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Formulas for approximate
solutions of the 89-equation
in a strictly
pseudoconvex domain

Mats Andersson and Hasse Carlsson

Abstract. Let D be a bounded strictly pseudoconvex domain in C™.
We construct approximative solution formulas for the equation :90u =6,
0 being an exact (1,1)-form in D. We show that our formulas give simple
proofs of known estimates and indicate further applications.

Introduction.

Let D be a bounded strictly pseudoconvex domain in C*. The
main result of this paper is a weighted approximate solution formula
for the equation 3

(0.1) i00u =4,

where 6 is an exact (1,1)-form (current) in D.

The equation (0.1) is of interest mainly because of its connection to
divisors (zero sets) of holomorphic functions. Namely, to each such di-
visor there is associated a positive closed (1,1)-current and the solutions
to (0.1) are precisely functions of the form u = log | f| (disregarding for
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the moment possible topological obstructions) where f is a holomorphic
function that defines the divisor. Hence bounds on the solution u in
(0.1) proves the existence of holomorphic functions in various function
classes with given zero set §. For results of this kind, see for instance
[H], (8], [V2] and [B].

When n = 1, (0.1) is just Poisson’s equation and can be solved by
the Newton kernel (1/27)log | — z| if 6 has finite mass in D. However,
if e.g. 6 just satisfies the Blaschke condition

(0.2) /D d(¢,0D) 6(¢)] < +oo,

then one has to use a weighted solution kernel; the Green’s functions
in D, which is not explicitly given in general but nevertheless well un-
derstood, at least if 0D has some regularity.

If n > 1, (0.1) is usually solved by following a two step method
that goes back to Lelong. One first solves

(0.3) idw=0

so that wg ; = —; o, (assuming 6 real). For bidegree reasons Owg; = 0
so one can solve

(04) . Bv = wo,l .

Then u = v + © solves (0.1).

In 1975 it was proved independently by Henkin [H] and Skoda
[S] that (0.1) admits a solution in L(9D) if 6 satisfies the Blaschke
condition (0.2). This result had been conjectured for some time and
the main problem for the solution was to get L!(dD)-estimates for
(0.4). This was solved by Henkin and Skoda by introducing solution
formulas with weights that gave the desired estimate.

However, in other situations it is (0.3) that offers the greatest dif-
ficulties, as for instance in Varopoulos’ result, [V2], that there is a
solution u in BMO (0D) if @ satisfies a certain Carleson condition.

Explicit solution formulas for the LZ-minimal solutions to (0.1)
in the ball in C" were obtained in [Anl] and [An2] (L2 = L?((1 -
|¢[?)*~1d))). For appropriate choices of @ these formulas admitted
simple and natural proofs of the (known) estimates for (0.1) discussed
above. Earlier Berndtsson [B] used an explicit formula for the ball in
C? to show that (0.1) has a negative solution if § has finite mass. Re-
cently this result has been generalized by Arlebrink [Ar] to the strictly
pseudoconvex case.
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Let p be a strictly plurisubharmonic C* defining function for D
and put L = LP((—p)*~1d)) if @ > 0 and L} = L?(8D). In this paper
we use ideas from [Anl], [An2] and [Ar] to construct operators M,,
acting on (1,1)-forms 6 in D, and P, and Fy, acting on functions, such
that

(0.5) u = M,(i88u) + Pou + Fou,

where Pyu is pluriharmonic and F,u is a weakly singular integral
operator and hence somewhat smoothing; roughly F¥ M, is nicer than
M,0 and F™ maps L} into C(D) if m is large enough. If 6 is an
exact (1,1) current and ug is an Ll-solution of i00u = 6, then by
(0.5),u1 = M6 + F,ug also solves (0.1). Repeating this argument, we
get a new solution %,

(0.6) tm = Mob+ FaMob+ F2Mo0+ -+ F™ 1 M0+ F™uq .

Thus, given a starting solution ug € L), estimates of the solution u;,
are reduced to estimates for the explicitly given M,#.

We also get a similar expansion of the L2 -minimal solution of (0.1)
in terms of M,0. As a by-product we get an expression for the LZ2-
orthogonal pluriharmonic projection

I,:L2NH— D,
(H denotes pluriharmonic functions), such that
Myu = P,u+ Rlu+ R:M,u,

where P, and R}, are explicit and R, are regularizing (compact). In
particular, when a = 0, Pyu only depends on the boundary values of u,
so if u € L?(8D) has pluriharmonic extension U to D, then

U= P0u+Kou,

where K is a compact operator on L?(8D). When n = 1, Pyu is the
classical double layer potential of u, which provides an approximate
solution to Dirichlet’s problem.

In order to clarify our argument for (0.5), we conclude this para-
graph with a sketch of the proof in a simple nontrivial case, namely
when D is the unit disc Ain C, a =1 and z € 0A.
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Claim. If u is smooth on A, and z € OA, then

_ [ A=) Bu
“(z)‘/e. 1= ¢ acal

1 uQdh 1/
+2Re7r/A(1_C-Z)2 W/A (¢)dA.

(0.7)

The following argument for (0.7) is possibly not the most simple,
but it follows the general scheme in Section 3. First we write (w =

Ou/8¢)

w(Qdh |1 [ (1—[(P)zw

(1=C(2)?2  =nJ (1-C(2)(1-¢3) =Gu+ Kw.

1
(0.8) wu(z)=-—
Then we rewrite Kw as

Kw:;/(l—wcv)(z—z)m 1 [ _(=[¢P)Cw

(1-C)(1-¢z) =) (1-(2)(1~-¢z)

1 (—fgP)Fw
_7r/ 1-(z +1

An integration by parts shows that

1122
zvr/(l—cz)(l C)ac( ICF)
/ Q- P2 o +i (1= [¢P)zw
) A-a-coaet T ) -t d-Cap

(0.9)

Now we apply a trivial instance of the crucial Proposition 3.2, namely
(1-[¢P)wz = (1 = (2)wz + (1 — (2)(w,

to the last term in (0.9) and get

=_1_/ 1- ¢ u 1 [(1-[P)Zw
2r ] (1-¢z)(1-¢2) 8¢o¢ 2 ) (1-(2)?
L1 f_(A-ig)Cw

1-¢2)(1-¢2)°
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and since the last term here is I /2, we can solve for I and get

1l rA-KMzEw 1 fA-|¢(})zw
K“"?/ 1-(z +¥/ (1-(z)?
1 (1 - [¢?)? 0*u

7] G-y —¢) acac

Finally one can integrate by parts in the two integrals involving w, and
then summing up one arrives at (0.7).

To prove (0.5) in general we need suitable integral formulas to
replace G and K in (0.8). We describe them in Section 1. In Section
2 we state our main results and also point out some applications, as
e.g. L?(0D)-estimates for (0.1) and the BMO-estimate of Varopoulos.
In Section 3 and Section 4 we construct our operators and show their
relations, whereas some estimates are left to Section 5.

1. Some preliminaries.

Let D = {p < 0} be a bounded strictly pseudoconvex domain in C*
where p is a C? strictly plurisubharmonic defining function. Suppose

that ¢(¢,2) : D x D — C is C? and satisfies

(1.1) 2Re ¢ > —p(¢) — p(2) +6|¢ - 2|*
and
(1.2) e l¢=:=0p (= d¢d ==, (=z€D.

Then |¢(¢,p)| ~ |¢(p,¢)| if p € D and ¢ € D, and for p € 8D,

Bi(p) = {¢ € 0D : |4(¢,p)| < t}

and

Qup)={CeD: |¢(¢,p)| <t}

are the Koranyi balls in 8D and in D around p € 8D, see for example
the discussion in [AnC]; indeed By(p) (Q«(p)) is ~ v/t in the complex
tangential directions at p and ¢ in the last one (ones). In particular,
|B¢(p)| ~ t™ and |Q:(p)| ~ t"t1. Also, if ¢ is another function that



72 M. ANDERSSON AND H. CARLSSON

satisfies (1.1) and (1.2) then |§| ~ |¢|. We recall the following well
known estimates

- do(() 1y
(1.3) L weor= s (Sm) 0 >0

and

—p(¢ ﬂd,\c 1 a
09 [ s () @>0 oo

There is a Cl-fl_mction #(¢,2) : D x D — C™ which is holomorphic in
z for fixed ¢ € D and such that

¢(C’ Z) = (q(Cv Z), z - C) - p(C)

satisfies (1.1) and (1.2), see [F]. If we put s(¢,2z) = —¢(z,() and make
the identifications s ~ ¥s;d(; and similarly ¢ ~ £g¢;d(;, we can define,
for a > 0,

Bt = gt (55)

, / (—p)*'u[—pdq — ng A dp] A (g)" !
D ¢n+a ?

(1.5)

for functions u, and
_T(nta-1) i\
Qav() = F oy m =) (27r)
_ / (=p)*'s Aw A[—pOg — (n — 1)g A Op] A (9g)"?
D ¢(¢, z)mre14(z,() ’

for (0,1)-forms w and z € 0D. Then, see [AnB, Example 1], Q,w(z) is
the boundary values of a function Q,w(2) on D, such that

(1.6)

(1.7) QaOu =u — Hyu
and

(1.8) 0Qow =w if dw=0.
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REMARK 1. If we let o tend to 0 in (1.5) and (1.6) we get

(1.5') Hou(z) = (_éz;)n/a‘D%a;q)L
and
w0 oG e

and (1.7) and (1.8) still hold. We also notice that
H,: L} - I2nO(D)

boundedly. For a > 0 this follows by (1.4) and Shur’s lemma, whereas
for & = 0, Hj is a singular integral operator and the argument is more
involved and uses Cotlar’s lemma, see [KS].

We will use the solution operator @), above later on, but for our
primary purposes we need analogues of (1.5)-(1.8) with a modification
v of ¢ that we now construct.

To begin with we let n; = z; — (; and put

1
(1.9) —v(C,2) = p + Tpjn; + 5 Xpjknine

where p = p({), p; = Op/0¢; and so on. Clearly v satisfies (1.2) and
since p is strictly plurisubharmonic it also satisfies (1.1) near the diag-
onal A C D x D. Let x = x(|]z — ¢|) be a smooth function supported
and identically 1 near A and put

—¢;((,2) = X(Pj + -;— ijkm-) =1 =x)7; -
k

Then we define v globally by

(1.10) —v(¢,2) = (¢, 2),2 =€) + p(C).

This v coincides with v in (1.9) near A and (1.1) holds globally (with
v instead of ¢) on D x D. The main reason for requiring that v be as
in (1.9) near A is that

(1.11) v((,z):v(z,()+0(|z—(|3),
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i.e. v((,z) is almost conjugate symmetric. For further discussion of
v((, z), see Propositions 3.1 and 3.2 in Section 3. We also put s(¢, z) =
—q(2,() so that

—(S(C,Z),Z - C) + P(z) = ’U(Z,C) = v((vz) + 0("7]3) .

Again identifying s and ¢ by (1,0)-forms, we can build the operators H,
and Qq, ¢f. (1.5) and (1.6). Then (1.7) still holds, but since Hou no
longer has a holomorphic kernel, (1.8) cannot hold in general. However,
since ¢((, z) is holomorphic in z near A, we have, ¢f. Example 1 and
the proof of Theorem 1 in [AnB],

(1.8") 0Q.w =w + Xyw, if ow=0,

where

Xodu= [ 0((=p)7) ABu= [ O((=p)" )

and O((—p)*) denotes a smooth kernel which is O((—p)®) and has
bidegree (0,1) in z (for o = 0 the last integral is over the boundary).
Since clearly X,w is O-closed if w is, we can apply any reasonable
solution operator for 9, e.g. Q4 from (1.6), to X,w and then obtain
new operators Lo, such that

OLw = 0Quw — w,

and L, such that B o ~
OLou = 0Qo0u — Ou.

Moreover, it follows from e.g. Section 5 that £, and L, have smooth
kernels that are O((—p)®) and O((—p)*~!), respectively. Finally, we
put

(1.12) Kow = Qouw — Low, Goqu=H,u+ L, u.

Then

(1.13) Kqa0u=1u—Gau

and

(1.14) OK o w =w if Ow=0.
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Moreover, G, has a holomorphic kernel and maps L2 — L2 N O(D)
boundedly, since H, does. An important consequence of (1.11) (and
(1.12)) that we need later on is that (letting small letters denote the
corresponding kernels)

ga(c,z) - go{(za C) ~ ha(C,z) - ha(Z,C)

(1.15) - P
= ool

which makes it a weakly singular kernel and hence represents a (some-
what) smoothing operator (and a compact operator on L2).

2. Main results.

With the notation introduced in Section 1 we can describe the
boundary values of our solutions for 9. However to describe them for
z € D we also need the following notation. If « > —1and ({,z) € DxD
we let

a+1 (1—|r])>dX(7)
(21) ha,ik(C,2) = T /,;Kl (1—aF)i(1—ar)x’
and if a = -1,
, ' ) = 1 do(T)
(21 ) h—l,],k(Ca ) T /rl:l (1 — a?)j (1 — C_lT)k )
where
.z - VOO

v(¢,2)
Because of (1.1), |a| < 1 with equality if and only if { = z. Also hq j &
1if z or ¢ is on OD. Moreover, one easily verifies that hq jo = ha,0k
1, hajk ~ (|02 /o) ¥ 2 j + k> a+2, haji ~ 1 +1og|v|*/o
jtk=a+2and hojr ~1if j+k < a+2, where 0 = (1—[a]?)|v|* =
[v]?2 = p(¢)p(2), so that o ~ |2 — (|? if (¢,z) € K CC D x D. More
precisely, ho j x can be expressed in terms of hypergeometric functions,
see [An2], but we are only interested in its asymptotic behaviour. We
also put ha ¢ = ha e/2,¢/2, 50 that |ha j k| < ho,j+k and hat1,e41 ~ oy
if | > a+ 2. Now we can state our main result (recall (1.12) for the

definition of G ).

—
L)
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Theorem 1. Let D be a bounded strictly pseudoconvez domain in C*
and p a strictly plurisubharmonic C* defining function. For each integer
o > 1 we have operators Py, F, and M, such that for smooth functions
u)

(2.2) u = My(i 80u) + Pyu + Fyu.

Here
P,u=Gau+ Gou

18 plurtharmonic,

a—1
—p)* "yl
(2.3) |Foul < i —_(‘v|nz-a—1/2 ho—2nta—-1/2 dA,

( p)**16 A (100p)" !

Mae a,j
+k n+a ’U]'U " o
7,k>1
_ E cfjk
Jtk=n+a+l
5k>1
(—p)o+16A (— p(2)iddp + i(n—1) aﬁ/\év) INCEED)
/D vivk gk
(2.4)
+ >
Jtk=nta
5 k>1
(—p)o+20N (— p(2)i08p + i(n—1)d5 A év) A(:88p)™~2
/D I ESETES
“hogt1,j41,641 + Rob,
where
|Ro0|
(2.5) ()" (= ol8] + V=58 7 06l +16 A Bp)
<
~ D "Uln+°' 1/2 O' 1,n4+a—-1/2 -
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In particular,

— [

|Mo8)| < (=p)*
~ Jplv|*te

(2.6) . (._p|9| +v=p (|0A0p| + |0ADp|) + |0/\6p/\5p|) ha-1n+a-

The exact values of the constants are
O 1 (n+a)(n+a—3j-1)!(n+a—-k-1)
WEEnr T =D+ D)l(nta-—j-k!

o= 1 (n+a—j)(n+a—k)
PETemr (n-Dia+1)(nta—j—k+1)

and
I 1 jk(n+ta-y3-Dl(n+a—-k-1)

T enr n—-D)l(a+2)!(n+a—j—k)

Notice that the kernel for My is ~ |hg—1,n4al ~ |( — z|~(3n=2) if
n > 1 (and ~ log|¢ — z| for n = 1) when ((, 2) is in the interior of
D x D.

REMARK 1. If D is the ball, then M, is the solution operator M, from
[Anl] and [An2], G, is the L%-Bergman projection, F,u = —Gqu(0) so
that P, + F, is the L2-orthogonal pluriharmonic projection.

REMARK 2. For o = 0, we have the same result as in Theorem 1 for
z € OD; i.e. everything holds for @ = 0 if z € 8D, and

s [ MO0, [ AL cop

p P72 Jp o

_ Our main application of Theorem 1 is to estimate solutions to the
00-equation, and to this end we need the following technical result:

Proposition 2.1. Under the conditions of Theorem 2.1,

a—1
. —p u
(27) |F£U(Z)| S, D (|U|")+—°"'k|/2l ha—?,n+a—k/2 d\ s
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fk<2(n+a)-1,

IFEMA)N 5 [ B s (~olfl+ =56 A 00l + 10 )

(2.8) +10ABpA 5p|) hoactnta—i/2dX,

if k <2(n+a—1), and if k is large enough F¥ maps L), into C(D)
boundedly.

This proposition is proved in Section 5.

Now, suppose ug is a solution to :90u = 8 in L}. Then u; =
M,6 + F,uq is another solution, and by iteration so is

=Myl + FoMy0+F:M,0+---+ F"M,0+ Flu, .
From Proposition 2.1 we then get
Theorem 2. If ug € L), solves i 0uy = 6 so does
u = M0+ Rob + Toug ,

where My0 13 as in Theorem 1, Toup € C(D) and

(—n)*
< —_
|Ra9| ~ Dlvln+a_1/2

- (~Pl61 + V=5 (1613p| + |6ABpl) + 167 3pADp])

' ha—l,n+a—1/2 .

In order to apply Theorem 2 to get various estimates of solutions
to :0u = 6 we need an a priori solution ug in some L. (D). This is
provided by

Theorem 3. Assume that 6 i3 a d-ezact (1,1)-form (current) such
that

(29)  (=p)*(~ I8l + =5 (18 A Op| + 16 A Bpl) +16 A 8p 1 5pl)



FORMULAS FOR APPROXIMATE SOLUTIONS OF THE 88-EQUATION 79

is a finite measure in D, a > 0. Then there is a solution u € L. (D) to

i100u = 4.

If o = 0 this is the Henkin-Skoda theorem, [H] and [S], and the case
a > 0 is due to Dautov and Henkin, [DH]. This theorem was the first
outcome of solution formulas for the J-equation with weights. With
the modern technique the proof is rather simple and for the readers
convenience we sketch it when a is an integer.

SKETCH OF PROOF. Assume first that @ = 0 and that 8 is a d-exact
real (1,1)-current such that

18111 = —p161 + /=5 (16 A Bp| + 16 A Bpl) + 16 A 3p A Bp|

is a finite measure (if 6 is positive this is equivalent to [, —ptracef <
+00). First we look for a solution to :dw = @ such that

(2.10) v/Dlw\-i-—\/i—._p(lap/\w|+|5p/\w|)<+oo.

If D is convex, one can use the simple homotopy for d obtained by con-
tracting D to a point, i.e. w = ifol h*6 dt, where h(t, z) = tz (assuming
0 € D). For a general strictly pseudoconvex domain D one can piece
together such local solutions to a global one by a cohomology argument.
It is at this point the d-exactness of 6 comes into play. If wg; is the
(0,1)-part of w, then for bidegree reasons, éwo,l = 0. We may assume
that w is chosen so that @g; = —w;o. Wé now apply the solution
operator Q4 from (1.6) and put v = Qiwp,1 . Then (1.3), (2.10) and
Fubini’s theorem immediately yield that

1 -
|v| do 5/ |wo,1| + |wo,1 A Op| < 0.
/aD D vV—r

Putting u = 2Rev = v + ¥, we get a solution u € L!(8D) to :00u = 6.

It follows from the R?™-Riesz decomposition that also u € L'(D);
however we show this with another argument that also covers the case
a €Zy. Let D c C™*° be the strictly pseudoconvex domain defined
by D = {(z,2') € C***: j(z,2') = p(z)+]|z'|* < 0}. Then (2.9) implies,
cf. Section 5,

/_ 3101 + /=3 (16 A B3| + 8 A Bp|) + |8 A B A Bj| < +oo.
D
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Hence, by the case @ = 0 applied to §(z,2") = 6(z) in D, we obtain a
solution u € L(8D). We may assume that u is independent of z’ and
then, by Lemma 5.1, [,(—p)*|u| ~ [55 |u|dé < +oo.

Recall that a measure p in D is a Carleson measure if u(Q¢(p)) < t*
where Q¢(p) are the Koranyi balls in D. As an application of Theorem
2 we can prove Varopoulos’ theorem:

Theorem 4. Assume that 0 is d-ezact and that |||0]|| is a Carleson
measure. Then there 13 a solution u € BMO (0D) to i 90u = 6.

By Theorem 3, there is a solution uy € L!(D) and hence T,ug €
C(D). 1t is easy to see that R0 is bounded on 8D, and a standard
estimation of the integral defining M,6 shows that M, € BMO (9D).
For the details of this argument see Section 6. Thus we have obtained a
relatively simple proof of Varopoulos’ theorem that avoids the delicate
task of solving the Poincaré equation idw = 6 with Carleson estimates,
¢f. Section 0.

By interpolation, Theorems 3 and 4 imply that there is a solution in
L?(8D), 1 < p < oo, if |||4]|| € W1~1/P. Here W are the interpolation
spaces between the finite measures W° and the Carleson measures W
in D. This can also be seen by simple estimates of the integrals, using
the following charctacterization of W, see [AmB],

peW* ifandonlyif p=kdr,

where
reW! and ke LY~ dr).

EXAMPLE 1. If 0D has enough regularity then the operator T, in
Theorem 2 will map L), into C¥(D), and so our technique can be used
also to study C™*t%-regularity for the solution. However, we do not
pursue these things in more detail in this paper.

We will go one step further and show that in fact M,6 is the
principal term of the L2-minimal solution N8 to i 90u = 6, but to
this end we first have to study the L?-orthogonal projection

Mo: L2 - LZNH,
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where H denotes the space of pluriharmonic functions in D. First we
note that, cf. (2.2),

(2.11) u = (Py+ Fa)u

if u is pluriharmonic, a > 1. .
Since II, is pluriharmonic, P,II, = I, — F,II, and since P, :
L? — L2 NH, cf Section 1, I,P, = P,. Taking adjoints we get

P = P;II;, and after subtracting I, — F,II4 — P} = (Py — P})Il,
and thus
(2.12) Oy =Po+ Fo+ Ax(I - 11,),

if Ay = P%— P, —F,. Note that, since P, = G4 + G4, (1.15) and (2.3)
imply that A, is weakly singular. By iteration we get

Theorem 5. The L2-orthogonal projection I, : L2 — L2 N'H can be
written

My = Py+ Fy+ Ao(I — Py — Fa) — A%(I — P, — Fy)

(2.13) |
+ oo+ (m1)MAT NI = P — Fo) + (-1)™TAT(I - 11,).

Since A™ maps L? into C(D) (or even into C*(D) if 8D is suffi-
ciently smooth) if m is large enough, ¢f. Proposition 2.1, Ilou has the
same regularity as P,u; e.g. if D is C* then P, maps C*(D) into
C>=(D) N'H and hence also II, does.

EXAMPLE 2. Formula (2.11) also holds for @ = 0, ¢f. Remark 2, for
z € OD. Then Pyu(z), z € 0D, has to be interpreted as the boundary
values of the pluriharmonic function Pyu(z). Since Pyu only depends
on the boundary values of u, we can take any operator V, e.g., the R?"-
Poisson integral, which represents a pluriharmonic function in terms of
its boundary values, and then

(214) U= Pou'f‘FoV’u

is a representation of the pluriharmonic function U in terms of its
boundary values u, Pyu is pluriharmonic and one can show that FoV :
L*(@D) — L*(8D) is compact. When n = 1,

Pyu(z) = 2ReL,/ u(¢) de

271 oD C'—Z
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is the classical double layer potential of u, which provides an approxi-
mative solution of Dirichlet’s problem.

Finally we state our result about the L2-minimal solution N4 to

i100u = 6.

Th_eorem 6. If 0 is ezact in D, then the Li-minimal solution N,6 of
1 00u = 0 i3 given by

Nob = Mo8 — AgMo6 + A2 M0

2.15
(2.15) b ()™ APTI M0 + (1) AT NG,

ProOF. This follows immediately from (2.2) and (2.13) once one has
noticed that if u is any solution, then

N =u-—-T,u.

3. Proof of Theorem 1 when z € 8D.

We first assume that z € dD. The general case~wi11 then be ob-
tained by applying the first result to a certain set D C C™*! where
D = C" N D. Our starting point is the relation (w = Ou)

(3.1) u=Gu+ Kyw,

see (1.13). For convenience we recall that

Gou(z) = M (é;)n

n!T'(a)
(3.2) _ / (=p)*~"u[=pOq — ng A 9p] A (9g)" "
D v™e((, z)
+ nice operator
and, for z € 0D,
L T(n+a—1)/i\n
Kaw(z) = pym =) (ﬂ)
[ (=p)*'s Aw A[—pOg — (n —1)g A Op] A (9g)" 2

(33) L v(c, z)n+a—1v(z’ C)

+ nice operator.
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The objective now is to generalize the argument given at the end of
Section 0, i.e. rewrite Kow in a appropriate manner to obtain (2.2),
and to this end we need

Proposition 3.1. If p is C® and v,s,q are defined as in Section 1,
then

(3-4) 9% = —s+ O(|nl) = ¢+ O(|n|) = —9p + O(|nl)
(3.3) sAg=0(nl), A3 =0(|n]),
(3.6) 8q = 80p + O(|n)),

(3.7) OpNOD =sAg+0(n?),

(3-8) v(2,¢) = v(¢,2) + O(Inl*),

and

(3.9) dv(¢,2) = O(Inl*)-

and

Proposition 3.2. If p is C3, v is defined by (1.9) and z € 8D, then

(n—1)wAdsABpAdpA (00p)"2
= (—(n—l)w/\dﬁ/\dv/\ap—pw/\dﬁAaép

—vw Ado ABOp+vwAdpA 85p> A (80p)" "% + |w| O(In*)
and O is in CY(D x 8D).

All differentials are with respect to (. Note that (3.8) means that
v((, z) is nearly conjugate symmetric (self-adjoint) and (3.9) means that
it is nearly antiholomorphic in (.

The equations (3.4) to (3.6) follow quite easily from the definitions.
Clearly (3.9) follows from (3.8), which is wellknown and used e.g. in
[KS]. It can be verified by a straightforward computation but it also
follows immediately from (3.11) below, which we anyway need in the
proof of the much harder Proposition 3.2.
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The equation (3.7) was first used in [Ar] and can be verified as
follows:

PROOF OF (3.7). Since ) qimi = —v((,2) — p(¢) and, by (3.8),
S oime = —0(G,2) - p(z) + O(nl?), we have for small 1, 5= nkdax —
g = —0p and Y nkdsk —s = —0% + O(|n|*). Hence, since by (3.4)
s =—q+ O(Inl),

63/\66=qu+an3(%+Sk)+0(|7l|2)-

Now

@ = —pi(C) - % ijk(C) nj

and 1
sk =p(2) =5 > pit(2)n;
;

so that 9(gk + sx) = O(|n|) and thus (3.7) follows.

PROOF OF PROPOSITION 3.2. By (3.9) and for bidegree reasons it is
enough to prove that A A (00p)"~2% = O(|n|®), where

A=(n—-1)wA8AI(p+v)ABp+(p+v)wABIADOOp—vwADpAOp.

To simplify the computation we want to choose suitable holomorphic
coordinates. The definition (1.9) depends on the choice of coordinates
but if v' is defined by (1.9) with respect to new holomorhpic coordinates
Z', we claim that

(3.10) v=2v"+0(]n*) and J;v =0 +O(|n)?).

Let as assume (3.10) for a moment and complete the proof of
Proposition 3.2. Let ( € D be fixed. By (3.10) we may assume that v
is defined with respect to holomorphic coordinates such that

80p(z) =Y dGi A di + O(In]*)

and hence also p;;z(¢) = p;;z(¢) = 0. By linearity we may assume that
w = d(;. Now (89p)"2 is a sum of terms A;(d(; A d(;) where i assumes
all but two of the numbers 1,...,n, and only the differentials in A with
respect to these to variables make any contribution to such a term.
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Thus if we let v = d¢; A d(i A dCx A dCx A (80p)™~2 (7 is independent
of k), we have

wA 0% AB(p+v)AdpA(80p)"2

= Z dCy A (B1kp + T dCy + TkdCr) A nidCi A Biip A (90p)™ 2
k=2

= Z(—Pmkﬁk + pkmnk) v,
k=2

(p+v)w A 05 A ddp A (08p)™ 2

= > (p+v)dGi A 1D AdCk Al A (88p)"

k=2
=(n-1)(p+v)(p+m)y

and

o AOp A Bdp A (80p)" 2 = Z vd(; A B1p A dCk AdCr A (80p)™ 2

k=2
=-(n—-1)vp17.
Hence,

AN(BOp)" 2 =(n—-1) (pl(p —v—0— > i)
k=2

+(p+v)in+ )y, pu‘nnk)v +0(Inl*)
k=2

= (n = D)p1(=p(2) + O(In*)) + O(Inl*)
= O(Inl*)

as p(z) = 0, and the proof is complete.

PROOF OF (3.10). We first assume that p is real analytic and let u((, z)
be the unique function that equals —p for { = z, is holomorphic in 2z
and antiholomorphic in . Then u((,2) = u(z,({). Since v (and v') is
nothing but the Taylor expansion of u up to second order, we have

(3.11) v=u+0(n]*).
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Note also that 9¢v((, z) = d¢u((, z) + O(|n|®). The same formulas hold
for v' and since u and Ou are invariantly defined, (3.10) now follows if
p is real analytic. The general case can be obtained by approximation.

We now replace v(z,() = 5(¢,2) 4+ O(|n|*) by © in (3.3), Oq by 80p
and s A w by 9p A 09. Then we get

Koo Linta-1) 1) / (—p)*d5 A w A (88p)"1
“T T T(a)(n-1) 1)' yrte—1p
(3.12) ] ]
(—p)*"10p Aw A dv A Op A (80p)" ! .
n— 1)/D onta—1p ) + Fow,
where

vigk

+ / (=p)* M w A p A 0(|77|2'")

Fow= Z/ (—P)a‘l“w./\ O(|nl2m+1)

vipk

if £,j,k,m >0,and L+ m —(j +k) > 1—n—a, and O(|n|?) is in
CY(D x D). To obtain (3.12) we have used Proposition 3.1 and that

__1___1 (Inls)
v+ 0(n)}) o [v]?

We need the following auxiliary notation:

Y

Aok = (%)"/ (—p)*w A di A (88p)™~?

vigk

i\ [ (=p)*wAd5AdpAdpA (8dp)"~?
B gk = 5—7; /

vipk ’

i\n / (—p)*Ow A OV A v A (65/’)"_2

vigk

b (=p)70w 1 (33p)
ik = 27r / vIo '

'U
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Hence (3.12) can be written

_I'n+a-1) F'n+a-1)

Ba,l,n+a—1 + Fow.

Let Ry = Rqf denote any term that satisfies (2.5) (since z € 0D,
hamnta—-1/2 = 1). Then we have

Lemma 3.3. Ifj+k=n+F+1and B> a—1 then

1
Bpjk = =7 Ap+1,jk
(3.13) B+1 ) )
—_—C ; F,+R,.
+(ﬂ+1)(ﬂ+2) ﬂ+2,]+l,k+ o+ Ry
Thus
_ I'(n+ a)
3.14) Ko = Tt (-1 Ao
3 I'(n+a)

+ Ca+1,n+cx,1 + Fa + Ra .

Fla+2)(n—2)!
By repeated use of

Lemma 3.4. If j+ k=n+ a then

k n+a

Aaik = g TF Atk Y G T G ) Dot
jk(n—1) Co
(@a+1)(a+2)(nta—Fk) otoithiH
k(n —1)

- a ] Fa o
(a+1)(n+a_k)c +1»],k+1+ +R

and recalling that 6 = : Qw we obtain from (3.14) that (z € 0D)
(3.15) Kow = My + Aaonta + Fa

and then by (3.1), (2.2) is proved since we have
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Lemma 3.5.

(3.16) Agonta = Gou + Fpu
and
(3.17) Fow = Fou.

As —p < |v| and |n| < y/|v|, (2.6) follows from (2.4) by (3.4), and
Theorem 1 is completely proved for z € dD.

The rest of this paragraph is devoted to the proofs of Lemmas
3.3 to 3.5. Lemmas 3.3 and 3.5 are obtained only by some elementary
integrations by parts whereas the proof of Lemma 3.4 is somewhat
involved and depends on the crucial Proposition 3.2.

PROOF OF LEMMA 3.3. Note that

/ d(—p)P*1 Aw A di A Bp A (80p)" 2
Bg,jk = .

vipk

Thus an integration by parts yields

(—p)PT** Aw A doAdvABpA(89p)"~?
Bp,jk = Ap+1,5k + /D pitIgE

(3.18)

+ (—p)P*t10w A do A dp A (36—;})""2
D 'Uj’t_)k )
To handle the first integral, notice that

(_p)ﬂ“w Add Adv A Bp A (89p)" 2
EY d(—p)P** Aw A d5 A dv A (88p)" 2
+ (=pP 1w A Bp A O(In]?),

and so after an integration by parts, the integral becomes

+F,.

1 (—p)P*2 A Bw A do A dv A (88p)™2
B+2 / viHIgGE
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However, for bidegree reasons and (3.9),
dw A dv A dv A (88p)"~2 = dw A 85 A Bv A (89p)™~2 4 dw A O(|n|*)
and hence the first integral in (3.18) is
Cpt2,j41,k + F,+R,.

Now consider the last integral in (3.18). Again, for bidegree reasons,
dv A Op can be replaced by 0v A dp and then an integration by parts

yields 5
1 v =
- —p)f+2 —_ n-2
512 /D( p)Te0w A dvh‘;" A (00p)

whichisan Ry if 8 >a—-1landj+k=n+0+1.

PROOF OF LEMMA 3.4. In this proof = means equality modulo terms
R, and F,. By Lemma 3.3,
J

(3.19) Aat1jjpe1 = =(a+1) Ba,jks1 + — )

Coa+t2,j+1,k+1 -

Now we apply Proposition 3.2 to the B-term in (3.19) and get, using
the same argument as when handling the first integral in (3.18) in the
proof of Lemma 3.3,

J
Aa+1,j,k+1 = — 0’+1ijk+l + m Ca+2’j+l’k+l
a+1 a+1 a+l
] Ast1,jk+1 T 7{:—1 Aa,j—lyk+1 + n—1 o,k

Solving for Ag41,j,k+1 yields

n—1 j(n—=1)
Aastjptt = — 2 Corrimsr + —22 =) Cova i
o+1,5,k+1 T o Cotlik + (nta)(at2) a+2,j+1,k+1
a+l a+1
(3.20) + m Agj—1k+1 + ntoa a,j,k -
Note that

hosa = - [ OEEAZA @0
O,J,k - D ,U],Bk

1 / d(—=p)**t! Aw A (88p)"?
D

_a+1 vipk
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and hence an integration by parts yields

(3.21) A ik = Aot1,jk+1 + Do,k -

a+1 a+1

Combining (3.20) with (3.21) and solving for A4 ;j finally one gets
Lemma 3.4.

PROOF OF LEMMA 3.5. For bidegree reasons, w A do = Ou A d can be
replaced by du A 0% in the definition of A4 0 n+e and hence

i\ [ (—=p)*duABbA(80p)"?
Aa,O,n+a = (g) L

.5n+or
_ (" (=p)* *u A 85 A Dp A (89p)™ !
=(3)" + Fuu
=Gou+ Fou,

¢f. (3.2) and Proposition 3.1. This proves (3.16), and (3.17) is obtained
in the same manner.

A FINAL REMARK ABOUT THE CASE a = 0. Anything we have done
above works equally well for @ = 0 if only integrals as a [},(— p)* 1dpAy
are interpreted as fa p7- In particular,

1 1
< _— R
IF[)'U»I ~ AD IUlO( |v|n_1/2)+L'u|O( Ivln+1/2)'

4. Proof of Theorem 1 for 2z € D.

Let p and D be as before and consider the strictly pseudoconvex
domain

D = {(¢,6nr1) €C™ 2 p(¢) + [Gair|* < 0}

and put 5(8) = p(¢) + [Gat1[?, where & = (¢,Cat1). Then D = D
{.C"‘H = 0} so a function u in D can be considered as a function in
D, not depending on the last variable. By Theorem 1 we now have
operators P,_ju, F’O,_lu, M, _,80u and so on so that (2.2) holds for
:€0D,a>1.
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Proposition 4.1. With the notation above Po_1u(z,2n41) does not
depend on the last variable and Pyu(z) = Poy—1u(2,2n41). For z € D
we thus have

(4.1) u(z) = Pau(2)+ Facru(z,\/=p(2)) + Ma1(: 80u)(z,/—p(2)) .

It is therefore natural to define

M (i 8Bu)(z) = Mo_1(i 80u)(z,/—p(2))

for z € D, and F,u(z) similarly, and then it remains to check that
(2.3)-(2.6) hold.

PROOF OF PROPOSITION 4.1. To be precise, we first construct P,_;
in the following way: We let 'D(f, %) = v(¢,2) — (nt+12n+1 and form
the corresponding weighted formula Ho—;, ¢f. (1.5), in D. Then
H,_ 1U(2, Zn41) will not depend on 2,41 if u = u(z) does not. Then we
modify it by a smooth kernel £,_;u as in (1.12). Since H,_, is already
holomorphic in the last variable, this can be done in such a way that

Go—1u-and hence Py_; = Gy_1 + Go_; is independent of Zpt1 if u is.
Thus the proposition follows from

(4.2) Hoyu(z,2n41) = Hou(z).

To see (4.2), we first note that (with obvious notation)
(¢, 2) = 4(¢, 2) + Cat1 dCnt

and

7w [ (EP) T (=50 — (n+1)§ A OG) A (8D
(43) Ha—l - / (U(Ca z) _ Cn+lzn+1)n+°

Now,
(=503 — (n +1)i A 35) A (39)"
= ((~(p+ I¢n+11*)3g = (n +1)g A Bp) A n(Bg)"""
(=2 + Caal? = (0 + Dl )(B9)") A dnia A i
= (n+ 1)(—pdq — ng A 8p) A (8g)" " A dCn+1 A dlnt1 -
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Thus
Hoyu(z) = (n+ 1)/ (—p3g —ng A 9p) A (9g)" 'u
D
/ (=p(¢) — |Cn+_1|2)°_2d4n+1 A dCnt1
(v = Cag12n41)" e
[¢nt11<y/=p(C)

and if we make the change of variables \/—p({)T = (p41 in the inner
integral we get

Hayu(s) = /D (=p)*'u(—pOg — ng A 3g) A (9g)"!

onta ha—2,n+a,0 )

of. (2.1), with a = /—p(¢)/—p(z)/v({,2) and hence (4.2) follows,

since ha—2,n+a,0 =1.

Next we compute M,_10(z, \/—p(z)) for 6 = 6(¢). For simplicity
we just consider a typical term, namely
[ (=p)*0AD5 A DA (80p)"
b oth
with Z = (2,4/—p(z)). We first notice that 0% = 09 — Zp41dCn41 and
00 = Ov — zp41dCp41 so that

I

6 A0 Ao A(80p)?
=6A (|2n+1 |265p + (Tl — 1)81_) A 51)) A (agp)"'z A an+1 A dC—n+1 .

Noting that |2,4+1|2 = —p(2) and proceeding as in the proof of Propo-
sition 4.1 above we get

_ [ (=p)**8 A (=p(2)90p + (n = 1)05 A Ov) A (99p)"~*

D 'Ujﬁk

with a = \/—p(¢)\/—p(z)/v((,z). In the same way,
Fou(z) = Famyu(z,+/—p(2))

I ho:,j,k.

so that

(=p)* 2 |ul
(4.4) IFau(Z)I 5 b |,l~)ln+a— 1/2
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(Gf a=1,
do(¢ dA(¢
F:U(Z)S/a In£132 / lul |,.E.3)/2

and proceeding as before we get

a—1
P u
OR[N

This completes the proof of Theorem 1.

5. Proof of Proposition 2.1.

We recall from the last paragra.ph that if u is defined on D, then
.,,u(z) = c,,_lu(z) and M,0(z) = My_,6(Z) where 2 = (z, \/—p(z )) €
dD. By writing the operators this way we avoided the factors hq j &
in their integral representation. However, since F,_, was defined as
an integral over D, to compute compositions such as ﬁ’a_l o 1:"0,_1,
etc., we need to know F,_ju(%) also for 7 € D. We will avoid this
difficulty by rewriting Fy_iu as an integral over the boundary of a
domain D, C C*te,

REMARK. When a = 1, F’a_l,u consists of both a boundary integral
and an integral over D. So in this case the argument is slightly different
as we only need to rewrite this last integral as an integral over 0D, .
We omit those details and assume that a > 1 in the sequel.

Let Ca = (Cla ceey Cna Cn+17 Ty Cn+0) = (C> Cl) € C™t* where C =
(¢1,..-,¢n). We define the strictly pseudoconvex domain D, by D, =
{¢* € CFa : pa((®) < 0} where p2(C%) = p(C) + T, [Cusil®. We
then have v,((%,2%) = v((,2) + Cat12n+1 + *** + CntaZnta- When
a =1, we write D for D, and ( for (! (as in Section 4). Note that D,
is obtained from D by applying the map D — D, o times.

Lemma 5.1. If u is defined on D, then
o [rrruoa© =2 [ @) uo

and

b) /D u(€) dA(C) ~ /a _u(Q)do(().
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ProOOF. We have

/_(—ﬁ)“"ludf\= / u(¢) Q) / (=p(€) = [Cnsa 2™ dA(Capr)
D D
[¢n41l<a/=p(¢)
=2 [ o) a0 axo.

We obtain b) from a) as

wQdo(d) [ ey
L i = lima [ OO,

We also need

Lemma 5.2. If D is a strictly pseudoconvezr domain in C", then for
z€ D, weadD

[ do(Q) 1
oD |U(Z,C)|alv(c’w)|b ~ |v(z,w)|a+b—n
if0<a,b<nanda+b>n. Ifa+ b < n the integral s bounded.

PROOF. We first observe that

do(¢) _ .
5.1 I= / —= < 4T if 0<a<n,
( ) da(c, Z) ~y
d(¢,z)<6
and
da(¢) - .
5.2 II = — < T if a>n.
5-2) 3((,2) ~
d(¢,z)>6

Here d is the pseudometric that defines the Koranyi balls in. D, see
Section 1 and [AnC]. Then d(z,w) ~ |v(z,w)| if w and/or z is on the
boundary.

We first prove (5.1) and (5.2) for z € dD. Then

I~ / do(¢) / %=/O+wzf—i / do(()

d(¢,2)<6 t>d(¢,z2) d(¢,z)<min{t,6}

] n +oo
t n dt n—a
5 / tat+l dt +6 / to+l 5 8 :
—oco )
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Similarly,

+oo dt +oo t‘n.
11~/ — / dacgf ~ ",
5 tat+l ( ) 5 ta+1

§<d(¢,2)<t

If z € D, let zg € OD satisfy d(z) = d(z,20) = d(z,0D). Then
d(¢,z) 2 d(¢,20) and (5.1) follows if we apply it to zo. To prove (5.2)
we consider two cases. If d(z) < C6, then if d(¢,z) > 6, we have
d(¢,z) ~ d((, z0), and we are done by the case zg € dD. If d(z) > C§,
then (1.3) (it is proved in the same way as (5.2) by observing that
d(¢,z) ~ —p(2) + d(C, z0)) implies that II < (—p(2))"™* ~ d(z)** <
e,

Now choose ¢ small enough (so that cC < 1/2, where C is the

constant in the triangle inequality for d), let 6 = cd(z,w) and put
B¢ = 0D\(Bs(z) U Bs(w)). Then

do(¢) N da(()
/aD oz O [o(C, w) /,36(,) * /Ba(w  Jpe @20 (G, w)
=A+B+C.

The integrals A and B are estimated in the same way. Observe that if
¢ € Bs(z), then d(z,w) < C(d(z,¢) + d({,w)) < d(z,w)/2 + Cd({,w)
and hence d(({,w) 2 d(z,w). Thus by (5.1),

< 1 do(¢) < 1
~ d(z,w) Jaewy<s 4°(C, 2) ~ d(z,w)etbon

To estimate C, we note that if ( € B€ then d(z,() > cd(z,w). Hence
d(¢,w) < d(¢, 2)+d(z,w) < d(¢, z) and by symmetry we have d({,w) ~
d(¢,z). This implies by (5.2)

C < / do(¢) 1
d

(¢2)>6 d“'H’(C,z) — d“'H’“"(z,w)

if a+b>mn. If a4+ b <n the integral is bounded.

PROOF OF PROPOSITION 2.1. First we claim that

(=)~ (<) _ [ ROl
i heai@) = [ SO @

[ O e
a )

D, [UU(Caa za)ll

(5.3)
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if |(zn41,--+52n+a)| = V/—p(z). In fact, for the first equality cf. the
proof of Proposition 4.1; the last equality is obtained for z* =

(z,4/—p(2),0,...,0) by repeated use of Lemma 5.1, and then the gen-
eral case follows since the integral is rotation invariant with respect to
(Cn+1 1ct Cn+a)-

By (5.3), (2.7) is equivalent to

64 RIS [ LG ——r

D. Iva(za, Ca)|n+a—k/2

1<k <2(n+a). We will prove (5.4) by induction. It is true for £k =1
since then (2.7) is nothing but (2.3). Assuming (5.4) for k£ we have

k41,0, lFfu(()lda(("’)
IFQ ( ), 5 /aDa |Ua(za,ca)|n+a_1/2
 do(¢%) |[Fru(w)| do(w®)
7/ J

8D, I’va(zor,Ca)'n+a—k/2 oD, |Ua(C°,w°’)|"+°"1/2 .

By Fubini’s theorem and Lemma 5.2 we now get (5.4) for k + 1.

We also see that if £ > 2(n + @) — 1, F¥u has a bounded kernel
(when k = 2(n + a) — 1 it has a logarithmic singularity), and since the
kernel of F, is continuous (and much more) off the diagonal and this is
preserved under composition, we have F¥u € C(D).

To see (2.8) first note that, by (2.6) and the argument for (5.3),

|Ma6(¢)| < / 1161l o dA(w®)

D, [va((*, w®)|mte

if |(Cnt1y-- -y Cnta)l = /—p(C) (recall that |||6]|| = —p|8] + /—p(]6 A

Op| + |8 A Bp|) + |8 A Op A Bp|). Hence, by (5.4),

M,6(()| do(C™
ch’:Mae(z” N /E;D |UL(Z°,(C°3|)'”i(°_2/2

do(¢°) 61llo dA(w*)
<), J

D. [va(2%,¢¥)|mtak/2 [ |ua (¢, w™)[nte

~ / 1161110 dA(w®)
Dq

_ / do(C%)
oD, [va(z%, () [Mro=k/2 jug (¢, we )|t
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< / 161l p dA(w®)
~ D. |va(<'a’wa)ln+a—k/2

161]] dA(w)
- /D(—'p)o{|v(z,w)|""’°‘—k/2 hoat1nta-k/2 )

and the proof of Proposition 2.1 is complete.

6. Proof of Theorem 4.

In this section we assume that y = —p|0|++/=p(|6 AOp|+|6ADp|)+
|6 A 3p A Op| is a Carleson measure and prove that M,6 € BMO (9D).
It is easy to see that R,8 € L*°; in fact,

Rb S [ e ()

too gt
~ o) [
-/l; ( a(c.z) $n+1/2

too dt oo ﬂ(Qt(C))
- /(; tn+1/2 v/d(C,z)<t O = /o trt1/2 dt < oo,

as u(Q¢(¢)) < t". The other terms in M0 are estimated in the same
fashion, so instead of giving detailed arguments for each of them we
concentrate on a typical one. Our choice is

Ao [ (=P A B, 2) A Dv(C,2) A (89p)" "
flz)= /D o(C, )" F o (C, 2) ‘

We want to estimate

1

M ° =
»(p) |Br(P)| /B, (p)

|f(2) = faldo(z),

where f;, is the mean value of f over B,(p). To this end we need

Lemma 6.1. If y 1s a Carleson measure then

_ du(€) 1
7= / dta((,p) ~ he
—p(¢)>h
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PROOF. Let ( = (y,z) where y = —p(¢) and z € 8D. Put
Erm ={C: 2°7'h <y < 2%, m2*h < d(z,p) < (m + 1) 2%}

if k > 1. When k = 0, we replace the lower bound for y by 0. Then
{—p(C) > h} = Uk>1 UmZO Ek,m. Since IEk,ml ~ (2kh)"+1m"—l, Ek’m
can be covered by < m™~! Koranyi balls Q4+4(g;), and hence

#(Eem) <Y (Qarn(gi)) S mm (2R

From this we obtain

N
K

oo

e ] o0 -1
<LSomy M 1
~ ha k=1 m=0 1+ m)n+a ~ ha

as desired.

We also need

(6-1) [v(2,¢) = v(w, )| S (hd(C,p))"/2,
if z,w € Bx(p), ( ¢ Bcr(p). This follows immediately if we write
'U(Z, C) - v(w, C) = U(Z’w) + (q(sz) - Q(za C)a z = w)
+(9(2,€) — g(w, (), { —w).

Let us return yo the estimate of Mj(p). We have

Mh(p)sm / / 1£(2) = £(w)|do(z) do(w),

z€Br(p) wEBL(p)
and

s =( [+ [ )

y>SCh  y<Ch
‘ ((917(2)/\511(2) Ov(w) A Ov(w)

v"+1(z)1'7°‘(z) v"+1(w)v°‘( )

)/\0/\(03/))" 2

= Moo(z,w) + mo(z,w),
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where y = —p(() and v(z) = v(z,() for short. Consider first the part
where y > Ch. Then

9v(z) A Ov(z) _ Op(w) A dv(w)
vrH(2)p(z) vt (w)o%(w)

— 3 1 =
= av(z) A 8v(z) (vn+1(z)6°’(z) - ’U"+1(w)f)a(w))

1 B _ B _
+ m(@v(z) A Ov(z) — Ov(w) A Ov(w)).

1 < () = v(w)
v H(2)pe(z) | v (w)pe(w) |~ drFer2((,p)
Vh

Furthermore by (3.4),
d5(z) A Bv(z) = 8p A dp + O(Inl) (8p + 3p) + O(Inl*)
and

05(2) A Ov(z) — 85(w) A Bv(w) = d(2) A (Bv(2) — 51}(11)))
+ (00(z) — Ov(w)) A Ov(w)
= O(Vh) (8p+ 8p + O(In))) -

Hence the integrand in me, is bounded by VA d(¢,p)~("*+1/2) du. By
Lemma 6.1 this implies

1 .
_— Meo(z,w)do(z) do(w
|Bi(p)|? /Bh(p) /Bh(m (5 w)doz) dotw)
Vh

1
6.2 5———/ do(z daw)/ —d
(62 [Br(®)I” JBaip) ) Bi(p) ( y>cn (G pym72

SY==1.

SIS



100 M. ANDERSSON AND H. CARLSSON

The contribution from the part where y < Ch, is dominated by two
terms of the form

/ 1 / (= p)o |09 A Bv A 6 A (88p)™2| do(2)

| Bi(p) lonteti((, )|
y<Ch €B )

1 |05 A Bv A6 A (68p)"‘2|
Z= /E LA e e

z€By (p)

Again we use 89(z) A 9v(z) = 8p A 8p + O(|n|)(dp + 9p) + O(|n]?) to

obtain

1 =P
S F/Eo,m dp / ¢, 7)™t do(z)

z€By(p)

S Z ﬁ/Eo,m du(y,z) / W Tz 7)) do.

2€Bx(p)

But if ( = (y,z) € Eg;m, then

/ y do < —
(y +d(z,z))"t1  ~ (1+m)nH
z€By(p)

and we obtain

(o] [ o] n—1

By (6.2) and (6.3) we get My(p) < 1, and the proof is complete.
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