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1. Introduction.

We consider the boundedness of certain singular integral operators
that arose in the study of Sobolev spaces on Lipschitz curves, [P1].
The standard theory available (David and Journé’s T1 Theorem, for
instance; see [D]) does not apply to this case because the operators
are not necessarily Calderén-Zygmund operators, [Ch].  One of these
operators gives an explicit formula for the resolvent at A = 1 of the
dyadic paraproduct, [Ch].

The operators in question can be thought of as multipliers for a
wavelet basis, [M]. In particular, given a function in LP(R"™), we can
write its decomposition in the Haar basis. If we want to perturb the
coefficients, we know that we can multiply by a bounded sequence of
numbers and preserve the norm. Suppose instead that we multiply each
Haar coefficient by a function. What are the necessary and sufficient
conditions for such an operator to be bounded in LP(R")?

Our model operator will be

Tf(z) =} i) Aif(2),

where A; f denotes the Haar decomposition of f at level j, and the w;’s
are functions.

Given a doubling dyadic weight w (z.e. a positive locally integrable
function such that w(Q) < Cw(Q), for every dyadic cube Q, Q its
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parent, and where w(Q) = wi). Consider the non trivial examples

w(z) w(x)

Y@= g T OB L@

where we define Ejw(z) = w(Q)/|Q|, z € @ € Dj, and D; denotes the
dyadic cubes of side length 277, |@Q| denotes the Lebesgue measure of
Q@ . Denote by T, and P, the operators corresponding to the first and
second sequence of weights respectively. In Section 3 we give necessary
and sufficient conditions for the boundedness of such operators, more
precisely, we will prove

Theorem 1. Given a dyadic doubling weightw, 1 < p < oo, 1/p+1/q =
1, the following properties are equivalent,

i) T, i3 bounded in LP(R"),

i) P, is bounded in LP(R"),

i) we RH;,’(]R"),

iv) M, 1s bounded in LI(R™),

v) S, i3 bounded in LI(R™),

where M,, and S,, ere weighted mazimal and square functions, namely,
for E¥f = Ejfw/Ejw, and A} = E¥,, — E?, let

M,f=suwpEY|f| and  Sof = |AYf1P)2,
I j

and w € RHE(R™) (dyadic reverse Holder p) means that for each dyadic

cube Q, —1_/ (2)d <C(1 )p
0] szz_ @/;w .

Notice that there are doubling weights in some RH. 1’,1 classes that
are not in all of them. For those weights, P, and T, are bounded in
some L? spaces but not in all of them. Therefore they are not dyadic
Calderén-Zygmund operators (C-Z).

Operating formally with P,, we get the Neumann series for I — IIj,
where II; is the dyadic paraproduct (see [Ch]), and b € BMO (we do
not use the standard correspondence w = e® but a different one first
used in [KFP] and fully developed by S. Buckley in his Ph.D. Thesis).
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The RH;f condition on w is not enough to imply that the paraproduct
is a contraction (if it were, the Neumann series would trivially converge
to the inverse of I — II;), but it does guarantee the convergence of P,,.

Loosely speaking, given a locally integrable function b, the weight
w, associated to it under this correspondence, is dyadic doubling if and
only if there exists a constant 0 < € < 1 such that for all 7 € Z,
|A;b] < 1 —e. We will say that such a function b is of A% -type if the
weight associated to b under the correspondence mentioned before, is
in the Muckenhoup class of weights A% (see [GC-RF]). Similarly for
RH ]‘f—type. In particular these sets of functions are subsets of dyadic
BMO.

There is an operator, denoted by Py, that can be identified with
P,, for w and b related under this correspondence. We will show that
whenever P, is well defined and is a bounded operator, then it is the
inverse of I — II;.

As a consequence of Theorem I and the previous remarks, we can
show that,

Theorem II. Given a locally integrable function b and 0 < € < 1 such
that for all j € Z, |A;b] < 1—¢. Then the operator I —1II; has a bounded
inverse in some LP(R™), 1 < p < oo, if and only if b is of A% -type. In
that case, (I —II;)™! = P;.

Moreover the necessary and suficient condition for having a
bounded inverse in LP(R™) i3 that b i3 of RH;f—type.

Since the paraproduct is a bilinear operator in b and f, then the
existence of a bounded inverse on LP(R™) for I — AIl, depends on the
function Ab satisfying the hypothesis of the previous theorem. If it does
then u = 1/ belongs to the resolvent of II;.

We remark that we are dealing here with operators that are not
necessarily compact operators. See [R] for some resuls on compact
paraproducts.

By previous observations, although I —II, is a dyadic C-Z operator
for b € BMO, the inverse is not necessarily a dyadic C-Z operator.

The representation P, really goes beyond the contractive case.

Theorem III. Given —1 < A <0, there ezist 1 < p< o0, 0<e <1,
and a locally integrable function b such that for all j € Z, |Ajb| < 1—¢
and b 13 of RHI‘f-type but Ab is not of RH:-type. In particular, for that
b, I — I is invertible but ||IL;||, , > 1/|A|.
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The paper is organized as follows. First we will study the invert-
ibility of I — IT;, and prove Theorem II up to the boundedness of P .
In the second part we will study the operators P, and T,,. Finally we
will clarify the correspondence b «++ w and the identification of Pj and
P,,, and we will produce the non-contractive examples of Theorem III.

These results are, in their first version n = 1, p = 2, part of
my Ph.D. Thesis. I would like to thank my advisor, P.W. Jones for
suggesting the initial problem and guiding me through the completion
of this work. I extend my thanks to R.R. Coifman for very helpful
conversations.

2. Inverting Paraproducts.
2.1. Preliminaries.
2.1.1. Dyadic grid and Haar basis in R".

Throughout this paper, we will use “C” to indicate a constant that
depends only on p and the dimension n. D = D(R"™) indicates the set
of all dyadic cubes in R™. Denote by D; the k" generation of D,
consisting of those dyadic cubes with side length 2~*.

Let us define the n*t-dimensional Haar basis.

To each dyadic cube @ = I; X - - - x I, we associate 2™ — 1 functions
indexed by A, = {e = (e1,...,€,) : €; = 1,0; ¢ # 0}. For x =

(z1,...,zn) we set

¥o(x) = 1 (z1) - ¥17 (zn),

where

W)= (e md ) = hie);

here x, and hy denote respectively the characteristic and the Haar

functions associated with the interval I; more precisely, hy is +1/|I|1/2

depending if you are on the right or the left half of I, and zero otherwise.
These n-dimensional Haar funtions are a basis of LZ(R™).
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2.1.2. Expectation and difference operators.

Let us define for k € Z the operators expectation Ey, and difference
Ag by

Eef(z) = ﬁ/qf(t)dt, reQeDy,
Arf(z) = Ex41f(z) — Exf(z).

Since Ej — I (here I denotes the identity operator) as k — o0,
and Ey — 0 as k — —oo, both limits are in the L? sense; then the
following equalities hold in the LP(R™) sense, Ex =3 j<kDj,and I'=
Z JEL Aj .

Finally, it is not hard to check that

Arf(m)= D > (f,%8) vo().

Q€D e€A,

This proves that the Haar system is complete.

2.1.3. Paraproducts and BMO.

Define formally the paraproduct associated to a locally integrable
function b by

Iof = Exf Agb.

kezZ

Let us compute formally its adjoint I} ([ Tfg = [ fT*g, f € L?,
geL! 1/p+1/g=1),

if =D Akf Agd.

k€EZ

A locally integrable function b is in dyadic BMO4(R™) if

1
l|b]l« = sup —
| oep |Q|

where m b = fQ b/1Q|.

/’ |b(:1:)—me|da: <C,
Q
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A remarkable fact, due to John and Niremberg (see [G, Chapter
VI)), is that for all 1 < p < oo,

M . ~ s (o / |b(z>—me1"dw)1/p.

If b € BMO,4(R™) then the paraproduct is a bounded operator on
LP(R™), for a proof see [M, p. 273]. Moreover ||II;f|l, < C||b]|«]|fll5 -
Recall the following lemma,

Carleson’s Lemma. Let {ag}qgep be a sequence of positive numbers,
that satisfies a Carleson condition, i.e

Z ag < C|Qol, for all Qo € D.
QED(Qo)

Then for any sequence of positive numbers Ag, Q € D,

Z agAq < //\*(:c) dz, where \*(z) = sup Aq .
QeD 2€Q

For a proof see [M, p. 273].

Actually, for our dyadic version of the paraproduct, boundedness
in L?(R") is a consequence of Carleson’s lemma and the boundedness
of the dyadic Hardy-Littlewood maximal operator

M f(z) = sup Ej|f|(z)
JEZ

in L2(R™). Just observe that & € BMOy implies that the sequence
{IQIb%} is a Carleson sequence (by (1)), for p = 2), where bg =

A, b(:vq) Q € Djt1, and g € Q. Set \g = (E;f(zq))?, Q as be-
fore; then A*(z) < M f(z)%. By Littlewood-Paley theory (see Section
3.1.2), and since by (5), A;(IIf) = E;f Ajb, then,

a1 ~ (S 1B £ A8

;
This is equal to,

> D 1RNA=QPIE f(zo) = D 1QIb] Ag -

J Q€Dj4, Q€D
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The right hand side is bounded by C' [(M f)? by Carleson’s lemma,
and this in turn is bounded by C||f||3.

2.2. Inverting I — II;.

Let 5 € BMOy4(R"). Given g € LP(R™) we want to solve the
following equation for f € L?(R"),

(I-I)f=g9.

If the paraproduct is a contraction (z.e. |[IIs]l,p, < 1) we can
certainly solve the equation. The solution will be given by the Neumann
series of I — II, more precisely,

f=> Tig.

n=0

We would like to find a solution that goes beyond the contractive
case.
Suppose there exist f,g € LP(R") satisfying the equation

(I-T)f =g.

Then f = g+ II3f. We can look to its- Haar decomposition at level m
and get, with the notation in Section 2.1.2, A, f = Apg + An(Ilf).
Since Apf = Emt1f — Enf, and A (IIyf) = ARbEnf, we get the

following recurrence equation,

Emi1f = Amg+ (1 + Amb) Enf.

Solving this equation we conclude that

(2) Ennf=) Ay [[ Q+2;0)+Ang.
k<m j=k+1

Since f € LP(R"), the right hand side converges to f in the L?
sense, so it does the left hand side.

Define the operators Py applied to a function g € LP(R") by the
formula on the left hand side of (2). And define P, as the limit (if it
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exists) in the L? sense of the P}, as m — +oo. With this in mind, at
least formally, we can write the formula,

(3) Pg=) A [] (1+40).

kez j=k+1

Notice that P will be bounded in LP(R") if the operators P;*
are uniformly bounded. By construction if Pyg is well defined it must
produce a solution f = P,g to the equation (I —II;)f = g. We will
prove the following theorem,

Theorem 1. The operator I — Il has a bounded inverse in LP(R™)
if and only if the operator Py is bounded in LP(R™). Moreover in that
case

(I - Hb)_l =P.

Now we want to understand the operator P,. We will find necessary
and sufficient conditions for its boundedness in LP(R™), under some
mild smallness assumption on the function b.

Theorem 2. Given a locally integrable function b and 0 < ¢ < 1, such
that for all j € Z, |Ajb| < 1 —¢, then the operator Py 13 bounded in
LP(R™) if and only if the function b is of reverse Holder p type (RH;;’-
type).

The condition on b will be described in Section 4, for now let us
just say that such b needs to belong to BMO(R™). We say that b is of
A¢ _-type if there exists a 1 < p < oo so that b is of RH]',”—type.

As an immediate consequence of the previous theorems we get

Theorem II. For functions b as before. The operator I — 11 has a
bounded inverse in LP(R™) for some 1 < p < oo, if and only if b of
Al -type. In that case (I —11;)"' = P;.

This representation of I — II,,—1 really goes beyond the contractive
case. The representation Pj captures cancellation between the terms of
the Neumann series that is otherwise neglected.

Theorem III. Given —1 < A <0, there ezist 1 <p< o0, 0<e <1,
and a locally integrable function b such that for all j € Z, |Ajb| < 1—¢
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and b 13 of RH;,’-type but Ab 1s not of RH:-type. In particular, for that
b, I — 11y is invertible but ||Is||p p, > 1/|A|.

REMARK. For a suitable function b € BMO4(R"), the operator I — II,
provides an example of a dyadic C-Z operator (see [Ch]) whose inverse
is bounded in some LP° but not in every L?, 1 < p < oo, therefore
(I —1I;)7! is not a dyadic C-Z operator. To produce such examples it
is enough to observe that there exists b of RH. l‘,io—type which is not of
RHI‘f—type for some other 1 < p < oo.

Examples like these have been produced by Ph. Tchamitchian, see
[M. p. 300].

In the next section we will prove Theorem 1, in Section 3 we will
prove Theorem 2, and in the last section we will construct the examples
for Theorem 3.

2.3. Proof of Theorem 1.

We want to find the inverse of I —II;. We can formally write down
the power series

w .
Z Mg (paraseries) .
=0

This series will certainly converge in LP(R") if the paraproduct
is a contraction, i.e. |||, < 1. This will happen if b has small
BMO,(R™) norm. In this case we can compute the inverse I —II, ' and
it will coincide with the paraseries. 4

Operating formally on Pyg we get that Pog = 322 II}g.

We would like to show that whenever Pj is bounded in LP(R™)
then

Pyf =(I-1I,)7'f, for all f € L?(R™).

The rest of the discussion will concentrate on trying to make this
argument rigorous.

It is enough to prove a local version of the result. By local we
mean to replace R™ by any fixed dyadic cube Q. Because of the scaling
invariance we can choose the unit cube [0, 1]™. In this case, just consider
the Haar functions associated to the dyadic cubes @ C @y, and let us
assume that the L? functions we are dealing with have mean value zero.
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In this setting the operators

N-1 N
PbNg=ZAkg H (1+Ajb)+ANg,
E=0 j=k+1

are well defined for locally integrable functions g and b, since they are
just finite sums of finite products; hence we are free to operate with
them.

2.3.1. Ey, Ay algebra.

Fix Qo = [0,1]™ once and for all. Let D = D(Q,) denote the
dyadics contained in Qo and let Dx(Qy) denote the k** generation, con-
sisting of those cubes in Q@ € D(Qo) with sidelength 1(Q) = 27*1(Q,).
Let LE(Qo) denote the subspace of LP(Qq) of functions with mean value
zero on Qg (fQo f=0).

The expectation and difference operators Fy, Aj, are defined as
before except that now k& > 0 and the dyadic cubes involved are those
@ € D(Qo). The paraproduct and its adjoint are defined similarly.
Just for the record, and remembering that we will be working with
functions with mean value zero on the base cube Q, 7.e. Egf =0, we

have Ex = Y 5_) A, and

Iyf =) Exf Asb,

k=0
(4) M f = Apf Agb.
k=0
Notice that in both the local and global versions
(5) AT f) = Exf Agb.

The following composition and product rules hold (see [Ga] for sim-
ilar results on more general martingales),

EkA-z{Aj’ ifj<k,
’ 0, otherwise,
A ifk=y
A A L — ] b
(6) k= { 0, otherwise,

E; Ej = Emin{k,j}a
Arf x Ajg = Ar(f x Ajg) when k > j.
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In particular if k < M, and 0 <¢; <ip < --- <1y =M, then

(7) Ek(Ailflx"'XAiafS)zoa
(8) Ek(ZA,‘)=O.
i>M

The operator P, becomes with this notation

Pg=>) Mg [[ 1 +45b).
k=0 j=k+1
2.3.2. Theorem 1 - Local version.

Let fy = Zi\,:o A f (projection onto low frequency space). Recall
that in this setting, we define

N-1 N
PbNg= ZAkg H (14+ Ajb) +Ang.
k=0 j=k+1

For g € L¥(Qo), we define Pyg as the limit (if it exists) as N — oo
in the L? sense of P,,N g.

Then clearly PNg = P,y gn. The main formula says that on the
subspace of step functions f = fy, the operator P;, is the inverse of
the operator I —II,,, .

Lemma 1 (Main formula). If g has mean value zero on Qo then for
all positive integers N,

PbN(I_HbN)gN = (I_HbN)PbNgN =4gN -

This last statement is a purely algebraic issue. We will prove it
later. Let us assume it is true for a moment.

If we consider step functions by, clearly when the operator Py, acts
on frequencies higher than N, it behaves like the identity. In particular
Pyy(9—9n) =9 —9gn-

Notice also that by (8), the paraproduct associated to by an-
nihilates frequencies higher than N; in particular, II;, (g — gn) =

ZkN=0 ArbEr(g —gn)=0.
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After these remarks and using the main formula, we conclude that
(I = oy)Poyg = Poy(I — iy )g = g, for all g € LE(Qo).
So we found that on L§(Qo) then

(10) Py, =(I—T,,)"", forall N >0.
With a limiting argument we can show

Theorem 1'. The operator I — I, has a bounded inverse in L(Qo)
if and only if Py is a bounded operator on LP(Qo). Moreover Py =

(I —T)~" on LE(Qo)

ProoOF. It is clear that if there exists a bounded inverse it will have
to coincide with Pj, by construction. We have to prove that if P is
bounded then there is a bounded inverse and they coincide.

It is enough to show that

/gf=/Pb<I—m>gf=/<I—nb)Pbgf,

for all f € LY(Qo), g € LA(Qo)- |

Recall that Epgyy f = fpr. Assume M < N and let T* denote the
adjoint of T. Recall that Py, g = Pyygn + (9 — gn)-

Notice that by the product and composition rules (6), Pyygn =
En+1(Psg). Also by (4) IT; fm = II} fu, for all M < N. Then using
these equalities and (10) we get that, for M < N,

/ng = /(I_HbN)PbNng
=/PbNg(I—HZN)fM
= [Prug+9-om) (1~ )

_ / Ens1(Po(9)) (I~ TI})far + / (9 — 9n) (T —TI3)f -

Clearly the left hand side of the string of equalities converges to [ gf,
for all f € LY(Qo), g € LY(Qo) when N and M — co.

Fix M and let N — oo. Since II} is a bounded operator on L(Q,)
and ||g — gnl|lp — 0 as N — oo, the second term in the last equality
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goes to zero by Holder’s inequality. Since Pj is, by hypothesis, bounded
on L?(Qq) we see that, as N — oo, the first term converges to

/P,,g(I-—IIZ)fM = /(I—Hb)Pbng )

by the dominated convergence theorem.
Finally let M — oo and again by dominated convergence we see
that

/fg = /(I* 0y)Pg f,  forall f € LY(Qo), g € Lg(Qo)-

Similarly for Py(I — II;). This ends the proof of the theorem.

2.3.3. Proof of the main formula.

Fix N, and let by = 0L, Ajb.

We want to prove that the operator P, is the inverse of I — I,
on the finite dimensional subspace of functions of frequencies lower or
equal to N and mean value zero on )y, namely

N
LY ={g € Lj,(Qo): 9= Ajg, Eog =0}.

j=0

It is enough to prove one of the equalities in the lemma, the other
is given automatically since we are dealing with a finite dimensional

subspace.
We defined
m—1 m
Prg=Y Oig J[ 0+4b)+Ang.
k=0 j=k+1

It follows immediatly from the definition, that the operators P;"
satisfy the following recurrence equation

(11) Plg=Amg+(1+Anb)P" g.

Let g € LY(Qo), hence ¢ = gn = Ef:o Agg. Clearly PNg = Py, gn.
It is not hard to check that for m < N, Pm gy = Epny1(Psygn) and
Apb = Apby. Substituting into (11) we get, for m < N,

(12) Ent+1(Poiygn) = Amg + (14 AnbN)En(Poygn),
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which is the the same recurrence equation we obtained when we solved
formally the equation (I —II;)f = g, in Section 2.2.
Recall that by definition of the paraproduct, Ag(Ilyf) = Axb Exf
(see (5)). Also recall that Ag = Egyy— Eg. With this in mind, equation
(12) becomes
Am((I =y )Poygn) = Amg .

This is true for all positive integers m < N. Recall that Eny; =
Zm —o Am, hence we conclude that

Eny1((I -y )Pyygn) = Enjag.

We are almost done; just recall that by definition En419 = gn, and it
is not hard to chek that EN-H((I - HbN)PbNgN) = (I - HbN)PbNgN-
Hence we showed that

(I =Ty )Poygn = gn -
This finishes the proof of the main formula.

Once the main formula is known, we can show some amusing iden-
tities.

Lemma 2. Py, gn = Ef:o II;

PROOF. By the prev1ous result, it is enough to show that the Neumann
polynomial E 0 Hb gn is the inverse of I — II;, on the subspace

LY (Qo).

Now certainly

(0= 10) (S 00) =T

We will be done if we show that H,ﬁv *tlgn = 0. We will prove this by
induction.
For N = 0 it is true that II,g0 = A¢bEpg = 0, since Eog = 0.
Assume that Ha’v_lglv-l = (0. We want to show that it is true for
N + 1. It is enough to show that, for all k < N,

(13) O5.gn =14, gn—1+En(TIf! gn-1)And.

by-1
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Suppose for a moment that (13) is true, in particular for k = N we get
My gn =TI, gn—1 + En(I3, L gn-1)AnNb.
But by the inductive hypothesis, H,ﬁ,_lgNﬂ = 0, hence

H{Xv-l_lgN = HbN(EN(HII,\;__llgN_I)ANb) .

Finally, just recall that by the product and composition rules of the
expectation and difference operators (¢f. Section 2.1.2),

N

I,y (Anh) =Y AgbEx(Anh) =0
k=0

and
En(IY "' gn_1)Anb= Anh,

bn-1

for certain function h. Therefore Hlﬁv *tlgn = 0, and the lemma is
proved.

PRrOOF OF (13). We will show (13) by induction on k-< N for fixed
N.

By the observations made above, the last term in the right hand
side of (13) can be written as An(h%;), for some function h%;, and
moreover II;, (An(h%)) = 0. Hence when applying the paraproduct
II;, to (13) we get

Hf}tlgN = HbN(HfN_lgN"'l) :

Using the linear property on b of II;, we get that the right hand side is
equal to

Hl]f:ilgN—l + HbN —bN—x(HIbCN_lgN—l) .
By the definition of the paraproduct and since I, 3y _, f = ANDENTS,
then

H:;PIQN = II}+! gn-1 + ANbEN(HfN_lgN_l). :

by -1

This proves (13) for k + 1 assuming that it is known for k. The only
missing step is to check the equation for k = 1.
Notice that by the bilinear properties of the paraproduct, then

Mongn = Moy _ gn—1 + py(gn —gn—1) + Moy —bn_, (gn-1).
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By previous observations Iy, —py_,(9n-1) = ANDENn(gn—-1), and
4y (9N — gn—1) =0, hence

Oyygn =Mppy_gn-1 + ANOEN(gN-1),

which is exactly what we wanted to show, since HgN—l is the identity
operator.

We can also show that
Lemma 3. II{,\]'VQN = Aog A1b--- Anb.

REMARK. From this lemma and property (7) we conclude that

N
H{Xv—}-lgN = ZAkbEk(AO gAlb. .. ANb) =0.
k=0

PrOOF. We know that equation (13) is valid for k = N — 1, i.e.
(14) I gy =T gn_1 + AN En(TT) 2 9{\1—1)-

We will proceed once more by induction. For N = 1 it is true
that Iy, g1 = A¢b Eog + A1bEqg, but Eqg = 0 hence Agg = E;g, and
therefore Iy, g1 = Agg A1d .

Assume that Hé\;—_llgN_l = Agg A1b--- An_1b. We want to show
that the same holds for N. Recall that II;, (Anh) = 0, hence, using
(14) and the inductive hypothesis, we get that

Hf,{,gN =IIp, (Ao gA1b--- An_1b)
(15) v
= Z Er(Aog Avb--- AN_1b)Akb,

k=0

the last equality by the definition of the paraproduct. By property (7),
we see that all the summands in (15) are cancelled except the last one,
more precisely, Ex(AogA1b---An_1b) = 0 for all 0 < k < N, and
En(AogArb---An_1b) = AggA1b--- An_1b. Hence

I} gn = Aog Arh--- An_1b Agb.

This finishes the proof of the lemma.
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3. Boundedness of P;, or T, vs P,.

In Section 2.2 we introduced the operator P, associated to a given
function b € BMO. Formally the operator is

(16) Pg=> g ] A+240).
keZ j=k+1

We are multiplying the Haar decomposition at level j of g, A g, by
an infinite product. Suppose that for each j, the product is a function.
Then P, will be a particular case of the model operator

(17) Tf(z) =) wi(e) Arf(z),

k€Z

where the w;’s are a sequence of functions. For example, if wy = 1 then
T will be the identity operator.

Let us consider the following non trivial examples. Fix w, a positive
locally integrable function (a weight); consider

D) wile) = gy

w(z)
2) wi(z)= =———
) k( ) Ek+1UJ( 1') ’
and call T, and P, the operators associated to the first and second
examples respectively.
In Section 4 we will see that there is a very nice correspondence
between some classes of weights w and functions b in BMO. Under this

correspondence
P,=P,.

Therefore it is enough to study P,,.

Suppose T, is a bounded operator in LP(R™). It can be checked
with no difficulty (computing the action of T, on Haar functions), that
the weight w must satisfy the so called dyadic reverse Héolder p condition
(RH condition, see definition in the next section).

We will prove the following theorem,

Theorem 4 (Theorem I). Given e dyadic doubling weight w (defined
in the next Section), for 1 < p < oo and 1/p+ 1/q = 1, the following
properties are equivalent,



644 M. C. PEREYRA

1) T, 18 bounded in LP(R™),

i) P, 1s bounded in LP(R™),

iii) w € RHI(R"),

iv) M, s bounded in LI(R"),
v) S, 18 boﬁnded in L1(R™),

where M, and S, are weighted mazimal and square functions, namely,
M.f = sup; E¢|f|, and S.f = (X, |A2f[2)!/2, where ESf = E; fu/
Ejw, and AY = EY\, — E7.

This will be enough to prove Theorem 2, once the relation w + bis
understood. Under this correspondence, a weight w is dyadic doubling
if and only if there exists a constant 0 < € < 1 such that |A;b] < 1—¢ for
all j € Z. The condition b is of RH I‘f—type means that the corresponding
weight w € RHI‘f.

We could also give sufficient conditions for the model operator (17)
to be bounded, when a larger class of weights is considered. That can
be found in [P] forn =1, p=2.

The proof of the theorem reduces to the boundedness of some
weighted dyadic square functions, which in turn are controlled by a
weighted maximal function. These are well known objects. We will
present a proof, identical to S. Buckley’s proof of the boundedness of
the standard dyadic square function on weighted L2. Our proof will
allow enough weights in the game so that not only we capture our L?
result, but also we have enough room to use a standard eztrapolation
argument to produce the L? results, following J. L. Rubio de Francia’s
philosophy that “there is no L? but weighted L?”.

Once the boundedness on L? of the weighted square functions is
established, we get our results using classical Littlewood-Paley theory.

First we will recall some definitions and standard results. Then we
will prove Theorem 4, and finally we will clarify the relation between w
and b, and produce the examples of Theorem 3.
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3.1. Preliminaries.
3.1.1. Weights.

Recall that throughout this paper, we are using “C” to indicate
a constant that depends only on p and the dimension n. D = D(R")
indicates the set of all dyadic cubes in R™. For any @ € D, D(Q) is
the collection of proper dyadic subcubes of Q, Q is the parent of Q (the
smallest dyadic cube properly containing (). For any weight w and
set S, w(.S) denotes the integral of w over S, |S| denotes the Lebesgue
measure of S, and m w = w(S)/|S|. Unless otherwise specified, 1 <
p < 00, but p is otherwise arbitrary.

Definition. We say that w i3 a ﬁyadic doubling weight, if there exists

a constant C > 0 such that w(Q) < Cw(Q) for all dyadic cubes Q, Q
18 the parent of Q).

Definition. We say that w i3 an Ag weight if there exists C > 0 such

that
i w —}-— w™1/p—1 P o a‘
(IQI/Q )(|Q|/Q ) <C, fordlQeD.

Definition. We say that w is an A% weight if there exists C > 0, such
that for all Q € D, we have

1 1
Tal/QwSCepral/Qlogw).

Definition. We say that w € RHI'f (dyadic reverse Holder p) if there
exists C > 0 such that

L wP(z i w(z :c)p oT a
lQl/c; ()d:):SC('QI/;2 (z)d , forallQ € D.

These are dyadic versions of the classical Muckenhoupt classes. For
equivalent definitions of weight classes see [GC-RF] and [CF].

It is clear how to define weight classes with respect to a positive
measure o.
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We will assume that all our weights are dyadic doubling, and we
will consistently ommit the word dyadic. This is necessary for the
theory of such weights to closely mirror the non-dyadic case, for example
to get that w € RH: implies that w- € A%. S. Buckley studied a
characterization of these classes of weights by summation conditions,
[B]. In particular, given a doubling weight w,

_ 2
(18) we AL fandonlyif Y. Ml
o0 yi [« < C|Qol-

m.w
QED(Qo) Q

This is a Carleson condition.

Definition. We will say that a sequence of numbers, {ag}gep, 13 @
u-Carleson sequence, for a given positive measure p, if for all Qo € D,

Y. @) ag < p(Qo)-
QED(Qo)

It is clear what is a doubling measure.

Definition. Given a doubling measure o, we will say that the weight

w 18 1n A% (do), if the sequence ag = (mgw — m"Qw)/m".w is a o-

Carleson sequence, where mgw = fQ(w/U(Q))da.

Definition. Given a doubling measure o, we will say that a weight w
18 0-doubling if the measure dy = wdo 1s doubling.

We will say that a measure p is in A% (do) if dy = wdo, and w is
an A (do) weight.

We will need the following lemmas

Lemma 4. Given a doubling measure o in A% (dz), and a doubling
measure p € A (do), then any o-Carleson sequence is also p-Carleson.

Lemma 5. Given o doubling measure o in Al (dz), and o doubling
weight u € A% (do). Then the sequence (mQu - mc.zu)/mé,u 18 a -

Carleson sequence.
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We will prove these lemmas at the end. We will also need a
weighted version of Carleson’s lemma.

Lemma 6 (Weighted Carleson’s lemma). Given a doubling measure p
in A% (dz). Given a p-Carleson sequence {ag}gep, and a sequence of
positive numbers {Ag}oep then,

> u@abAe <€ [ X(@)dua),

QEeD
where A*(z) = sup,eq Aq -

For a proof see [M, p. 273], with the obvious changes.
In particular if Ag = (m‘c"?f)2 then we can bound the sum of the

products by the LZ(du) norm of the weighted maximal function M, to
be defined in the next section.

3.1.2. Littlewood-Paley theory.

We will use the notation a ~ b, for positive numbers a and b,
whenever there exists a positive and finite constant C such that C b <
a < Cb; we will say, in that case, that a and b are comparable.

The expectation and difference operators Ej;, A; where introduced
in Section 2.1.2.

The dyadic maximal and square functions are,

Mf(z)= SI;pEjlfl(w),

and
1/2

Sf(z) = (2 18,5@)F)

respectively. It is well known that (see [Ch], [Ga] or [S])

Theorem 5 (Littlewood-Paley). ||Sf”Lp(dz) ~ llfHLp(dz) .
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We will be interested in weighted versions of the square and maxi-
mal functions. Given a doubling measure o, define the weighted expec-
tation and difference operators by

E;f(z)=o—(1Q—)/Qfda, z€QeD;,
Aj =Ej, - Ej .

Define the corresponding maximal and square functions, M, and S,

M, f(z) = SIJI_PE}’IfI(w),

Sef@) = (L 1agsaP) "

It is certainly true, for doubling measures ¢ € A% | that the L?(do)
norms of the weighted square function and the function are comparable,

ie. |SofllLrao) ~ | fllLr(do), see [Gal.
The following classical results are known.

Theorem 6. (Coifman-Fefferman). Given a doubling measure o € A%,
and a o-doubling weight wq, then M, 1s bounded in LP(wodo) if and only
if wg € Ag(da).

For a proof see [CF] with the obvious changes. It is also true that
Theorem 7. Given a doubling measure 0 € A%, and a o-doubling
weight wy, then wy € Az(da) if and only if S, is bounded in LP(wodo).

We will present a proof of this theorem at the end for completeness.
This is an extension of the results of S. Buckley, who proves it for
p =2 and do = dz (see [B]). Extrapolation will then give the result for
1 <p<oo.

Theorem 8 (Rubio de Francia’s extrapolation). Given a doubling mea-
sure 0 € A%, and a o-doubling weight wy, if wy € A%(do) implies that
T is bounded in L*(wodo) then wo € Al(do) implies that T is bounded
in LP(wodo), for all1 < p < oo.
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For a proof see [GC-RF].
Let us just mention the following tautology:

—

1
wo € Az(da) if and only if wl € RH:(woda), -+ p =1.
0

LS

In particular, given w a doubling weight, let wg = 1/w, do = w dz; then
wp do = dz. Denote by S, = S,, then using the tautology, the theorem
for the square function reads,

Sw is bounded in L?(dz) if and only if w € RHg(dx) ,

which is the equivalence between v) and iii) in Theorem I
Similarly, denoting by M, = M,, Theorem 6 for the maximal
function reads,

M,, is bounded in L?(dz) if and only if w € RH:(d;v) ,

which is the equivalence of iv) and iii) in Theorem I.

3.2. P, vs T, - Proof of Theorem 1.

After the remarks at the end of previous section, only the equiva-
lence of 1), ii) and iii) are left in the proof of Theorem I.
Given a doubling weight w, define at least formally the operators

P.f(z) = ZE“’(“”) 85 (=)

j+1w(z)
_ w(z) '

As we pointed out before, if T,, is bounded in L?(R"™) then w € RHg(R”).
Computing formally the adjoints with respect to the ordinary pairing,
we get that

Pif =3 ai(gs).
=28 (55):
j J
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Certainly if we can prove that these “adjoints” are well defined and
bounded operators in LY(R™), then the operators T, and P, will be
well defined themselves and bounded in LP(R").

These suggest us to introduce the following cousins of the weighted
square function Sy, defined in the preliminaries. Define

s = (s ()"
st = (Sl ()l ™

Proposition 1. Given a doubling measure o € A% (da:), and a doubling
measure pu € A%(do), then S', and S are bounded in L?(dpu).

We will prove it at the end.
If that is the case, then by the Extrapolation Theorem 8, we will
conclude that

Corollary 1. Given a doubling measure o € AS (dz), and a doubling
measure p € A3(do), then S, and S} are bounded in LI(dy).

In particular, let w be a doubling weight, let do =wdz, wo=1/w,
and dy = wedo = dz, assume that w € RHd(da:) (if and only if 1/w €
Al(wdz)); and let us denote S, = S,,, SI) = S!!, then by Corollary 1,

S0, fllLeazy < ClIfllLaaz) »

(19)
1S5 FlLaqazy < C I fllpa(az) -

Notice that

AP = 85 (),

Ej+1w

A;TSf) = 4; (%) :

Therefore, if S is the standard dyadic square function, S(P2f) =
and S(T3f) = SIf. And by the Littlewood-Paley theory and (19), if
w € RHY(dz) then

1PSflla ~ IS(PSH)lg = I1SLflle < Clifllg -
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Similacly [T flly < Cls-

This implies that P and T are bounded operators on L?(dz); so
certainly P, and T, will be bounded on L?(dz), provided w € RHJ(dx).

We pointed out before that it is trivial to check that if T, is
bounded in L? then w € RH:(dz). For P, the same holds; just recall
that since w is a doubling weight, in particular E; ;w ~ E;w, uni-
formly on j. It is also true that T, and S, are simultaneously bounded
in LP.

Therefore we almost proved Thecrem 1. After our previous remarks,
the only missing step in the proof of this theorem is the proof of the
Proposition 1.

PROOF OF PROPOSITION 1. First note that we can compute the L%(du)
norms of the square functions, since

IO 18591 13 2y = 1O 1 Esg1g — Eig*) (132 4
(20) J J

= Z #(Q) |ng - ng|2 )

Q€ED

where m g = Jo9/1Ql.
We will get

1Saflaan = D #(@) (

QeD mQ? mQU
m,fo 1 mg fo\?2
185 flmcan = 3 0@ (2 - oo S Z2L0)T,
Q€eD Q Qes@ 2
m, fo m-fo 2
152 = 3 (@) (-2 - =2,
m.o m.o
QeD Q Q

where m,0 = o(Q)/|Q|, and S(Q) denotes the subset of dyadic cubes

which are direct children of Q.
Let us first compare S, and S!/. Adding and subtracting m Q fo/
M50 We get that

1S f122(an) < C I1Se fllT2(an)



652 M. C. PEREYRA

g—m.o

(21) o Y oDty (el ety
o

Q€D me?

= C |15 fllZ2(ap) + C W1 -

The last summand on the right hand side is bounded by a constant
times ||M¢,f||2Lz(d#). This is a consequence of the weighted Carleson’s
lemma (cf. Section 3.1.1). Because by Buckley’s summation condition
(18), and the weight Lemma 4, the sequence (mQa - méa)/méa is a
p-Carleson sequence, since by hypothesis p € A%(do) C A% (do), and
p is doubling.

Similarly ‘we conclude that

1S5 FIZ2(awy < ClSaflIL2(am + C Mo fllT2 ap) -

Let us now compare S., and S,. Adding and subtracting the correct
terms, we get '

156 FllZ2(apy < CUSeflI32apn

m_.fo 4  fo\?
e (T -m X e
Q€D Q Q'€S(Q)

But ]
mofa= on Z mq fo.

Q'eS(Q)

Therefore we can bound the last summand by

—m.o

Stho)= S ) (35 ¥ mel =)

mo'o m .o
QeD oes@@ 2 Q

By hypothesis p is doubling, i.e. u(Q) ~ u(Q), for all Q € 5(Q);
and clearly

SU1,0) <0 Y u(@) (TLTeTy (MeSOY* gy

QeD mQa mqQo

But W, is bounded by a constant multiple of ”M,fuig(du). We conclude
that

1S5 fllZ2(ap) < ClISofllz2(any + CIIMaflli2ap -
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This finishes the proof of the proposition, since by hypothesis we know
that M, is bounded on Lz(dp) and so is then S, by Theorems 6 and 7.

Thus, Theorem I has been proved.

3.3. Proof of the weighted square function theorem d’aprés
Buckley.

Let us denote the mean value of a function f on a cube @ with
respect to the measure o by m"Qf. Hence, mgf = mea/mQa.

With this notation the weighted square function S, becomes

S.f@)=( ¥ |m”Qf—mgf]2)l/2.

z€QED

Computing the L?(du) norm (see (20)), we get

IS0l Eeqany = 2 (@) (G f —m? f)*.

QED

We want to prove that if ¢ is a doubling weight in A% (dz), and
wy € Af(do) and is o-doubling, then S, is a bounded operator in
L?(dy), where dp = wodo.

We know that under those conditions the weighted maximal func-
tion M, is bounded in L?(dyu) (see Theorem 6). Therefore it will be
enough to control the square function with the maximal function. More
precisely, we will show, exactly as in Buckley’s proof for do = dz,

dy = wdz, doubling w € A%(dz) (see [B]), that
(22) 186 fll 32y < ClIMofli2(au) + C 1Mo fllL2am IS fll L2 (ap) -
With a bootstrapping argument, and Theorem 6 we get
IS0 Fl122any < CUFNT2 (a5
provided that we can ensure that the L%(du) norm of S, f is finite.

We will show that (22) holds uniformly for a finite version of the
square function. More precisely, fix N > 0 and Qo any cube. Denote
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by DV(Qo) those cubes Q € D(Qo) such that their side length I(Q) >
27N1(Q,). Define

Vs =( X Imgpf-mzsR)”

z€QEDN (Qo)

Clearly now ||SNQ0 f]| 12(a4) < 00. Now we are allowed to complete the
bootstrapping argument to conclude that

ISY9° 32wy < ClIFI32(apy»  for all N >0, for all Q.

Finally letting N go to infinity, and then adding over the cubes in a
given generation, Q¢ € Dypy, and letting M — —oo, we will get the
desired boundedness of S,.

Fix N > 0 and the base cube Qy. To simplify the notation, let
us drop the superscripts N and @ from the operator and the dyadics.
Since p is a doubling measure, then '

1So 22w < C 32 MQ)(mYf —me )? =W

Q€D
Add and subtract

m,fo m, o
-9 __Q .0
e m.o m-ame
Q Q

then,
. m,o—m_.0o
W< 3 u@ mynH(——2)
Q€D Q

+ Y u(@)(ag-m 2 f)

QeD
SCWi+W,.

We already showed in (21) that W; < C'|| M, f||2 12(au)- Recall the fact
that given m numbers a;, and denotmg their mean value by A =
Yieya;j/m then, 37 (a; — A)? = C 31, (a? — A?). In particular
notice that }_gcg(g) 2/2" = m"f Let m = 2" A=m f, a; = ag;
hence

Wo=C Y u(@)(ah - (m3 ).

QeD
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Next, add and subtract m,u (mgf)z/mép, then

Wo =0 Y @) (mg 1 ((222)" - 2ak)
Q€D Q

m b
+C Y @"W(@) (my 1) — @) (m 1))
Q€ED
=W3;+W,.

The second summand is a telescoping sum, namely, Wy = Y, (bx —
bx—1), where by = EQGDE(QO)T‘N(Q)(mgf)Z, and Di(Qy) is the kth
generation of the dyadic decomposition of the base cube Q. Clearly
for all k > 0,

mscqiMJ@W¢moscwhm%Wy

Hence |Wy| < supps|bk| < C HM,f”%z(d“).
Observe that adding and subtracting 1, we get that,

Wa=C Y @) (ms £ ((282)" - 1)
Q€ED Q

i s
+CZ#(Q)(me) i
QED fa)
=W5+W6.
Notice that
m. o~ 2 m, o —m.0 m, o0 —m.0.
(%) 1 ()
m.o m.o m.o
Q
Therefore,
M, 0—Mm.0 9
- A o £\2 Q Q
W= wQ)(m% ) (————)
QeD Q

+2 Y u(@) (me, pr(——0%)

QED o7

=W, +2W;.
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We already showed that W; < C”Mafnsz(dp)-

By mean value properties,

m,o—m.o
Y =0
) -0
QES(Q) Q
Hence,
~ méa—on’ , ,
Wi < C Y w(Q) — I ((mg f)? — (m% £)7).

QeD QU

Applying the Cauchy-Schwartz inequality, we conclude that

Wi < CWL (IS0 fll2aw < C 1Mo fllp2(am | So fllp2 (an -
We are left with the term Wg. This time

>

QeD mQ
Hence,

. mQ/" - mQ:u
We=C3 wQ) > ————((myf)"=(m?f)")
QeD QeS(Q) ot
m.p—m

. M
<0 (X2 w@ (~ ) s ) CiSefluscan
Q

QeD

<C W81/2 |SofllL2(dn) -

But Wy will be bounded by the L?(du) norm of the maximal function
M,, if we can show that the sequence (mQu — mQ,u)/mQ,u is a p-

Carleson sequence. If that is the case, we can apply Carleson’s lemma
as we did for W;. But that is exactly the conclusion of Lemma 5.

Hence Ws S C ”Mgf||L2(d#)“S,,-f“[Jz(d#) .

Putting together all the estimates we get inequality (22), with con-
stants independent of the base cube Qg and N. This finishes the proof

of the theorem.
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3.4. Proof of the weight lemmas.

PROOF OF LEMMA 4. We are given a o-Carleson sequence {bg}qep;
therefore

Y. o(Q)by<Co(Qo), forallQeD.
QED(Qo)

This is equivalent to saying that the function b= ) j A7bis in dyadic
BMO(do). Where the weighted difference operator is defined by
A?b(z) = m”Qb - m"éb =bg, forall z € Q € Dj44.

For o-doubling and A% (do) measures it is easy to deduce the
John-Niremberg inequality for BMOgy(do) (see [G, Chapter VI]), and
then use it to deduce the equivalent L?(do) characterizations of dyadic
BMO(do), namely

1 - 1/p
@) (55 - mghrdr) < Clltaoun
for all @) € D. Fix a cube Q¢ € D. Define the function
b9°(z) = (b(z) — mQ,b) X g, (%)

Clearly, b3° = mzb% —mg b = bg if Q € D(Qy), and zero otherwise.

Then S,b% = (ZzeQeD(Qo)bZQ)lﬂ? where S, is the weighted
square function. Therefore

/ S2pQdy = Z w(Q)b% .
@o QED(Qo)

The right hand side is the sum we want to estimate, so it is enough
to estimate the integral on the left hand side. It is certainly true by
the standard Littlewood-Paley theory that S, is a bounded operator in
L?(do) (not LP(du)!), for 1 < p < co. Hence, noting that dy = wq do,
and using Holder’s inequality we conclude that

/Q S26% du < [|S25%°)| s 400 0l oo, u, -
0
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Since by hypothesis wo € A% (do), then there exists 1 < ¢ < oo such
that wo € RH}(do) (Géhring’s Theorem, see [Ge]), in particular it is
true that for 1/¢+1/p=1,

lwollLa(do,00) < C o(Q0) P u(Qo).

And also by Littlewood-Paley theory for that particular p we can esti-
mate,

2/2p
15269 o a0 = ( /Q 5270 ds )
0
115089 2 iy < C 1% 2 a0 -

But by definition,

1/p
1591220 400y = C ( /Q b — mi, b da)
0
< Clbl3mo(as) o P(Qo)

where the last inequality follows by remark (23).
Therefore, putting all these facts together, we get the desired
inequality for all Qo € D, i.e.

Y w(Q)bh < C u(Qo).
Q€D(Qo)

Therefore the sequence {bg}gep is a p-Carleson sequence, and the
lemma is proved.

ProOOF OF LEMMA 5. First observe that by hypothesis p is a doubling
measure, hence m QH ~ Mg h Next we want to show that

> @ (2% 1) <Ou@), forall QueD.
Q€ED(Qo) ot

Adding and subtracting
Mop ™m0

Q
maHMmGo
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inside the brackets, we can bound the left hand side by

> w0 (GLrE ) > e (R ()

QED(Qo) QED(Qo) Q Q

By hypothesis the sequence

o _ o
meo méwo _ Mok mQa 1
mow m.-pum,o
o 0 Qll' Q

is o-Carleson, hence is p-Carleson by Lemma 4. Therefore we can
control the first summand by a constant multiple of u(Qy).
Similarly the sequence

mQa’ — méa

m.o
~—2_ _1

M50 Mmoo

is dz-Carleson, hence is g-Carleson by Lemma 4, and is also u-Carleson,

again by Lemma 4. Hence we can also bound the second summand by
a constant multiple of u(Qq), since y is doubling. The lemma is proved.

4. Correspondence b «+ w, and examples.

In this section we will clarify the correspondence between dyadic
doubling A2 weights and a subset of BMO,. This has been borrowed
from [KFP]. For much more about dyadic weight classes see [B].

Fix a cube Qo, without loss of generality we can assume that Q¢ =
[0,1]™. With the notation in Section 2.1.2, let

N

wn(z) = [T+ A58(2)),

=0

where b is a locally integrable function on Q. Let w = H;‘;o(l + Ajb),
be the weak limit of the partial products {wxy}. The sequence {wn}
is a (positive) dyadic martingale when —1 < A;b < 1, since fQo (wi —
wi—1)(z)dz = 0 and E(w : Dx(Qy)) = wk, where Di(Qy) is the o-field
generated by all dyadic cubes contained in Q) of side length 27%|Q,|.
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The necessary and sufficient condition for w to be a dyadic doubling
measure on (@ is that there exists 0 < ¢ < 1 such that

|Ajb(z)| <1 —¢, for all z € Qq, for all j € N.

(See [KFP] for a proof.)
We can now give another characterization of dyadic A% (Q,), as-
suming doubling,.

Theorem 9 (KFP). Let b be a locally integrable function on Qo and
0 < e <1, such that |A;b(z)| <1—¢, for allz € Qq, and for all j € N.
Then the product w = H;f__o(l + A;b) belongs to doubling A% (Qo) if
and only if there exists constant C > 0 such that for all Q' € D(Qy),

(24) > Qlmgb—m b <ClQ'|.
QeD(Q')

For a proof see [KFP).

We have explained how to compute the weight w given the function
b. It is very easy to check, that given a doubling weight w, mg,w =1,
then,
_ Ajw _ Ej+1w - ij
 Ejw Ejw

Ajb

After this observation, we see that condition (24) is exactly what we
called Buckley’s summation condition (18).

Notice also, that the product is nothing more than a telescoping
product, since 1+ Ajb = Ej 1w/Ejw; hence w = H;io E;tww/Ejw.
And equality holds almost everywhere by Lebesgue’s theorem, and since
Eow =1.

The martingale condition E(w : Dk(Qo)) = wk is translated into,

k-1
Ew = [[(1+4;b).

i=0

Definition. For a locally integrable function b on Qo as in the previous
theorem, we will say that b is of A% -type on Qq if the doubling weight
w = [[72,(1 + Ajb) belongs to AZ (Qo).
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It is known (see [M, vol. 2]), that condition (24) on b means that
b € BMO4(Qo). Hence the set of functions b of A% -type is a subset of
BMO4(Qo).

It is known, assuming doubling, that

AZ(Qo) = |J RHE(Qo) = | 44(Qo)-

p>1 p>1

Definition. For a locally integrable function b as in the previous theo-
rem, we will say that b is ovaH:-type (respectively, A;f-type), on Qq if
the associated doubling weight is in RHZ(Qo) (respectively, AZ(Qo)).

For the corresponding summation conditions on b, see [B].

Definition. Let b be a locally integrable function on R™, such that
|Ajbl < 1—¢, for all j € Z and some constant 0 < ¢ < 1. We say
that b is of A% -type (respectively, RH;,I or A;’,’-type) if b is of A -type
(respectively, RHI‘,” or A:-type) on @ uniformly for every Q € D.

Assume from now on that b is a locally integrable function and
that there exists 0 < € < 1 such that for all j € Z, |A;b| <1 —€. Let
Py be the operator defined formally for g € L5(Q,) by

Pg=Y Mg [J(1+4,b).
k=0 k+1

If b is of A% _type, then the weight w = H;’;O(l + Ajb) is a well defined
doubling weight in A% (Qo); moreover, w/Eryiw = [I75,(1 + A;d),
therefore,

oo
w

this last equality by definition of the operator P,,, when restricted to a
cube Q. The weight really depends on the base cube Qq, but for the
estimates we only need uniform bounds on these local versions of Pj.
The bounds are uniform because they only depend on the RH. :(Qo) con-
stants of the weights, and by definition of RH :-type the local weights
have uniform RHZ(Qo) constants.

We can then study P, instead of Pj, as we claimed.
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Since the paraproduct I, f is bilinear in b and f, then, A\II, = IIy;,
A € N. All the algebra (Section 2.2} is valid, and questions about the
invertibility of I — AIl, are reduced to questions about the weight w)
corresponding to the function Ab.

Suppose that b is of RH}‘,‘-type; we showed that in that case I —II;
is invertible in LP, with bounded inverse, and that is equivalent to
w € RH }‘f and being doubling. By spectral theory (the resolvent is an
open subset of C), we know that there exist neighbourhoods of A = 0
and A = 1 such that I — AII, is invertible in L?. Is this true for every
|A]| €17 This question can be translated into a question about weights.

Given b of RH"f-type, if |A] < 1 then certainly b is of A% -type
and |A;(Ab)| <1 —¢ . We are saying that under this correspondence,
multiplication by |A| < 1 preserves doubling and A% weights. This
is different from the standard correspondence & = eb (for example,
consider b = log |z|, and A = —1, then @) = 1/|z|, which is not even
locally integrable, not to say in A% .)

The question is if multiplication by |A| < 1 preserves doubling RH ;f
weights.

For —1 < A < 0 the answer is negative, and it is the content of
Theorem III. We would like to know what happens for 0 < A < 1.

ProOOF OF THEOREM III. We will produce examples stemming from
the prototype function in BMO, namely, Clog(1/|z|). It is enough to
consider a dyadic version of this functions, in dimension n = 1. After
being requested by electronic mail, S. Buckley produced the same sort
of examples. ’

Fix I = [0,1]. Let Iy = (27%,27%+1], k > 1. For 0 < € < 2, define
the step function b.(z) = k(1 — €), z € I}. Certainly |Ajb| < |1 —¢],
and b. € BMOy(Iy). Hence we = [[72,(1 + Ajbe) is a doubling AZ,
weight.

REMARK. This is not the case for the standard correspondence, @ = e?;
for example, let ¢ = 1 — log 2, then @, will correspond to the dyadic
version of 1/|z|.

We can say more about b.; it corresponds to the dyadic version
of the function a(e)log(1/|z|), where a(e) = (1 —€)/log2. (Hence the
remark, for that €, a(e) = 1.) The weight w, corresponding to b, can be
explicitely computed, w, = C (2—¢)*, z € I;. Hence, w, corresponds to
the continuous weight |z|7(¥), where y(¢) = —log(2 —¢)/ log 2. Observe
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that —1 < vy(e) < oo for 0 < € < 2. We captured the full range of
prototype A% weights,.namely |z|?, vy > —1. It is easy to check that a
power |z|7 belongs to RH;f if and only if v > —1/p, 1 < p < co. Hence,
solving for 0 < € < 2 the inequality y(e) > —1/p, we get that only for
2-2P ce <2 w. € RH;,i. Given —1 < A < 0, there exists 1 < p < oo
such that A < 1 — 21/?. Fix such p. Observe that \b, = be(x), Where
e(A) = 1—(1—-¢)\. If we could find 2 — 21/? < ¢ < 2 such that
£()) < 2 —2'/? then we would be done, because w, € RH! but w,(») is
not in RHI‘,i. We can certainly find such ¢; any 2'/? < & < 2 will do the
job. Hence we find function b = b, of RH:—type so that Ab = by is
not. In particular, by Theorems 1 and 2, we conclude that I — AII, does
not have a bounded inverse in L?, hence Al cannot be a contraction
in LP, s.e. ||IL)|pp > 1/]A].
This finishes the proof of Theorem III.

REMARK. For these examples, multiplication by 0 < A < 1 preserves
the RH I‘f-type condition on I .
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