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1. Introduction.

In this paper we are concerned with studying the Dirichlet problem
for an elliptic equation on a domain in R®. For simplicity we shall
assume that the domain is a ball Qg of radius R. Thus
(1.1) Qr={zeR®: |z|] < R}.

The equation we are concerned with is given by

(1.2) (=A =b(z) - V)u(z) = f(z), z €Qr,
with zero Dirichlet boundary conditions,

(1.3) u(x) =0, x € Qg .

Here we shall think of the functions b(z), f(z) as defined on all of R3.
Thus we shall assume that

(1.4) b:R® - R3, f:R®* SR,

are Lebesgue measurable functions. It is well known [5], [11] that the
solution of (1.2)-(1.3) has -at least in the case of smooth functions b, f- a
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representation as an expectation value with respect to Brownian motion

with drift b. Thus
(15) ) = B | [ Oty at]

where E, denotes the expectation is taken with respect to the drift
process Xp(t) starting at z € Qg, and 7 is the first hitting time on the
boundary 0Qpg .

Our main goal here is to prove existence and uniqueness of solutions
to the boundary value problem (1.2)-(1.3) when the drift b is allowed
to have singularities. To specify which kind of singularities b can have
we define the Morrey spaces M (R3) for 1 <p < ¢ < co. A measurable
function g : R3 — Cis in My (R3) if |g|? is locally integrable and there
is a constant C such that

(1.6) / gl dz < C? |QI/7,
Q

for all cubes @ C R®. Here |Q| denotes the volume of Q. The norm of
g, ||9llq,p is defined as

(1.7) llgllg,p =inf{C : (1.6) holds for C and all cubes Q}.

It is easy to see that, with the definition (1.7) of norm, the space M} (R?)

is a Banach space. Let LI(R3) be the standard L? space on R® with
norm denoted by || - ||, . Then one has the relationships for 1 <r <p <
g <o,
18) LYR®) = MJ(R®) C MI(R®) C M¥(R?),
1.8
ligllq = llgllg.q 2 llgllap 2 llgllq,r -

Our first theorem is a perturbation theory result.

Theorem 1.1. Suppose 1 < r < p < ¢ and |b| € M}, f € M for
some q, with 3/2 < g < 3. Then there ezists an €9 > 0 depending only
onr, p, q such that if ¢ € C, |e] < go/||bl|3,, , then the boundary value
problem

(1.9) (A —eb(z) - V)uc(z) = f(z), z € Qp,
(1.10) ue(z) =0, x € 0Qr ,
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has a unique solution u. in the following sense:

a) u. s uniformly Holder continuous on Qp and satisfies the
boundary condition (1.10),

b) The distributional Lapacian Au, of u. on Qg is in M7 and the
equation (1.9) holds for almost every x € Qp,

¢) ue(z) 18 an analytic function of € in the disk |e| < g for any
fized z € QR

d) The L™ norm of u. ts bounded by

(1.11) luclloo < CRZ*/% | fllg,r
where the constant C depends only on p,q,r.

REMARK. The restriction that f is L7 integrable for ¢ < 3 is artificial
since if f € L9 for some qo > 3 then f € LI for all ¢ < ¢qo. The ¢ < 3
restriction is related to b) and the value of ¢ .

Theorem 1.1 will be derived from a theorem on integral equations.
Let T be an integral operator with measurable kernel k7 : R* x R® - C.
Thus for measurable f : R®* — C one defines T'f by

(112) Tf(e) = [ kr(e,y) ) dy.

Theorem 1.2. Suppose the kernel kr of the integral operator T satisfies
the inequality

[b(z)]

, z,y € R®,
g2 "YE

(1.13) (@, y)| <

where |b| € M]?, 1 < p < 3. Then for any r,q which satisfy the inequal-
ities

(1.14) l1<r<p, r<g<3,

the operator T is a bounded operator on the space MJI. The norm of T
satisfies the inequality

(1.15) 1T < Cliblls
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where the constant C depends only on r, p, q.

Theorem 1.2 generalizes a result of Kerman and Sawyer [8] which
proves the theorem in the case of L spaces, i.e. r = ¢. The more gen-
eral Theorem 1.2 is necessary to prove Theorem 1.1 even if we assume
f € L1. The Kerman-Sawyer theorem does apply to Theorem 1.1 if we
assume b € M;f with p > 3/2.

Next we turn to the non perturbative situation. It is easy to see
-by considering the case of |b(x)| = €/|z| with large e- that (1.2) need
not have a solution for |b| € M;’ if we make no restriction on the
norm of |b|. To obtain an appropriate non perturbative theorem we
pursue an analogy with a problem which has already been studied in
great detail. Let V : R® — R be a measurable potential and consider
the problem of estimating the number of bound states N(V') of the
Schrodinger operator —A+ V. It was shown independently by Cwickel-
Lieb-Rosenbljum [10] that N (V') satisfies the inequality

(1.16) N(V) < C/ V()% de
]Ra

for some universal constant C. The best value for the constant C' was
obtained by Lieb [9] and is C = .116. This is to be contrasted with the
lower bound on C, C' > .078 obtained from semi-classical asymptotics.
Hence the bound (1.16) with constant C = .116 is in some sense very
sharp. However it may in fact be a bad estimate such as in the case
V(z) = —¢/|z|* with ¢ small. In this situation the right hand side of
(1.16) is infinity whereas in fact N(V) = 0.

In order to understand the cases where (1.16) gives bad estimates
Fefferman and Phong [3] obtained new estimates on N (V') which imply
(1.16) and remain finite in the case V(z) = —¢/|z|? for small e. The
price one pays is that the constant C in (1.16) which follows from their
estimates is far from optimal. The Fefferman-Phong estimate is as
follows: Suppose we have a dyadic decomposition of R? into cubes Q.
Let ¢ > 0 be an arbitrary positive number. A cube @ is said to be
minimal with respect to ¢ if

/ VP da > &? |Q|1—2p/3 ;
(1.17) oe
/Q, VP de < |Q77, Q' Cq,
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for all dyadic subcubes Q' C Q. Here p is some fixed number, 1 <
p < 3/2. Let N.(V) be the number of minimal cubes in the dyadic
decomposition. Then the Fefferman-Phong inequality is given by

(1.18) N(V) < C. No(V),

where the constant C. is finite provided € > 0 is sufficiently small. Since
it is clear that

(1.19) N.(V) 35—3/2/ [V(z)]*/? de
ma

the inequality (1.16) follows from (1.18).

The analogy between the drift problem (1.2)-(1.3) and the bound
state problem for the Schrédinger operator is roughly in making the
identification —|b|? = V. It has been shown in a previous paper [1]
that one can directly estimate the solution of the drift problem with
V = —|b|?2. However these estimates are not sharp. In fact there
are important differences between the drift problem and the potential
problem. For example there is no semi-classical asymptotic limit in
which the inequality analogous to (1.16) becomes an identity. That
said, our analysis will be close in spirit to the Fefferman-Phong analysis
of the potential problem.

We consider the drift problem with non perturbative drift b. Let
p be a fixed number 1 < p < 3 and € > 0 be arbitrary. Suppose we
have a dyadic decomposition of R? into cubes Q. A cube @ is minimal
with respect to ¢ if

/ blP do > &2 |Q'?/,

Q

(1.20)
/ bPPde <2 |QP, Q' CQ,
QI

for all dyadic subcubes Q' C Q. Let N.(b) be the number of mini-
mal cubes in the dyadic decomposition. Then we have the following
theorem:

Theorem 1.3. Suppose f e MI, 1 <r<qr<p,p>23/2<q<3.
Then there exists € > 0 depending only on p, q, v such that of N.(b) <
+oo the boundary value problem (1.2)-(1.3) has a unique solution u(x)
in the following sense:
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a) u is uniformly Holder continuous on Qg and satisfies the bound-
ary condition (1.3),

b) The distributional Laplacian Au of u 13 in M and the equation
(1.2) holds for almost every x € Qg .

Our final theorem generalizes the estimate (1.11) on the L*°-norm
of the solution u of (1.2)-(1.3), to the nonperturbative situation. For
b€ M}, p>1, and n an integer define a function a, : R* — R by

1/
(1.21) an(z) = (2707 / [biP dy) "
|z—y|<2-n

We then have the following

Theorem 1.4. For f € Mi,b € M; with N.(b) < 400, let u(z),
z € Qpg, be the solution of the Dirichlet problem (1.2)-(1.3) given by
Theorem 1.3. Let ng be the integer which satisfies the inequality

(1.22) 4R>2"" >2R.

Then there exists v, 0 < v < 1, depending only on p > 2 such that u
satisfies the L™ estimate

(1:28) [[uflo < Co R4 flgr - ™ sup exp (C2 ) anuil2) -
m=0 TCYR j=0

The constant Cy depends only on p, q, r and Cy only onp > 2.

Theorem 1.4 will be proved in Section 6. We shall also show there
that Theorem 1.4 implies the bound

(1.24) [ulloo < C1 R*73/9||f|lq,r exp(C2 Ne(b)),

provided ¢ is sufficiently small depending only on p > 2. Since N.(b)
satisfies the inequality

(1.25) Ne(b) < e~ [|bjl3,
the inequality (1.24) implies the bound
(1.26) oo < C1 B2/ flq,r exp(Ca IIbII3) -
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Inequality (1.26) with ¢ = r = 3, is already known [6]. This is the
Alexandrov-Pucci estimate, which has been proved here using different
ideas.

Our method is based on studying how the drift process X (t) differs
from Brownian motion X(t). The technical tool we use for this is the
Cameron-Martin formula [10] which expresses expectations with respect
to the drift process as Brownian motion expectations. Our main idea is
that if p > 2 then the sets on which |b| is large have dimension strictly
less than 1. Hence, by the nonrecurrence property of Brownian motion
in dimension strictly larger than 2, most paths do not often visit sets
where |b| is large.

While there is an extensive recent literature on elliptic equations
with nonsmooth coefficients [2], [4], [7], there appears to be little study-
ing the singular drift problem. The most recent paper we could find on
the subject was the 1980 paper of Trudinger [12]. See also the book by
Friedlin [5] for the relation between functional integration and partial
differential equations.

2. A Theorem in Integral Equations.

Our goal in this section is to prove Theorem 1.2. For z € R? and
r > 0, let B(z,r) be the ball of radius r centered at z,

(2.1) B(z,r)={yeR®: |z —y|<r}.

We define operators S, on locally integrable functions u on R? for any
integer n € Z by

(2.2) Spu(z) =2"" |B(z,2‘")|“/

) lu(y)| dy -

(z,2

It is evident then from (1.3) that the operator T satisfies the inequality

(2.3) Tu(z)| S C )y |b(2)|Snu(z),

n=-—oo

for some universal constant C.
Let Qo be the cube centered at the origin with side of length 277,
We define an operator Tp by -

Tou(z) = Tu(z), z ¢ Qo,

(2.4)
Tou(z) =0, T € Qo .



8 J. G. CoNLON AND J. REDONDO

Lemma 2.1. Suppose the support of u is contained in the ball
B(0,27"~2%), Then for 1 <r <p <3, r < q<3, there is a constant
C depending only on p, q, r such that

(2:5) IToullg,r < CIblla,p [lullg,r -

PROOF. We need to show
1/r
o) ([ 1mourrde)" < bl Il 1017,

for all cubes Q. First let us consider the case

(27) | QI < 275

We use the inequality

(28) Tou()] < Alb(2)] 22 lully, = € R,

where the constant A is universal. Hence the left hand side of (2.6) is
bounded by

1/r
(2.9) A2’"°|Iu||1(/Q|b|’dx) < A2 |[u||y [|blls,, Q173

on using Holder’s inequality. Next we use the fact that

(2.10) llells < |lullg,r 1Qol =9,
whence
1/r
(211) (] mour =)™ < 4o, ol P41,

in view of (2.7).
Next let us suppose that
(2.12) 273 Q) < 273D | k<,

and the double of @ contains the origin. Then, by the property of the
support of u, one has

ng
(2.13) /|T0u|fdx5A||u||; > 22’"/ |b|" dz ,
Q Qn

n=k-3
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where the cubes @, have side of length 27" and center at the origin.
Using the fact that b € M: , p > r, the inequality (2.13) yields

. no
/QITouI’dﬂ:SAIIUII'{ > 2 b5, Qa7

n=k-3

(214) r r - n(r—

= AlulfIbl5, Y 2207
n=k-3

< Blullf |Ibli5 , 2°™Y,

for some constant B dependingon r > 1.

We have then
1/r
e15) ([ mrrde) " < Clulh bl Q0
Using (2.10) again we conclude that

1/r
([ mourdz)™" < C" bl ol Qo7

< C'|bllsp llullq,r QI

(2.16)

Finally, if @ satisfies (2.12) and the double of ) does not contain the
origin then the inequality (2.16) continues to hold.

Let K be an arbitrary cube in R® with side of length 27" for
some integer nx. We associate with K an operator Tk on integrable
functions u : K — C. To do this we decompose K into a dyadic
decomposition of cubes @), with sides of length 27", where n > ng.
For any cube @, C K let ug, be the average of |u| on @,. Then for
any n > ng we define the operator S, by

(2.17) Spu(z)=2""uq,, € Qn.

The operator Tk is then given by

(2.18) Txu(z)= Y  |b(z)|Spu(z), zcK.

n=ng

We relate the operators T to the operator T by the following
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Lemma 2.2. For z € Qg let Qo(z) be the cube centered at z with side of
length 227 ™, Let u be an arbitrary integrable function supported in the
ball B(0,27™°~%) and Q an arbitrary cube. Then there is a universal
constant C such that for anyr > 1,

dz

o, 1001 Jono, Taeu(®N"de.

(2.19) / |Tu(z)|"dz < C
QNQo

ProoFr. This is a consequence of Jensen’s inequality. In fact Jensen
implies that

dz i
/Qo IQO, QnQolTQo(z)u(x)l dz

z /QnQo (/Qo I%ZJ TQ"(’)u(x))rdm '

Now one merely has to note that, because of the restriction on the
support of u, one has

(2.20)

(2.21) /Q %—f—)—l Tg,nu(z) 2 C|Tu(z)], z€Qo,

for some universal constant C.

The main work in this section will be concerned with bounding the
operators Tk .

Theorem 2.3. Suppose 1 <r <p <3, 1<r<q<3. Then there is
a constant C depending only on p, q, v such that

1/r
2 ([ o) < bl full Q1
Q
where @ i3 any dyadic subcube of the cube K.
PrROOF OF THEOREM 1.2. We can assume without loss of generality
that u has compact support where the support of u is contained in a

ball B(0,27"°~%) for some integer ny. Let @ be an arbitrary cube.
Then by Lemma, 2.1 one has

([mera” ([, mra)"s ([, more)”

1/r
(2.23) <( [ ds) " C bl Jull, 101
QNQo
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Let K be one of the cubes Qo(z) from Lemma 2.2. Then it is clear
that the set @ N Qo is contained in the union of at most eight dyadic
subcubes Q' of Qo(z) with |Q'| < |Q|. Hence one has

1/r 1/r
( / |TKu|'da:) <y ( / |Txu|” d:c)
(2.24) @nQo g Ve
<8C|blls, llullg,r Q™1
by Theorem 2.1.
Now Lemma 2.2 implies

1/r _
@) ([ Terds) <O blsy by @S,
QNQo

for some constant C' depending only on p, g, r. Theorem 1.2 follows
now from (2.23), (2.25).

We begin the proof of Theorem 2.3. We shall assume without loss
of generality that

(2.26) IIblls, < 1.

Lemma 2.4. Suppose u : K — C is an integrable function and Q' C K
18 a dyadic subcube of K such that for all dyadic Q C Q' there is the
inequality

(2.27) 1QI'3*euq < |Q'*+uq,

for sufficiently small ¢ > 0 depending only on r, p. Then the inequality
(2.22) holds on Q'.

PROOF. Let N be the integer such that the length of Q' is 2=V N >
nk. Then one has

(/Q, |TuK|’dx)1/r < (/Q (Ib(2)] NZ_I Snu(a:)>rdx)1/r

(2.28) nEnK

+ (/Q (1b)] 3 Snu(x))rdx)l/r.
n=N
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We estimate the first term on the right in (2.28). Since ¢ < 3 one has
N-1
(2:29) Y~ Sau(z) < Clullg,r Q71

n=ng

Thus the first term is bounded by

, _ - 1/r
el @175 [ 1@ o)
< Clully,r 1Q /=10 1@

(2.30)

in view of (2.26). Hence the first term is bounded by
(2:31) C llully,- Q'[9

which has the form of the right side of (2.22).
To bound the second.term on the right in (2.28) we need to de-
compose |b|. For m an integer let E,, be the set

(2.32) - Em={zeR®: 2™ ! < |b(z)| < 2™}.

We write the sum of S,u(z) over n as
( i S'nu(x))r
n=N
oo k+1 . E .
sy S+ X (3 se) - (3 sei@))

= Snu(z)"
o0 1 k r_l
* Z T/ ( Z Snu(z) + t5k+1“($)) Sk+1u(z)dt.
k=N 0 n=N

Now we use (2.27) to obtain the bound

k
(2.34) > Spu(z) +tSerru(z) < (k42— N) 23N Q13 44, .
n=N
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We have then the estimate

(3 $uto)" < (@17 u0)"

(2.35) N -
: (SNu(.z') + 3 r(k41- Ny Ber-DE=N) Sku(z)) :
k=N+1

For m, k integers with k > N let

(2.36) Am k = Z |Em N le UQyx »
Qe CQ’

where the Q; are dyadic subcubes of Q' with side of length 27%. Then
one has

/ (Ib)| i Swu(x)) dr
Q n=N

r—1 >
(2.37) < (|Q'|1/3 u.Q:) Z 2mr (2_N am N
+ Z r(k+1— N)—193(r=—D(k=N) 9—k am,k) ‘
k=N+1

There are two estimates on a,, » which we use. The first follows from

(2.27). Thus

(2.38) amk < |Em N Q'|20F39K=N) o,

The second is obtained by observing that |E,, N Q| < |Q«|, whence
(2.39) am ik < Q' ug: .

It follows that for any «,0 < a < 1, the right side of (2.37) is bounded
by

r—1 2 o 1~
(’QIII/BUQI> Z 2m.r (2—N (IQII 'U.Ql) (IEm N QIIUQI)
m=-—00
e o
+ Y r(k 41— Nyl D=k (|Q'|uQ,)
k=N+1
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. (lEm N QII 2(1+3€)(k-—N) uQ,)l—a)
(2.40)
oo
<C, IQllr/3+a urQ, Z gmr IEm N Qlll—a ,
m=—o0
where the constant C, depends only on a > 0.
We bound the sum with respect to m on the right in (2.40) by
writing

o o]

Z 2mrlEm N Qlll—a
N-1 oo
(241) < |Qlll—a Z gmr + Z 2mr|Em N Qlll—a
m=—00 m=N

oo
SCIQlil—a-—r/3 + Z 2mr|Eanl'l—a.
m=N

In view of (2.26) one has
(2.42) 2™ |En N Q| < 2°|Q'| P13,

and consequently it follows because r < p that

[e ]

(2.43) Z 2mr|Em N Qlll—-a < Ca IQlll—a—r/:i ,
m=N

provided a > 0 is sufficiently small. We conclude then that there is a
constant C' depending only on r, p, ¢ such that

> r i/r
b(z S,u(z)) dz <ClQY uo!
e (/Q,(l()lrgv @) dx)"" < Cl1Q'Muq
< C lullg,r Q11
The inequality (2.44) combined with (2.31) proves the result.

Next we need to remove the restriction (2.27) on the growth of
the averages of u on dyadic cubes. To do this we define a Calderén-
Zygmund decomposition of Q. We can assume without loss of gener-
ality that u € L*°(Q"). Define a function N; on @',

(2.45) N :Q - {k€ZU{oco}: k> N},
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by

a) Ni(z) = 0oif |Q|'/3**ug < |Q'|*/3+4ugy for all dyadic subcubes
Q of Q' such that z € Q,

b) Otherwise 27M1(2) is the length of the side of the largest dyadic
cube @,z € Q C @', such that |Q|*/**ug > |Q'|'/**+ug .

We define the set G; to be
(2.46) Gi={z€Q: Ni(z)=o0}.

Since u € L*®(Q") there is a unique finite family F; of disjoint dyadic
subcubes of Q' such that

(2.47) U e=e"\G:.

QEF

If 71 is nonempty then we define a function N, on @' which is analogous

to N;. Thus
e) Na(z)=c0ifz€Gy,

b) Ni(z)= oo if z € Q'\G; and |Q|*/**°ug < |§|1/3+51t6 for all
dyadic subcubes with z € Q C Q € F,

c) Otherwise__2'N 2(%) {5 the length of the side of the largest dyadic
cube Q, z € Q C Q € Fy, such that |Q|'/**+cug > |Q|1/3+5u—6.

Observe that Nz(z) is defined uniquely for z not on the boundary
of any cube ) € F;. Thus it is defined up to a set of measure 0.
Furthermore, one has
(2.48) Ny(z) > Ny(a)+1, ae T€Q".
Now define G5 to be the set
(2.49) G, ={z € Q'\G;: Ny(z) = c0}.

Then, as with Ny, there is a uniqué finite family F5 of disjoint dyadic
subcubes of Q' with

(2.50) U @=\6:\G: .

QEF,
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One can continue this procedure inductively to construct a sequence of
functions Nj,j > 1, on @', a sequence of disjoint subsets G;,5 > 1, of
@', and a sequence of families F; with the properties:

o |JGi=@q,
j=1

b) F; is a finite collection of disjoint dyadic subcubes of Q' such

that
k
Ue=ea\Uos,
QEF Jj=1
¢) For any Q € Fi let Q € Fir_; be the unique subcube containing
Q. Then
QI **ug > [Q'/***ug

k
d) Ni(z)=ooforz € |]JG;.

J=1

Otherwise Ny (z) is defined by 273N« (2) = |Q| where Q is the unique
cube in F; with z € Q.

We have constructed families F;,j > 1, of dyadic subcubes of Q'.
Let Fo = {Q'}. Then we have

Lemma 2.5. Suppose u € L>®°(Q'). Then there is a constant C de-
pending only on r, p, q such that

(2.51) /Q (|b(x)l i Snu(l'))rdz < ci 3 1Qlup -
n=N

J=0 QEF;

PROOF. Define a sequence aj, j > 0, by

ag = Ib(z)|" (Snvu(z))" da
QI
Ni(z)-2 1 k r—1
+ |b(z)|" Z r/ ( Z Spu(z) + tSk_,_lu(m))
Q' k=N 0 “a=N

*Skpru(z)dt da
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(2.52)
N; +1 (z)-2

=/Q’ |b(z)|'k—N - / Zs u(z) +t Seru(z))

n=N
-Sk+1u(x)dtdz, ] Z 1.

In view of (2.33) the left hand side of (2.51) is given by
(2.53) > a;.
=0

It follows directly from the proof of Lemma 2.4 that there is a constant

C such that
(2.54) a0 < C|Q"ugy .

We wish to show that for j > 1, one has

(2.55) a; <C Y |Qluy .

QEF;

Evidently one has

(2.56) ajz/lvj(z)w( ydz= ¥ /( )dz,

QEF;
where (- ) denotes the integrand in the formula for a;. Let us fix a

particular Q € F; with side of length 2= M > N, whence N;(z) =
M, z € Q. By definition of the families F; it follows that

M
.’L‘ < 2—3€(M n) Q 1/3 u_
(2.57) 2 Sl < ; !
<CQ"Pug, =z€Q.
On the other hand, for M < k +1 < Ny (z) — 1, one has

k
Spu(z) +t Sk+1u(2)
(2.58) n,=%1:+1

.<_ (k +1— M)235(k+1-—M)|'Q"l1/3 ua’
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which is analogous to (2.34). Now one can proceed just as in Lemma
2.4 to obtain (2.55). The result follows then from (2.53) and (2.55).

Lemma 2.6. There 13 a constant C depending only on r, p, q such
that

oo

(2.59) S Y 1Qlup < C/QI lu|" dz .

J=0QE¥;

PROOF. Since we can assume ||u|lcc < oo there exists an integer ¢t > 1
such that F; is empty. Thus

(2.60) Q = U G .

i=1

Let us consider a particular Q € F;, 0 < j <t — 1. It is evident
that

(2:61) Qc |J Gm.
m=j+1

We wish to estimate |Q N G, | for m > 5 + 1. We have now

wa:mex

t
Z‘m /Q . |u| da
= > [Qug

Q€Fnm-1,QCQ

/3

= (1e1\’

> Y @@ w
6€Tm—116CQ i

>2m=i Dy (@

6€}_m—ly6CQ

t
=2m=i=Dys|Qn | | Gi.
Q

1=

vV

(2.62)
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We conclude therefore that

|Q N Gml —(rﬁ— )—1)

(2.63) —_— <2 =,
QI
Next we consider
T 1 r
Q| ug = ,_1 Iuldm
IQI

(2.64) 'er— Z / lu| da:

m—1+1 QNGm

At E r
|Q|r 1( Z arm) Z a'—nr(/QnGm |"|d5’3) )

m=j+1 m=j+1

by Hoélder’s inequality, where a,, is an arbitrary positive sequence and
1/r +1/r' = 1. We choose an, to be given by

(2.65) Am = ((g)m—j—l |Q ?ch;m|)l/

In view of (2.63) the inequality (2.64) yields

. L2\ (m=j=1)(r-1) 1
Qe 3 (3) Rl

m=j+1

(2.66) ( /Q o dx)'

¢ (m=j=1)(r—1)
= Z ( ) IQﬂGm|uQnGm .

We conclude then that
(m—j-1)(r—1)
(2.67) S Qg <c Z ( ) / lu|” dz
QEF; m=j+1 Gm
by Jensen’s inequality. Now if we sum (2.67) with respect to j and use

the fact that the sets G are disjoint we obtain the inequality (2.59).

Theorem 2.3 now follows immediately from the previous two lem-
mas and the estimate (2.31) in Lemma 2.4 on the first term on the right
hand side of (2.28).
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3. Perturbative existence and uniqueness.

We turn to the proof of Theorem 1.1. We first consider the problem
of uniqueness of the solution to (1.9), (1.10). Let us write g(z) =
—Au,(r),z € Qpg, the distributional Laplacian which is assumed to
exist by b) of Theorem 1.1. Since g € MJ and a) of the same theorem
it follows by Weyl’s lemma that u, is given by the formula

(31) w(@)= [ Gole,)gw)dy,

Qg
where Gp is the Green’s function for the Dirichlet Laplacian on Qp.
Thus

1 1 R 1

3.2 Gp(e,y) = —— —— =~
(3:2) 2@V = eyl W ] =7

where 7 is the conjugate of y in the sphere Q. It follows easily from
the representation (3.1) that the distributional gradient Vu. exists as
an integrable function on Qg and is given by the formula

(3.3) Vue(z) = /Q V.Gp(z,y)9(y)dy, z€Qp.

Now let T be the integral operator with kernel kr given by

b(.’E)'szD(I,y), z,yEQR )

0, otherwise.

(3.4) kr(z,y) = {
It is clear from (3.2) that VG p satisfies the inequality

. z , <
(3.5) VGo(e, )| < gorp

Hence Theorem 1.2 applies to the operator T. In view of (3.1), (3.3)
equation (1.9) is the same as

(3.6) (I-eT)g=f,

provided we extend f, g by zero outside Q. By Theorem 1.2 there is
an appropriate €9 > 0 such that |¢| < eo/||b||3,, implies that ¢T as an



ESTIMATES ON THE SOLUTION OF AN ELLIPTIC EQUATION 21

operator on M{ has norm strictly less than 1. Since f, g are assumed
to be in MJ equation (3.5) implies that ¢ is given by

g=I—-eD)7'f.

Hence g-is uniquely determined by f. Since (3.1) shows that u. is
uniquely determined by g uniqueness of the solution follows.

To prove existence we define g by (3.7) and u. by (3.1). Thus
g € Mg and ||gllq,r < C||fllq,r for some constant C' depending on &o.
We shall show that the estimate (1.11) holds. In fact from (3.1) we
have

1 l9(y)|
u(z)| < — 2 d
jue(2)| 4ﬂﬁﬂh_m y

1 oo
<__ n
<5 E 2 /ing(y)ldy,

n=ng

(3.8)

N

where @, is the cube centered at  with side of length 27", and ng is
the unique integer satisfying

(3.9) 4R<27™ < 8R.

Using the fact that ¢ € M7 it follows that

lue(z)| < 2" 1Qnl* 7 llgllg,r
(3.10) ,;no lglla

< Cammerla | f|,,,

since ¢ > 3/2. The inequality (1.11) follows from (3.9), (3.10). We can
generalize the above argument to show that u, is Holder continuous. It
is also clear from (3.2) that u, satisfies the boundary condition (1.10).
Hence a) of Theorem 1.1 holds. To prove b) we use the fact that the dis-
tributional gradient of u. must be given by (3.3) and the distributional
Laplacian of . satisfies —Awu, = g. Thus we have

(3.11) —Au.(z) —eb(z) - Vue(z) = (I — eT) g(z),

for almost every z € Qp.

It follows now from the definition (3.7) of g that the right hand
side of (3.11) is just the function f(z). This concludes the proof of b).
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Part ¢) follows by expanding (3.7) out in a Taylor series in €. This
completes the proof of Theorem 1.1.

Next we prove some results which are perturbative in nature but
which will be needed to understand the nonperturbative problem. Let
g : QR — R be a continuous function and u(z), |z| < R be the solution
of the Dirichlet problem

(3.12) { —Au(z) =0, |z < R,

u(z) = g(z), z € OQR.

Then u is given by the Poisson formula

(313)  u(x) = Pg(z) = 47:1{ / ’Tz = Z“l’ o(2)dz.
|z2|=R

Now the solution of the Dirichlet problem
—A —=b(z)-V)u(z) =0, r|< R,
(3.14) ( (z) - V)u( |
u(z) = g(z), z € Mg,
is given formally by the expression
(3.15) u=Pg+(-Ap) Y(I-T)"'b-VPyg,

where (—Ap)~! is the inverse of the Dirichlet Laplacian and has kernel

(3.2).

The formula (3.15) is not appropriate for drifts b € M:. The rea-
son is that even if g is Holder continuous on 02 g the function VPg(z) is
not in general an L™ function for |z| < R. To get around this difficulty
we average over the radius of the ball on which we solve the Poisson
problem. Thus let us suppose we have a Holder continuous g € C*(Q2g)
for some a, 0 < a < 1. We define Kg(z) formally for = € Qg/; by

o R
(316) I&"g(:lf) == / ux(z) d/\,
R R/2

where u) denotes the solution (3.15) of the Poisson problem on the ball
of radius A\. More precisely let Py, Ty, (—Apx)~! be the operators in
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(3.15) acting on the ball of radius A. Denote the kernel of (I —Tx)~! by
Hy(z,y) and (——AD,,\)'1 by Gpa(z,y). We can think of Hy and Gp,»
as being defined on R® x R? by simply extending the functions by zero
outside Q2 x Q. It is clear that for || < A one has

22 — Jaf?

|z - 2[°

(317)  VP(z) = — v.(

— ) (9(2) - g(=)) dz

lz|=2

since the left hand side of (3.13) is constant for g a constant. It follows
therefore that the formal definition (3.16) of K corresponds to

;oo 2 1o = |=P
Kg(z) = = / e 3 9(z)dz

|z — |

R/2<]|z|<R

2
(3.18) + = dw/ dy / dz GD,|z|($»w) H|z|(w, y)

R Qr Qr

R/2<|z|<R
|2* = lyf?
: AV — - .
b(y) ( .1/47rlzl |y _ Z|3> (g(z) g(y))

Proposition 3.1. There ezists a constant €9 > 0 depending only on
p > 1 such that if ||b|z, < €o then u(z) = Kg(z) defined by (3.18)
on Qp/y exists and is Holder continuous. Further, the distributional
Laplacian Au is in M3 for anyr < p, ¢ <3 and

(3.19) —Au(z)—b(z) - Vu(z) =0, for almost every z € Qgys .

PRrOOF. Evidently the first integral on the right in (3.18) yields a
Holder continuous function. We shall show first that the second inte-
gral is uniformly bounded. Let T be the integral operator with kernel
|b(z)|/2m|z —y|?. Then if €, is sufficiently small the operator (I —T)™!
exists in the sense of Theorem 1.2 with kernel H(z,y) say. It is easy to
see now that

(3.20) |H|Z|(_w,y)) < H(w,y), w,y € R3.

We also have

1

—————— R?.
4| —w|’ B e

|Gp,jz(z,w)]| <
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Consequently the second integral is bounded in absolute value by

2 1
— dw/ d / dz———
R Jo, Qr y 4m |z — w|
R/2<|z|<R
ly|

(3.22) - H(w,y) [b(y)| [vym l9(2) — g(v)l

1
<c [ av /Q dy o ) b))

using the fact that g is Holder continuous. Since |b| € MY for any
r < p,q < 3, Theorem 1.2 implies that the last integral is uniformly
bounded in z. The Holder continuity of u follows similarly.

Let us define h(z) for z € Qg by

2
h(z) = Ti/ dy / dz Hy;(z,y)
Qr
(323) R/2<|z|<R

(1) (9 i) (00 - o(0)).

By our previous argument it follows that h € M{ for any r < p, ¢ < 3.
We wish to show that the distributional Laplacian Au on Qg is given
by

(3.24) —Au(z) = h(z), z€Qg.

We have

(3.25) h(z) = / h(z,z)dz
R/2<|z|<R

and

) R
u(z) = & /R/z d)\ Pyg(zx)
(3.26)
+ dw / dz Gp ;(z,w) h(w, z).

Qg
R/2<|z|<R
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Let ¢ be a C* function with compact support in {2/, . Then it
follows from (3.26) that

/ —Ap(z)u(z)dr

= [, dw / dz (/—Acp(x)GD’M(z,w)da:) h(w, 2)
(3.27) R/2<|z|<R
= /dwdz p(w) h(w, z)

= [ @w ow)htw),

on application of Fubini’s theorem. Hence we have (3.24). Similarly
one has that the distributional gradient Vu is given by

_2 1 |2[* — |22
Vu(z) = R/47r|z|v’( Iz — 2P )g(”)dz
2
(3.28) +—R A dw/{; dy/dz V:Gp,:|(z,w) H.|(w,y)
R R
|2* — |y

. AV, — - .
b) (Vo g2 5p) (90— 9)
Let us define for § > 0, y € Qr, z € Qr\QR/2, f5,2/(y) by

22 = yl?
Vel ly — 2P +9

(320)  figa(v) =b()- (¥ ) (9(2) = 9(v)).-

Then we have for almost every = € §2g/,, the identity

/Q dw /Q dy b(z) - V.G p poy(z, ) Hys(w, ) fs,1(4)

(3.30) 9= »

:_fé,]z|($)+/ dy Hy;\(z,y) fs,:1(¥) -
Qr

This follows since the left hand side of (3.30) is the operator T}, |(I —
T|z|)_1 applied to the function fg .| € M for any r < p, ¢ < 3, and the
right hand side is the operator —I + (I — Tj,|)~! applied to the same
function. It is clear then by dominated convergence that

L2
(3.31) glm —/ dy / dz H;(z,y) fs5,:/(y) = h(z),
—0 R O
R/2<|z|<R
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for almost every z € Qp/,. It follows trivially that

o2
lim = / dz fs2(x)
R/2<|z|<R
(3'32) _b(m).z / 1 v (lzlz"‘xlz) ( )d
= R arjz| N\ Je—zp /I

R/2<|z|<R

for any z € Qp/;. Again dominated convergence and (3.28) implies
that

2
lim —-/ dw d
6—0 R Qr Qr y
dz b(z) - V;Gp |:|(z, w) H|z|(w,y) f5,2(y)
(3.33) R/2<|z|<R
= b(z) - Vu(z)

_ 2 1 2> — |z|?
be)- 7 / a2 v,( lz — 2P )9(z)dz'

R/2<|z|<R

It follows then from (3.30) to (3.33) that

(3.34) b(z) - Vu(z) = h(z), for almost every = € Qp/; .
Hence (3.24) and (3.34) implies (3.19).

Proposition 3.2. Suppose u is a Holder continuous function on the
closure of Qp, the distributional Laplacian Au is in M7 for some r, g,
1<r<p,3/2<q<3 andu satisfies the equation

(3.35) —Au(z)—b(z) - Vu(z) =0, for almost every = € Qg .
Then

(3.36) u(z) = Ku(z), for all z € Qp/y,

provided ||b||3 , < o where ¢o depends only on r, p, q.
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PROOF. Let us consider the problem
{ —Au(z) — b(z) - Vu(z) = f(z), lz] < A,
u(z) = 9(z), |lz| = A.

We shall assume that f € MJ and VPyg(z) is an L™ function for
|z| < A. Then it is easy to see that (3.37) has a unique solution u given
by

(3.37)

u= Pyg+ (—AD,)‘)_I(I — TA)_lb - VPyg

(3.38)
+ (—AD,,\)_I(I — T,\)_lf .

In fact if we put

(3.39) v=u— P,

then

(3.40) {—Av(w) —b(z)- Vo(z) = b(z) - VPrg(z) + f(z), |z| <A,
v(z) =0, lz| = .

Since we are assuming VPyg is L*, Theorem 1.1 implies (3.38).

Let ¢ : R®* — R be a C* function with support in the unit ball
centered at the origin and with integral 1. Then for § > 0 the functions

Pé,
(3.41) ps(z) =83 p(c/6), zER®,

are approximate Dirac § functions. We consider functions us = s * u
where u is the solution of (3.35) given in the statement of Proposition
3.2. Then us is a C* function in the ball |z| < R — 6, and

(3.42)  —Aus(z) — b(z) - Vus(z) = fs(z), |lz| < R—6,
where
(3.43) fs(z) = s * (b- Vu)(z) — b(z) - Vus(z).

Since f € MJ for some r < p, ¢ > 3/2, it follows that if A < R—§, then

us = Pyug + (—AD,,\)_I(I - T)\)_lb - VPyug

(B.44) (=) I =T fs.
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Let n satisfy 0 < n < R/2 and consider 6 < 5. Then if we integrate
(3.44) with respect to X over the interval R/2 < A < R— 7, we have for
any z with |z| < R/2,

2 1 = Jap?

= d

us(e) R—2q / 4r|z| |z — 2|} ug(z) dz
R/2<|z|<R—n

2

+ /dw/dy /dz Gp,z|(z,w) H;)(w, y)
R_zn Qn Qr

R/2<|z|<R—1n

(3.45) () (70 o) ) = o)

5 |
+ dw dy
R -2 Qnr Qr

dz Gp,|.|(z,w) Hj;|(w,y) fs(y) -
R/2<|z|<R-7q

Since é < n it follows that fs € MI(Qr_p).
We shall show that

(3.46) - lim [ fsllg,r = 0.
Let us put h = —Au. Then by (3.35) we have that
(3.47) Jim s * (b Vu) = hflg,r = 0.

Next we consider the limit of b - Vus. By Weyl’s lemma we have that

(3.48) u(z) = Gp,r(z,y) h(y)dy + Pru(z),

QR
for all ¢ € Qg. Hence the distributional gradient of u is given by the
formula

(3.49) Vu(.”u):/ V.Gp r(z,y)(y)dy + V. Pru(z), |z|<R.
Qr

Thus

(350)  Vu(z) =/Q ivz(lmim) h(y) dy + w(z),

4
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where w is a C*° function in || < R. Hence we have

(8.51)  Vug(z) = /m 1 Ve (I;) s * h(y)dy + s * w(z),

s 4m z —y|

in |z| < R—6. Here we have extended h to all of R?® by setting h to zero
outside . Evidently s * w(z) converges uniformly in |2| < R — 7 as
6 — 0 to w(z). Also s * h converges to h as 6 — 0 in the space M.
It follows then from the fact that the operator with kernel

1 1
is bounded on the space M7 that

%in}) |lb-Vus—b-Vul,,=0.

The identity (3.46) follows from (3.47), (3.53).

Next we take the limit as § — 0 in (3.45). In view of (3.46) the
final integral on the right hand side vanishes in the limit. Since u is
Holder continuous the first 2 integrals converge to identical integrals
with us replaced by u. Now if we let  — 0 we obtain the formula

(3.36).

4. Nonperturbative uniqueness.

We shall prove the uniqueness part of Theorem 1.3 in this section.
Throughout the section we shall assume that b € ]VI;:’ with 2 < p < 3.

Assume for the moment that b is a C* function. Then for any
A > 0, the solution of the Poisson problem

(1) { —Au(z) —b(z)-Vu(z) =0, lz| < A,

u(z) = g(x), lz| = A,

is given as an integral

(4.2) ww)= [ sav)atdy.
lyl=A
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The function p(z,y) in (4.2) is defined and continuous on the set {(z,y)
€ R¥ xR3: |z| < |y|}. The solution (4.2) can be represented as an
expectation value with respect to Brownian motion with drift b. One
has

(4.3) w(z) = Ex[g(Xu(Ta)],

where 7, is the first hitting time of the drift process started at z on
the sphere |y| = A. Let R < A. Then if we condition on the hitting
distribution of the process on the sphere |y| = R, we have from (4.3),
u(0) = Eo [Ex, (rp) [9(Xb(T2))]]

= Eo[u(Xb(7r))]

= / p(0,2)u(z)dz.

|z|=R

(4.4)

We conclude then that

(4.5) p(0,y) = / p(0,2) p(z,y) dz,
|z|=R

for any y with |y| > R.
The Cameron-Martin formula [10] enables ‘one to write the proba-
bility measure for the drift process Xp(t) in terms of the Wiener mea-

sure for Brownian motion X(t). In particular, the drift expectation
(4.3) becomes a Brownian motion expectation given by

o u(z) = E, [exp (% / "b(X(t))- dX ()
4.6 o
-3 [ BEE®)) a(xX(r)]

Since ¢ = 1 implies u = 1 it follows from (4.6) that for any 6 € R one
has the identity

(4.7) Ez[exp (g /orb(X(t))~dX(t)——f;Af |bg2(X(t))dt)] =1.
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For any integer n € Z let A, be the spherical shell,
(4.8) Ay ={z €R®: 27" < |z| < 27"F1/2},
We define a measure y on US2.___A, by

n=-—oco0* N

dz
47 |1.|2 (2—n+1/2 — 2—n) ’

(4.9)  du(z) = z€An, neL.

Hence u(A,) = 1 so A, is a probability space with respect to p. We
define an integral operator T, from functions on A, to functions on
An—l by

(#10)  Tof@ =snlef [ p0,0) (@), 7€ Au.
Let p, : A, — R be given by
(4.11) pn(z) = 4m |z|? p(0, ), T € An.

Then (4.5) imples that

(4.12) Topn = pn—-1, neEZ.
We write
(413) Tn = Pn. + Qn )

where P, is the same operator as T, for the case b = 0. Hence the
kernel p(y,z) for P, is just the Poisson kernel. It follows easily that

(4.14) Pa(1) =1,
where 1 denotes the function identically equal to 1.

Lemma 4.1. Suppose f € L} (Ay) for some v, 1 <r < co and satisfy-
mng

(4.15) fdu=0.
An
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Then there exzists a universal constant v,0 < v < 1, such that P,f €
L} (An-1) and there is the inequality

PROOF. First we prove (4.16) with v = 1. We have

(4.17) Py f(z) = 4 |zf* /A p(v,2) F(v) du(v),

where p is the Poisson kernel. It follows then from (4.14) and Jensen’s
inequality that

(4.18) [P f(2)]" < 47r|-%‘|2/A p(y, @) [F()I" du(y) -

Now (4.16) with 4 = 1 follows on integrating (4.18) and using the fact
that

(4.19) [ axlel oty 7) dutz) = 1.
An—l
To obtain v < 1 we use (4.15). Observe that (4.15) implies
(4.20) / P, f(x)du(z) =0.
An—l

Since P, f(z) is a continuous function there exists zo € A,—; with
P,f(zo) = 0. Now let us write f as a sum of its positive and negative
parts,

(4.21) f=fr=f-\  Puf=Pufs—Puf_.

By the properties of the Poisson kernel there exist universal constants
1, ¢o such that forz € A,,_y,

(422)  Paf-(2) 2 e Paf-(20) = 5 Palfl(z0) 2 2 Palf(3),

where 0 < c3 < 1. Hence

(423)  Puf(2)= Puf*(z) = Paf™(z) < (1 - &) Palf|(x).
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Since we can obtain a similar lower bound on P, f(z) we conclude that

(4.24) [Pafllr < (1 =€) 1Pal fl - < (1 = e2) [ fl- -

Thus we can take y =1 —¢; < 1.

Lemma 4.2. Let1 < r < co. Then for any 6 > 0 there exists € > 0
depending only on r, p, 6 such that ||b||3, < ¢ implies the inequality

(4.25) 1Qnfll- <8lIfl-,  fELL(An), nEZ.

PROOF. Let r' be the conjugate tor, 1/r + 1/r' = 1. We consider the
adjoint @}, of @, . We shall show that @} is a bounded operator from
L; (An-1) to L"L (Ar) and satisfies

(4.26) 1Q7fll < 811 fll -

This will imply (4.25).
We have from (4.10) that T} is given by the formula

2n.+1

51 /A p(z,y) f(y)dy.

To obtain @)}, we need to subtract off from (4.27) the operator corre-
sponding to b = 0. This can easily be done from the formula (4.6).
Comparing (4.2), (4.6), (4.27) we have

(4.27) T; f(z) =

2n+1 2—n—1/2

Q;f(m)z—\/?—l/;_"_l d,\/0 ds
E(3 [ by axe -7 [ mEee) )

- exp (% /0 b(X(t)) - dX(t)
-3 [ iexa d) sx ).

(4.28)

Equation (4.28) can be written as

2—n—1/2

. B on+1 1
Q,,f(:c)—ﬁ_l/z_n_l d/\/o ds
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(4.29) B(5 [ bexan-axw -7 [ e a)
exp (5 [ bOx(@)-ax - 3 [ bPCX) dt)
exp (s(5 =) [ BECKE) ) (X))

Now we apply the generalized Hélder inequality to (4.29). Let m be an
integer satisfying m > r. Then, observing that

1 1 1 1 1
4. —_ 4 = - = o -
(4.30) 2m+2r+(2r 2m)+r’ 1
we have
Q7 f(z)]
2—n—1/2

1 2n+l
< [ ds / dA
/0 (\/5— 1 /2-n-1

G [ wexey-axco-5 [ prcxe)a)])

gn+1 2—n-1/2
(ol @
. r 1/2r
-Er[exp (rs/o b(X(t))~dX(t)—rzs/0 |b|2(X(t))dt)])
(4.31)
on+1 2-n-1/2
{C =T
B, [exp (% /0 blE(X (1)) dt) |

2-—-1!—1/2

2n+1
' (ﬁ— 1 /2

If we use (4.7) with § = 2r, we can conclude from (4.31) that for z € A4,,,

Q% f(z)|”

1/2m
.E,

—

>(1/2r—1/2m)

1/
dA Er[|f(X(m))|"]) :

2—11—1/2

o 2n+1
<Clflil 5= .. &
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(4,32)
1 T 1 T 2 2m r'/2m
B3 [ pexey-axw - [ wreeoya)”])

2—»—1/2

2n+1 O
' (\/i —1 /2

‘E, [exp (-"12%”21_—;—12 /0 ' |b|2(X(t))dt)]

)r'(l/2r—1/2m)

where C is a universal constant. Observe now that
£((5 [ "b(X(1) - dX(8) - 3 / “brex () dt)”]
(4.33) <& |( /0 "b(X(2)- ax(1)""]
+ g B[ [ wPcxana)™].

It follows from (4.7) that there exists a constant C,, depending only on
m such that

B.[( [ b axw)”]

(4.34) ) )
gcmEz[(/o |b|2(X(t))dt) ]

We can assume without loss of generality that 2m > r'. Hence if
we integrate (4.32) with respect to = over A, and apply Holder with
exponents 2m/r' and 2m/(2m — r') we obtain the inequality

' '
1Q=SlI7 < C Il
2—n—l/2

n+1
' ( 2 1/ @
2—-7:—1

V2 —
3 du(e) B[ ( | e a)”

+ ([ wrcxeya)™)

2—n—1/2

-</ndp(x)(;f_:ill/rn_l d\

r'/2m
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(43 mr(2r — 1)
-E, [exp (m—

)] ) Y u ) T

Y " IbP(x()di

h

for some constant C' depending only on m. It follows from Jensen’s
inequality that

2—n—1/2

2n+1 I
(\/i— 1 /2

430 B e (T / b (X (2)) dt)Dm o

2(m —r)
2n+1 2—n—1/2 r \
< <
<53 /2_ ) E,[exp (a/o Ib)| (Y(t))dt)]
where
_mr(2r—1) 2m  r'(m—r)
(4.37) 2(m —r) max {1’ 2m —r' 2rm } ’

It follows from Theorem 1.1.b) of [1] that if ||b||3, < € and ¢ is suffi-
ciently small depending only on «, then

2—n—1/2

gn+1
(4.38) V2-1 /2—n—1 @ T
./An dp(z) E;{exp (a/o |b|2(X(t))dt)] <o,

On the other hand by the same argument one has

2—n—l/2

nt1
g B
(4.39) / dp(m)Ex[(/or |b|2(X(t))dt)m

n

([ preceya)™] < oo,
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where C depends only on m. We conclude therefore from (4.35), (4.38),
(4.39) that

(4.40) 1@ sl < éllfll-

provided ¢ is sufficiently small. The inequality (4.25) follows directly
from this.

Lemma 4.3. Let p, be the density (4.11), and 1 < r < oco. Then
for any &6 > 0 there ezists € > 0 depending only on r, p, § such that
|Iblls,, < € tmplies the inequality

(4.41) llpn — 1| < 6, forall neZ.

PROOF. From (4.12) we have

pn-1—1=Thpp—1
(442) = Ippn + ann -1
= Pn(pn - 1) + Qn(Pn - 1) +Qn1

Hence by Lemmas 4.1 and 4.2 we have

(4.43) pn-1 = Ulr < vllon =1l + & [lpn — Lll- + &',

where §' can be chosen arbitrarily small depending on €. Since v < 1
we can therefore have v + 8’ < 1. It follows then by induction from
(4.43) that for any M > n one has the inequality
M ¢

.44 n— 1 < gHyM-n -1}y + ——m——— .
(448)  llpe= 1l < O+ M low = L + T
Letting M — oo and choosing ' such that §'/(1 — v — §') < § yields
the inequality (4.41).

Now let us return to the operator K on functions g € C*(Qg)

defined by (3.18).

Lemma 4.4. Suppose g € Qr\Qr/2 and g(z) > go > 0 for [z — zo| <
ro, g(z) > 0,2 € Qr\Qr/2. Then there exzists a positive constant
¢(ro/R) depending only on r¢/R such that

(4.45) K g(0) 2 ¢(ro/R) 9o,
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provided ||b||3 , s sufficiently small.

PROOF. With p(z,y) defined as in (4.2) we have the identity

R
Ko0) =% [ L [ p0.94:)ds
I

(4.46) zl=A

2

=R p(0,2) g(z)dz.
Qr\Qr/2

Since g(z) > 0 for z € Qp\Qpg/, it follows that
2
{z€QRr\QR)2:|z2—20|<70}
For z,y € R® with z # y we define a function &(z,y) as follows: For

A > 0 let Oy be an arbitrary open subset of the sphere {z : |z] = A}.
Then

/ &(z,y) dy = probability that the drift
(4.48) y=z€0x process started at x
exits the sphere |y —z| = A
through the set = + O, .

It is clear that ¢ and the previously defined function p are related by
the equation

(4.49) p(0,y) =£(0,y),  y€R\{0}.

Let N be the integer N = [4|zq|/r0], where [] denotes integer part. For
j=1,...,N —1, let z; € R?® be given by

(4.50) zj=j—+—
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Next we define zy by
7‘0 1120
4 Jzol

For j =1,...,N, § > 0, let Bjs be the ball of radius éry centered
at zj. We first choose § < 1/8. This ensures that the spheres Bj s,
j =1,...,N are disjoint. Let K(§é) be given by

(4.53) K(6) =sup{|z —w|/ro: 2z€ BN-15, w € Bns}.
It is clear that

(4.54) K(6) < % +26.

Now for arbitrary z € Bn_1 6 let y satisfy

(455)  ly—z=K@®)r, ool = Iyl <laol + 2.

Then we need to choose é sufficiently small such that if y satisfies (4.55)
then |[y—z¢| < ro. This is clearly possible provided § is chosen to depend
on the ratio ro/R < 1. We then have the inequality

(4.56) / p(0,2)ds 2 (47“ 6 7‘0 H/ dy]

{2€92R\Q R 2:|z—20]<70}

'f(owl)f(yl,?h)'"f(yN—x,?!N)-

The inequality (4.56) can be explained as fellows: First constrain the
integration on the left hand side to the surface of the sphere |z| =
|zo| + €, where —r¢/8 < € < r/8. Second, constrain the variables
y],] = 1,...,N to lie on surfaces |y;| = €1, |y; — yj—1| = €5, ) =
, N, where
ro(1/4—06) <ey <ro(l/4+6),
(4.57) ro(1/4—-26)<ej<ro(1/4+26), 3=2,...,N—1,
(K(6)—46)ro <en < K(6)ro .

Then we have the inequality

N
@58) [ o021 2 (T] [ o) 0,00 &us,) - Eum—s,uw).
j=1
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This is true because the left hand side is the probability of the drift
process starting at 0 exiting the sphere |z| = |zo|+ ¢ where it intersects
the ball |z—z¢| < ry. The right hand side gives the probability of a set of
paths which accomplish this. The second condition on é following (4.55)
guarantees that any path included on the right hand side exits through
the intersection with the ball |z — z9| < 9. The inequality (4.56) is
obtained from (4.58) by doing the radial integrations and observing the
constraints (4.57) on the¢j, 7 =1,...,N.

The inequality (4.45) will follow if we can show that

1

(4.59) P

/ £(yj-1,y5)dy; >y >0,
Bj,&

where v depends only on ||b||3 , . However, this is an immediate conse-
quence of Lemma 4.3.

The previous lemmas enable us to prove a maximum principle for
the solutions of the elliptic equation (1.2). This will then imply unique-
ness of the solution as given in Theorem 1.3.

Theorem 4.5. Suppose b satisfies the conditions of Theorem 1.3, u
18 ¢ Holder continuous function on Qr with distributional Laplacian
Au mn M3 for somer, ¢, 1 <r <p, 3/2< q < 3 and u satisfies the
equation

(4.60) —Au(z)—Db(z) - Vu(z)=0, for almost every = € Qg .
Then if u has a mazimum interior to Qg the function u is @ constant.

PROOF. Suppose u has a maximum at an interior point o € Qg. By
the conditions on b there exists an open ball B(z¢,d) centered at zg
with radius ¢ such that the closure is contained in (g and ||b|j3, < ¢
when b is restricted to B(z¢,6). We can therefore apply Proposition
3.2 to u on B(zg,6) to conclude that

(4.61) u(zo) = Ksu(zo),

where K5 is the operator (3.18) for the ball B(zo,6). It follows from
(4.61) that

(4.62) 0= Ksg(zo),
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where g(z) = u(zo) — u(z). Since g(r) > 0, z € B(zo,¥6) it follows
from Lemma 4.4 that g(z) = 0 for all z,6/2 < |z — 29| < §. One can
further deduce that g(z) = 0 for all + € B(z,6). The result then is a
consequence of the connectedness of 2.

5. Nonperturbative existence.

We shall complete the proof of Theorem 1.3 in this section. The
basic input is that the boundary value problem (1.2)-(1.3) has a C*
solution u(z) provided b and f are C*° functions. This is a well known
result [6]. We then prove existence of the solution to (1.2)-(1.3) for
nonsmooth b and f by smoothing b and f with approximate Dirac §
functions and taking limits.

Let Qo be the smallest cube concentric with Qg and containing
it which has side of length 27" n, an integer. Suppose now b €
M},e > 0 and N,(b) < +oo. Then there exists a unique minimal
integer m.(b) > ng such that every dyadic subcube Q C Qo with side
of length 27 ™« has the property

(5.1) / Ib? de < &? |Q'[P/3 |
QI

for all dyadic subcubes Q' C Q.
Our main theorem in this section is the following

Theorem 5.1. Suppose b and f are C™® functions and u is the solution

of the boundary value problem (1.2)-(1.3). Then there ezists € > 0
depending only on p, ¢, v such that

(5.2) lulloo < C1 R273/% |||y, exp(C2 me(b)/mo),
for some constants Cy, C; depending only on p, q, 7.
Next we consider a possibly singular b € M3 with N(b) < +o0

for some € > 0. Let » : R®> — R be a nonnegative C* function such
that

(5.3) /ma p(z)dr =1, suppe C {z : |z| < 1}.
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For § > 0 let ps(z) = 6 3p(z/6), = € R®, and put bs = s x b. Since
b€ Mg it is clear that bs is a C*° function. We choose é to satisfy the
inequality

(5.4) §<bo=2""1,

Let yeR? be an arbitrary vector satisfying |y| < § and Q C Qo be a

dyadic subcube with side of length 27™<. Then for all dyadic subcubes
Q' of @ we have

65) [ Ibe+uPde <8 QP < 5oy QP
Q'

since the translate of Q' by y intersects at most 8 dyadic cubes with
side of length 26,. We see from Jensen’s inequality that

(5.6) / Ibsl? dz < (8¢)? QP2
QI

for all dyadic subcubes Q' of the cube Q. It follows in particular that
(5.7) mae(bs) < me(b),

provided é satisfies (5.4). We shall need the following

Lemma 5.2. Let R >0, g : Qp\Qpr/2 — R an L™ function and b be

a C drift. Let ) be the first hitting time for the drift process started
at z,|z| < A, on the sphere {y : |y} = A}. Define v(z) for |z| < R/4 by

R
(5.8) v(z) = % /R ., E,[9(Xn(72))] dA.

Then there exists € > 0 depending only on p > 2 such that, if |b||s, <€,
the function v(z) is Holder continuous for |z| < R/4. In particular v(z)
satisfies the inequalities

(59 ol <lgler (=) ~o(w)] < Cligloo (224",

where C and a > 0 depend only on p, €.
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PROOF. The first estimate in (5.9) is immediate from the definition
(5.8). To obtain the second estimate we use the method employed in
Section 4 to prove Lemmas 4.1 and 4.2. For z, y satisfying |z], |y| < R/4
we choose (z +y)/2 as our origin and define regions A, as in (4.8). Let
n; be the smallest integer such that |z — y| > 27™~! and ngo be the
smallest integer such that R/8 > 27"~ If n; < ng then the second
inequality of (5.9) follows from the first inequality. Hence we shall
assume n; > ng + 1. For n < ny let p, , be the density corresponding
to (4.11) on the set A, for the drift process starting at . This can
be constructed exactly as in Lemmas 4.1 and 4.2 by using spherical
shells centered at z up to radius 27" ~2 and then making the next
transformation to the spherical shell A,, centered at (z + y)/2. We
conclude that for € sufficiently small there is an inequality || pz n, || < Cr
where the constant C, depends only on r > 1. Since there is a similar
inequality for p, n, we conclude that

(510) “Pr,m - Py,nq ”r <C: )

for some suitable universal constant depending only on r > 1. Now by
Lemmas 4.1 and 4.2 one has the inequality

(5.11) lpz,n = pynlls < Y™ 7" Cr nzny,

where v is a constant depending only on ¢, r, 0 < v < 1. In particular
(5.11) holds for n = ng. Next we can use the method of Lemmas 4.1
and 4.2 to estimate the densities of the drift process starting at z and y

on Qr\Qpg/s. If we denote these by p., py it easily follows from (5.11)
that

(5.12) lloz = pyllr < 4™ 7™ Cy .

Since

(5.13) @)= [ ele)alz)dutz),
Qr\Qg/2

where

(5.14) du(z) = %
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it easily follows from (5.12), (5.13) that the second inequality of (5.9)
holds with a defined by

(5.15) - 27% =4, where 1/2<y<1.

This completes the proof.

PROOF OF THEOREM 1.3: EXISTENCE. We shall use Theorem 5.1 and
Lemma 5.2 to construct a solution of the boundary value problem. Let
€o be chosen so that Lemma 5.2 and the perturbation Theorem 1.1
holds for ||b||3,, < &o, while Theorem 5.1 holds for € = ¢¢ . We restrict
€ so that € < €9/64. Now for é satisfying (5.4) let us be the solution
of the boundary value problem (1.2)-(1.3) with drift bs and observable
fs=ws*f, f € Mi q>3/2. In view of (5.7) and Theorem 5.1 we
have the inequality

(5.16) luslleo < C1 R*7*/9 || £l exp(Ca me(b)/m0),

since || fsllg,r < | fllg,r -
Now let z¢ be an arbitrary point in 2z and consider bg restricted

to the ball centered at z, with radius 69, B(zg,09). It follows from
(5.6) that ||bs||3, < €0 . We consider = in the ball B(z,d/4) and for
b0/2 < A < &g let T be the hitting time for the drift process started at
z on the boundary of the ball B(xzo,A). Then if 7 is the hitting time
on the sphere 9Qr we have

us(z) = E, /OT fg(Xb6(t))dt]
(5.17) —E, /OA f,s(Xb,(t))dt] +EI[/T fa(Xb6(t))dt]

- E, /0 fg(Xbé(t))dt] +E, [ué(xbé(n))] :

Integrating with respect to A we have then for |z — z¢| < 60/4 the
representation

u(e) =5 [ " D / " fo( (1) ]

0 Jéo/2
(5.18) 2 [P

+ = d\ E, [ua(Xbo(Tz\))]
0 J6o/2

= ws(z) + vs(z).
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In view of Lemma 5.2 and (5.16) we have vs is Holder continuous and

lvs(z) = vs(y)l

(5.19) <C (_._lm(;; yl)aR2"3/q|lf||q,r exp(C2 me(b)/no).

It follows now from Theorem 1.1 that ws is Holder continuous and

T — B o_
(5.20) |lws(z) —ws(y)| < C (_I__(;O_yl) 53 3/q 1 fllgr »

where the exponent § depends on ¢ > 3/2. Hence the functions
us, 6 < 8o , form an equicontinuous family, which by (5.16) is uniformly
bounded. The Ascoli-Arzela theorem implies then that there exists a
sequence 6,, n > 1, with lim, o 6, = 0 such that the us, converge
uniformly to a limiting function u. The function u must necessarily
be Holder continuous in view of the uniform Holder continuity of the
functions ug.

We shall show that u is the solution to the boundary value problem
(1.2)-(1.3) in the sense of Theorem 1.3. Evidently a) of Theorem 1.3
follows immediately from our preceding work. To prove b) we consider
equation (5.18) again. Letting Ks be the operator K of (3.18) adapted
to the ball B(xz¢,d¢) with drift bs and Ts » be the integral operator on
Mg with kernel (3.4) corresponding to the drift bs and ball B(zg, ),
we can write (5.18) as

2 b0 -1 -1 e
(521) u,;(a:) = 6_0‘/6 p d/\(—AD',\) (I - Tg’,\-) fg(.’l,‘) + I\5(U5) .

Now we take 6 = 6,,n > 1, in (5.21) and let § — 0. Since bs converges
to b in Mp3 and fs to f in M7 and u; is uniformly Holder continuous
as 6 — 0 it follows that

2 [b
(5.22)  u(z)= —63/6 , A\ (=Ap ) "I = Tox)  f(z) + Ko(u),

where K, and T ) are the operators which correspond to the drift b.
It follows easily from (5.22) that the distributional Laplacian Au(z) for
|z — zo| < p/4 is given by

6o
(5.23)  —Au(z)= 53 | A =Ton)7f(2) = Aa(uw).
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Proposition 3.1 and Theorem 1.2 then imply that Au € MJ. Finally
Proposition 3.1 and the perturbative existence argument at the begin-
ning of Section 3 imply from (5.23) that

(5.24) —Au(z) — b(z) - Vu(z) = f(z), |z — zo| < 60/4,

where Vu is the distributional gradient of u. The proof of Theorem 1.3
is complete.

We turn to the proof of Theorem 5.1. We shall pursue the same
method we used in Section 4 to prove uniqueness. Let f : R® - Rbea
C® observable and b : R®* — R? a C* drift. For any 5 > 0 we define
a function py ,(z,y) on the set {(z,y) € R* x R®: |z| < |y|} as follows:
Let A > 0 be arbitrary and 7, be the first hitting time for the drift
process started at a point z,|z| < A, on the sphere |y| = A\. Then for
any continuous function g on the sphere |y| = A, one has

/ pra(z,y)9(y) dy
(5.25) lvl=2

= B oK) X (1320l = [ A1) )]

where x is the Heaviside function, x(s) = 1, for s > 0, x(s) = 0, for
s < 0. It is clear from our definition that py , is an increasing function
of n and

(5.26) nll’ngo Pf,n(l', y) =p(z,9),
where p(z,y) is defined by (4.2). Let A, be the region (4.8). For any

integer n € Z we can define ps, » : A, = R in analogy to p, : A, = R
given by (4.11). Thus we define ps, » by

(5.27) pran(z) =47 |2 pry(0,2), T € An.

Lemma 5.3. There ezists € > 0,C > 0 depending only on r, p, ¢ such
that ||b||s,, < € implies the inequality

C
(5.28) lon = Pl < 7
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PROOF. Since ||pa|l1 =1, ||pg,n,nll1 < 1, the inequality (5.28) holds for
small 7. Therefore we may assume that 7 is large. Now we have

211
llon = psa.nlli = 751
—n41/2 -~
(5.20) | C By [ 1Ay de=n 3211, .

From Theorem 1.1 and (1.11) we have that if ¢ is sufficiently small then

(5.30) Eo[ /0 " |f|(Xb(t))dt] S C A3 Sl

for some constant C; depending only on r,p,q. Hence (5.29), (5.30)
and Chebyshev’s inequality implies that

9-n+1/2

pAS c, G
5.31 n n < / d\ — = —.
( ) llp Pfmnllt \/i 1 )y 1 1

The proof is complete.

To complete the proof of Theorem 5.1 we follow the argument of
Lemma 4.4. Thus for z,y € R® we define a function ¢ ,(z,y) in analogy
to the function {(z,y) of Lemma 4.4. For A > 0 and O, an arbitrary
open subset of the sphere {z : |z| = A} we define

/ €fq(z,y)dy = probability that the drift
y—z€0, process started at z
(5.32) exits the sphere |y — z| = A
through the set  + 0, and

/0 A [FI(Xp(t) dt < X229\ flg,r .

Now let z¢ be an arbitrary point in Qg and 7 be the time for the drift
process starting at x¢ to hit 90Q2g. We define points z;, j = 0,1,2,...
by

(5.33) zj=x0 4352 ™ ®k,
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where k = (0,0, 1) is the unit vector in R? in the positive z direction,
me(b) is as given in the statement of Theorem 5.1. Let B; s be the ball
of radius §2-™¢(®) centered at zj,j = 1,2,... We choose § < 1/2 so
that the balls B; s do not intersect. Then, in analogy to the inequality
(4.56) wehave

Pro ([ 11080001 dt < N 0220 1,

N
(5.34) S (ﬁ)N(g/BM dyj)

“Er (o, y1) Epn(y1,y2) - Erm(yn=-1,yn),

where

(5.35) N = Tfﬂ)l +1 A = 9—me(b)+1

o

ki

Lemma 4.3 and Lemma 5.3 imply that
: 1
. — _1,y;)dy; > .
(5 36) 226 \/l;j,‘s Ef,ﬂ(y] liyl)dy1—7>0

where v depends only on p, g, r, ¢, provided 5 is sufficiently large. We
conclude then from (5.34) that

(630 Po( [ 1A d < N2 flg,) 2 4",
whence it follows that
T N
(538). sup Po( [ 1FIKu()dt > N X )y ) <197,
T€QR 0

where 0 < v < 1. The estimate (5.2) follows from (5.38) and the
Markov property. In fact

o)) < Bx [ [ 1710 ]

(5.39) < N a3 fllgr 31— 4N)*
k=0

=Ny V2239 fllor s
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since (5.38) implies by the Markov property that
(5.40) sup PI(/ |fl(Xb(t))dt > an/\z_:;/q' "f”q,r) < (1_,7N)k ,
z€QR 0

for k =1,2,... It is finally easy to see that
(5.41) N~V \273/9 < ) R*3/9 exp(Cym.(b)/n0),

for some constants Cy, Cz depending only on p, ¢, .

6. L>°-bounds.

We shall prove Theorem 1.4 here by refining the estimates already
proved in [1]. It is clear we may assume b and f are C* functions on
Qr. Hence the drift process Xp(t) is defined and also the expectations
of f we shall be considering.

Let Qo be a cube concentric with Qg having side of length 27",
where ng is defined by (1.22). We have the following

Lemma 6.1. Suppose for some integer m > 0, the drift b satisfies the
inequality

(6.1) / blP do < e? |Q'/°
Q

on all dyadic subcubes Q C Qo with side of length 27", n > m + no.
Let u be the solution of the Dirichlet problem (1.2)-(1.3). Then if € 1s
sufficiently small, depending only on p > 2, there ezist constants C
depending only on p, q, r, and Cy only on p > 2, such that

(62)  Jullw < Gy R fllgr sup exp (C2 3 ang4s(2))

i=0

PrROOF. If m = 0, the perturbative Theorem 1.1 applies and the esti-
mate (6.2) is just the same as (1.11). Therefore we may assume m is
large. In that case we modify the proof of Theorem 1.4 of [1]. Consider
the function £(z), z € Qg, given by

(6.3) 6(z) = B, exp (= 2 [ 1F1(Xu(®))dt)] |
K Jo
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where 7 is the time for the drift process starting at z to hit Q. The
parameter y is given by the formula

(6.4) p=CRfllgr,

where the constant C is to be chosen large, depending only on p, ¢, r.
Let U be the set

(6.5) U={y: 27m ™1 < |g—y| <27 "0},

We define a density p : U — R by the relation

menet [ v g fo X e (=2 [ 15100000 )]
(66) = [ oty atw) dy,

for all continuous functions g : U — R. Here 7) denotes the hitting
time for the drift process started at = on the sphere {y : |z — y| = A}.
From Sections 2 and 3 it is clear that

(6.7) / p(y)dy > % ,

p(y)<280m+ro)
provided ¢ is sufficiently small depending on p > 2, and C in (6.4) is

chosen sufficiently large depending on p, ¢, r.
It follows from (6.3) and (6.6) that

1 T
68) &)= / dy p(y) By [exp (- = / FIXu(t)) dt) ]
U H Jo
Now we apply the same argument as in Section 5 of [1] to conclude that

(6.9) £(z) 2 n(z)?,

where
1) = [ du o) By [ew (- 5= [ 110X at

(6.10) 0
-1 [ prayar)],
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and X (t) is standard Brownian motion. Applying the same argument
as in the proof of Theorem 1.1.a) of [1] to (6.10) we obtain the inequality

(6.11) 77(:6) 2 ’;' exp ( - C ianoﬂ(l‘)) )

where C; > 0 is universal provided C in (6.4) is chosen sufficiently large
depending on p, ¢, r.

Evidently (6.11) implies a lower bound on £(z). The inequality
(6.2) follows from this bound and Lemma 5.1 of [1].

Next we consider the probability of hitting a dyadic subcube @,
of Qo with side of length 27" n > ng, before exiting Qg .

Lemma 6.2. For n € Z, let Q,, be the region
(6.12) Qn={zeR®: 27" < |z| < 27"},

For z € 2, let P, be the probability that the drift process started at
z exits Q, through the sphere {y : |y| = 27"}, Let § be a number
satisfying 0 < 6 < 2/3. Then if |z| = 2™™ there 1s a constant C
depending only on 6 < 2/3 and p >2 such that

(6.13) P, > § exp(—C an—1(0)).

PROOF. Let x be the function defined on the boundary 052, of §,, by

1, if 2| =277
(6.14) x(z) = '

0, otherwise.

We define a function {(z) analogous to (6.3) by

(6.15) §(z) = Ez[x(Xn(7))],

where 7 is the first hitting time on 9%, for the drift process started at
z € Qp. Hence {(z) is the probability of exiting 2, though the outer
sphere. We wish to generalize the inequality (6.9). Let K > 0 be some
arbitrary constant to be specified later and put

e

(616)  n(e)= B [x(X(r) exp (- / ' bE(X(8) dt)],
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where X (t) denotes Brownian motion in (6.16) and 7 is its first exit
time from Q,. Then for any s > 1,1/s+ 1/s' = 1, we have by Holder’s
inequality and the Cameron-Martin formula.

()= Be [x(X(7) exp (55 [ bX(0)-dX(0)
-+ [ preya)
-
. exp (— 5 /0 b(X(t)) - dX(t)
-1 &= [Mpporeya)]

< 6@ B [oxp (52 [ b(X(E) - ax(0)

- S =2 [Tproena)] "

(6.17)

In view of (4.7) we have the inequality

(6.18) n(@) < E@)°,
provided
Y| s\2
Hence if we choose K by the formula
(6.20 K = L
* ) - s — 1 I

then the inequality (6.18) holds. Note that K diverges if we let. s
approach 1.

We can estimate 7(x) from below in exactly the same way Theorem
1.1.a) of [1] was proved. In fact we have the inequality

[ ]
(6.21) n(z) > E.[x(X(r))] exp ( ~CKV* Y am(z)> ,
m=n-—2
where the constant C' is universal, provided z lies in the region

(6.22) 272 < g < 272,
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It is a simple matter to compute E;[x(X(7))]. In fact we have

4 2—-n—l
2 (X =—(1-=—).
(6.23) EX (=3 (1- “5r)
Now consider an arbitrary point o, € 2, with |z = 27". Choose

s > 1 sufficiently small so that !/ < 2/3, and let B be the ball

(6.24) B= {:1: : |z = zo| < min {2—"(%),2-"(1 - 2—1/2)}} .

It is clear from (6.23) that B is contained in the region (6.22) and
(6.25) E.[x(X(r))] >é*, =zeB.

Let X (t) be an arbitrary continuous path with X(0) = z¢, X(t) € B,
t < 7, and X(7) € 0B. We claim that there exists an + = X(t) for
some t, 0 < ¢t < 7, such that

oo

(6.26) > am(z) < C1an-1(0),

m=n—2

where the constant C; depends only on 61/* < 2/3 and p > 2. Here
we are taking b(z) = 0 for ¢ ¢ Q, in our definition of a,,(z). The
inequality (6.13) clearly follows from (6.18), (6.21), (6.25), (6.26).

We are left to prove (6.26). Let C; > 0, 8 be constants with
0 < B < 1 and consider the sets

(6.27) Sm={z€B: am(z)>C1 ™ "an-1(0)}, m>n—2.

We shall assume that

(6.28) (X(): 0<t<r}C O S -

m=n—2

Otherwise there exists a point x on the path X(¢) in the complement of
all the sets Sy, m > n—2, in which case (6.26) clearly holds since § < 1.
For each = € Sy, let D, be the open ball centered at z with radius 27 ™.
From (6.28) it follows that the sets {D; : ¢ € Sy, m > n — 2} form an
open cover of the path X(¢), 0 < ¢t < 7. By compactness of the path
there exists a finite subcover I' = {D; : 1 < j < N} for some integer
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N. For each integer m > n — 2, let I, be the subset of I' consisting
of balls with radius 2~™. Let D be an arbitrary ball and D the ball
concentric with D but with three times the radius. Then there exists a
subset I',, C T,, of disjoint balls such that

(6.29) U pc U D

DeT'm D€l

Since the balls in T',,, are disjoint it follows from the definition (6.27) of
Sm that the cardinality |I'm| of the set Iy, satisfies the inequality

Lol (Cy B™ ™ ayq(0 sz'"(s"’)/ bJ? dy
(6.30) I (Cy 1(0)) in l

< 9(3-p)(m+1—n) an—l(O)p ,

which implies the bound,

- 23—=p ,93-P\m-n
. <
(6:31) Pml < 7 ()

We choose 3 so that
2%-p
3P

This is possible since 2 < p < 3. It is clear that for any point = on the
path X(t), 0 <t < 7, one must have the inequality

(6.32)

< 2.

oo ~ 2‘—71

(6.33) e —zol < Y 6:27" Tm| < A7,
m=n—2 1

where A depends only on J satisfying (6.32). Since X(7) lies on the

boundary of the ball B in (6.24) the inequality (6.33) is violated for

z = X(7) provided C) is chosen sufficiently large. Hence we have a

contradiction to our assumption (6.28). The proof is complete.

Lemma 6.3. Let Sy, Sy,..., SN be a set of concentric spheres with radii
To,T1,.--,TN Satisfyingrg <r; <ry < ---<ryn. Forj=1,..., N—-1
let gj(z,y) be non negative functions of x € S;, y € Sj_y satisfying

'(6.34) 0< / gi(z,y)dy <g; <1, reS;,

Sjl
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for some positive numbers q1,...,qN-1 .

Suppose now the gj(z,y) are probability density functions for a
stochastic process Y (t) with continuous paths in the following sense:
For any open set 0 C S;_1,

Prob {Y started at x € S; exits the region

6.35
( ) between S;_, and Sj;, through 0} = /qj(x,y) dy.
0

Let . € Sn—m for somem, 1 <m < N — 1, and P, be the probability
that Y started at x exits the region between Sy and SN through Sp.
Then there is the inequality

1+pN—1 +PN—1 PN -2 4ot H DPN—j
gN-1  4N-1 gN-2 j=1 IN=j
(639 i PN-1 | PN-1P P
1+ -1 + -1 N—2+.“+ N—j
gN-1  4gN-1 gN-2 j=1 IN-j

where the p; are defined by p; =1—¢q;,7=1,...,N —1.

PROOF. Observe that the right hand side of (6.36) is just un_., where

Unp,n =0,1,..., N is the solution of the finite difference equation
Up = Pp Un+1 + ¢n Un—1, 1<n<N-1,

(6.37)
up =1, uny =0.

Hence the lemma merely states that P, is bounded by the probability
for a random walk on the spheres S;, 7 =0,...,N, with transition
probabilities determined by the upper bound ¢; in (6.34),7 =1,..., N-1.

To prove the lemma we first consider the case when N = 3. For
z € 51 U Sy let u(x) be the probability that Y started at z hits S
before hitting S3. Then u(x) must satisfy the equations

u(z) = / 2z, y)u(y)dy, TE€S5,
(6.38) %
u(:c>=/5p1<m,y>u(y>dy+/ a(zy)dy, €S,

So
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where p;(z,y) is the probability density for the process started at = € S;
of hitting S before So. It follows from (6.38) that

wo)= [ | / e, )Py, ) u(z) d dy

(6.39)
+[ [ aevawadd, ses
S1 JSo

Putting u; = sup,¢g, u(z) it follows from (6.39) that

(6.40) ug < sup A(z),
IES;

where

//qz(z,y)ql(y,Z)dzdy

S JSy

1—/ / a2(z,y)p1(y,2)dz dy
S1 J8S,

Using the fact that for any y € 54,

(6.41) A(z) =

(6.42) /S pi(y,2z)dz =1 —-./s q1(y,2)dz,

we have that

) 1+/S qz(fc,y)dy((/s qz(w,y)dy)_1 —1)

(6.43) =
Ale) /5 /S 92(z,y) 1(y,2)dzdy

Using (6.34) for 7 = 1, we have from (6.43) that A(z) satisfies the
inequality

(6.44) A(lm) >1 +q—11 <</51 qg(x,y)dy)_l - 1) .

Next, applying (6.34) for j = 2 to the right side of (6.44) yields

1 1 1 P2 P2 1
6.45 =21t (=-1) =142 20
( ) A(z) 91 \q2 ) 92 92 @
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Inequality (6.45) together with (6.40) implies (6.36) for N = 3, m = 1.

Next we consider the case N = 3, m = 2. From (6.38) we have

w0 = [ [ nen ) ue)dsdy
(6.46) 52 751
+/ a(z,y)dy, zT€S5.
So
Setting u; = sup,¢g, u(z) we obtain from (6.46) the inequality

(6.47) uy < sup B(z),
IESl

where

/ q1(z,y)dy
So

1~/ / p1(z,9) q2(y,2) dz dy
S, JS,

Using (6.34) with j = 2 it follows that

(6.48) B(z) =

/ a1 (z,y) dy / a1 (2, v) dy
(6.49) B(z) < So = o .
1—412/ pi1(z,y)dy 1—q2+q2/ q1(z,y)dy
52 SO

Next, applying (6.34) with j = 1, yields the inequality

. 1+ 2

6.50 B(z) < ! = g2 )

( ) ()_1—q2+Q2Q1 1+p_2+p_2p_1
q2 92 41

Hence (6.36) for N = 3, m = 2 follows from (6.50) and (6.47).

The situation for N > 4 can be derived from the N = 3 case by
induction. Suppose we already know that (6.36) holds for any sequence
of less than N + 1 spheres. We consider the case of N + 1 spheres
So,S51,...,Sn. Let k be an integer satisfying 2 < k¥ < N — 1, and
consider the case of the four spheres Sy, Sk—1,Sk,Sn. Let @, be an
upper bound on the probability of Y starting at z € Si_; of hitting
So before Si. Similarly let @2 be an upper bound on the probability
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of Y starting at ¢ € Si of hitting Sx—; before Sy. Then by our result
already obtained for the 4 sphere case, we have

1,1 -1
6.51 P¢5(1+—(———1)) . z€Sk.
(651 % \Q |
By our inductive assumptions we have bounds on @;, @2, namely
k-1
1 _ _ _ i
__21+Pk1+17k1pk2+“_+ Pk],
@ Qk-1  Qk-1 Gk—2 i1 Gk
N-—k
(6.52) H PN—j
— =12 .
Q2 - N—k-1 )
1+pN—1+...+ H PN-j
gN-1 j=1 dN-j

Substituting the right hand side of (6.52) into (6.51) clearly implies the
bound (6.36).

Finally we must deal with the case k = 1. Here the four spheres
are Sp, S1,52,Sn. Let @, be an upper bound on the probability of V'
started at = € Sy of hitting S; before Sy. Then from (6.47), (6.50) we
have
(6.53) P<—2
T1-Q:+Qean’

By our induction assumption we have the bound

.’EES].

1+PN—1 4+ 4+ PN—j
gN-1 j=1 IN-J
(6.54) Q; < N
1+ PN-1 + 4 H PN-j
dN-1 j=1 IN-j

Hence we have

qil(l—czz)wz:1—Q2+%(1—Q2>+Q2

N-1
PN-1 DPN—j
14 By
(6.55) qN-1 =1 IN=
>
- N-2
1+pN—l+'_.+ pN-—]

dN -1 =1 IN—;
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Substituting (6.55) into (6.53) yields the estimate (6.36) for z € S;.

Lemma 6.4. For any integer m > 0 and arbitrary € > 0 let U,, C Qq
be the union of all dyadic subcubes @ of Qo with side of length 2~ "0—™
such that

(6.56) / |b|P dz > e? |Q|'P/3.
Q

For z € Qg let Xp(t) be the process with drift b starting at x, where
we set b to be identically zero outside Qo. For X\ > 0 let 7\ be the first
hitting time on the sphere of radius A centered at z and P,,(z) be the
probability

P, (z)

6.57
(6:57) = Prob { Xy(t) hits U, in the time interval Tp)y <t < Tg}.

Then there ezists a constant 4,0 < v < 1, and constants Cy, Cs de-
pending only on p > 2 such that

(6.58) Pp(z) < C1e7P4™ sup exp (02 Zano+]-(y)) .

yEQ"O ]:O

PROOF. We can assume m large since the right hand side will be larger
than 1 if m is small. Let @ C Qo be a dyadic cube with side of length
27™0~™ and center zo . Then for any path X (t) there exists a time ¢g
with 0 <ty < 7R/, such that

| &

(6.59) | Xb(to) — zo| >

For j = 0,1,2,... let S; be the sphere centered at z(, with radius
2-m0~m+i Then from (1.22) we see that Xu(?o) lies in the region
outside the sphere S,,_4. Also the ball of radius R centered at z lies
inside the sphere S,,;;. Hence the probability Py of Xy(t) hitting
@ in the time interval 7p/; < t < 7g is less than the supremum of
the probabilities of the drift process started at z € Sp,—4 of hitting Sp
before Sp41.

Now we can use Lemmas 6.2 and 6.3 to estimate this last proba-
bility. From Lemma 6.2 we have that

(6.60) 4; < 1= 8 exp (= Cangrm—j-1(20))
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Hence the inequality (6.36) yields
1 ™ C «
(6.61) Po<A (E - 1) exp (-1——_-—5 Z a,.o+j(:1:0)) ,
=0

for some universal constant A. Here we have used the fact that b = 0
outside Q,, and that

(6.62) §7lef-1<(671-1) expl—f——é—, £>0.

Finally we estimate the number N,, of cubes Q C U,,,. From (6.56)
we have, if 0 is the center of @)g, that

(6.63) P 2= (motm)B-p) N < 27meB=P) g (0)?
whence
(6.64) N, £e?2mB-P g, (0).

Hence P,,(z) is bounded by the product of the right side of (6.64) and
the supremum over zy € Qg of the right side of (6.61). Now using the
fact that, p > 2 and 6 can be chosen as close as we please to 2/3, yields
(6.58).

Lemma 6.5. Let f € M?, ¢ > 3/2,1 <r < q. Then there exists «,
0 <~ <1, depending only on p > 2 such that

wp Bo[ [ 1G]

TEQR
(6.65)

S ORIy 309" sup exp (G ) anrs(2))
m=0 z R 7=0

The constant Cy depends only on p, q, v and Cz only onp > 2.

ProoOF. We write

B[ [ / |FI(Xo (1)) ]

(6.66)

TR

=Y Bufxn(Xn) [ IfIXu(t) ],

m=0 TR/2
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where X, is the characteristic function of the set of paths which visit
U between times 7g/, and 7 but do not visit any U, with n > m.
We use Schwarz’s inequality to obtain

e[ [ / 1F1Xu(®) ]

(6.67) o . 212
<> B [unn) ([ 1A1X(e) dt) ] Pruta) 2.
m=0 TR/2

We have now that

B Jxn) ([ 151000 )]
(6.68) TR/2

<B[( [T 1K) a) ],

where b, is equal to b on Qo\ Uj2,,4+; U; but zero otherwise. This is
true because the characteristic function x,, restricts to paths which do
not visit U2, ,U; . The drift by, satisfies the conditions for Lemma
6.1 and hence if ¢ is sufficiently small there is the inequality

sup x| [ 171(Xu,(0) i

TENR

m
< CrR*9(fl0r sup exp (Cz Zano+j($)) :
z€NR

=0

(6.69)

It follows from (6.69) using the Chebyshev inequality and the Markov
property that

sup B2 [( [ ey ar) ]

TEQR
(6.70)

<40C, R*73/9||f||,.r sup exp (Cg Z an0+j(z)) .
TEQR j=0

The inequality (6.65) follows now from (6.70), (6.67) and Lemma 6.4.

PROOF OF THEOREM 1.4. We bound the solution u(z) of (1.2)-(1.3)
by

(6.71) lu(z)| < Z:IE [/

Tr/2k—1

|FI(Xn(8)) dt]

R/2k
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From Lemma 6.5 we have the inequality

B[ [ inonm) af

R/2k
< ¢y 2~ (2-3/9(k-1) p2-3/q Nfllg.r

. — m—(k-1) - i
(6.72) m§—1 v ySElg:t exp (Cz ,-=zk;1 ano+1(y))

< €, 2-(=3/0(k=1)/2 p2-3/g
oo m
> sup exp (C2 Y angts(y))
m=0  YEUR j=0

where v; = max{y,2~(2-3/9/2}
Summing the right side of the last inequality with respect to k
proves the theorem.

Our last result shows the inequality (1.24) follows from Theorem
1.4.

Proposition 6.6. There exist universal constants C, ¢ such that for
any € >0, z € R3, there is the inequality

[ ]

(6.73) D" aa(z) H(an(z) —€) < C Neo(b),

n=-—oo

where H(t) is the Heaviside function, H(t) =1, if t > 0 and H(t) =0,
ift <0.

PROOF. For n € Z let c,(z) be defined by
1/p
(6.74) cn(z) = (2"<3—P> / |b|P dy) :
2-n-il|z—y|<2-"
It is clear from (6.74), (1.21) that there is the identity
(6.75) 27C=P) g 11(2)? + cn(2)P = an(z)?.
Let a be an arbitrary positive number, 0 < a < 1, such that

(6.76) §7=(1-a?)2°7>1.
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If cn(z) > aan(z) it is clear that
(6.77) an(z) H(aa(z) —€) < a ' cp(z) H(cn(z) — ac).

On the other hand if ¢,(z) < aan(z), then (6.75) implies that a,(z) <
6 ant1(z), and hence

(6.78) an(z) H(an(z) —€) < 6 ant1(z) H(an41(z) —€).

Putting (6.77), (6.78) together we conclude that for all values of a,(z)
there is the inequality

an(2) H(an(2) = €) < 6 api1(¢) H(ans1(z) — €)

6.79
(6.79) + a7l en(z) H(ca(z) — ae).

If we sum (6.79) over n € Z we obtain the inequality

oo

> an(z)H(an(z) —¢)

(6.80) . -
< =9 Z cn(z) H(cn(z) —ace).

n=—0oo

Now let us suppose we have a dyadic decomposition of R? into
cubes Q. For any n € Z, let S, be the set,

S,={Q:Qn{y:27" < |z —y|<27"}

6.81
(6.81) is not empty and |Q| < 2_3("+3)} .

For any € > 0 let N, »(b) be the number of minimal cubes for b
which ‘are in S,,. It is clear from the definition (6.81) of S, that

(6.82) Y New(b) < 2N.(b).

Next let us suppose cp(z) > ae. Then we have

(6.83) (ae)p <27CP 3 / |blP dy .
Q

Q€S
IQl=2"2n+3)
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Since there are at most 2!? cubes Q € S, with side of length 27 "~3 it
follows from (6.83) that one of them must satisfy the inequality

688 [ IbPdy > (aca @0y Qo

Hence if c,(z) > ac and c satisfies the inequality
(6.85) ¢ < a2-12/p 36/p=1)

then from (1.20) one must have N, »(b) > 1.
Finally we use a result of Fefferman [3]. Let ¢ > 0 be arbitrary.
Then there exist disjoint sets E, E,,..., Ep with the properties:

M
o Je=UE.

QESy J=1
b) Each E; is a subset of a cube Q; € S, .

c) / [b|Pdy < C; €? |Q;|' /3, for some universal constant Cj,
E;
j=1,...,M.
d) M < Cy(Ng,n(b) + 1), for some universal constant Cj .

We can bound c,(z) by using the Fefferman deconposition. Thus
for any ¢ > 0, we have

M

n(ap <260y [ ol ay
j=1"E;
M

(6.86) < 2" P N0 (ce)? Q)P

j=1
<Ci(ce M
£C1(ce)? Cy(Neen(b)+1).
Now if we choose ¢ to satisfy the inequality (6.85) we have that
(6.87) ca(z)P <2C (ce)P Cy Nee n(b),

provided cn(z) > a¢e. The inequality (6.73) follows from (6.80), (6.82)
and (6.87).
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