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A remark on gradients

of harmonic functions

Wensheng Wang

Abstract. In any C!* domain, there is nonzero harmonic function C*
continuous up to the boundary such that the function and its gradient
on the boundary vanish on a set of positive measure.

1. Introduction.

In this note, we will extend Bourgain and Wolff’s result in [2] into
the general C1* domain of RY.

Theorem. If D is a CY* domain in R* with s > 0 and d > 3, then
there is a harmonic function v : D — R which is C' up to the boundary
and such that

{Qe€dD: u(@) =0, Vu(Q) =0} >0.

The idea for the proof of this theorem follows from the argument
in [2]. We also need to use Aleksandrov-Kargaev function (see [1])
as our basic constructing factor. Since there is no reason to apply
directly Alexandrov’s result to the arbitrary domain, we have to work
on the “almost flat” domain first and then get our final result by Kelvin
transformation.
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NoTATION. Let A and M be positive large numbers. Let ®,; be a
collection of C1»* domains in R? which are of the form

Q={X = (z,2q) €R?: 24> ¢(x), z € R}

such that ¢ is some C'1* function on R~ satisfying ¢(0) = 0, Vi (0) =
0 and

IVelloo + IVellcs e and  Vp(z) =0

when | X| > 1.

When X = (x,z4) € 092, we denote by Nx the normal vector of 9f2
at X, and n, the normal vector of R¥~! at (x,0). By the assumption
of , we know that [Nx — ng| < e ™™ for any X = (z,24) € 0Q. We
use notation V,u to denote the tangent gradient of w on 0€2. Finally,
we usual use B to denote the ball in R? and  to denote the cube on
R4~L. If Q is the cube on R?~1, then @) denotes its image on Q2 by
. C always denotes an absolute constant.

2. Several lemmas.

Lemma 1. Suppose ¢ is a CY* function on R and Q = {X =
(,24) €ERT: 24 > p(x), 2 € R¥™} is a CY* domain. Let G(X,Y) be
the Green’s function of 2. Then for any X, Y € 050, we have

d d C

1 — —GX)Y)| < —— .
() dedNyG( ’ )_|X—Y|d

PrROOF. When Q is a bounded domain, the result is known (see [4],
[6]) but we do not find a good reference for the proof. When € is
unbounded, it is not true in general. So we would like to give a proof
for such special case and one will see the proof still works for bounded
domains with a tiny correction.

Claim. Let X € 022 and R > 0. If u is a harmonic function in
QN B(X,R), |ul <1 on QNIB(X,R) and u =0 on 02N B(X, R),
then |Vu(Z)| < C/R forall Z € QN B(X,R/2).
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PrROOF OF CrAM. We may assume that X = 0. Let D = QN B(0, R)
and D_ = Q°nN B(0,R). Consider a map ® : D_ — D defined by
®(z,24) = (2,2 p(2) — z4). Then the function u o ® solves

divAyV(uo®@) =0 in D_,

where N
_ _ I 2 (V)
— NnNIy—=1/d5/\—1 _
Ao = (@17 @) = (e )
is an elliptic matrix (see e.g. [3]). Let w =win D, w = —-uo® in D_.

Then with A =1 in D and Ap in D_ , w solves div AVw = 0 in B(0, R)
in the weak sense, because the function w is an odd ‘reflection’ of w.
By the assumptions for the functions v and ¢, we know |w| < 1 and
|Allcs < Ce M1, If we define functions v(Y) = w(RY) and B(Y) =
min{R~%, 1} A(RY) in B(1), then v solves div BVv =0 in B(1) and B
has uniform C*® bound. So by [4, Lemma 3.1], we have |Vu(Y)| < C.
Hence, |Vw(Z)| < C/R. This proves the claim.

Now let us fix X, Y € Q and let R = |X — Y|. If we apply the
claim to the function R¥=2G(Zy, Z,) for Z, € B(Y, R/100) with Z; €
B(X, R/100) fixed, then we have |Vz,G(Z1,Z5)] < C/R%! for all
Z1 € B(X,R/100) and Zy € B(Y,R/100). Similarly, if we apply the
claim to the function RV, G(Z1,Z,) for Z; € B(X, R/100) with
Zy € B(Y, R/100) fixed, then we get |Vz, Vz,G(Z1,Z5)| < C/R? for
all Z; € B(X, R/100) and Z; € B(Y,R/100). Finally let Z; go to X
and let Z3 go to Y, to conclude.

Lemma 2. Let Q be as in Lemma 1 with 0 € 0X). Suppose u is a
harmonic function in Q which is C** up to the boundary. Assume the
restriction function of u onto 0S) is supported in Q2 N B(0,1). Then
for all X € 0Q2 with | X| <2,

d
(2) |2 40| < Cllullcron)

dN

When X € 0Q2 with | X| > 2, we have

‘ d

—d
I U] < Xl -
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PROOF. The first result is a well known fact when €2 is either a bounded
domain or the upper half space. Here we would like to give a short proof

without using layer potential theory. Since u(Y') has compact support
on 09, for X € ),

d
uX) = | o GELY)u() do ().

If X € 002 with | X| > 2, then by (1) we have

d d?
X‘:‘/ (X, Y)u(Y)do(Y
v M0 =] aneazy GO u) do(Y)
1
< Cllullc (o) / X V] do(Y)
Yeaq, |Y|<1

<C|x| ullcog) -

This proves (3). Now let us fix X € 9Q with |X| < 2. Choose a
function ¢ € C§°(R?) with ¢(Z) = 1 when |Z| < 10 and ¢(Z) = 0
when |Z| > 20. Let us write

up(Y) = u(Y) —u(X) p(Y = X) = (Vou(X),Y = X) (Y — X),

which is supported in 92 N {]Y| < 15} and bounded by

IVrullcs o) Y — XM, when |Y — X|<8.
So we have
d
w(Z) = / L G(2,Y) usY) do(Y)
a0 ANy

+u(X) /aQ % G(Z,Y) $(Y — X)do(Y)

d
T /a vy GEY) (au(X),Y = X) 4V — X) do (¥)
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For uq,
_— = Y)do(Y
dNX u (X ‘ ‘ /89 dNXdNy up(Y) do(¥)
|X _ Y|1+s
/ W ||VT’U,| Cs(89Q) dO'(Y)

X€an, |X-Y|<8

1
o[ g lleen
X€aQ,|X-Y|>8

< Clullers o) -

Notice that us is a bounded harmonic function whose boundary value
is 1 on 92N B(0,4). So apply the claim in Lemma 1 to the function
u(X) — uz(-), we have |Vua(Z)| < C|ul|o for Z € QN B(0,2) so that

‘Euz(X)‘ < Cllullcrs(a0) -

Finally consider the harmonic function uz(Z) — (V,u(X), Z— X) which
is bounded in 2N B(0,4) and whose boundary value is zero on 92 N
B(0,4). So again by using the claim in Lemma 1, we have

d
v 10| < Clullorom < O llullorsos)

since (V,u(X),Z — X) is linear. This proves Lemma 2.
Now let a and € be two positive numbers. Let

e+ xq/a
“X/ateedt

E2(X) =
We denote by n, the normal vector of R%~! in R? at z € R4~ 1,
Lemma 3. We have the following properties for E(X) :

. . X —d—il
(4) ‘V’Eg(X)‘ < Ca "' min {s_d_”l, —‘ } ;

a
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forall X € Q ande=0,1,2.

‘/@Q(Ob) ‘1+—E“ )‘ l)da(X)

O [ (e ezl 1)

< Qe PM ppd-1 gd-1

ife <e M

(6) /MO ’ (J1+ %E“(X)‘p ~1)do(X) < ~ (1~ %) a1

if p> 0 is small but independent of e, M, a. Here b =aM in (5) and
(6), and n is an absolute small positive number.

PROOF. (4) follows directly from the calculation. After a change of
variable, the left hand side of (5) is the integral over a subset {|z| < b}
of R4~ of the following integrand

([1+(VE2(X), Nx)IP = 1) (1+|Ve(2) )2 — (11+(VEL (), ng) [ ~1).

If we introduce a term —|1 + (VE®(z),ng)[P(1 + |Ve(z)|?)/? and sub-
tract it, then the integrand becomes

(11 +(VEX(X),Nx)|? — [1 + (VE&(x),nq)|") (L + V() [*)"/*
+ L+ (VEX(x),n2) P (1 + |Ve(z)[>)/? - 1)
— (14 |Ve(z)[*)'/? - 1)
=1+ 1II+1II.
Up to multiplying a constant, I is bounded by
(VEZ(X),Nx) — (VEZ(z),ng) "

< [VEZ(X) = VEZ(z),ng) [P + (VEZ(X), Nx — ng)|”
=I;+1.

For Iy, since X = (z, p(x)), by (4),

Il = |<VES(X) - VEg(x)vn:nH
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—d—2+1
X —

T

S a—2+1

S

2" o)

Sa_l‘—
a

xr|—d
<2
a

/ 1| dz < MAA-P)=~L g=pMgd=1
|| <b

Since |[Nx — ng| < C ||Vl < Ce ™™ again by (4),

x|—dp
/ Ip| do < C e PM ‘—‘ dx = C M*¥1—P)~L =M gd=1
|| <b lw|<b '@

By a similar method, using (4) and the assumption of ¢,

—d~\ p
/ |II|dx§C/ (1+‘£‘ ) e~M dx
|lz|<b |lz|<b a

< Cad_l G_M Md(l—p)—l )

And it is trivial to get
/ 11| dz < Ce™™ de < Ce ™M qgd=t pa—t,
|z|<b |z|<b

So combining those estimates of the integrations for I = I; + I, II and
III, we have that the left hand side of (4) is bounded by

Cad_l (Md(l—p)—l e—pM + Md(l—p)—l e—pM + Md—l €_M)
< Cat ! Mi-tePM

Let us now prove (6). From [1] or [2], we know that if p > 0 is
small enough then for all small ¢,

d P d—1
_ go _ < _
/Rdl (‘1+dnE€(a:)‘ 1>dx_ na® ",

with a small absolute positive number 7. From this integral, we easily
get

p

/|w|<b (‘1 + %Eg(x) — 1) dx
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§—nad_1+/ H1+—Ea( ‘ —l‘dx
|z|>b

—d—1
dx

|z|>b a
< —(n—-CM~?)at!

(7) < —natt+C

by (4). So combine (7) and (5). We have that the left hand side of (6)
is less than or equal to

(= CM™2)ad=t 4 CePM pd—14d-1 _ (71 _ %) ad—1
when M is large enough independently of a and €.

We state our main lemma.

Lemma 4. Ifp > 0 and 1/M > 0 are small enough, then for any
Qe ®y and e > 0 and any cube Q = Q(0,1) on R~ with I < 1 there
exists a harmonic function FQ which is C1 up to Q with supp F¥|sq C
©B(0,¢el) such that

) [ ax oo dotx) < 2o,

) [VE2(X)|<C min{s_d, e~ (d=1/H)M (‘?‘_dﬁ- ‘?‘_dﬂ/z)} ;

if X € 092, where 3 > 0 is such that

=28 — 1 _ ge—(d—l)M_

PROOF. Let a = e[ and E%(X) be as above. Define
[ ={z e R 2971 < |z| < 29110}

and p; a cut-off function in R with supp p; C Q(0,2771) \ Q(0,2771)
and |Vip;| < 1/(271)%, for ¢ = 0,1,2 and for j = 0,1,... such that
> pi(X) = 1for [X] > 1. Let p =1—3% p;(X). Denote by FX
the harmonic extension into © of p EZ(X)|sq and QF. the harmonic



A REMARK ON GRADIENTS OF HARMONIC FUNCTIONS 235

extension into Q of p; EZ(X)|oe. Let Qf = >, QF.. Then EZ =
F&+Q¢.
An easy computation and (4) of Lemma 3 imply that
105 clloe < Ca? (2714,
(10) IVrQ5 clloe < Cat (221)77,

IV7Q% . |lcx < Cat (271)=%

If we let u(Y) = Q4 _(271Y), then the restriction function of u onto 99
is supported in 9QN B(0,1) and ||u||g1. < Ca®(271)~%1 by the above
estimates. So apply Lemma 2 to u. When X € 9Q with |X| < 2/+2[,
we get

d

W (;76(X) S Cad (2]l)_d
X

When X € 0Q with |X| > 2772[,

‘dN 10| < Cat|X| 7 < Ca |X[7H2 (200) 72,

Lowl<( Y Y )| S e

|X|<20+21 | X|>20+21

<C Yt +C ) et (@) X2

| X[<29+2] | X|>27+21
(11) < Cat|X|74+ Cad | X|~ /2712
X —d X |—d+1/2
<c(lol +5 )

since a = e=M[. We notice that if | X| < 41, the process of estimates
above also give

(12) ‘diN Qg(X)‘ <Ce ™.
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Now we estimate (7). Let b = Ma.
/ (= S ERX)P 1) do(X)
PQ dN = *

= [ (e gy 0 - Qe[ 1) dotx)

‘PQ(O’b)
d P
A4 e _
+ / (‘1+dNFE (X)‘ 1>da(X)
(13) PQ\¢Q(0,b)
13 d P
< —_pge _
< / (‘1+dNE€(X)‘ 1) dor(X)
‘PQ(O’b)
d . P
+ / (‘1+WQ€(X)‘ 1) do(X)
WQ(OJ))
d P
4 e _
+ / (‘1+dNFE (X)‘ 1) dor(X)
PQ\pQ(0,b)

by triangle inequality. When |z| > b, the integrand in the last integral
is bounded by C'|z/a|~%2, by (4) and (11). So

d P
ey n[¢) _ < d—1 3 7—1/2
(14) / (‘1 + - F (X)‘ 1) do(X) < Ca"' M
PQ\¢Q(0,b)

Since p < 1, by Holder inequality,

d P
Q)| do
/apQ(o,b) dN
d
S ‘— Qqe X
;fm(o,b) an @)

< Cpi-r/A@-H 3 (/

j ®

p

do

d 2 p/2
Q0| do

Notice that ¢€2 is a Lipschitz graph with uniform bound. Theorem
2.2.6 of [5] shows that

d a 2 2
‘/Lpg‘d—N G do .

do < C / V.
P2
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So by (10),

2 qux)[ do
/soQ(o,b) AN
2 p/2
< O p(1-p/2)(d—1) ‘ a
<Ch Z( |7 o)

<Cb(1 p/2)(d— 1)2 / 2]l d2d0_>p/2

< C % pt-r/2)(d-1) Z(2jl)—dp+p(d—1)/2

J

(15)

< Catt (al)p(d+1)/2 M (=p/2)(d-1)
— O g%t e PM(d+1)/2 pr(1=p/2)(d=1)

Now apply (6) to the first term in the left hand side of (13) and combine
(13), (14), and (15). The left hand side of (13) is less than or equal to

_ (77— Q) a1 1 0 ad=1 M-Y2 L0 it o-PM(d+1)/2 p(1-p/2)(d-1)
m a—1_ " __M@d-1)
< = .

Hence
p
[ [+ g R0l e < (1= Fe ) o) = e joa,

with some (3 > 0.
Now we turn to prove (8). First we have

IVEZ(X)] < [VQZ(X)[ + [VEZ (X))
X (-4 | X |—-d+1/2
so(fal 1)

d+1/2

<o (|77 |7

by (4) and (11). In order to bound |VF2(X)| by Ce~%, we notice that
when |X| <le <1,

d a
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is bounded by (12) and of course is less than Ce~?.

part follows directly from calculation and (4).

The remaining

Corollary 5. Let p, M and € be as in Lemma 4. Let 2 € ®opp. For
any Xo = (c,p(cg)) € 02 and sg > 0, Q C Blcq, so) is a cube in
RY=1. For any function I : 02 — R with supp I C ¢ such that

1(XQ) () = T(Xq)llo < g e @),

there exists a harmonic function FQ in Q which is C* up to Q such
that supp F@ C pB(cq,el(Q)) and

Q
) [ [0+ 105 G 6)

p
do(X) < e 1(XQ) I |¢Ql,

VFE(X))
(17)

X—Xp|—d
< . —d _—M(d—1/2) ‘ Q‘ ‘
< C'min {8 , € ( Q) +

_ —d+1/2
o)

PRrROOF. Under a new coordinate system such that X is the new origin
and the tangent space of 9 at X is the new R¥~!1, Q € ®)/. Then
this corollary follows directly from Lemma 4.

Let us first prove a weaker version of our theorem.

Theorem 1. Let Q2 be as in the Corollary 5. Then for any small
number so > 0, there is a harmonic function u : Q@ — R which is Clup
to €2 and such that

HX € 0Q: |X| < sp, u(X) =0, Vu(X)=0}| >0.

We will give the recursive construction. Let Qo = Qo(0,s9) C
R4, Let {6,}$° be a sequence of small numbers such that 6.1 €
Z which are chosen by induction later. Let {K,} and {e,} be two
sequences of numbers which are decided later with K,, 400 and
e \( 0. a will be a large universal number also decided later.
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Let :,, be the collection of (5;(d_1) cubes of side §,, in R¥~! whose
union is Qo . Let 3, be a subset of R,, such that

(18) (A%I%%

where V,, = [ J{Q : Q € 3} and u,, is the C1* function in Q defined
by induction later. When n = 1, let dp = sp and g = {Qo} and ug
a harmonic function in © such that wug|so € Cy*(9Qo/1000). Suppose
we have S, and u,. Let d,,1 with 0,41/0, € Z be such that 0,
small enough and decided in the following lemmas. Let S,4+1 C Rpq1
be such that @ € 3,41 satisfies

1/
pda(X)) g < AePm,

(19) Q' €S, for all Q' € R, with Q C Q'

1 du,, |P 1/p
20 — — " do(X < K,.je P,
(20) (par ||| 4e) .

Now let us define

where Ffi ., 18 as in Corollary 5.
Lemma 6. For X € 092,

(21) Z |VF3L+1(X)| < C’e‘f‘/f(d—l/2)(6n+1 n (5n+1>1/2> ,

QESh+1 P P
[z—cq|>p

if p>Cdpyy.

(22) |Vt +1(X) = Vur(X)| < C Kyt e P E;‘;j_l ,

if Op41 small enough.

PRrOOF. By (17) of Corollary 5, the left hand side of (21) is bounded
by

3 e—M(d—1/2)(‘X —cQ ‘_d n ‘X —cQ _d+1/2>
1

5 5
|e—clo>p nt ntl

< CeM(d-1/2) (5n+1 n (5n+1>1/2) |
p p
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if p > Cd,41. Let us prove (22) now. Since du,/dN is continuous,
after making 6,,4+1 small (20) will imply that

du,

dN (XQ ) S 2Kn+1 6_,8"

Y

for all Q" € S,41. For X € 09, there is at most one Q € 3,11 such
that for any other Q' # Q, Q" € Ip41, |z —cg'| > p. Then the left
hand side of (15) is bounded by

du,
> |y Xe)
Q' €S nt1
Q'#Q

6 +1 |+- € +1()(”

‘ dun

(Xq) ‘|V

< 2K, (C+Cety)
<CKp e P E;‘;j_l ,
where we used (21) and (17) in the first inequality.

The following lemma says our process in construction of u,, is pos-
sible, i.e. (18) is true.

Lemma 7. There exists a large universal constant A such that

(/ ‘dun-i-l ‘ do )1/]) < Ae—ﬁ(N+1) .
Vot

PROOF. As in [2], we first state a claim as follows. One may find the
proof in [2].

Claim. If §,,+1 ts small enough, then for all X € ©Q, Q € Sp41,

du,,
> gy Ke)
Q’ESn-o-l
Q'#Q

X))

€n+1(

< O e M@-1/2) ‘dun X)‘+6—M(d—1/2) o 4B(n+1)

We would like to point out the idea. Divide the sum into two parts:
26n+1<|XQ_X|<L5n+1 and Z|XQ—X|2L5n+1- For the first term, use (21)



A REMARK ON GRADIENTS OF HARMONIC FUNCTIONS 241

and notice that if 0,4, is small then the numbers du,(Xqg/)/dN are
close to du,(X)/dN up to an error term. For the second term, when
n fixed, du,(X¢/)/dN are bounded uniformly in Q" # Q. For the
remaining part, apply (21) again and let L be big.

Now let us take

duy, _48(n
= {Q € Snt1 N (XQ)‘ 48 +1)}
and
H - %TH‘]- \ I .

Let X € ¢Q for some Q € Sy,41. Denote

du du d '
el 20n ) @ )
X =GR+ Y GRKe) g L (0
Q ESnt1
Q'#Q
Then
Ay, 41 du,, X d 0

=JX)+ — — F X
by the definition of u, ;. If Q € I, then after making 9,41 small,

dun dun
J(X) = T (Xq)| < Cem M1 | T (xg)|

dN -

IN
| =

_ dun
ne M (d— 1)‘ XQ)‘

by claim and by letting M large. So apply Corollary 5,

du,, p _ dun
|| " 0| dox) < 2 Q)| T (Xo)|
QR
(23) du 1
< 6—351)/2/ — do(X),
0Q N
if 0,41 small again. When @ € II, write
J = 65;\7; (Xq)+ J1, where |J;] < C e~ M(d=1/2) o —4p(n+1)
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by claim. So apply Corollary 5 again,
dun—l—l p
SR (X)) der(X)
L%

( —2pB (—4B(n+1)p | (7 o~ 4B(n+1)p> 10Q)

< Cem P o).

(24)

IN

Combine (23) and (24). By induction, we have
dupy1|P _ 3 / duy, |P _
< pB/2 C e~ (n+1)p
/WJ | <e an| T 2 le@
n ©Q QEV,41NII
QEV, NI

< AP (e7PP/2 4 0 A7P o3P0 ompB(ntl)

< AP ePB(n+1) ,

if A is large and independent of n .

ProOOF OF THEOREM 1. Choose K,, and ¢,, such that
Z€Ei1Kn+1 e " < Cy < +oo
and
d—1 sq !
—-p
2 Kt t e < o6
Then the (21) of Lemma 6 implies that

Z Vg1 — Vu,| < CZKTH-l 6,:_‘&1 e P < CCy < +o0

ie. U= Y Uy is C* up to Q. On the other hand, by the definition of
wand wp41,

{X € ¢Qu: u(X)# 0} < ZI{X € Qo+ Unt1(X) # un(X)}]

< Z S 1e(Bleg)casr 1(Q))]

n QES,4+1

d _
< 2517,-{(—1 Y (Org1 5n+1)d !

= ngn—f—l

< 80
= 1000 °
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In order to estimate the gradient term, we notice that if a point X €
©(Qp) is in some ¢@Q,’s with infinite many n, then we know by (20)
and the continuity of du/dN that du(X)/dN = 0. So again by (20)

and (18),
HX € ¢Qo: %(X) 7 0}‘ <D 19Va \ @Vas]

=> ) Q)

n QEPVL+1\¢pVy

_ _ Uy, |P
<N Kre P S / et
n QEPVui1\pV, 7 P9
diy, |P
<N KPP0 / n
_; i PVn d

<D ATKLT
d_

<0 1 ,

— 1000

by Lemma 7, this is because when @ € R, 11\, 41, there exists Q' € &,
such that Q' D Q but

du, |P
—2 > KP  emPPn
n+1
/LPQ dN

by definition. And so

du,, |P

K P o—ppBn Zon
|()0Q| < n+1 € /;Q dN

Finally we get

X €0Qo: u(X) =0, Vu(X) = 0}| > 1= l6Qul > 0.

3. Proof of Theorem.

Casel: D is a bounded domain. Then we can assume (0,0) € 0D and
R41 is the tangent space of 9D at (0,0) and D C ]R‘i. So we may
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construct a domain Q = Q, = {(z,zq) : 4 > ¢(z)} where ¢ € Dypy
and D C Q and 0D NI D ¢Qy for some Qy = Qo(0, sg) with so > 0.
Then apply Theorem 1 to €2, we get a harmonic function U in €2 which
is C' up to Q such that

HX € pQo: U(X)=0,VU(X)=0}>0.
Now let u = U|p, then this is the desired u .

Case 2: D = R¢\ B for some bounded C* domain B. We assume
that (0,0) € B. Let T : X — X/|X|* be the Kelvin transformation
and B = R?|rp . Apply the result in Case 1 to B and get a harmonic
function U. Then u(X) = U(TX)/|X|%? is the desired function for
our domain D.

Case3: D is a general C1* domain. It is easy to find a domain B C D¢
such that B N D contains some “ball” on dD. Then by the Case 2,
there is a harmonic function U in R \ B which is C! up to 0B and
{X € “ball” : U =VU = 0}| > 0. Then this u(X) = U|p is needed.

SOME REMARKS. 1. The theorems are true for C'-Dini domains. The
proof follows our argumens with minor corrections.

2. It is not hard to see that for every e there exists a harmonic
function which is C*' up to the boundary and such that

0D\ {X € 0D : u(X)#0or Vu(X) #0}| <e.

3. We do not know if the theorem is true or not for Lipschitz
domains. In fact, our method does not work even for C!' domains (and
even if we do not need the restriction u = 0).

4. We may also prove Lemma 4 by using the potential layer theory
as in [2]. But again this method does not work even for C!' domains.
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