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1. Introduction.

In the Fourier theory of functions of one variable, it is common to
extend a function and its Fourier transform holomorphically to domains
in the complex plane C, and to use the power of complex function the-
ory. This depends on first extending the exponential function e**¢ of the
real variables z and ¢ to a function e*?¢ which depends holomorphically
on both the complex variables z and (.

Our thesis is this. ‘The natural analog in higher dimensions is
to extend a function of m real variables monogenically to a function
of m + 1 real variables (with values in a complex Clifford algebra),
and to extend its Fourier transform holomorphically to a function of
m complex variables. This depends on first extending the exponential
function e*™:€) of the real variables x € R™ and ¢ € R™ to a function
e(z,¢) which depends monogenically on z = x + zp e, € R™*! and
holomorphically on ( =€ +in € C™.

We explore this thesis for functions ¢ whose monogenic extensions
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666 C. L1, A. McINTosH AND T. QIAN

are bounded by a constant multiple of |z|™™ on a cone
Cor={z=x+zLeL € R™!: zp > —|x|tan u} ,

on C°_ = —C?,,oron S = C°, NC°_. The Fourier transforms
b of these functions extend holomorphically to bounded functions on
certain cones S;(C™) in C™ (for all v < u). Conversely, every bounded
holomorphic function b on S;(C™) can be decomposed as b=1b, +b_,
where b, are the Fourier transforms of functions f whose monogenic

extensions are bounded by c|z|™™ on CJ: (for all v < p).

Such functions were studied in [LMcS], where it was shown that if
® is a right-monogenic function which is bounded by c|z|™™ on Cj,,
then the singular convolution operator Tg defined by

(Tou)(z) = 6Erg+ /2 ®(z + ber —y)n(y)u(y) dS,

is a bounded linear operator on L,(X) for 1 < p < co. Here X is a
Lipschitz surface consisting of all the points z = x + g(x) e € R™*!,
where x € R™, and ¢ is a real-valued Lipschitz function which satisfies
IVg|loo < tanw for some w < . We have embedded R™ in a complex
Clifford algebra with at least m generators in the usual way, and iden-
tified the extra basis element e;, of R™*! with either another generator
such as e 4+1, or with the identity eg. We use Clifford multiplication in
the above integrand, in which n(y) denotes the unit normal (which is
defined at almost all y € X).

So the Fourier transform b of ® can be thought of as the Fourier
multiplier corresponding to Te. But we can also think of the mapping
from bto Te € L(L,(X)) as giving us a bounded Ho, functional calculus
of a differential operator

m

—: Dy = Z —tex Dy,
k=1
and write
Ts =b(—iDg)=b(—-iDyx,—tDy5,...,—t D x).

Such functional calculi are studied at length later in this paper. The
operators Dy 5 are given by

Tf |2



CLIFFORD ALGEBRAS 667

when u is the restriction to £ of a function U which is left-monogenic
on a neighbourhood of ¥.

Not surprisingly, Dy, is the operator considered previously by Mur-
ray [M] and McIntosh [Mcl], when using Clifford analysis to prove the
L,-boundedness of the Cauchy singular integral Cs on X. For, if ¥ is
parametrized by £ = s+ g(s) ez, s € R™, then

(Dsepu)(s+g(s)er) = (e —Dg)7'D,u(s +g(s)er), u€ W,().

It is not easy to extend a given function monogenically from a
domain in R™ to a domain in R™*!. In particular, it is not easy
to tell whether a given function ® defined on R™ \ {0} extends to a
right-monogenic function which is bounded by ¢|z|™™ on S}, and hence
whether the results of [LMcS] can be used to conclude that the singular
convolution operator T is a bounded linear operator on L,(X). The
use of Fourier theory helps. For example, consider the functions defined
on R™\ {0} by

2z
Om X[

Their Fourier transforms are r(§) = ¢ {x/|{|, which extend holomorphi-
cally to bounded functions on the subsets S5(C™) of C™ (as we shall
see). Therefore the functions ®; extend monogenically to functions
satisfying the appropriate bounds on S;, and the corresponding singu-
lar convolution operators Ry x are bounded on L,(X) for 1 < p < oo.
These operators can be thought of as Riesz transforms on X. They
satisfy RisRrs = Ry sR;5x, ZekRk,E = Cy and Z(Rk,g)z =-1I

As other examples, take by(£) = [¢|?'¢ for s real. Such b, ex-
tend holomorphically to bounded functions on S;(C™), so their inverse
Fourier transforms extend monogenically to functions satisfying the ap-
propriate bounds, and the corresponding singular convolution operators
are bounded on L,(X) for 1 < p < oo. These operators are purely
imaginary powers of D%, which can be thought of as the negative of
the Laplacian on . See Sections 6 to 8.

<I>k(x) = —

In Section 7, we indicate the kind of application of these results
that we have in mind by considering a boundary value problem for
harmonic functions.

Let us briefly recall the main results from [McQ] concerning Fourier
transforms of holomorphic functions defined on sectors in the complex
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plane. This material is generalized to higher dimensions in Sections 3
and 4.

For 0 < p < 7/2, define the sectors
(€)= {AECA£D, larg(N)| <u},  So-(C) = —S%4(C),
and the cones
C;+(C)= {Z=X+:Ye€C: Z#0, Y > |X|tanu},
C3-(€) = —C24 (C),
and also the double sector
53(C) = 54(C) U S3-(C) = €24 (€) N C5- (C).

Let Hoo(S}+(C)) be the Banach space of bounded complex-valued
holomorphic functions defined on 57, (C), and let K(C;,(C)) be the
Banach space of complex-valued holomorphic functions @ for which
sup{|Z ®(Z)|: Z € C;,(C)} < +oo.

For every function ® € K(C;,(C)), there is a unique holomorphic
function B defined on S;,(C) which satisfies Parseval’s identity

51-/+°°13(A)a(—,\)(u= lim /<I>(X+ia)u(X)dX
T Jo a—0t JR
= tim ([ #(X)u(X)dX +81(0)u(0),
1X[2e

for all u in the Schwartz space S(R), where ®,(¢) = f&(e) ®(Z)dZ, the
integral being along a contour §(¢) from —¢ to € in C};. Moreover, if
0 <v < p,then B € Ho(S;,(C)), and

I1Blleo < cuu sup{|Z ®(2)|: Z € C}1(C)}.

Conversely, for every function B € HOO(SZ+(C)), there is a unique
holomorphic function @ defined on C},(C) which satisfies Parseval’s
identity. Moreover, if 0 < v < u, then ® € K(C;,(C)), and

sup{|Z &(Z)|: Z € Cy+(C)} < cuu[|Blleo -
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We write B = F(®), and call B the Fourier transform of ®, and we
write ® = G(B), and call ® the inverse Fourier transform of B. Also
let &; = G,(B).

Similar results hold when C7.(C) is replaced by C7_(C) and
.S'ZJ,(C) is replaced by S_(C), provided the limit in « is taken over
negative a, and the contour é(¢) from —e toeisin C}_.

Characterization of the inverse Fourier transform of functions in
Hoo(S,(C)) is slightly more complicated.
Define x5 € Hoo(S,(C)) by Xg, 5¢(2) =1 when Re A > 0, and

XRe >0(/\) = 0 when Re A < 0. Similarly define x, , -
Now consider B € Hoo(S,(C)). Write B = By + B_, where

By = BXp, 5o € Ho(S,4),
and
B_ = Bxg, o € HaolS3-),

and let ® = G(B) = G(B4+)+ G(B-) and ®(B) = Gi1(B) = G1(B4+) +
G1(B-). Then ’

i) @ is a holomorphic function on S;(C),
ii) @, is a holomorphic function on S;+ (C) which satisfies ®(Z) =
®(Z)+ ®(—2), and
1 [t
iii) 2—7FA B(A)da(—A)dA

= lin}) ( / O(X)u(X)dX + @1(s)u(0)),
IX|>e
for all u € S(R). Moreover, if 0 < v < y, then

sup{|Z &(Z2)|: Z € S,(C)} < e [I1Blloo

and
sup{|®1(Z)|: Z € S;(C)} < ¢y || Blloo -

Conversely, given functions ® and ®; which satisfy i) and ii), such
that Z ®(Z) and ®,(Z) are bounded in Z, then there exists a unique
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holomorphic 1u..ction B on S;(C) which satisfies Parseval’s identity iii).
Moreover, if 0 < v < u, then, on S)(C),

1 Blleo < ev,u sup{|Z &(2)|: Z € S,(C)}+sup{|®1(2)| : Z € S;+(C)}.

In [McQ], this material is used to show that singular convolution
operators T(g &,) are bounded linear operators on L,(vy) when 1 < p <
0o, where 4 is a Lipschitz curve in the complex plane C. This is done
by representing T(s &,) as B(—¢D,), where

d

D‘Y = E; ¥ N
and proving that —iD. has a bounded Ho functional calculus in L,(7).
See also [McQ1].

We would like to take this opportunity to thank all those with
whom we have discussed this material, in particular Raphy Coifman
and John Ryan. The work was mainly done at Macquarie University,
but parts were achieved at Yale University, the Mittag-Lefller Institute
and Flinders University, and we thank them for their support. It may
be worth noting that some of the early ideas concerning the role of the
exponential functions e(z, {) in relating functional calculi of Dg ey, to
singular convolution operators were developed while the second author
was visiting Coifman at Yale in 1987.

2. Clifford analysis.

Throughout this paper m and M denote positive integers, L is
equal to either 0 or m + 1, and M > max{m, L}.

The real 2 .dimensional Clifford algebra R,y or the complex 2M-
dimensional Clifford algebra Csy have basis vectors es, where S is any
subset of {1,2,..., M}. Under the identifications ey = e4 and e; = e(;}
for 1 < j < M, the associative multiplication of basis vectors satisfies

eo=1, €§=—60=—1, for1<j <M,
ejer = —ere; =egir), forl<j<k< M, and
€j, €j, "' " €5, = €S, fl1<j1<je<---<3s<M, and

S = {jlajzv"'ij}'
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The product of two elements u = ) cuses and v =3 rvrerin R
(or in C(pry) is uv = ZS,T“S vreser, where ug, vr € R (or C). The
term ug ey is usually written as ug e or just ug, and is called the scalar
part of u.

We embed the vector space R™ in the Clifford algebras R(ys) and
C(um) by identifying the standard basis vectors e, ez, ..., e, of R™ with
their counterparts in Ry or Cayy.

There are two common ways of embedding R™*! in the Clifford
algebras. Both ways are useful. We treat them together by denoting
standard basis vectors of R™*! by e1, €3,...,em, s, and identifying ey,
with either eg or em+1.

We use the euclidean norms |u| = (3 [us[?)!/? on R(s) and on
C(m), and remark that |uv| < C |u||v| for some constant C' depending
only on M. This constant can be taken as 1 if u € R™t! and as /2 if
u € Cm+1.

We write an element 2 € R™t! as ¢ = x+z, ef, where z € R™ and
zr, € R, and its Clifford conjugate as Z = —x + z €, where e e, = 1.
ThenZz =z &= Y., 23 + 2} = [2[*.

The Clifford algebras Rg), R(1) and R(z) are the real numbers, com-
plex numbers, and quaternions, respectively. An important property of
these three algebras is that every non-zero element has an inverse. Al-
though this is not true in general it is an important fact that every
element z = x + z e, of R™*! does have an inverse z7! in Rar).
Indeed z7! = |z|72z € R™*! C Ray).

For £ € R™, € # 0, define x,(z) = (1 £1i&er]é|™")/2, so that
x,(z)+ x_(z) = 1. Using (ier)? = [¢|?, we obtain

X, (2 =x,6), x_(©)*=x_(8),
X, (E)x_(€) =0=x_(§) x,(&)-

Further, ifer = [€]x,(£) — |€]x_(£), and indeed, for any polyno-
mial P()\) = 5 axAx in one variable with scalar coefficients, we have

Pliéer) = S ar(iéer)® = P(IE]) x,(€) + P(—|¢l) x_(€). Therefore
the polynomial p in m variables defined by p(€) = P(ifer) satisfies
p(0) = P(0) and

p(§) = P(ier) = P(I¢]) x, (&) + P(=l¢h x_(§),  £#0.
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It is natural to associate with every function B of one real variable
a function b of m real variables defined at = by

b(€) = B(i€er) = B(I¢]) x, (§) + B(—I€]) x_(£)
if |¢| and —|£| are in the domain of B, and by 5(0) = B(0) if 0 is in the

domain of B.

Let us repeat this procedure for holomorphic functions of complex
variables. First extend |¢|? holomorphically to C™ by defining

(C8 = 37 ¢2 = 1€ = Il +2i(6,m),
=1

for ( = € +in € C™ (where £,7 € R™) and note that (iCer)? = [C|Z.
When [(|% # 0, take £|(|c as its two square roots, and define x, (¢) =
(1+icer|¢|c")/2, so that, as before,

XLO+x_(O)=1, x,(O)*=x,0), x_(O)?=x_(0),
X4 (O x_(O)=0=x_({)x,(¢),

and 7 Cer, = [Clc x4 (€) — [Cle x- (€).-

Given any polynomial P(A) = > axA; in one variable with com-
plex coefficients, the associated polynomial p in m variables defined by

p(¢) = P(iCeL) = Eak(iCeL)k satisfies

p(¢) = P(iCer) = P(|¢lc) x,.(€) + P(=[¢lc) x_(€)

_1 1 (P(Sle) = P(=Icle))i Gex
= 5 (P(<le) + P(=[Cle) +5 T ,

if |¢|% # 0, and
p(¢) = P(0) + P'(0)icer,  if [¢[¢ =0.

It is natural to associate with every complex-valued holomorphic
function B of one variable, defined on an open subset S of C, a Clifford-
valued holomorphic function b of m complex variables, defined, for all

¢ € C™ such that {£|{|c} C S, by

b(¢) = B(iCer) = B(|¢lc) x,.(€) + B(=I¢lc) x_(¢)

_1 1 (B(lcle) = B(=cle))i Cex
= 5(B(Icle) + B(=Icle) + 5 7 ,
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if [¢|& # 0, and
b(¢) = B(0) + B'(0)iCer,  if[¢|E =0.

The reason we say that this is natural, is not only because b is
the required polynomial when B is a polynomial, but also because
the mapping from B to b is an algebra homomorphism. That is,
if F is another holomorphic function defined on S, and ¢;,¢; € C,
then (c1F + c2B)(iCer) = c1F(iCer) + c2B(2Cer) and (FB)(:er) =
F(i¢e)B(iCer).

Important examples, defined for each real ¢, are the holomorphic
functions of A € C given by E;()\) = e~**. The associated functions of
m variables are given by

e(ter,¢) = Eu(iCer) = e~ (¢) + e"lex_(¢)
= cosh(t |¢|¢) — sinh(t Clc) [¢I5"4 Cex
if |¢|% # 0, and
e(ter,()=1—tiCer, if|¢fg=0.
Then e(ter,()e(ser,() = e((t + s)er,() and e(ter,—() = e(—ter,().
Also,
ae(te[,,() = —i (e e(ter,() = —e(ter, ()2 er .
Other important examples, defined for each complex «, are the
functions Ra(A) = (A —a)™!, A # a. Then

Ro(iCer) = (iCer —a)™! = (iCer + @) (ICIg —o®)™", (¢ #o”.

(What we are really "doing, is studying the spectral theory of the
elements iCer, of the complex algebra C(ssy. The spectrum of ey is
{#£/[¢|c}, and the spectral decomposition of i(er is i(er = |(|c x, (¢) —
[¢lc x_(¢) when |¢|2 # 0, while i(e is nilpotent when |[(|% = 0).

So far it has been unimportant which sign we assign to each square-
root of |¢|4, though from now on we shall assume that (|} ¢ (—o0,0],
and take Re|(|c > 0.

It is time to prove some estimates.
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Theorem 2.1. Let ( = £ +1in € C™ (where {,n € R™), and assume
that |(|% ¢ (—00,0]. Let

i
Re|(|c

6 =tan! ( ) €l0,7/2).

Then

a) 0<RelC|c L || <sechdRel(|c,

B) RelClc < [ICle] < secd Re[Cle < [¢] < (1+2 tan? )/ Re (lc ,
¢) —0<Larg|Clc L0, and

sec

d) Ix.(O] < 75

PROOF. The simplest to prove is
lIClel? = 1IC1E] = ((€17 = Inl*)* + 4(€,m)?)
so that
€) Re [Clc < [[Slel < [¢]-
On taking real parts in the identity
~(€+1in)? = =(* = (| = (Re[¢|c +iIm|(|c)’

1/2
< €1+ In> = |¢)?,

we obtain

(#) €] = Inf* = (Re[Clc)* — (Im [¢|c)”
or
2[€1” ~ |¢1* = 2(Re [¢le)* — I¢lel®
so that, by e), we obtain Re|(|c < |€]. Also, from (#), we have [¢|2 <
In|* + (Re[Clc)® = (tan® 6 + 1)(Re [(|c)?, leading to €] < sec 6 Re (|c.
Thus we have proved a).
Another consequence of (#) is
2sec’8(ReC[c)” = 2((Re[¢lc)” + n[*) = I¢1* + (¢l
which, by e), gives ||(|c| < secd Re|(|c < |(]. A further application of
(#) gives
€1 =2n* + (Re[¢|c)? — (Im [¢[c)® < (1 +2 tan® §) (Re[C[c)’,
so that we have proved b).

Part ¢) is an immediate consequence of the inequality ||(|c| <
sec Re|(|c , while d) follows from |¢| < (1 4+ 2tan? 8)/2||¢|c|.
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On defining
Su(C™) = {¢=€E+in € C™ : [(|g ¢ (—00,0] and ] < Re([¢|c) tanpu}

we see, from part c) of the above theorem, that whenever ¢ € S;(C™),
then |C|c € 554+(C) and —[(|c € 5;- (C) (these sectors are defined in
Section 1). So, for every holomorphic function B defined on S;(C) =
55 +(C)US;_(C), the associated holomorphic function b of m variables
given by

5(¢) = B(iCer) = B(|(lc) 4. (€) + B(=[¢lc) x_ ()

is defined on S;(C™). Moreover, by part d), if B is bounded, then

b0 < V2 sec it || Blloo -

On letting Hoo(S,(C™)) = Hoo(S,(C™),C(ary), the Banach space
of bounded Clifford-valued holomorphic functions defined on S;(C™),
we obtain the following result

Theorem 2.2. The mapping B — b defined above is a one-one bounded
algebra homomorphism from Hoo(S,(C)) to Hoo(S,(C™)).

ProOF. All that remains to be proved is that the mapping is one-one.
Actually we can do better and recover B from b by means of the formula

2 .
B = [ 0x(d,  AeS(©)
[€]=1

where 0,,-1 is the volume of the unit (m — 1)-sphere in R™. (Beware
that, when m = 1, functions in H(S5,(C)) are complex-valued, while
functions in Heo(Sy(C')) take their values in Cpy) )

It may seem strange to use the inequality |n| < Re(|(|c) tanpu
in the definition of S;(C™), rather than a simpler one such as || <
|€] tan pu. (These inequalities are the same when m = 1.) However,
when it comes to characterizing the Fourier transforms of monogenic
functions on cones C’Z.i and SZ in C™*!, then, as we shall see in Section

*4, there is no choice but to use the sets S;(C™) as defined above.
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So far we have been considering Clifford-valued holomorphic func-
tions of m complex variables. What is usually called Clifford analysis
is the study of monogenic functions of m + 1 real variables. In Section
4, we shall relate these two concepts via the Fourier transform. This
involves extensive use of the exponential function

e(:p’ C) = e(x +zrer, C)
=™ Q¢(zper, ()
= el (emmelle y (¢) + el x_(¢)),

which is a holomorphic function of ( € C™ for each z = x + zey €
R™*! and is a left-monogenic function of z € R™*! foreach { € C™. It
satisfies e(z, ¢) e(y,C) = e(c +,¢) and e(z, —C) = e(~z, ). Of course,
when x € R™ and £ € R™, then e(x,§) = e!™:€) the usual exponential
function in Fourier theory.

Also, e(z, () €L is a right-monogenic function of z € R™*! for each
¢ecCm.

We remark that
6(.’13, C) = expi((x,() - "I:LCCL) = Z kl( ((X C) - wLCeL))
k=0

Let us briefly review some facts about Clifford analysis. The dif-
ferential operator

D=D+ where D=§: 9

— €L - €L
a:l:L ’ =1 sz ’

acts on C'-functions f = Y fses of m + 1 real variables to give
3fs Ofs
D e + ere
f= E kes + 55 oLeS

and also

o 1)
fD= Zéﬁes k+J§556L

A C'-function defined on an open subset of R™*! with values in
R(my or C(py) is called left-monogenic if Df = 0 and right-monogenic
if fD=0.
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We remark that each component of every left-monogenic function
is harmonic, as is each component of every right-monogenic function.

The function e(z, {) is a left-monogenic function of z (for fixed ()
because

3_32 ere(z,() = —eri(ere(z,()
= —eLiEECe(:er)
= —i(e(z,{) = —De(z,().

Similar reasoning shows that e(z, ()€ is right-monogenic in z.

Define the function k on R™*1\ {0} by

1 z

Z |z |m+1 ’

k(z) = forz #0,
(where o, is the volume of the unit m-sphere in R™+1).

The Cauchy kernels k(y—z) are left- and right-monogenic functions
of both z and y (when z # y).

Let us state Cauchy’s theorem and the Cauchy integral formula.

Theorem 2.3. Let  be a bounded open subset of R™+! with Lips-
chitz boundary O and exterior unit normal n(y) defined for almost all
y € 0f). Suppose f 1is left-monogenic and g s right-monogenic on a
neighbourhood of Q% = QU Q. Then

i) L o(v)n(y) f(y)dSy = 0,

) Q,
i [ swnmke-ads,= {4 TS0

f@), =€,
i) /an k(y—:z:)n(y)f(y)dsy:{ ) z ¢ Q.

Part 1) is a direct consequence of Gauss’ divergence theorem, while
parts ii) and iii) follow from i) in the usual way, together with the easily
verified identity

bl

/ n(y) k(y —z)dS, = / k(y —z)n(y)dSy, =1, r>0.

ly—z|=r ly—z|=r
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These reduce to theorems known by Cauchy when m = 1, in which case
R!*! = R(;) = C. It appears that, for m = M = 2, A. C. Dixon [D]
published the first such results in 1904.

Further information about monogenic functions can be found in
the books [BDS], [GM], and in the papers of F. Sommen, J. Ryan and
others. See [S1] in particular, where Sommen introduces the exponential
function e(z,€). The paper [PS] contains some related material.

We remark that parts i) and iii) of Theorem 2.1 remain valid when
f is a left-monogenic function taking its values in a finite-dimensional
left Clifford module X. That is, X is a finite-dimensional real (or com-
plex) linear space together with a representation of R(as) (or C(pr)) as
linear operators on X. If u € Ry (or Cpyy) and v € X, we denote
the action of u on v by uv.

We consider X’ together with a norm ||- || and note that there exists
a constant C such that ||uv|| < C |u|||v|| for all u € Rasy (or C(ary) and
v € X. (We do not equip & with an inner-product, and in particular,
do not require that the basis vectors e; are represented by skew-adjoint
operators). '

Part I: Monogenic extensions of functions and holomorphic
extensions of their Fourier transforms.

3. Monogenic functions on cones.

We present a mildly generalized version of results presented in
[LMcS]. Here we consider monogenic functions defined on cones in R™+?
which are unions of half-spaces, whereas in [LMcS] we only considered
cones which are rotationally symmetric about the z, axis. Allowing ey,
to be e,,4+1 rather than eg causes no problems. (One reason for gener-
alizing in this way, is to incorporate the application to boundary value
problems which is presented in Section 7.)

We start by specifying some sets of unit vectors in RT“ ={z =
x+zrer, € R™: zp > 0}. The metric Z(n,y) = cos™(n,y) is used
on these unit vectors.

Let N be a compact set of unit vectors in R?'H which contains
er, and let p,, = sup{Z(n,er) : n € N}. Then 0 < p, < 7/2. For
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0 < p £ 7/2—py, define the open neighbourhoods N, of N in the unit
sphere by N, = {y € R?*' : |y| = 1, L(y,n) < u for some n € N}.
(In Section 6, N is the set of unit vectors normal to a surface).

For each unit vector n, let C;f be the open half-space C;} = {z €
R™*! : (z,n) > 0}, and define open cones in R™*! as follows. Let
Cf, =U{C}: neN,}, Cy, =-Cf, and Sy, =Cf NCR, .

We remark that in [LMcS] we considered the case when N is ro-
tationally symmetric, namely N = {n = n+nrey € RF*! : |n| =
1, ng > |n|cotanw} for some w € [0,7/2). Then y, = w. In this case
we use the symbols

Co+ = C}f}u_w ={z=x+zre; ER™': 2, > —|z| tanp},
G- =Gy, S;=CpnC
consistent with [LMcS].

Define the Banach space K(CK}M) to be the space of right-monoge-
nic functions @ from C?{,“ to C(ar) for which

1 m
12llx(ct ) = 5 om sup{le|™|®(2)] : = € CF,} < +oo.

Similarly define K(Cy ).

Also define the Banach space K(Sn,) to be the space of pairs
(®,2) of functions with @ right-monogenic from Sy, to C() and with
@ continuous on (0,+00) er, such that '

S(Rer)—P(rer) = / ®(x)dxer,
r<|x|<R
and
1 m
(@, @)l x(sn,) = 5 om sup{|z|™[®()|: = € SN, }
+ sup{|®(rer)|: r >0} < +o0.
Note that @ is determined by @ up to an additive constant, and that

P'(rer) = / ®(x)dxer .

[x|=r
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Moreover, @ has a unique continuous extension to the cone
1
Tn, ={y=y +yrer €RY* : y* C Sy},

which satisfies

2)-3()= [ f@n(=)ds.,
A(y,2)
where A(y, z) is a smooth oriented m-manifold in Sy, joining the (m —
1)-sphere S, = {z € R™*! : (z,y) = 0 and |z| = |y|} to the (m — 1)-
sphere S, in which case |®(y)| < [|(2,2)|k(sy,) for all y € Ty, .
When N is rotationally symmetric, namely

N={n=n+ngeg € R_TH : In| =1, ng > |n|cotanw},
we use the symbol

Ty =Tn,., ={y=y+yrer €ER™': y > |z|cotanp},
consistent with [LMcS].

Let us state the relationship between these spaces. Here H + de-
note the hemispheres Hyx = {z € R™*!: +(z,y) > 0 and |z| = |y[}
with boundaries S, .

Theorem 3.1. i) Given &4 € I\"(Cﬁ”), define the functions @4 on

Tn, by

Bu(y) ==+ / $.(x)n(z)dS,, yeTw,,

Hy;t

where n(z) = x/|z| 18 normal to the hemisphere Hyx. Then
(2,2) =(24+ + 2,24 +@_) € K(Sn,)

and
”(‘I’,Q)HK(SN,,) < “‘I’+||K(c,t“) + ||‘I’—||1((c,;") .
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ii) Conversely, given (®,2) € K(Sn, ), there exist unique functions
P, € K(C’,:f}") which satisfy ® = ¥4 + P_ and & = P4 +P_. These

functions are given by the formulae

@+ () = + lim ( / (y)n k(z —y)dS, + (e es) k(z)),
(y,n)=0
lyl2e

with z € CE C Cﬁ“ , for alln € N,, where

bz) = — —2

Om lz|m+1 ?
and they satisfy the estimates
”‘I’:t”K(cﬁ“) < C“(‘I’vQ)HK(SN,‘) )
where ¢ depends only on puy, p (and the dimension m).

PROOF. i) To see that
8()-82(:) = [ Ea(@)n(@)dS.,
A(y,7)

apply Cauchy’s theorem to the right-monogenic functions ®.. The
bound is straightforward.
ii) This is a slight generalization of results proved in [LMcS].

In other words, there is a natural isomorphism
K(Sn,) ~ K(C;\tp) ® I\"(CI'\}“ ).
We also need the closed linear subspaces M( Cﬁ“) of K(C 1%1,.) which

consist of those functions ® € K( Cf,“) which are left-monogenic as well
as right-monogenic. The subspace M(Sn, ) of K(Sn,) for which

M(Sn,) = M(C};, ) ® M(CF,)
is then

M(Sn,) = {(®,2) € K(Sn,): @ is left-monogenic and (*) holds},
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where

" (v,x) 77! (e ®(y)y — y®(y)eL) dS,
* lyl=r

+x®(re;) —er ®(rer)xer =0,

when r > 0. It is not difficult to see i) that the value of the integral
is independent of r, and ii) that it equals 0 when ® € M (C’I:\t,”). The
difficult part is to show that when (®,®) € M(Sy, ), then the functions
@ defined in Theorem 3.1.ii are left-monogenic. See [LMcS]. Section
7 of [LMcS] contains further information about ().

Let us now consider convolutions. Given ® € K(C;ﬂ), v e
M(C?\}“) and z € C;f C C}'\}“, define (® * ¥)(z) by

(2 +T)(z) = / ®(z —y)nY(y)dS,

(y,n)=6
= lim ( / B(z — y)n U(y) dS, + Beer) Ux))
(y,n)=0

ly|>e

where 0 < 6 < (z,n). It follows from Cauchy’s theorem and the hy-
potheses of ® being right-monogenic and ¥ being left-monogenic, that
the integral is independent of the precise surface chosen. On the other
hand, it is a consequence of ¥ being right-monogenic, that ® * ¥ is
right-monogenic, and indeed that

[|® * ‘I’“R(C;V) S ”@”K(C;“) ||‘I’”K(c;“) )

for all v < u, as is shown in [LMcS].
If moreover ¥; € .M(CK}”), then ¥ * ¥; is left- as well as right-
monogenic, and @ * (¥ * ¥;) = (& + ¥) U,

Corresponding results hold for functions defined on C';J“.
If(,2) € K(Sn,) and (¥,¥) € M(Sn, ), define

(2,2)*(V,9) = (D4 V1 +_+V_, 0, + T, +O_=T_).
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It then follows from the above material that
(2, 2) * (¥, B)lix(se,) < Con (@R ks ) 1T Dllkcse, ) 5
forallv < .

Let K3 be the linear space of functions ® on R™\ {0} which extend
monogenically to ® € K (C;}”) for some p > 0. Similarly define Ky,
Ky, M;}, My and My, so that Ky =~ K,"\',GBK; and My ~ M;@M;,,
while M3, M5 and My are all convolution algebras. (We do not
introduce topologies on these spaces, so that @ is merely the direct
sum of linear spaces.) We remark that the only functions & which
belong to both KF; and Ky are those of the form ®(x) = ck(x) for
some ¢ € C(ypr), where

1 —x
k(x)zaw, fOI‘XGRm\{O},
with monogenic extension
1 z
k(z) = — —————.
(2) om |2

(See Section 12 of [BDS].) The embedding of K7 into K y-defined above
takes ck € KJ; to (ck,c/2) € Ky, while the embedding of K5 into
Ky takes ck € Ky to (ck,—c/2) € Kn.

4. Fourier transforms.

Our aim in this section is to identify the Fourier transforms F4(®)
of the functions ® € Kﬁ, and to define the Fourier transforms F(®, ®)
of (®,8). The transforms turn out to be bounded holomorphic func-
tions defined on cones in C™. We also show that 7 _, 7_ and F are
algebra homomorphisms from the convolution algebras M}, Ny and
Mp to algebras of holomorphic functions.

We first associate with every unit vector n = n + npe; € R™*!
satisfying ny, > 0, a real m-dimensional surface n(C™) in C™, defined
as follows.

n(C™)={(=¢+in € C™: €#0 and nyy = (n[¢]* + (2,n)*)"/*n}
={(=¢+ineC™: [([¢ ¢ (—o0,0] and nyn = Re(|¢|c)n}
={¢(=¢+ineC™: |(|2 ¢ (—o0,0] and

n + Re(|¢|c)er = & n for some & > 0},
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where

€18 =D ¢ = 1€I” = Inl® + 2i(z,n).
i=1

The surfaces associated with distinct unit vectors are disjoint, with,
in particular, ef (C™) = R™ \ {0}.

On these surfaces €|, |¢|, Re(|¢|c) and ||{|c| are all equivalent.
Indeed, by Theorem 2.1,

Re|¢lc < [€] < (nL) ™' Re[¢]c,
and
Re|Clc < |IClel € (ne) ™' RelCle < [¢] < (n2) ™' (1 + n]*)/*Re (¢,

for all ¢ € n(C™). Further, the parametrization £ — ¢ = £ + iy used in
the first definition of n(C™) is smooth, with

'det(g%)'gi, £40.

nrL
In proving this, we can assume, without loss of generality, thatn =
nie; +nper, so that

.n
¢ =€+t (gfn + €2n2) er
Then, if j > 2, 0(;/0& = b;&, and

G _ ini1k(ni + 61xn?)
06~ T np(lEPnd + En)iz

Therefore
0, 1 0,
—_— | < — — < > 9.
| S n and 351;' <np, when k& > 2

The estimate for the Jacobian follows.
For the open sets N, of unit vectors defined in Section 3, we asso-
ciate the open cones N,(C™) in C™ given by

N,,(C'"):U{n(Cm): n € N,}
= {(=€+ineC™: [C]2 ¢ (—o0,0] and
n+Re([{lc)er =&n
for some k >0 and n € N,}.
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Since N,(C™) C S, ,4+,(C™), the estimates in Theorem 2.1 all hold
with 0 = un + p.
When N is rotationally symmetric, namely

N={n=n+nre; €R}*': |n|=1, ny > |n|cotw},

we have Sj(C™)=N,_,(C™). Again we allow functions to take their va-
lues in the complex Clifford algebra C(,ry, so for example Hoo(N,(C™))
denotes the Banach space of all bounded holomorphic functions from

N,(C™) to C(p) under the norm ||bf|o = sup{|b({)|: { € N,(C™)}.

Crucial to this paper are the exponential functions
e(z, () =€, (z,0) +e_(z,(),

where _
e, (z,2) = %6 g—zLlClc X, (€)

and

e_(z,() =0 emtltley (¢).

They are entire left-monogenic functions of € R™*! (for fixed (), and
holomorphic functions of {( € N,(C™) (for fixed ), which satisfy the
bounds '

le (2, Q)| = e~ beomzeRelcle |y (¢)]
< sec(un +p) e~ (zmRelClc/nL ¢ € n(C™),

V2

and
le_(z, ()| = e txmt=zReldle |y (¢)]
sec (un + ) (z,n)Re[Clc/n —rrm
< XCNTH) (z,m)Re(Clc/nL € A(C™).
< 7% e ¢ en(C™)
Let

HE(N,(C™)) = {b € Hoo(N,(C™)) : by, = b}.

Then every function b € Hoo(N,(C™)) can be uniquely decomposed as
b=1b, +b_ where b, =bx, € HE(N,(C™)) These are closed linear
subspaces of Hoo(N,(C™)), and indeed

Hoo(Nu(C™)) = HL(N,(C™) ® HL(Nu(C™))
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because
15X+ lloo < V2[[Blloo 1Xs lloo < sec (un + 1) [1blloo
for all b € Hoo(N,(C™)).
We also introduce the subalgebras
A(NL(C™)) = {b € Hoo(N,(C™)) : Cerb(C) = b(¢)Cer, for all (}.

Define A*(IN,(C™)) similarly, and note that if b € A(N,(C™)) then
b, = bx, € AX(N,(C™)), so that

AN (C™)) = AT(N,(C™)) & A™(N,(C™)).
Particular functions b belonging to A(N,(C™)) are those of the form

b(¢) = B(iCer) = B([¢lc) x4 (€) + B(=[¢Ic) x-(€)

defined in Section 2, where B € Hoo(S),, 4,(C)). Also in A(N, (C"‘))
are all scalar- valued holomorphic functlons in HOO(N ,,(C )), the sim-

plest being rx(¢) = (x/[Clc, £ =1,2,.

Let H}; be the algebra of all those functions b on R™ \ {0} which
extend holomorphically to b € HX(N,(C™)) for some g > 0. The
algebra H y however is defined to be the algebra of all those functions
b on R™ \ {0} which extend holomorphically to b € HZ (N ,(C™)) for
some p > 0, where N = {f € R™*!: n € N}. Then Hf, N Hy = {0}.

Define Hy by Hy = HX', + Hy. Then Hy = H,"{, ® Hy. Let
AN, Ay and Ay be the subspaces of H , Hy and Hy consisting of
all those functions which satisfy £e1b({) = b({ )ée t for all £ # 0. Then
An = AN &) 'AN

We need to ensure that these holomorphic extensions are unique,
which we can do by assuming that N is connected. In fact we shall
make the stronger assumption that the compact sets NV of unit vectors
in RT*! are starlike about e, (in the sense that, whenever n € N and
0<7<1,then(tn+(1—7)er)/|Tn+(1—t)er| € N). In this case, the
open sets N, are also starlike about ey, in the same sense, and N,(C™)
are connected open subsets of C™.
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Theorem 4.1. Let N be a compact set of unit vectors in ]R;""H which
18 starlike about er,. For every ® € K;\'}, there ezists a unique function
be H;} which satisfies Parseval’s identity

oy [ weyic-e)de

(P) = lim m<I>(x+aeL)eLu(x)dx

a—0+ R

=eli-‘fé( / @(x)eLu(x)dx+2(eeL)u(0)),
Ix|>e

for all u in the Schwartz space S(R™), where ® is defined in Theorem
3.1. So b s the distribution Fourier transform of ®ey, and we write
b= F (®ler. We also call @ the inverse Fourier transform of ber,
and write ® = G_(ber).

The Fourier transform F_ is a linear transformation with the fol-
lowing properties.

i) F, is a one-one map of K;} onto H; That 1s, for every
b € Hf; there ezists a unique function ® € Kj; such that b= F, (®er.

i) If0<v<puy<7n/2—p, and @ € I\'(C;“) then b €
HE(N,(C™)) and ||b]|eo < ¢ [|<I>||K(C;u) for some constant ¢, which

depends on v (as well as on py and p).

i) fO0<v<pu<n/2—p, and b € HEL(N,(C™)) then & €
K(C}i}”) and “@”I\’(C,’(, y < ¢ ||blloc for some constant c, which depends

on v (as well as on u, and p).
iv) ® € My if and only if b€ Aj;.
v) If®eKf, YeMf, b=F (®)eg and f = F (¥V)ey, then

bf = F,(®*T)er .

vi) The mapping ® — b is an algebra homomorphism from the
convolution algebra J\J;V" onto the function algebra Aj{,.

vii) Let p be a polynomial in m variables with values in C(py), and
let
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Then ¥ € K;’, if and only if pb € HI'\",, in which case F (V)er =pb.

vill) If 0 < v < u £7/2—py, 8 > —m, and b eztends holomorphi-
cally to a bounded function which satisfies |b(C)| < c|(|° for some ¢, and
all ¢ € N,(C™), then there exists c,, such that |®(z)| < ¢, ||™™°
forall z € C,‘t}v.

Hence |®(y)| < cop |y|™° for ally € Ty, so that, in particular,
when —m < s < 0, we have lirr%)g(y) =0.
y—‘

PROOF. In the estimates which follow, constants ¢ may depend on u,,
p and the dimension m, and may vary from line to line. Dependence
on v will be specified by using c,.

Let ® € K (C,'\'}“). It is easy to see that either form of Parseval’s

identity uniquely determines b on R™ and therefore on N,(C™) (be-
cause it is a connected open set).
To construct b, we proceed as follows. For a > 0, define ®,(z) =
®(z + aer), z + aep, € CX}“, in which case
i 1 m +
[@allcy ) = 5 om suplle|™[@(c +aer)] = € CF, )

< sup{ly[™2(y)| : y € CF, +aer} < [|@llxcy ) -

For ( € n(C™) C N,(C™) C N,(C™), v < u, define

bal€) = [ Bal@)n(z)e,(~2,0)dS:
o
where o is the surface defined by
o= {z e R™': (z,n) = —|z| sin(u — v)}.

Note that the integrand is continuous and exponentially decreasing at
infinity. (As usual, n(z) denotes the normal to o with nz(z) > 0).
Indeed, for z € o,
seC (UN + 1) (z.n)Re|clc/n
e, (—z,0)| < ————=¢" c/nL
le,(—z, Q)| < /5
sec (“N + ﬂ) e—|z| |€] sin 8

=T 5

where 0 = p —v.
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Because of this fact, and Cauchy’s theorem for monogenic functions
(noting that @, is right-monogenic and e (—z,() is left-monogenic in
z), we see that the definition of b,(({) does not depend on the precise
surface o chosen. So b,(() depends holomorphically on ¢ € N,(C™).
Moreover

bo(¢) e®léle = / ®(z + aer)n(z)e, (—(z + aer),() dS,

=/<I>(x+ﬂeL)n(z) e, (—=(z + Ber),()dS,
- bﬂ(c)eﬂldc,

for all a, B > 0, so it makes sense to define b as the holomorphic function
on N,(C™) which satisfies

b(z) = ba(¢)e*¥le . foralla > 0.
We shall prove in a moment that

(#) ba(Ol < e |®llk(cy ), forall 2 € Nu(CT),

(where ¢, is independent of a) and

(##) (@m)™ /mm bo(§)a(—€)dE = /m'n ®(x + aer)er u(x)dx.

The first version of Parseval’s identity (P) follows as a consequence,
as does the estimate in ii).
Let us prove (#). With ( € n(C™) C N,(C™) C N,(C™) and
= pu — v as before, apply Cauchy’s theorem to change the surface of
integration, so that

O=( [ + [+ [ )e@n@e=0ds.,
o(0,0,l¢|-1)  7(6,[¢I7Y)  o(8,[¢|7t,00)
where
o(6,r,R)={z € R™H! . (z,n) = |z| sinf, r < |z| < R},

7(§,R) = {z e R™': |z|=R, 0> (z,n) > —Rsinb}.
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n

0(0,0,/¢|™1)

8,l¢|1
Cross section L CA

a(8,1¢[71 ,00)

We need some estimates.

| / Bo(z)ne,(~z,)dS,

o(0,0,R)

<c l / ®,(z)ne(—z,()dS,

0(0,0,R)

<ec l / ®o(z)n (e(—2,¢) — 1) dS;
o(0,0,R)

+c‘ / Bo(z)ndS,

(z,n)20
Iz|=R
< ell®allioy, ) (sup{IVse(=v.0)l: v € 20,0, R)}
[ elmilas. +1)
o(0,0,R)

< ell®allk(cy ) (RICI+1)

< c||<IJa||K(C;”) , provided R < |¢|7!,
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| / Ba(z) n(z)e, (~z,()dS,

7(8,R)
<ec ”‘I’a”K(c;“) R™™ efmmRellle/nL gg,

v(6,R)

= cll®allcy,, [ el RRekki as,
7(6,1)

b)
0 .
=cl|®allx(ct,) /9 eftReldlesin®/nz gg
< = |1l
< 7jg 1ok,

<c ||‘I’a”}((c;“) , provided R > [¢[7?,

| / Bo(z)n(z)e, (—z,() dS,
o(6,R,00)

<c ”‘I’a”K(c;“) |z|~me(=m Rellle/ne g,

o(8,R,00)

)

oo

= elalley,, [ ot ORe I g
Cy

< Qa +
R'C' ” I'K(CN“)

<ec, ||<I>O,||K.(C$ ) provided R > [¢|™!.
m

691

On using the above three estimates with R = [(|™}, together with
the preceding representation of b,, we find that we have proved (#).

Now we shall prove (##). If we define b, n(£) for £ € R™ by

ba,N(g) = / QQ(X) er ei(X;E) dx ,
Ix|<N
then the usual Parseval’s identity gives

(2m)™™ /mm bo,N(§) u(—€) dE = M[N ®(x + aer)er u(x)dx,
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for all u € S(R™). We shall prove that
(*) |ba,N(€E)] S € ||<I>||K(C;”) for all { € R™ and N > 0,
(#x)  for each £ € R™, ba,N(£) X, (§) = ba(€), as N — oo, and
(** %) for each £ € R™, bo,n(§)x_(€) = 0, as N — oo.
Then (##) follows from these results and the Lebesgue dominated

convergence theorem.

In proving (*) and (**), we use the estimates ¢), b) and c¢) above
with n = ey, in the definitions of ¢, o(8,r, R) and 7(6, R).

First we prove (*) when |¢|™! < N. Choose 0 < 6 < z, and apply
Cauchy’s theorem to write

n©x©=( [+ [+
o(0,0,l¢]=1)  T(8,]€]71)  o(6,l¢]1,N)

_ / ) @a(z)n(z)e,(~2,€)dS:
r(8,N)

so the uniform boundedness of by n(€) X, (£) in € and N follows from
a), b) and ¢). On the other hand,

ba (€)X (€) = / Bo(z)n(z)e_(~z,€)dS, ,
Hy+

so, on using similar reasoning to the proof of b),
c
6o, v () x_(€)] < Vi ||‘I’”K(c;r,p) < C||‘I>||K(c;“,“) .

To prove (*) when |[£|~! > N, only ) is needed.
To prove (*%), fix £ € R™, £ # 0, and apply Cauchy’s theorem to
write

bal€) = ban© @ = ( [+ [ ) @ule)nle)e,(—ae)ds..

T(6,N) o(8,N,00)
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so, by b) and ¢),
c
18a(€) = ba N () X, (O < gy N 2ellie(cy,) = 0 s N = o0
Moreover, (* * *) follows from the estimate a few lines above.

As noted previously, the first version of Parseval’s identity (P)
follows. Our next task is to prove the second version of (P). Let € > 0.
Then -

x| beya(-)e

= lim ( / ®(x +aer)eru(x)dx

a—0+
[x]>e

+ / ®(x+aep)eru(0)dx
x| <e

+ / B(x+aer)er (u(x) - u(O))dx)
Jxl<e :

&(x) ep u(x)dx + 2(c) u(0)

x| 2

+ Jim ([ @(x+ aen)er (u(x) — u(0)) dx).

a—0+
Ix|<e

(with Cauchy’s theorem being used to evaluate the second integral).
Now

Tm lim ( / |<I>(x+aeL)eL(u(x)—u(O))ldx)

e—0 o—0+
x| <e

S;l_{!(l)all%l.f (C / |x+aer|” '|u(x)—-u(0)|dx)
[x|<e

<Tm lim, (c / x|~ fu(x) — u(0)| dx) =0

[x|<e
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(as u € S(R™)), so

(2m)~™ /m B a(-€)dE = li_%( / B(x) er, u(x) dx + g(e)um)),

[x|>e

as required.
This completes the proof of the introductory statement in the the-
orem, together with the estimates in ii).

PROOF OF i) AND iii). It is easily verified that F_ is one-one. We prove
it maps onto H I'f} by constructing the inverse Fourier transform G_ .

Consider functions b € H(N,(C™)). Forn € N,, and z = x +
zrer €CH C C’?{,p , define

®,(z)=(2m)™ / b(¢)e(z,()dCi Nd¢a A --- ANd(m EL
n(C™)
=(2r)™ ™" / b(¢)e,(z,{)dC1 Ad(a A--- Nd(m eL .
n(C™)

On the surface n(C™), the integrand is exponentially decreasing at
infinity. Indeed, when ¢ € n(C™), then

|ei(x’C) e—ul(lcl < ce~{@mRel(lc/nL
and (z,n) > 0. Moreover, e(z,()€r is right-monogenic, so ®, is a
right-monogenic function on C} which satisfies

c

(z,n)

|@n(2)| < = bl zECT,

where ¢ depends only on u, and p.

Moreover the integrand depends holomorphically on the single
complex variable z = ({,n) (on writing ( = zn + ¢’ where ({',n) =0,
and holding (' constant). So, by the starlike nature of N,,, and Cauchy’s
theorem in the z-plane, we find that &,(z) = ®.,(z) for all z € C;}F
with £ > 0. Hence there is a unique right-monogenic function ® on
C}’\',“ which coincides with each of the functions ®,(z) on C;}. We call
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® the inverse Fourier transform of ber, and write ® = G, (ber). The
above estimates for @, imply that ® € K (C;'\}y) for all v < u, and

I8l ket ) < cv llblloo -

We remark that, in the particular case when z; = 0 and [6({)| <
c(1+ [¢|™*1)1 for all { € N,(C™), then, by Cauchy’s theorem, we
can change the surface of integration to conclude that

6, (eD)(x) = 8(x) = (2™ [ ()0 dter = by,

which is the usual inverse Fourier transform of bez.

Let us show that b and ® = G +(b'éI) satisfy Parseval’s identity
(P), from which we conclude that G, really is the inverse of the Fourier
transform F, , and complete our proof of i) and iii).

Let by (¢) = b(¢) e~lle for a > 0. Then, for x € R™,
®(x +aer) = G, (beT)(x + aer) = G, (ba TL)(X) = (ba)"(X) EL
(by the above remark). Apply the usual Parseval’s identity to obtain
en™ [ bu@a-€de = [ 8+ aer)er u(xdx,
and hence
ery™ [ Heya-ede = Jim, [ @(x+aer)eru(mx,
for all u € S(R™), as required.

PROOF OF iv). Choose & € K(C;\'}“). Then @ is left- (as well as right-
monogenic) if and only if

De;®(z) = (Per) D(z), for all z € C'?\}” .

(Both sides equal ——gf—;(z))

Let ber = F_(®), define b, as above, and use twice the version of
Parseval’s identity involving bq, to see that, for all u € S(R™),

(2m)~™ /!;m fepba(§)a(—E€)dE = —i /mm(DeL(D)(x + aer)ep u(x)dx
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and
(2m)~™ A;m ba(§)Eepa(—€)dE = —i Am(@eLD)(X + aer) er u(x)dx.

So ® € M(C;\'}M) if and only if D e ®(z) = (Per)D(z) for all z € C,T,p ,
which holds if and only if

Der®(x+ aer) = (Per)D(x + aer), for all z € R™ \ {0}

(by the right-monogenicity of the functions on both sides of this equa-
tion). By the above identities, this is true if and only if £ezbs(€) =
bo(€)€er. And this equation is satisfied if and only if (ezb({) = b({)Cer
for all z € N,(C™). This proves iv).

The remaining parts can be proved in a similar way, with the esti-
mates in viii) requiring a modification of the proof of iii).

Theorem 4.2. The statement of Theorem 4.1 remains valid when the
following changes are made.

Replace CF,, , N,(C™), K3, My, HE(N,(C™), HY, Afy and
F, by Cy,, Nu(C™), Ky, My, HL(NL(C™)), Hy, Ay and F_

respectively, and take the limit in o over negative a.

Denote the inverse of F_ by G_ : Hy — Kj;, and call _ the
Fourier transform and G_ the inverse Fourier transform.

On combining Theorems 4.1 and 4.2, and using Theorem 3.1, the
following result is obtained.

Theorem 4.3. Let N be a compact set of unit vectors in RT+! which
18 starlike about er. For every (®,@) € Ky, there exists a unique
function b € Hy which satisfies Parseval’s identity

emy [ ) a—e)de
(P) : (

= lim
e—0

&(x) e u(x)dx + B(cer) u(O)) ,

|x|>e

for all w in the Schwartz space S(R™). So ber is the distribution
Fourier transform of (®,®), and we write b = F(®,®)ey.

The Fourier transform F is a linear transformation with the fol-
lowing properties.
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i) F is a one-one map of Ky onto Hy. That i3, for every b€ Hy
there exists a unique (®,Q) € Ky such that b = F(®,®)er. Actually,
#b=>b +b_ withby =bxx € Hy, then (&,8) = (24, %4)+(®-,9-)
where &1 = G4(b+ 1) € K& .

We write ($,2) = G(ber), and call G the inverse Fourier trans-
form.

i) f0<v<p<7m/2—p, and (2,8) € K(Sn,) then b, €
HE(N,(C™)), b_ € HL(N,(C™)) and [lbx]leo < ¢ I(2, @)l k(sw,) for
some constant ¢, which depends on v (as well as on p, and p).

i) fO0<v<p<n/2—py and b, € HL(N,(C™)) and b_ €
HZ(N,(C™)), then (2,8) € K(Sn,) and

(2, @)l k(sn,) < €0 1oy lloo +1b-lloo)

for some constant ¢, which depends on v (as well as on u, and u).
iv) (2,2) € My if and only if b€ An .
v) If (2,2) € Ky and (¥,%) € My and b = F(®,2)e; and
f=F(¥,%)er, then
bf = F((2,2) (¥,¥))er .

vi) The mapping (®,®) — b 13 an algebra homomorphism from the
convolution algebra My onto the function algebra Ap .

Vll) If (@,2),(‘1’,2) € I{N) b= ‘F(@’Q)CL ’ f = f(‘I,,lI’_) €L, and
if f =pb where p 1s a polynomial in m variables with values in C(py),
then

viil) f 0 <v < u < 7/2—py, s > —m, and b, (and b_) eztend
holomorphically to bounded functions which satisfy |bi(C)| < ¢ |C|* for
some ¢, and all ( € N,(C™) (respectively, ( € N,(C™)), then there
ezists cg, such that |®(z)| < ¢, |z|™™7° forallz € C,'f}v and |®(y)| £
o Iyl for ally € Ty, -

Hence, in particular, when —m < s < 0, we have lin})g(y) =0.
y—.
This result is a little nicer when N = N. For then,

b, € HL(N,(C™) and b€ Hy(N,(C™)



698 C. L1, A. McINTosH AND T. QIAN

if and only if
b€ Ho(N,(C™)).

One application of the results of this section is to the investigation
of monogenic extensions of functions defined on R™ \ {0}. For example,

consider

ki(x) = P

71=12,...,m.
Our knowledge that the monogenic extension of k(x) = 372, kj(x)e;
is

T
Izlm+1 ’

k) = z € R™1\ {0},
does not help, because the individual components of k£ are not mono-
genic.

But we do know that the Fourier transform of (2k;,0) is r;(§) =
1¢£;|€]7?, in the sense that ® = 2k;, & = 0 and b(¢) = rj(£) er, satisfy
Parseval’s identity (P) in Theorem 4.3. We also know that r; has a
holomorphic extension which belongs to Hoo(S;(C™)) for all u < 7/2,
namely r;(¢) = i (j|¢|c'. Hence (2k(;),0) = G(rj) € K(S,)-

Therefore k; has the right-monogenic extension k(j) to S} for all
p < m/2, and this extension satisfies |k(;)(z)| < c,/|z|™ for all z € S} .

We remark that, although the results in Section 3 were derived in
[LMcS] without recourse to the Fourier theory just developed, many
of these results were discovered, at least informally, by using Fourier
transforms. In particular, the decomposition K(Sn,) ~ K (CIT,“) ®
K (C;,“) given in Theorem 3.1 can be obtained in this way, at least

when N = N, since Theorem 4.3 can be proved without making use of
Theorem 3.1.

5. Connection with holomorphic functions of one variable.

Let B € Hoo(S,(C)), where 0 < p < m/2. In Section 2 we saw
that it is natural to associate with B the function b € Hxo(S5,(C™)),
defined by b(C) = B(iCer) = B(|Clc) x,(C) + B(=[Clc) x_(C). Actually
b€ A(SS(C™)) = {b € HoolSIC™)) : Cesb(¢) = HC)Cer, for all ¢},
and the mapping B +— b is a one-one bounded algebra homomorphism

from Hoo(S3(C)) to A(S3(C™)).
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Let us recall the symbols we are using for subsets of C, R™*! and
c™:
Co(C)={Z=X+i¥ €C: Z#0, Y > —|X|tanu},
C-(C) = ~C24(0),
"(C)={AeC: A£0, gV <p},  S-(C)=—524(C),
S3(C) = 854 (€) U S5~ (€) = C24(C) N C3-(C),
at ={z=x+zLeL € R™!: zp > —|x|tanpu},
co=-C3, SS=ConCe,

T:={y=Y+yL€L€Rm+1: yr > |y|cot u},

SuC™)={¢=¢+in € C™ : [{|g ¢ (—00,0] and
In| <Re(|¢]c)tanpu}.

Let us find the inverse Fourier transform of b in terms of the inverse
Fourier transform of B. -

We do this first for B € Heo(S5,+(C)). In this case the inverse
Fourier transform ® = G(B) of B is a complex-valued holomorphic
function defined on C},(C). See Section 1. In particular

+oo .
Q(Z)=2_17rA B(r)e"Zdr,  whenIm(Z) > 0.

The associated function b satisfies b(¢) = B(iCer) = B(|(|c) x, ({), and
therefore b € H (S,(C™)). Let @ = G, (ber). Thus, when z >0,

o . BlEDe, .0

__ 1 [ (=4 % —2Ll€] i(x,6)
= 535 L. (F7+ 757) Bleh e )

®(z) =

1 —
= —_2(27-()”7 \/gm-‘(CL + ZT)

+oo
- / B(r)e e ¢i0n)r pm=1 gr g3,
0
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1 —_ . (m-1) .
(+) = ST Sm-l(eL +i7)® ((x,7) +iz)dS,

1 . _
= 2(2,,—1-),,1_7[%_1(% +i(x, 7)x|x|7*)
@M=D ((x,7) + iz )dS,

1
_ __Im-2 _ 42\(m—3)/2 f_fj
3(2miymT1 /_1(1 ) ( T |)
&M=V (|x|t + iz ) dt,

where ®(™~1 is the (m — 1)-st derivative of ®. As we know, & ex-
tends to a right- and left-monogenic function on C}, which belongs to

M(Cpy)forallv < p.

When B € Hoo(S,;-(C)), @ = G(B) and b(() = B(i(er) =
B(—[¢|c) x_(¢), then b € H(S;(C™)), so we can form & = G_(ber).
We see that when zp < 0,

T L Bl e @9 e

1 .
= 2(2m)™ /m (ﬁ IEI)B( I€]) =72 161 ¢iCx) ge

1
T 2(2m)m
(—l)m—l —_— 0 —zrr i{x,7)r m-—1
=W (eL+zT)/ B(r)e LT 0T p dr dS;
Sm-1 —oo
1

= 2(—2mi)mT /sm-l(gﬁ it) @V ((x, 7) + izp)dS,

1 .
___Om-2 _g2\(m=3)/2 (= UX
2(—2mi)m=1 /_1(1 ) (CL + |x;)
- @™ (x|t +iz) dt

®(z) =

+oco .
/ (eL —1i71) B(-r) eZLT i T)r pm—1 g, dsS,
sm-1 0

When B € Hoo(S,(C)), write B = By +B_ , where By = B xp_
Hoo(S)+ (C)), and B_ = B Xg. <o € Ho(S5,-)(C)). Then b = b+ +
b_ , where by is associated with By . We can use this decomposition
to relate the inverse Fourier transform G(ber) = (®,2) of ber to the
inverse Fourier transform G(B) = (®,®,) of B.
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1 T
K = o
as usual.
(®(2), ®1(2)) B(A) b(¢)
(0,1) 1 1
) 1
(57 3) Xre 50 () % (©)
- 1
(Erz—z’ 5) XRe <0() x_(¢)
3 iCer,
(;Z ’0) () IClc
1
517? (Z Yt Xreso(A) €™ | X, (¢)e ke
mintlog(755)) | (>0 =x,(¢) e en)
- 27
% ((Z +lz't)2 " ZT 1 t2) Xre 50 (WA | x, ()t [¢|ce "Il
(t > 0) = iX+(C)teLC e—t(iCeL)
T(14is)(Fze ™2 2775, | XpesoM A | X, (OIS
(ws)‘lsinh(‘rrs/Z)Z"”) (s €R) =x,(¢) (ier)™
(iXpe >o(Z) €7, A -a)™ (iCer — o)™
a"1(ef2Z ~ 1)) (Ima > 0)
(=iXpe <o(2) €7, (A —a)™ (iCer —a)™*
a—l(eicxz - 1)) (Ima < 0)




702 C. L1, A. McINTOSH AND T. QIAN

(2(2),2:1(2)) (2(z),2(v))
(0,1) (0,1)
(32'3) CORY
(7°3) (~ke13)
(;ZZ ,0) (2 k(z), 0)
R
(t > 0) lig 8(y) = 0
%((z ;lit)z ’ zzzfﬁ) (‘t%(”” +1e1),3(v))
(t > 0) lim $(y) = 0
(1 + is)(% e~ms/2Z-1=is (7= (1"_1 =
(ws) ™ sinb(rs/2)2 7)) /0 +°t°‘“%t’-“-(x +ter)dt, _flla(y))
(s €R) (see below)

The function @, (in the last row) has the form

ris +oo |
- txs—l —_—
2,(rn) P(l—is)/o YT F(m,np,T)drern,

where 7 > 0, |n| = 1, and F is a real-valued function which satisfies
m

[F(m,nz, )] < e(myne) Gyt -

In particular, when n = ey, then
Om lr—ia +oo tm+ia—1

2, (res)= T(1—is) Jo (1+2)mtD/2 dt, r>0.
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(To prove this, first show that the function @ in the preceding row has
the form &(rn) = F(m,ng,r/t)eLn.)

The functions ®; and @ are really only of interest near zero, and
indeed do not enter into Parseval’s identity or the convolution formulae
when they tend to nought at zero. It is shown in [McQ] that if |B(\)| <
¢s |A|* for all A € S;(C) and some s < 0, then #,(Z) - 0as Z — 0
(Z € 5,+(C), v < p). It also follows that |6(¢)| < ¢, |(|® for all { €
$,(C), and hence from Theorem 4.3.viii) that &(y) - 0O asy — 0
(y € Ty, v < p). So there is really no need to find ®; and & when
|B(M)| < es|A]%, s<0.

It is important to realize however, that ®; and @ do not always
have limits at zero, in which case they are needed in Parseval’s identity
and in the definitions of the convolution operators presented in the next
section. Principal-value integrals do not suffice. For example, Parseval’s
identity (P) connecting the function x_ (£)|¢ & with its inverse Fourier
transform involves the function ®, given above.

Let us turn our attention to the function B = By = B xp, ,, and
substitute the corresponding values of ® and @ into the formula (4).
We obtain (on using the fact that (€L +:7)(a+ib)* = (EL+i7)(a—be,T)*
whenever 7 € S™~! and a,b € R)

(-1 im - 1) o

T _ 1 4 2
Omlz|™*tl — 2(27mi)m-1 / (ez ”)21 ((x, ) +izL)™ i
Sm-1
- 1! A\ m . : —m
= an—) (2%) / (eL +i7)((x,7) —zLeLT)"™dS;,
Sm-l

where z; > 0, which, on taking the real part of the right hand side,
is the plane wave decomposition of the Cauchy kernel presented by
Sommen in [S] (at least in the case L = 0).

For the function B = xg, ., We obtain

z _=(m=1)! r—iym . i
Oml|z|™ T ) (271_) / (ErL+it)((x,7)—zLeLT)™™dS,
Sm-1

where z1, < 0, which also agrees with Sommen’s formula. See also Ryan

[R]-
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Part II: Convolution singular integrals on surfaces,
and functional calculi.”

6. Convolution singular integrals on Lipschitz surfaces.

Let ¥ denote the Lipschitz surface consisting of points ¢ = x +
g(x)er, € R™*! where x € R™, and g is a real-valued Lipschitz func-
tion which satisfies

.| Bg |2\1/2 T
IVg|lco =:s€1;£" (; |0_:£]} ) <tanw < 400, where0<w< 3

A unit normal vector n(z) € RT1! is defined at almost all z € X.
Choose N to be a compact set of unit vectors in R_'f“ which is starlike
about e, (as defined in Section 4), has u,y < w, and contains n(z) for
almost all z € X.

Let X be a finite-dimensional left module over C(as) (see Section
2). f 1 < p < oo then L,(X) is the space of equivalence classes of

functions u : ¥ — X which are measurable with respect to dSx =

1+ |Vg(x)|? dx, and for which
1/p
fully = ([, luopase) ™" < +oo.
£

Let us fix 3, N and X for the remainder of this paper, and suppose
that 1 < p < co. As usual, £(L,(X)) denotes the Banach algebra of
bounded linear operators on L,(%).

The following theorems are mild generalizations of the main results

in [LMcS].

Theorem 6.1. Suppose that 1 < p < co.

i) Given ® € Ky or Ky, there exists Ty € L(L,(X)), defined for
allu € L,(X) and almost all z € T, by

(Tou)(z) = lsl_i’13)1+ /2 ®(z + ber —y)n(y)u(y)dS,

—tm ([ 8- 1)n0)u)dS, + Ben@)u(@))

e—0
lz—y|>e
y€D

* Section 6 depends on Section 3, Section 7 depends on Section 4, Section 8 depends

on Section 5.
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Moreover, if ® € K(Cﬁy) forO0< p < /2 —w, then
IToully < Copp @Mk (ot ) lullp »

for some constants C,, , , which depend only on w, p and p.

ii) Given (®,2) € Ky, there ezists T ¢) € L(Ly(X)), defined for
allu € L,(X) and almost all x € X, by

(Toapw)(@) =lim ([ 8 = 1)n() u(s) 45, + Ben(@)) u(z)).
lz—y|>e
y€EX

Moreover, if (®,2) € K(Sn,) for 0 < p < 7/2—~w, then

1Tte,2)ullp < Cuup (2, )k (SN, lullp

for some constants C,, , p, which depend only on w, p and p.

We remark that part ii) follows directly from part i), together with
Theorem 3.1, and that T(¢ 9) = Te, + Te_ with &4 and ®_ the func-
tions specified there.

Recall that the spaces K?\}, Ky and Ky are not convolution alge-
bras, but that the subspaces M;, My and My are.

Theorem 6.2. The mappings from ® € Mﬁ to Ty € L(L,(X)) and
from (2,2) € My to T3 ) € L(Ly(X)) are algebra homomorphisms.

Let k(z) = Z/(om|z|™*"), £ # 0. Then k belongs to both M7
and My, so let us write it as k4 when considered in ME (with k4 =
1/2), and as k- when considered in My (with k- = —1/2). Also
(2k,0) = (k4,1/2) + (k-,—1/2) € My. The corresponding bounded
linear operators on L,(X) are the Cauchy singular integral operators
Cs = T(2x,0), P+ = Tk, and P_ = —T;_. By Theorem 6.1 we know
that they are defined for all u € L,(X) and almost all z € ¥ by

(Pyu)(z) = iégrgl+ /; k(xxéer —y)n(y)u(y)dS,

and
(Csu)e)=2lim [ Ko y)n(w)u)ds,.

|z—y|>e
y€L
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It is the inquiry into the boundedness of Cyx that really started this
study.

As noted in [LMcS], the following properties are immediate conse-
quences of Theorems 6.1 and 6.2.

Theorem 6.3. Let &4 € Mﬁ The Cauchy singular integral operators
P,, P_ and Cg are bounded linear operators on L,(X) which satisfy
the following identities.

(0) P +P_=1, P, -P =Cg (the Plemelj formulae);

(1) PyTe,=Ts, Pr=Ts,, P_-Ts, =Ts, P_=0,
P.Ty =Ts P.=Ts., PiTs =Ts Py=0;

(2) P-?-=P+a P_2.=P_, P+P_.=P_P+=O, C%z];
(3) Ts, To_ =Te_Ts, =0.

Define the Hardy spaces L::(E) to be the images of the projections
Py, so that L,(X) = LI(Z) @ L, (X). The operators Ts, map L,(X)
into L () and are zero on L, (X), while the operators Te_ map L,(X)
into L, (X) and are zero on Lf(Z). So alternatively we could define
Te, € L(L;E(E)), in which case T(¢,4) = To, @ Te_, where (2,2) is
related to ®; and ®_ as in Theorem 3.1.

Let us make one observation which depends on Section 4. We used
Fourier theory at the end of that section to show that (2k;,0) € Ky,
where kj(z) = —zj/(om|z|™), z € R™\ {0}, 7 = 1,2,...,m. So
the operators R; 5. = Tyi; are bounded linear operators on L,(X). The
question as to whether these operators, which can be thought of as Riesz
transforms on X, are L,-bounded, was actually one of the motivations
for developing the Fourier theory of this paper. (The boundedness of
these operators is not a direct consequence of the boundedness of the
Cauchy operator Cy = ) e Rz, because R; 5 is not merely the j-th
component of Cyx).

Theorem 6.4. The Riesz transforms R; s are bounded linear operators
on LP(S) which satisfy RisRrx = Rz Rz, Eej R;x = Cg and
Y(Rjzp)* =-I.
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Here are some further consequences of Theorems 6.1 and 6.2. When
® € Kf;, and 6 > 0, then &5 € K}, is defined by ®5(z) = &(z + ber).
In particular, ks € My, where ks(z) = ky5(z) = k4 (z + ber).

If p is a polynomial in m variables with values in C(p), then
p(—iD) ks € K7, where

. . 0 . 0 . 0
p(=iD)ks(z) = p( - %2, Bz, ’_sz—m) ki(z +beL).
Theorem 6.5. Let a > 0 and 6 > 0.
l) If(I> € K;}, then ® x ks = &5 € K;, and Ty Tk.s = T@a .
i Ifdée M;, then ks x ® = &; € Mﬁ, and Ty To = Ts, .
iii) ko * ks = kors € M7, and Ty, Tr, = Tk

Suppose that p and q are two polynomials, with p satisfying p(€)€er,
= €erp(£). Then p(—iD)ks € M7, and

iv) ko * p(—i D)ks = p(—i D)koys € M3, and

até

Tk, Tp(-iD)ks = Tp(~iD)kays »  and
v) g(—i D)kqo * p(—=i D)ks = (gp)(—i D)kats € K3, and

To(-iDyke Tp(~iD)ks = T(gp) (=i DYkays -

Let 24 be the open subset of R™*! above . That is, Q4 = {X €
R™!: X =z +6e, £ €L, 6§ > 0}. For u € L,(X), define Cifu to be
the left-monogenic function on 24 given by

X = [HX —u)n)u)ds,, X e9.

Then (C{u)(z + éer) = Ti,u(z) — Piu(z) as 6§ — 0F for almost
all ¢ € . This limit also exists in the L, sense [LMcS]. That is,
| Tesu — Pyull, — 0as § — 0F.

Let us consider functions u € L;’(E), in which case || Tk, u—u|l, — 0
as § — 0%,

We could differentiate (Ciu)(X) before taking the limit as X ap-
proaches X, though the limit need not always exist. More generally,
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given any polynomial p in m variables with values in C(as), we could
form

: . 0 .0 .
P(—iDYCEW)(X) = p( — i iy o+ s i) (CEW(X),

though again the limit as X approaches ¥ need not always exist. But
let us define p(—i Dg)u(z) to be the limit of p(—i D)(Cu)(z + ber) =
Ty(-iD)ksu(7) as § — 0%, when it does exist in L,(Z).

To be precise, define p(—:Dgyx) to be the linear transformation,
from its domain D¥(p(—iDgz)) C LF (), into L,(ZL), given by

D (p(—iDx)) = {u € L7 (T) : Ty—ipjk,u — w € Ly(2)}

and p(—:Dg)u = w.
If u is itself of the form u = Tj, v for some v € LF(X), then u is
the restriction of the left monogenic function U to X, where

U(X) = (CEv)(X +aer), X +aer € Q4.
Such functions u belong to D*(p(—i Dg)) and
p(=iDz)u = (p(-tD)V)|x .

Consider, in particular, the functions ¢x(z) = i, k = 1,2,...,m,
and ¢(§) = ifep = Y 1w, térexer. Using them, we define the operators
Dy x = qi(—iDgx), and Dgey = ¢(—¢Dgx), so that, for functions u of
the type specified in the preceding paragraph,

Dseru = (DerU)ls

and oU

Xy’
It may be interesting to write these functions out in terms of the

parameter s, when X is parametrized by z = s + g(s)er. We obtain

Diysu=

0 0 -
Dycu(s+g(s)er) = (8_316 + a—sgk (er — Dg) le) u(s +g(s)er)
and
Drepu(s+g(s)er) = Z exer D su(s+ g(s)er)
k=1

=(er — Dg)'leu(s +g(s)er),
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for all functions u such that u = Tk, v for some v € L} (X). In Theorem
8.2 we shall see that this expression for Dy is valid for every function
u in its domain.

It follows from the next theorem that these are closed linear op-
erators in LF(Z). In the following two sections, we shall explore ways
in which the convolution operators of Theorem 6.1 can be represented
as bounded holomorphic functions of (Di ) and Dy. We are still
supposing that 1 < p < co.

Theorem 6.6. Let p be a polynomial in m wvariables with values in
C(a)- Then p(—iDx) is a linear transformation from LY (Z) to Ly(Z)
with domain D¥(p(—iDx)) dense in L} (Z).

If p(€)€er = EeLp(€), then
p(—iDzp)u € LF(Z),  for allu € D¥(p(—i Dy)),

and indeed p(—iDx) is a closed linear operator in L} (X).

Suppose that p and q are two polynomials, with p satisfying p(€)€ey,
= ferp(€). Letu € DY (p(—iDyx)). Then p(—iDg)u € Dt (g(—iDg))
if and only if u € D¥((gp)(—iDyx)), in which case ¢(—i Dy )p(—iDs)u
= (¢gp)(—:Dyx)u.

PROOF. The domain D*(p(—i Dx)) is dense in L} (X), because every
function u € LF () is the limit of Ty, u € 'D+(p(—z Dy)) as @ — 0.

For the remainder of this proof, suppose that p(§)éer = Eerp(§).
Let u € D*(p(—iDsx)). We saw in Theorem 6.5 that p(—iD)ks € M},
when 6 > 0, and that TkaTp(—iDyks¥ = Tp(—iD)kays ¥ When o > 0 also.
On letting é tend to 0, we obtain T, p(—:Dg)u = Tp(—ip)k,u- On
letting « to 0, we conclude that p(—i Dg)u = P,p(—iDg)u € LT ().

To prove that p(—iDg) is a closed operator in L}(X), choose
a sequence (v,) in D¥(p(—iDg)) such that v, — v € LF(Z) and
p(—:Dg)v, - w € L+(2) We need to show that v € D+(p(—z Dy))
and p(—:Dg)v = w. For each a > 0, Ty p(—:Dg)v, — T}, w, and
Ty,p(—t Dg)vn = Ty—iD)koVn — Tp(-iD)k, v, SO that Tp(—iD)ka =
Ty, w. Therefore Ty(_ip)k, v = Tk, w — w as a — 0. We conclude that
v € D(p(—iDy)) and that p(—iDg)v = w as required.

From Theorem 6.5, we also have that

Ty—iD)ka Lp(=iD)ks U = T(gp)(~i DYkays U
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and so, letting 6 tend to 0, we obtain
Ty(~iD)k P(=2 Dx)u = T(gp)(~i D)kt -

On letting a tend to 0, we conclude that p(—i Dg)u € D¥(g(—i Dg)) if
and only if u € D¥((gp)(—i Dg)), in which case ¢(—i Dg)p(—i Dg)u =
(¢gp)(—iDg)u.

In a similar way, we can define the linear transformation p(—i Dg)
from its domain D~ (p(—:Dg)) C L, (%) into Ly(X).

Finally, we define the linear operator p(—i Dx) in L,(X) with dense’
domain

D(p(—iDx)) = D*(p(—i Dx)) ® D™ (p(—i Dg))
C LF(2)® L; (T) = L,()

by p(—tDg)u = p(—i Dg)Pyu + p(—: Dg)P_u.

Theorem 6.7. The statement of Theorem 6.6 remains valid when
L}(Z) is replaced by L,(X) and D*(p(—iDsx)) is replaced by

D(p(—i Dx)).

Suppose that U is a left-monogenic function on the strip ¥ +
(—t,t)er, and that the functions u, defined by uq(z) = U(z + aeyr),
r € X, are uniformly bounded in L,(X), a € (—t,t). Let u = uo = U|g.
Then, for each polynomial p,

p(—iDg)u = (p(-iD)U)|; .

This follows from the remark following the definition of p(—:Dg) in
L;,*'(Z), and the fact that Pyu = Ti_ Ptu_q, together with a similar
result for P_u.

In particular, for such left-monogenic functions U,

oUu

Dseru= (DcLU)IE and Dy yu = AR

k=1,2,...,m, whenu="Ulg.
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7. Ho, functional calculi for functions of m variables.

Let (®,2) € K(Sn,). We can think of b = F(®,8)e, as the
Fourier multiplier corresponding to the bounded linear operator T(s ).
But we can also think of the mapping from b € Hy to T(q, ) €
£(L,(2)) as giving us a bounded H functional calculus of —¢ Dy =
S ke, —texDg 5, and write

T(s.6) = b(—i D) = b(=iDy 5,—iDy 5, ..., —iDms).

In order to see that this is a natural thing to do, let us introduce
a larger algebra than Hy, namely Py, consisting of all functions b
from R™ \ {0} to C(asy such that b, = by, extends holomorphically
to N,(C™) for some p > 0, and b_ = bx_ extends holomorphically to
N,(C™), and the extensions satisfy |b, (¢)| < ¢(1+](|*) for some s and
c2>0.

For such b € Py, the functions b4s and b_s belong to HN and H
respectively, where by5(¢) = b,(() el and b_s5(¢) = b_ (C)e'éldv
for 6 > 0. Therefore ®45 = gi(bigeL) € K§;. Define b(—iDg) to be
the linear operator in L,(X) with domain

D(b(—iDx)) = {u € Lp(X) : Top,,u — wx € Ly(X) as § — 0}
by
b(—:Dg)u=wy +w_
The fact that this terminology is reasonable follows from the fol-
lowing facts.
Theorem 7.1. Suppose that1 <p < co. Let b€ Py .

i) Ifbe Hy, then b(—: Dx) = T(s ) € L(Ly(X)), where (®,2)er,
= G(b). In particular, 1(—:Dg) = I, x+(—¢Dg) = P4, (rjer)(—i Dx)
= Rjs, and r(—iDg) =Cx =Y ejRjx where r(¢£) =i &|¢| ter .

i) If b, = bx, € HL(N,(C™)) and b_ = bx_ € H5(N,(C™))
with 0 < p < w/2 —w, then

[18(=iDs)ully < Curpp (1114 oo + 115_loo) llullp

for some constants C,, , , which depend only on w, p, p (and the di-
mension m).
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i) If b is a polynomial in m wvariables, then the definition of
b(—iDg) coincides with that given in Section 6.

iv) The domain D(b(—:Dx)) of b(—iDx) is dense in L,(X).

v) If b(€)Eer = Eerb(€) for all £ € R™ \ {0}, then b(—iDg) is a
closed linear operator in L,(X).

vi) If u € D(b(—: Dg)), f € Pn and c € C(ay), then
u € D(f(—:Dg)) if and only if u € D((cb+ f)(—iDg)),

in which case cb(—iDs)u + f(—:Dx)u = (cb+ f)(—:Dg)u.

vii) If b(€)¢er = Eerb(€) for all € € R™ \ {0}, u € D(b(—iDg))
and f € Pn, then

b(—iDg)u € D(f(—:Dg)) if and only if u € D((fb)(—:Dgx)),
in which case f(—iDyx)b(—iDg)u = (fb)(—:Dyg)u.

PrOOF. When b € Hy, let b, = by, and &, = G (b4 €L), so that
®,5(z) =G, (brser)(z) = @4 (z + der). Therefore, for all u € L,(X),
T, ;u — Te, u in L,(X) as 6 — 0. Similarly Ts_,u — Tg_u. So
u € D(b(—i DE)), and b(—i Dg)u = Tq>+'u +Ts_u= T(Qg) .

The estimate in ii) is a consequence of Theorems 4.3.ii1) and 6.1.i1).

To prove iii), use the identities F4(p(—¢ Dx)k+s)er, = p+s, which
are consequences of Theorem 4.1.vii) and Theorem 4.2.

The proof of the remaining parts mimics that of Theorem 6.6.

Let us indicate the kind of application of these results that we have
in mind. Details will appear elsewhere.
Consider the following boundary value problem for harmonic func-

tions.

= 0U o*U
AU(A)_;(,)—XE(X)+WZL(X)_O, X e,

c oUu oU
(;ﬂk an +ﬂL 8XL)'2 =we LP(E’C)y

where fr,fr € Cand 2 <p< .
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In the special case when 8 =1 and B =0, k = 1,2,...,m, the
solution to this problem is given by

+oco
UX)=U(X+Xper) = -/X (CE v)(X +ter)dt,

where v = (Pyo) ™ w € L,(E). Here Cf_ denotes the scalar part of the
Cauchy integral C’g , namely

(€ v)(X) = A FX=9),n@)v(v)dS,, X e,

which is the double-layer potential operator on ¥, and Pyg = %(I +
Cs,), where Cg, is the singular double-layer potential operator on X.
The invertibility of P, in L,(X,C) was proved by Verchota [V].

In the general case of complex B and (1, we assume that, for some
k>0,

|(B,n+it)] >k, foralln € N andte R™!

#) such that |t| =1 and (n,t) =0,

where f =3 fBrexr + Brer . (This is the weakest condition on # under
which we can expect to solve the boundary value problem, because, if
¥ is smooth in a neighbourhood of a point z € ¥, then the covering
condition of Agmon, Douglis, Nirenberg for this problem is, that there
does not exist a unit tangent vector ¢ to X at z satisfying (4, n(z)+:it) =
0, where n(z) is the unit normal to ¥ at z.)

It can be shown that (#) implies

(##) (B, IClceL — 1) 2 £|[Clc|,  forall ( € N(C™),
and hence that the holomorphic function b defined by

IClc
(B,I¢lcer — 1)

is bounded by k™! on N(C™), and indeed is bounded by 2«~! on
N,(C™) for p small enough (to derive (##) from (#), choose ¢ €
N(C™), meaning that there exists n € N and ¢ > 0 such that n +

b(¢) =



714 C. L1, A. McINTOosH AND T. QIAN

Re(|¢|c)er = cn. Apply (#) with this choice of n, and with ¢t =
¢ (=€ +Im([¢lc)er))-
Therefore b(—i Dyx) is a bounded linear operator on L,(Z, C(ar)).

On noting the identity,
(D Bete = Breer) HO) x4 () = —Cex, (0),
k=1

it is straightforward to verify that the solution to our boundary value
problem is
+o0
U(X)=U(X+XL6L)=—/ (CEo(—iDg)v)o(X +ter)dt,
XL

where X € Q4 and v = (P4o) " 'w € L,(Z,C).

Further, (Cb(—i Dx)v)o(z + er) = (Te,v)o(z) when z € T and
6>0,where®=¢G (bx,er)€ M; So the integrand can be expressed
as

(CEb(~i Dy ))o(X) = /2 @FX —9),n()) v(v) dS, ,

where X € .

We stress that the Fourier theory developed in Section 4 has been
used to show that the assumption (#) implies that ® € M ;}, and hence
that Te € L(L,(Z,Cary)).

In our other papers involving H, functional calculi, frequent use is
made of a Convergence Lemma of the following nature. In particular it
can be used to show that other reasonable definitions of b(—: Dyx) lead
to the same operator as ours. We are still supposing that 1 < p < co.

Convergence Lemma. Suppose 0 < u < 7/2 —w. Let
b(a) = b(ay+ + b(a)- 5

where b+ is a uniformly bounded net of functions in HE(N,(C™))
which converges to a function b, € HX(N,(C™)) uniformly on every
set of the form {¢ € N,(C™) : 0 < 6 < [¢|] £ A < ©}, and where
b(a)— 18 a uniformly bounded net of functions in HL (N ,(C™)) which
converges in a similar way to a function b_ € HL(N,(C™)). Let b=
b, +b_. Then ba)(—tDg)u converges to b(—iDx)u for every u €
L,(X), and consequently ||b(—: Dg)|| < sup, ||b(a)(—2Dzg)|| -
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PROOF. It is actually quite straightforward to use the definitions to
show that ®(4)+ = G+(b(a)+€L) converge in a similar way to &4 =
G+ (bser) and then that, for each u € Ly(X), b(a)(—iDg)u = Tp,,, u+
Tq,(a)_u converges to Te, u + Te_u = b(—2 Dx)u.

Here is a small corollary. Let us state it for functions defined on
sets of the form S;(C™), rather than on the more general sets N,(C™)

and WV ,(C™)).

Theorem 7.2. Let b be a holomorphic function which satisfies |b({)| <
c(1+[¢|?) on S3(C™) for some p € (w,7/2), andd and c > 0. Assume
that b(§)éer, = €eLb(§) for all £ € R™, and suppose that b(¢) has an
inverse b(¢)™ € C(ry for all { € S.(C™), and that there ezists s > 0
such that

O < eI +1¢77), (€ SpC™).

Then, the operator b(—iDg) is one-one, and has dense range

R(b(—i Dg)) in L,(Z).

PROOF. Let F()(A)=(nA)*(i+nA)"*(xp, >o(z\)e"*/"+xRe <0(/\)e’\/"),
A € S,(C), n = 1,2,3,... Then the sequence (F(y)) is uniformly
bounded and converges uniformly to 1 on every set of the form {\ €
Sp(C) : 0 < 6§ < |A] £ A < +oo}. For each n, define fn) €
Hoo(S5,(C™)) by

fm(Q) = Fmy(I€1e) X, (€) + Fimy (=[¢1c) x- ()

as in Section 5. Then the sequence (f(5)) is uniformly bounded and
converges uniformly to 1 on every set of the form {z € S;(C™) : 0 <
8§ <[¢| £ A< +0}. Let

d(m) = fimb™" € Hoo(Sp(C™)) and  h(ny = b7 fn) € Hoo(Sp(C™)),

so that f(n) = g(n)b = bh(n) .

Suppose that u € D(b(—:Dg)), and that b(—iDg)u = 0. By
Theorem 7.1.vii), fin)(—2Dg)u = g(n)(—t Dg)b(—¢ Dg)u = 0, and, by
the Convergence Lemma, f(,)(—¢Dg)u tends to u. So u = 0. We
conclude that (—: Dy) is a one-one operator.

Let w € Ly(X). Then f()(—tDg)w = b(—tDg)hm)(—tDs)w €
R(b(—iDg)), and

nlil};of(n)(-—i Dz)’w =w.

We conclude that R(b(—:Dgx)) is dense in L,(X).
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8. H, functional calculi for functions of one variable.

Let us turn our attention to functions b which are associated with
holomorphic functions of one variable. Recall that, for every holomor-
phic function B defined on S,;(C), where w < p < 7/2, there is an
associated function b defined on S;(C™) by

b(¢) = B(iCer) = B(I¢lc) x, () + B(=IClc) x_(€) -
So it is natural to define the operator B(Dger) by B(Dxer)=5b(—: Dg)
whenever b(—: Dyx) is itself defined.

It is a consequence of Theorems 2.2 and 7.1 that the mapping from
Hy(S5(C)) to L(Ly(X)) given by B — B(DgeL) is a bounded algebra
homomorphism.

We remark that the condition b({){er, = (erb(¢) which we often
use, is automatically satisfied by functions b of the type b(() = B(i(er).

Let H, be the linear space of functions B on R\ {0} which have
holomorphic extensions B € He(S,(C)) for some y > w, and let P, be
the linear space of functions B on R\ {0} which extend holomorphically
to S,(C) for some p > w and satisfy |B(()| < c(1+ [CI ) on S;(C) for
some s and ¢ > 0.

Theorem 8.1. Suppose that1 <p < oo. Let BE P, .

i) The operator B(Dsxey) is a closed linear operator in Ly(X) with
domain D(B(Dgey)) dense in L,(X).

ii) If B € H,, then
B(Dxer) = Tis,9) € L(Ly(X)),

where F(®,®)er, = b and b(§) = B(i&er). In particular, 1(Dger) =1
XRe>0(DEeL) = P+7 XRe<0(DECL) = P_ and sgn(DEeL) =Cy.

iii) If B € Heo(S,(C)) withw < p < /2, then
[B(DzeL)ullp < Copp [ Blloo llullp , u € Ly(%),

for some constants C, , , which depend only on w, u, p (and the di-
mension m).

iv) If u € D(B(Dgey)), F € P, and c € C, then u € D(F(Dgxer))
if and only of u € D((cB + F)(DgeL)), in which case

c¢B(Dger)u + F(Dger)u = (cB + F)(Dger)u.
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v) If ue D(B(Dger)) and F€P,, then B(Dxger)u€e D(F(Dger))
if and only if u € D((FB)(Dger)), in which case

F(Dser)B(Dgep)u = (FB)(Dgey )u.

vi) The complezx spectrum o(B(Dgxer)) is a subset of

(W(BESHC))? : u>w}.
Indeed

[[llp

I(B(Dzer) —al) " ully < Cons Forro "5 Sy
) ®

for all u € L,(%).

vii) Suppose that there exists p € (w,m/2), s > 0 and ¢ > 0 such
that
B > cAFA+ AT, A e SH(O).

Then, the operator B(Dgeyr) i3 one-one, and has dense range

R(B(Dger)) in L,(Z).

PROOF. The first five parts are immediate corollaries of Theorem 7.1.

To prove vi), let a be a complex number such that
d = dist {a, B(S,(C))} > 0, for some p > w.

Then F = (B — a)™! € Hyo(S3(C)) and ||F|lec < d7, so, by ii) and
iii), F(Dger) € L(L,(T)) and ||F(Dsger)ullp, < Cu,ppd!||ull, for all
u € Ly(%).

Therefore, by iv) and v), (B(Dzer)—al)F(Dger)u = uforallu €
L,(%), and F(Dser)(B(Dser) — al)u = u for all v € D(B(Dgepr)).
Hence (B(Dgey) — al)™! = F(Dyey). The result follows.

Part vii) is a consequence of Theorem 7.2.

The closed linear operator Dyey, is defined on L,(X) by Dgey =
B(Dgeyr) when B(A) = A. It is a consequence of part vi) above, that
its spectrum o(Dgey) is a subset of S,(C) = Su4+(C) U S~ (C) where
Swt(C) ={A € C: X =0or |arg(£)A)| < w}. Further, for all y > w,
there exists c,, , , such that

|(Dger — OII)_IU”p < Cupp |a|_1||u”1’ ’
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for all « ¢ S,(C) and all u € L,(X). That is, Dgey is of type w in
L,(X) (provided “type w” is defined using the double sector S,,(C) as
in [McQ)). Indeed, on applying part vii) as well, we find that Dgey is a
one-one operator of type w in L,(X) with dense domain D(Dger) and
dense range R(Dser) in Ly(%).

We see that the restrictions of Dgey, to Lf(z) are closed linear
operators in L;(Z) with spectra in S,4(C), and indeed that FDser
are the infinitesimal generators of the holomorphic Cp-semigroups u
Tiy,u, a >0, in LE(Z).

The next theorem states that resolvents and polynomials of Dyxey,
are equal to their counterparts B(Dgey). Thus it is reasonable to say
that the mapping B — B(Dgey) is a functional calculus of the single
operator Dger, as well as to say that the mapping b — b(—iDg) =
b(—iDyx,—iD;5,...,—tDp 3) defined in Section 7 is a functional cal-
culus of the m commuting operators —iDy v, k = 1,2,...,m. It also
states that Dgey is, not surprisingly, precisely the operator considered
previously by Murray [M] and McIntosh [Mcl] (when L = 0). See also
[GM].

Theorem 8.2. Suppose that 1 < p < oo.

i) If a ¢ S,(C), define Ro(X) = (A—a)™2, in which case Rq(iCer)
= (ier —a)™'. Then Ry(Dger) = (Dser — al)™! € L(L,(T)).

ii) For k a positive integer, define Sp(\) = AF, in which case
Sk(iCeL)=(iC6L)k. Then D(Sk(DgeL))=D((DgeL)k) and Sk(DgeL)u
= (DgeL)ku for allu € 'D((DgeL)k).

iii) Given a complez valued polynomial P(X) = ’,f:g ar\¥ of one

variable with ag # 0, define
P(Dgep)u = Zak(DzeL)ku, u € D(P(Dger)) = D((Dger)?).

Then D(P(Dger)) = D((Dger)?), and P(Dser)u = P(Dger)u for
allu € D(DEGL).

iv) If ¥ 1s parametrized by z = s + g(s)er, s € R™, then
0
D(Dger) = Wi(S) = {u € Ly(Z) 15— u(s + g(s)er) € Ly(R™, ds),
j

j=1,2,...,m}
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and

(Dzesu)(s +g(s)er) = (e — Dg)'Dyu(s +g(s)ez), u € W)(E).

PROOF. The proofs of parts i) to iii) require repeated use of parts iv)
and v) of Theorem 8.1. (¢f. the proof of Theorem 8.1.vi).

To prove iv), let, for the moment, Ay, be the closed linear operator
with domain W) (Z) in L,(T) defined by

(Asu)(s+g(s)er) = (e2 — Dg)'D,u(s +g(s)eL),

for all u € W, (Z), and note that Az — iI is one-one [McI] (actually,
one can see directly that Ay is of type w).

Given u € D(Dgey ), write v = u_ +u_ where uyx = Piu, and, for
6 >0, let uys = Txysu,. We saw in Section 6 that uys € D(Dger),
uys — u, and Dgepuys — Dypepu, as § — 0. Also uys € WPI(E),
and we saw in Section 6 that Dyeruys = Aguys. The fact that the
operator Ay is closed implies that u, € D(Ag) and that Dseyu, =
Asu,. On treating u_ in a similar way, we find that u € D(Ag) and
that Dyeru = Agu. Using the facts that (Ag —2J) is one-one and that
(Dger —iI) maps onto L,(X), we see that D(Ax) can be no larger than
D(DsxeL), and thus conclude the proof.

It is also true that, for B € H,, and indeed for B € P,, the
operator B(Dgey ) coincides with that obtained using the definitions of
holomorphic functional calculi in [Mc], [McQ)], [McY], [CDMcY]. This is
derived from Theorem 8.2 by using the Convergence Lemma of Section
7, and the Convergence Lemmas of those papers. We shall not go into
details, but just wish to draw attention to the fact that the boundedness
of the algebra homomorphism B +— B(Dgep) is equivalent to the fact
that Dy satisfies square function estimates in L,(X).

One particular consequence in the case p = 2 is the square function
estimate,

toeo dt\1/2
s <0 ([ 1oDzerun 5) " weLf(m),
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where ¥4 () = xg, >0(/\)/\e’\, or in other words, letting U = Cfu
denote the left-monogenic extension of u to Q4 ,

lull2 £ C (// I(DU)(X)|2 dist {X,Z}dX)l/z

sc({/(gjlm )| +] (X)’)dxst{XE}dX)/,

where u € LF(Z). But this is the estimate proved in Theorem 4.1 of
[LMcS], on which all our bounds are based. Now that we have traversed
a full circle in [LMcS] and the current paper, it is time to stop.

ADDED IN PROOF. The reader may be interested in the lectures of
Alan McIntosh on Clifford algebras, singular integrals, and harmonic
functions on Lipschitz domains. These will appear as part of the Pro-
ceedings of the Conference on Clifford Algebras in Analysis held in
Fayetteville, Arkansas, 1993, to be published by CRC Press.
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