(4.5) 7 V(6t)

where Cs = (1 — 6)/(1 — V/6)2.
PROOF OF i). Let us consider a sequence
(4.6) te =t 6%, k=0,1,2,...

By the Lemma 4.1 we have

(4.7) R(tk) = R(tk+1) < vtk = ten (l(’g th(:ﬂ))m

or, taking into account the hypothesis 1)

R(tr) — R(tes1) < 8%/2/(1—6)tlog N .
Adding these inequalities over all £ we obtain
R(t) < Cns V1,

which coincides with (4.4).
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PROOF OF ii). Consider again the sequence (4.6). Denote by K the

biggest integer for which tx > T is still valid. This means in par-

ticular, that tx € [T,T/6]. Let us denote for the sake of brevity

Vi = V(ti), ri = R(t;) and consider the sequence

2

(4.8) -k k=0,1,2,... K.
tk

Suppose first that this sequence is a monotone increasing one, then we

have

(4.9)

which implies, of course, (4.5).
Consider now the second case when there is a term of the sequence
(4.8), say, t,, such that

2
(4.10) > Tmt1

We may assume that m is the smallest number for which (4.10) is true.
It follows from (4.10) that

Tm+1 < Tm \/3
Applying the Lemma 4.1 we obtain
2
(Tm Tm \/—) < log m)
1-6)tm V(étm)
Since the function V(t)/V(ét) is increasing it follows that

og Llim) <10 V()
EV(stn) = BV(6t)

(4.11)

Due to the choice of m we have
R2(t)
t

<:

3 |se

Substituting these relations into (4.11) we obtain finally
’Rz(t) 1-6 V(t)
lo
t S A var Ve

whence (4.5) follows.
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The following lemma reduces the question whether the function
V(t)/V(ét) satisfies the hypotheses of the Proposition 4.1 to a simpler
one.

Lemma 4.2. Suppose that 6 € (0,1), co>T' >T/é6 > 0.

i) If the function

dlog V(t)

(4.12) abogt

i3 bounded by a constant N fort €]T,T'], then the function V(t)/V(6t)
is bounded by the constant =N on |T/6,T"].

ii) If the function (4.12) is monotone increasing on |T,T'] it follows
that the function V(t)/V(ét) is monotone increasing on |T/6,T"].

PROOF. We have for t €]T, T"]

! ____dlog V() dlogT.

(413) log 2\ =10gV(t)—1°gV(5t)=/ dlog T

V(ét) log 6t

Note that the integral is taken over an interval of a constant length
—logé lying in ]logT, logT']. If the function to be integrated is
bounded by N then the left-hand side in (4.13) does not exceed N log é.
Else if the function is increasing then the left-hand side of (4.13) is in-
creasing too because the interval of integration is moving to right as ¢
is getting larger.

Now we proceed to our main estimates of some integrals of the
heat kernel. The next theorem does not still make use of the forego-
ing properties of the A-transformation -they will simplify the further
applications of this theorem.

Theorem 4.1. Let the A-isoperimetric inequality hold in some ball B,
VA being a function of class L. Let V(t) and W(r) be V-transforma-
tions of A and /A respectively, then for all p € (O,R] and 0 <7 <t
the inequality holds

C
2
(4.14) /Mp (z,2,1) exp( 2t ) dz < min {V(c7), (p?/7)W(ep)}
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where d(z) = dist{z, B]} = {dist{z, 2} — p}+ and c, C are some abso-
lute positive constants (c is the same as in the Theorem 3.2).

REMARK. Of course, one could replace in the statement 7 by ¢ and
p by R -that would simplify the formulating, but, generally speaking,
these are not the optimal choice of 7, p.

PROOF. The idea behind the proof is similar to that of [G87c]. Let
p(z) € C&(M) be an arbitrary but fixed function and  C M be
an arbitrary pre-compact region with a smooth boundary containing
supp ¢ and Bj. Set

un(z,t) = /ﬂ pa(z.y,t) o(y) dy

and apply to this function the Theorem 3.2 in the cylinder B} x(¢,t—7):

. :
ug(z,t)? < K/ / u®(z,s)dr ds
t—r ;

where

K= ¢
" min {7 V(cT), P2 W(cp)} = -
Note that the function being integrated here can be multiplied by the

following term
A C))
P\72¢-9))"

which is equal identically to 1 in the ball B; and, besides, the domain
of integrating can be extended to the entire region Q. Thus, we obtain

¢ d*(:
(4.15) ug(z,t)2 < K [_T/s)u%(x,s) exp (_2(t Yl)) dzds.

Next we need the following lemma.

d

Lemma 4.3 (Integral maximum principle). Let 2 be some pre-compact
region i M with a smooth boundary and w(z,s) be a solution to the
heat equation w, — Aw = 0 in Q x (Ty,T) vanishing on the boundary
0 x (Tp,T). Suppose that é(z,s) is a Lipschitz function in Q x (T, T')
such that

1
(4.16) &+ 5 IVEPP <o,
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then the following integral
(4.17) I(s) = / w?(z,s) ef(®?) dz
Q

i3 a decreasing function in s € (Ty,T). Moreover, if 0 < A < A;(Q) it
follows that the function

I(s) exp(2A3)
decreases in s as well.

REMARK. We use the derivatives of the function {(z,s) although it
may be not differentiable. But this function is assumed to be Lipschitz
and, thereby, is locally differentiable in a weak sense. The inequality
(4.16) is also understood in the sense of distributions.

The proof of the first part of this Lemma is well-known (see, for
example, [ChLY], [PE]) and consists of checking that I'(s) < 0. The
expression on the left-hand side of (4.16) appears as a discriminant of
some quadratic polynomial which is to be non-negative. For the second
part including the exponential decay of I(s), see [G92].

Let us apply this Lemma to the functions uq and

d?
{(a,8) = —2(t(—$l) '

The distance function d(z) is evidently Lipschitz and |Vd| < 1 whence
the validity of (4.16) follows. We obtain that the integral over § in
(4.15) does not exeed that for s = 0. Therefore

2
ug(z,t)? < KT/ @%(z) exp (—d (:r)) dr.
Q 2t

Letting here 2 — M we deduce that the same estimate is valid for the
function

uz,t) = Jim ua(e.t) = [ pla.v.t)ply)

which implies

(4.18) u(z,t)? < KT/M o*(z) exp (—d;(t”")) dz .
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Consider now a mapping & : L?(M) — R given by the rule

(4.19) ®(n) = /M p(z,z,t) exp ( (= )) n(z)dz,

t being fixed. Let us first explain why this mapping is defined, i.e. the
integral converges. For a function 7 of the form ¢(x)exp(—d?(z)/4t),
where ¢ € C°(M) we have

w(n) = [ ple,2 000z ds.

This integral here coincides with u(z,t) and by (4.18) we have

()2 <Kr /M %(x) exp (—d;(:)> dr =Rt /;M n*(z)dz,

whence an estimate follows

()2 <K ;.

Thus, the mapping ® is bounded on the set of functions 7 of the form
under consideration. Since this set is dense in L?(M) it follows that

(4.20) 8> < K.

On the other hand the definition (4.19) of @ implies that

d*(z
912 = [ p(azt) exp () d

Combining this with (4.20) we get (4.14) which was to be proved.

Corollary 4.1. Under hypotheses of the Theorem 4.1 the following
estimate is valid for any D > 2

Ep(z,t )=/ pi(z,2,1) exp(;2t> dz

4.21 P’
( . ) - Cexp ((—ET‘T)—)

mm{V(cr), VV(cp)}
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where r = dist{z, z}.

PROOF. It is easy to check that for any D > 2 a quadratic inequality
holds
da) = (r—plt 2 212 = =2
t=D D-2""

which implies together with (4.14) inequality (4.21).

REMARK. For D = 2 one cannot hope to estimate Ep because E; can
be equal to infinity as it happens in the Euclidean space.

The expression Ep(z,t) is of much importance for us. As we have
seen it is estimated above via an isoperimetric property of a manifold.
On the other hand, it will enable us to obtain pointwise estimates of
the heat kernel in the next section. The following property of Ep is
also very useful.

Proposition 4.2. On an arbitrary manifold M for any D > 2 the
quantity Ep(z,t) is finite for all z € M and t > 0; moreover, the
function

(4.22) Ep(z,t) exp(2At)
18 decreasing in t provided 0 < A < A (M).

ProOF. For any point £ € M there exists a small positive R such
that the ball B is diffeomorphic to a Euclidean one and the Euclidean
metric is finite proportional to the Riemannian one, i.e. the ball B is
quasi-isometric to the Euclidean one. We claim that in the ball B a
A-isoperimetric inequality holds with a Euclidean function i.e. for any
region 2 C B}

A (Q) > C(VolQ)~%/m,

Indeed, the first Dirichlet eigenvalue A;(€2) is defined as the infimum
of the ratio of the integrals [, |Ve|? and Jq ©* over all test functions
@ € C°(2). Either integral is altered under a quasi-isometric transfor-
mation at most by a constant factor and, thereby, the same is happening
with their ratio. Hence, the first eigenvalue is changed at most by a
constant multiple too and the relationship between it and the volume
of Q remains as that in the Euclidean space up to a constant multiple.
The fact of the presence of a local A-isoperimetric inequality allows
us to apply the Corollary 4.1 which ensures the finiteness of Ep(z,t).
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To prove the second assertion let us fix some r € M and consider
a pre-compact region & C M, = € Q with a smooth boundary, then by
the Lemma 4.3 the function

2
(4.23) exp(22) [ exp (m) P(z,v,t) dy

decreases in t whenever 0 < A < A{(M) (note that A\;(M) < A(Q)).
Let 2 — M then the function in (4.23) tends to exp(2\t) Ep(z,t)
whence the decreasing of the function (4.22) follows.

Our next step is to simplify the right-hand side of (4.21). For this
purpose we have to impose some restriction on function the V(¢) which,
however, will not affect the rate of increase of V(t) as t — +oo. Namely,
suppose that for some T €]0, +o0] and N > 0,

M is increasing for ¢t > T,
dlogt
(4.24) dloe V
dlog V(t) <N, fort<2T.
dlogt —° -

This condition needs some comments. For all reasonable applications of
the Theorem 4.1 we have for small values of ¢ that V() = C t¥, v > 0.
Therefore for small ¢ the function dlog V(t)/dlogt is bounded above.
If this function remains bounded at infinity then (4.24) is satisfied for
T = +o0o. Otherwise the function in question is unbounded and we
may assume it to be increasing at a neighbourhood of infinity (this
restriction causes no troubles for applications). If this is the case then
condition (4.24) is satisfied for some finite value of T. Let us note that
the first case (i.e. T = +00) takes place for a polynomial function V()
whereas the second one (when T is finite) holds for a function V(t) of
superpolynomial growth.

Theorem 4.2. Suppose that as in the Theorem 4.1 the A-isoperimetric
inequality holds in some ball By and that VA € L. Let V(t) and Wi(r)
be as above V-transformations of A and /A respectively and, in addi-
tion, suppose V(t) satisfies the condition (4.24). Suppose also that for
someT >0

(4.25) T<t, r < R%, R(et)<cR,
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where R(-) is defined by (4.1), then for any D > 2

Cn,r

. L _
(4.26) Ep(z,t) < SV(EeT)
where ¢ = ¢?/12, § = min{D — 2,6/c} and c 13 the same as in the
Theorem 4.1.

PROOF. Let us first observe that for D > 6/c the right-hand side of
(4.26) does not depend on D while the left-hand side (i.e. the quantity
Ep) is decreasing with respect to D. Hence, the estimate (4.26) for
D > 6/c will follow from that of D = 6/c. This is why we assume
from now on that D < 6/c and, thereby, § = D — 2. Similarly, due to
the monotone decreasing of Ep(z,t) in t it suffices to consider the case
t = 7. Let us apply the Corollary 4.1 for 7 = ¢ and for

(4.27) p =max{Vet, ¢ 'R(ect)},

where € < 1 is to be chosen later, then according to (4.27) and (4.25)
p < R and by (4.21) we have
2
p
C exp (6t)

(4.28) Ep(z,t) < - .
min{V(ct), ”T W(cp)}

Since p?/t > ¢ and W(ep) > W(R(ect) = V(ect) it follows that
the denominator in (4.28) is at least as large as ¢ V(ect). To esti-
mate the numerator first note that due to (4.24) and the Lemma 4.2
(applied for § = 1/2 -this is not the é from the Theorem 4.2!) the
function V(t)/V(t/2) is bounded above by C in ]0,27T] and increasing
in [2T, +o0[. Therefore, by Proposition 4.1 we have for all t > 0

R?(t) V(t)
" SGIOgV(t/Z)JrC’

where C = C(N,T) . Replacing here t by € ct we obtain

R%(ect) <61 V(ect)

et SOleg oy €
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or
-1 2
(c7'R(ect)) Sﬁlog V(ect) €
ot bc " V(ect/2) ¢
Let us take
gt
T 6

and note that the hypothesis D < 2 + 6/c implies § < 6/c and € < 1.
We obtain thereby

(c71R(e ct))? < V(ect)

5t S8 Tog T
Since
(Vet)? _Ec ¢
6t 66
it follows from (4.27) that
2
p V(ect) c
L < — =
5t S8y T
whence we obtain
2
p Viect)
£ ) < —=c
P (5t) SONT Vet

This is a desired estimation of the numerator in (4.28). Substituting it
into (4.28) together with the obtained above estimate of the denomina-
tor we get finally

Cnt V(eect)  Cnr

Eo50) S Ve ey Vieet/D) ~ 5V(eon)

as it was to be proved.

Corollary 4.2. Suppose that in addition to the hypotheses of Theorem
4.2 the function A(v) has a polynomial decay (see Definition 2.1), in
particular

(4.29) A(20) 2 a A(v),
for some a > 0 and in place of the condition (4.25) we have

(4.30) T <t, R(ct)<a R,
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where ¢; = c1(a), then the estimate (4.26) continues to hold.

REMARK. If the function A(v) is obtained from the relation (2.29) of the
Proposition 2.4 then it satisfies (4.29) automatically with o = 1/4 be-
cause the function g(v) in (2.29) is increasing. That means that the hy-
pothesis (4.29) holds in all reasonable cases whenever a A-isoperimetric
inequality takes place.

PROOF OF THE COROLLARY. As in the proof of the Theorem 4.2 we can
take 7 = t. The constant ¢; is to be chosen in the course of the proof.
First impose the restriction ¢; < ¢. Then (4.30) implies R(ct) < ct so
we have the second half of condition (4.25). To obtain its first half it
suffices to prove that for all ¢+ > 0

(4.31) R(t) > BV,

where f = f(a) > 0. Indeed, as soon as we have proved (4.31) we

obtain from (4.30)
2
C 2
t<|—=) R*,
- (/3 )

whence the first of inequalities (4.25) follows provided ¢; < 3. Thus,
we can take ¢; = min{c, #} and apply Theorem 4.2.

To prove (4.31) let us use definition (4.1) of R(#) and definition
(2.6) of V(t). The inequality (4.31) is transformed to the form

v 2 Vo e
(4.32) (/ \/_> ﬂ2/ OR

Consider a sequence of points V; = V/2¢, i =0,1,2,..., then

v oS

v

v

1'“ 1+l

v
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where we have used A(Vi4+1) < A(V;)/a. Applying a simple inequality

(o) e

we obtain

V. dv - alog??2
(/o v,fr(v)) 22

On the other hand

1=0
® Vi o 2

< / dv _ Z log 2
i v AV L AV

Finally we get
v 2 v
dv dv
> alog? [
(A v A(v)) = @082 | YA (w)

and 3 = /alog2.

5. Pointwise estimates with the Gaussian term.
The following statement plays the main role in obtaining pointwise

estimates of the heat kernel from the integral estimates. As in the
previous Section we shall use the notation

2
(5.1) Ep(z,t) = /M exp (E) pi(z,y.t)dy,
where r = dist{z,y}.

Proposition 5.1. On an arbitrary manifold M the following inequality
holds for allx,y € M, t >0 and D > 2

2 t t
62 st <o (35 ) Bl ) Eo ).
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where r = dist{z,y}, and, besides

r2

t t
(5:3) plauwnt) < exp (~557 ~ At) explr )y Eole, 2) En(w, 2)

provided t >t > 0,0 < A < A\ (M).
PROOF. Let us denote by r;, r2 the distances from an arbitrary point

z € M to z,y. Applying the semi-group property of the heat kernel
and an elementary inequality 2 + r2 > r2/2 we obtain

p(z,y,2t) = /Mp(w,z,t)p(z,y,t)dz

T2 T'%
SexP —4Dt Mp(zvz’t) exp ¢

pet) exp (357 ) ds

r2 1/2
< exp (—4Dt) (/M p*(z,z,t) exp ; dz)

2 7'% 1/
. z,t —=dz
(/Mp(y,,)eXth ) ,

whence (5.2) follows.
In order to prove (5.3) note that as it follows from Proposition 4.2

t t t t
exp(2Ato) Ep(z, -él) Ep(y, —20-) > exp(2At) Ep(z, 5) Ep(y, 5) ,

)
on O

T

[SV]

% S

o

whence

t

exp(A(t— )y Bo e, 2) By, 2) 2 \[Bn(e. 2) Bp(u,5),

which together with (5.2) imply (5.3).

Theorem 5.1. Suppose that the A-isoperimetric inequality holds on the
manifold with a function A € L. Assume also that its V-transformation
V(t) satisfies the condition (4.26) with some constants T, N, then for
allr,ye M, t>0 and any D > 2

Cp,NT r?
(54) P(.’L‘,y,t) S TM- exp ("'2Dt) )
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where é = é(D) = min{D — 2, 6/c}c?/24 and c is the constant from the
Theorem 3.2.

Indeed, by the Proposition 5.1 we have the inequality (5.2) whence
we obtain (5.4) by estimating the quantities Ep applying the Theorem
4.2 for R = 400 and 7 = t.

EXAMPLES. In all the following examples the function A(v) is equal to
C v~%/™ for small values v, say, for v < vy, so that V(t) = C, t"/2 for
t < to and by the Theorem 5.1 for these values of t we have the estimate

Cp r?
(55) P(fl?,y,t) < tn/2 exp (_2Dt) .

Consider now different possibilities of behaviour of the function A(v)
for large values of the argument v. Note that the following identity
is useful for checking the condition (4.26)which is satisfied in all the
following examples:

dlogV(t) ‘ V(t)
dlogt ~— V(t)

(5.6) tA(V(2)).

1. Let for v > vg
A(v)=Cov™", v>0.

Then for t > t,
V(t) > Cpt'/”

and by Theorem 5.1
Cp r2
. , < — —— .
(57) o) < 5o exp (~ 357
2. Suppose that for large v
A(v) = C (logv)™".
then for large values of ¢t we get

V(t) > C, exp (C,,t‘/(”“))



HEAT KERNEL UPPER BOUNDS ON A COMPLETE NON-COMPACT MANIFOLD 439

and the corresponding estimate

_ r2
(58)  p(z,u.t) <C;t exp (— Cp/rw Y

3. Let A(v) = A, X\ a positive constant, for v > vy, that is the
manifold has a positive spectral radius. Theorem 5.1 yields

2
-1 - A
(5.9) p(z,y,t) < C™" exp < CAt 2Dt> .

In the situation with a positive spectral radius one can obtain a sharper
information about the rate of decay of the heat kernel as ¢ — +oo.
Namely, C in front of At is a superfluous term. The following theorem
treats this case.

Theorem 5.2. Suppose that in any ball By of a fized radius R > 0
the A-isoperimetric inequality holds with the function A = A, p defined
as follows

(5.10) Azr(v) = alz, R)v™,

where a(z,R) >0, v > 0. Then for allz,y € M, t > t, >0,

T2 1+]/ll 7"2
C, <1 + 7) exp <_E - At) exp(Ato)

min {to,RZ}]/" (a(z,R) a(y, R))]/”

(5.11)  p(z,y,t) <

where A = A\ (M), r = dist{z,y}.

REMARK. Note that the isoperimetric inequality (5.10) takes place on
any complete manifold for v = 2/n which follows from compactness
arguments. Therefore, the estimate (5.11) holds also on any manifold
and gives the precise speed of decay of the heat kernel as t — +oo0.
If, in addition, one knows that all the coefficients a(z, R) are uniformly
bounded away from 0, then the estimate (5.11) takes the following form

T2 1+1/V 7"2

provided t > tq.
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A similar inequality (without the term —At) is obtained in [D90]
under the hypothesis of “weak bounded geometry” which is stronger
than our uniform local A-isoperimetric inequality.

PRrOOF OF THEOREM 5.2. Computing the V-transformations of A; g

and /A; r one obtains
(5.13) V()= wat)/*,  W(r)= (% viar?)v,

whence it follows that
R(t) =2+/t/v.

Let us note also that the function tA(V(¢)) = 1/v is bounded. Applying
the Theorem 4.2 for 7 = min{t, C', R?} and D € (2,2 + 6/c) we get

C,
E t) <
D((l', )_ 51+1/y (l(.T,R)l/u min{t’Rz}l/u )

which together with (5.3) implies

C, r?
. z < v " ).
(514) Pyt < e exp( o ,\1)_4,

where
exp(Atp)

A=
(a(z, R) a(y, R))"/2¥ min{ty, R2}1/¥

and § = D — 2 < 6/c. Taking here § = min{6/c, t/r?} and noting that
for this 6

r? r2 6t
2t (2+6)t 2(2+6)t
we obtain finally (5.11).

<

1
4 b}

Theorem 5.2 can give a non-trivial information also in the case
A1(M) = 0. Next we suppose that the A-isoperimetric inequality holds
in any ball Bf € M with the following function A = A; g

(5.15) Ag p(v) = 7;’7 (Vol B)*/™ v=2/"

where b is a positive constant. Here n is the dimension of the manifold
M but formally this is not necessarily: n may be any positive number.
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For example, this is true with n = dim M for a manifold M of a non-
negative Ricci curvature (see [G91] for the proof).

Proposition 5.2. Under the hypothesis above the heat kernel admits
the following estimate for allz,y € M and t > 0

2
(5.16) (.9.) < Cos (14 2 3(nt1)/4 €xp <_:1_t>
| emnnE e t VolBZ;

Besides, for any two balls By and By C By we have

Vol B% R\"
1 Recc,ol=) .
(447 Vol B} —C”(p)

Inversely, suppose that a manifold M i3 known to have the heat kernel
satisfying the inequality
C
(5.18) plr,7,t) € = |
VOIB:’/Z
for allz € M and t > 0 and assume in addition that for any couple of
concentric balls By, By where p < IR we have

Vol By R\"
. < — .
(5.19) VOIB;'C(p>

Then in any ball the A-isoperimetric inequality holds with the function
A = A; R defined by (5.15).

REMARK. The statement of the theorem means that the A-isoperime-
tric inequality in any ball given by (5.15) is simply equivalent to the
conjuncture of the heat kernel estimate (5.16) and the volume ratio
estimate (5.17). On a manifold with a non-negative Ricci curvature a
similar estimate of the heat kernel was proved first by Li and Yau [LY].
In the view of the sharp results of B. Davies (see [D88], [DP]) the order
3(n + 1)/4 of the polynomial correction term in (5.16) seems not to
be optimal. The advantage of our approach is that the result is stable
under a quasi-isometric transformation of the Riemannian metric. In-
deed, it is easy to see that the A-isoperimetric inequality in question is
a quasi-isometric invariant. It can be considered as a replacement of the
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notion of a non-negative Ricci curvature when dealing with a manifold
whose metric is not smooth enough to have a curvature at all.

PROOF. Let us prove first (5.17) applying the result of Carron [C] that
a A-isoperimetric inequality implies some lower bounds for the volume
of a geodesic ball. Indeed, the Proposition 2.4 from [C] states the
following:

If the A-isoperimetric inequality holds in a region 2 C M with the
function A(v) = av~2/"  then any ball By C § admits the volume
estimate

Vol BY > Cpa™/?p".
Applying this result to the set = Bj and taking
b £r2/n
a= 25 (Vol BE)*
we get (5.17).

To prove the heat kernel estimate (5.16) let us apply Theorem 5.2
with the function

b £\2/n
a(z,R) = — (Vol B%)*/
and with to = t, R = 1/t. We obtain
2
C.(1+ 7'2/t)1+n/2 exp (—%)

(Vol B, Vol B&) v

(5.20) p(z,y,t) <

The expression on the right-hand side of (5.20) is going to be simplified
to get rid of Vol BY,. It is known how to do that on a non-negatively

curved manifold (see [LY]): one should estimate the ratio of the volumes
Vol Bf/i and Vol B?/i via the distance r between points z,y using the

volume comparison theorem for such a manifold. Here we apply the
inequality (5.17) in place of the comparison theorem. Namely, we have

Vol Bf/i < Vol Bf.,.\ﬁ

r+\/f
Vi

n/f2
T
<Chnp (1+T) VO]B:’/Z.

y
t

) VolB\/.

(5.21) S (
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Replacing the volume Vol B\”/z in (5.20) by its lower bound from (5.21)
we get (5.16).

Let us turn to the proof of the converse statement. The idea is the
same as in Theorem 2.2 but first we observe that the hypothesis (5.19)
implies that for any two intersecting balls By and BY such that p < R
the following holds

R\™ _ Vol B R\"
) -1 = < R < =
(5:22) ¢ (,,) -Vole—C(p)’

where n; > 0 depends on n and on the constant in (5.19).

This is proved in [G91], see Theorem 1.1 there. We only mention
that the right inequality in (5.22) follows evidently from (5.19) whereas
the left one exploits (5.19) as well as the non-compactness of the man-
ifold under consideration.

Hence, we can claim that for any two intersecting ball By and B}
the following relation holds without any restriction on the radii R, p

Vol B R
(5.23) Vol BY < Cf(;),
where

(e, ife<,
(5:29) 10={5"  fest

Indeed, if R > p then right inequality (5.22) is applicable. Otherwise
we apply the left inequality (5.22) exchanging R and p.

To prove the A-isoperimetric inequality in a given ball BE with the
function (5.15) let us apply the eigenfunction expansion as was done in
the course of the proof of Theorem 2.2 and obtain for any region Q2
lying in a ball Bf and for any value of time ¢ > 0 the estimate

dy

Q V()l By )

exp(—M(R)t) < / p(y,v,1)dy < C
Q@ Vit

We have according to (5.23) that

Vol B R
2OIR <0 f(=2),
Vol BY, — f(\/z)
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which implies
R, VolQ
exp(—A;1 (Q)t) < Cf(?—'t') Vol BZ,

Now we choose the time ¢ in order to get at most e~! on the right-hand
side above

R Vol B%
2 —) = R
whence it follows that
(5.26) A1() > % .

We can evaluate ¢ using (5.25) and the following property of the function
f which reflects its polynomial nature and follows obviously from the
definition (5.24): for any 4 > 0 there exists a positive constant ¢, such
that for all £ > 0

v (&) < fleq€)-

Therefore, taking here vy = C e we have
R R
) < kel
7f(\/{) _f(c“/ \/Z),

which together with (5.25) yields

R Vol B
fley 7—;) 2 Yoo

Let us note that the ratio on the right-hand side here is at least as much
as 1 whence it follows that

R ANACE: AN
TAEE\ Vel )

Evaluating ¢ from this inequality and substituting into (5.26) we get
finally the desired A-isoperimetric inequality .

A similar heat kernel estimate can be obtained on a manifold of a
Ricci curvature bounded from below by some constant —K'. For such a



HEAT KERNEL UPPER BOUNDS ON A COMPLETE NON-COMPACT MANIFOLD 445
manifold it was proved in [V89] that there is some small positive con-
stant p = p(K) such that in any ball B} of radius p the A-isoperimetric
inequality is satisfied with the function

A:(v) = Ck (Vol BZ)* /" y=2/m,

Applying Theorem 5.2 for R = p, t; = p* we obtain

p2\ 11n/2 r2
(1 + —t-) exp (—Z—t- — /\t>

(Vol Bz Vol BY)'/? ’

(527) p(‘ra Y, t) < CK,n,A

provided t > p%, A = X\ (M).

In all the foregoing examples the heat kernel bounds contain two
main multiples: a multiple which is responsible for behaviour of heat
kernel in time and the term exp (—cr?/t) which, in fact, controls a
decay of the heat kernel when r — +o0 although the Gaussian factor
appears on a non-geometric ground. The rest of this Section is devoted
to a situation when one more factor emerges depending on r. This term
is expected on a quickly expanding manifold for the following reason.
As it was mentioned in Section 2, we have always

(5.28) / p(z,y,t)dy < 1.
M

If the volume of a ball of the radius R is growing up faster than
exp(CR?) as R — +oo then the heat kernel p(z,y,t) has to decrease,
generally speaking, faster than exp(—Cr?) so that the integral (5.28) is
balanced. This is why one more factor is expected with a quick decay
as r — +00.

Let us fix some point z € M and consider the function

(5.29) MR) = \(M\BR),

where the exterior of the ball is regarded as a submanifold and R €
[0,400). Obviously, A(R) is an increasing function of R and A(0) is
nothing but the spectral radius A;(M).

For example, if M is a Cartan-Hadamard manifold (i.e. its sec-
tional curvature is non-positive and it is simply connected) then

(5.30) AR) > § (=1 K¥(R),
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where —k?%(R) is equal to the supremum of the sectional curvature in
the exterior of the ball B.

Theorem 5.3. Suppose that the A-isoperimetric inequality kolds on
the manifold with the function

(5.31) A(v) = av™2/m

with some a > 0. Then for all z € M such that r = dist{z,z} > V1
the inequality is valid

Can r? ,
(5.32) p(z,z,t) < tn_/27 exp (—75 —vA0)t — cr\//\('yr)) ,

where 0 < v < 1 18 arbitrary, c = ¢(y) > 0.

REMARK For small values of r and even for all z,z € M, t > 0 we have,
by Theorem 5.2, the estimate (5.11) for R = 400, a(z, R) = a or, by
Theorem 5.1, the estimate (5.5).

Theorem 5.3 is applicable for a Cartan-Hadamard manifold be-
cause the Euclidean isoperimetric inequality holds for such a mani-
fold. The third term exp(—¢ry/A(y 1)) acquires on a Cartan-Hadamard
manifold the form

(5.33) exp (—z% (n — 1) k(yr) r) :

Let us compare the estimate (5.32) in this setting with the exact formula
(1.3) of the heat kernel of H}. The multiple (5.33) corresponds to the

term
kr

sinh(kr)

whose decay is similar to that of (5.33) up to the constant ¢.

Of course, if the curvature —k?(R) is growing (to the negative
side) fast enough then the term (5.33) can play the main role in the
heat kernel behaviour as r — +o0.
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PROOF OF THEOREM 5.3. In the exterior of any ball B} the A-
isoperimetric inequality holds with the function

(5.34) Ag(v) = max{av™?/" A(R)}.

Let us denote by Vg(t) and Wg(r) V-transformations of A and VA
respectively. One can compute that

(5.35) Vr(t) 2 Cant™? exp (% A(R) t)
and
(5.27) Wr(t) > Copnr™ exp (;1)- \//\(R)r) .

Of course, 1/2 in the exponent is too rough but all the same we will
apply further Theorem 3.2 which does not give a sharp constant at the
corresponding place.

Let us fix some ball B; of radius p < r = dist{z,z} and put
R = r — p. Since the ball B; lies in the exterior of B it follows
that the A-isoperimetric inequality holds in B, with the function A =
Agr. Applying Theorem 3.2 to the function p(-,z,-) in the cylinder
B x (t/2,t) we get

C

1 7
min {5 Vr(c3), p? Wr(cp)}

t
/ / P*(y,z,8)dyds.
t/2 ;

On the other hand by Theorem 4.2 we have for D > 2

J

p(z,z,t)? <

(5.37)

P’(y,z,8)dy < / p’(y,2,s)dy
M\B;,

R2 2 7.2
<exp “Ds /Mp(y,z,S)exP(b—; dy

< Cpan ex ——-E—z—
= gn/2 P\ D5 a

T
P
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Substituting into (5.37) and noting that ¢/2 < s < t we obtain

R2
Cp,a,n €xp (—m)

2
1/2 min {VR(cé), Wa(ep)2-}

p’(z,2,t) <

or, estimating Vg and Wg from (5.35) and (5.36) respectively,

CD,a,n

2
p(z,2,t) < 3
t" min {1, PT}”"/"’

- exp (——R;2 - % ¢ min {A(R)t, p \//\(R)}) .

(5.38)
Dt
Now we apply the following elementary inequality
| #?X? — 25 XY + Ymin{X,Y} >0,

which is valid for all XY > 0 and 0 < » < 1/2. Taking here X =
pVA(R), Y = A(R)t we have

2
min {p\/N(R), A(R)t} > 25p\/A(R) — 5 ”7 .
Therefore (5.38) implies

CD,a,n

p2(:c,z,t) < 3
t" min {1, -Pt—}ld'-"'/2

R? 1 2 P’
- exp —E—Ec;{p\//\(R)+cx )

Let us set R = 4 r and, correspondingly, p = (1 — 4)r where 0 < vy < 1.
Since by the hypothesis r > /% it follows that p?/t > C,. Taking
» small enough and increasing a bit D we get rid of the summand
cx?p?(4)

2.2
(5.39)  p*(z,z,t) < -Cl)z%—"—l exp (_‘YDrt - %qmc\//\('yr)r) .
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Finally we apply estimate (5.11) which yields for ¢ = (1 — )t

Ch,an r? :
(5.40) p(z,z,t) < —%#1 exp (—2Dt — v X(0) t)

Multiplying (5.40) and (5.39) to powers v and (1—+)/2 respectively and
taking D being close enough to 2 we obtain (5.32) (one has to replace
42 by 7 in the final expression).

Corollary 5.1. If the A-isoperimetric inequality holds on a manifold
with the function A(v) = av™%/", a >0, then for allz € M

1
limsup — sup logp(z, 2,t)
>0

(5.41) r—co T
< —C (VMO +VAe(MD) |

where v = dist{z,z}, Aess(M) 13 the bottom of the essential spectrum
of —A in L} (M), and C > 0 is an absolute constant.

First note that for » > 1 we can give up the factor t"/2 in (5.32).

Indeed, if ¢ > 1 this is evident, otherwise this term is majorized by
exp(cr?/t). Thus, taking ¥ = 1/2 in (5.32) we have for r > 1

2
log p(z,2,t) < —C (ft- +A0) + r\//\(r/2)> +Can .

Since . :
TT +X0)t > 2r/XN0),
it follows that

sup logp(z,z2,t) < -C (r\ﬁ(O) + r\//\(r/?.)) +Capn -
>0

Dividing this inequality by r and passing to limit as r — 400 we get
(5.31) because A\(0) = A;(M) and

rllur-il}oo /\(T‘) = Aess(M)

(see [DL]).
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