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Hiperbolic singular

integral operators

Andrea R. Nahmod

Abstract. We define a class of integral operators which are singular
relative to the hyperbolic metric on simply connected domains of the
plane. We study the necessary and sufficient conditions for such op-
erators to be bounded on L? of the upper half plane relative to the
hyperbolic metric.

Introduction.

Let Q be an open simply connected subset of R%. Let us denote
by OS2 the boundary of © and by é(z) the euclidean distance from z to
0. Let p(z,y) be the hyperbolic distance between z and y in . And
let m(z,y) = inf{voly(B) : B is a ball containing = and y}, where by
vol,(B) we denote the hyperbolic volume of B and B is the ball defined
relative to the hyperbolic metric (when @ = R% and B has hyperbolic
radius 7, voly(B) is like sinh?(r/2)).

We consider a class of operators given by kernels satisfying stan-
dard estimates -like the usual Calder6n-Zygmund operators- but with
respect to the hyperbolic metric. We study the necessary and sufficient
conditions for such “hyperbolic singular integral operators” T to extend
to a bounded operators on L?(Q,dz/é(z)?).

In hyperbolic spaces, the volume of a ball grows exponentially as
a function of its radius. We can not then have a doubling measure.
Therefore, hyperbolic spaces are not examples of spaces of homogeneous
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type and we cannot view them within the same framework of general
Calderén-Zygmund theory developed for these spaces (¢f. for example
[CW], [D3S])

The motivation for considering operators given by this kind of ker-
nels arises when looking at the Green'’s function of the upper half plane
in two.dimensions:

|z — g
lz —y|

G(z,y) = log , for z,y € ]R_2+ .

It is well known that the Green’s operator is not bounded on
L*(R% ,dz), where dz is Lebesgue measure. But if we consider

. N
G(2,y) = log 1 = X(pz>1) -

then the operator associated to é(z, y) is bounded on L*(R? ,dh), dh =
dz/6(z)? = dz/z}. This is a consequence of |G(z,y)| < ¢/m(z,y);
that is the Green’s function decays like the inverse of the volume of the
smallest ball -relative to the hyperbolic metric- containing z and y.

~ The philosophy to deal with such “hyperbolic singular integral op-
erators” would be the following. If the hyperbolic distance between
z and y is larger than one, then the kernel would decrease “exponen-
tially” and we have enough decay to handle the L2-boundedness via
Schur’s Lemma. If the distance between z and y is less than one then
these points lie “in the same” Whitney cube where euclidean distance
and hyperbolic distance are comparable. We are then reduced to the
euclidean case and the T'1-Theorem of David and Journé applies (cf.
D)),

This article is part of my Ph.D. Thesis under the direction of Prof.
Ronald R. Coifman. I would like to thank him for his guidance and
insight. I also thank Peter Jones and Stephen Semmes for many helpful
conversations.

1. Definitions, examples and statement of results.

Definition 1.1. A hyperbolic standard kernel is a continuous function
K :QxQ\ A — C for which there ezists a constant ¢ > 0 such that

c

1) |K(z,y)| < m_(aTy)

, for all (z,y) e XA x Q\ A.
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2) If (z,y) € 2 x Q\ A are such that p(z,y) < 1, then

6(z)é
IWM%M+Wﬁ@wg&§%%

(A = {(z,y) : = = y} and the gradients are taken in the distributional
sense and assumed to be functions).

Definition 1.2. A hyperbolic singular integral operator T is an oper-
ator taking CJ(Q) into L. () and associated to a hyperbolic standard
kernel K: for every f € C(Q2),

1ww=/meﬂw£§,

for x ¢ supp f.

Notice that when p(z,y) < 1 we have that m(z,y) is comparable
to 8(z) 6(y)/|z —y|? and that 1/4 < §(z)/6(y) < 4; therefore our hyper-
bolic singular integral operator coincides with a usual singular integral
operator in euclidean geometry.

We refer the reader to [B] and [BP] for precise definitions and
properties about hyperbolic geometry.

EXAMPLES. i) Let @ = R% | (z1,22) = z, y = (y1,y2) and consider
the Riesz transforms

|z -9l

lz -yl

0 \2
(v2557) G@w)s  Gley)=log

where the derivatives are taken in the distributional sense.

Then (z2 8/0z1)2G(z,y) equals

- o fmi—y) = (22— y)® (21— y1)? — (22 + 1)’
e )
K(z,y) is a C'-function away from the diagonal and it is easy to see
that it satisfies 1) and 2).

ii) Take @ = R% and for 0 < r < 1, let B(z,r) be the ball of
hyperbolic radius r centered at :. Given z,y € R there exists a
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Mobius transformation v such that p(z,y) = p(vz,vy) = p(z,pt). Since
p(i,pi) = |log p| we have that,

volp B(z, p(z,y)) = volx B(, | log pl).

Let k be a smooth function so that |k(r)| < ¢/r? and |k'(r)| < ¢/r® and
define k(r) = k(p(z,y)) = k(|log p|). Then let K(z,y) = k(p(z,y)), if
p(z,y) < 1 and K(z,y) = 0 otherwise. Clearly K satisfies 1) and 2).
And we have that,

Tf(z)=Tf(vi) = [ k(p(vi,p)) f(ui) dh(p) = k*G f
G

if vt = z and pt = y; v, 4 € G, the group of Mdbius transformations
(¢f. [CW2, Chapter 10]).

iii) Let k(r) = (1/sinh®r)!** and let K(z,y) = k(p(z,y)). Then
it is clear that I satisfies 1) and 2).

Let @ =R3 . In Section 2 we prove,

Theorem 2.1. Let T be a hyperbolic singular integral operator. Then,
T extends to a bounded operator in L2(R? ,dz/z3) if and only if, for
any 0 < e <1,

1) T(w) € wBMO(dh); w(z) = z5,
2) T*(w) € wBMO(dh); w(z) = z5,
3) T satisfies the “local weak boundedness property” (LWBP):

Let {Q,} be the Whitney decomposition of R . Fix Q; and let dw;
be dz/|Q;|. Then w;(Q) = |Q|/|Q;| for @ C Q;. Let f,g € C§ such

that supp f,supp g C @, QCQ; and | f(z)— f(y)| < cla—y["w; (@)™ "%
same condition also for g. Then,

(1.9 = | [T gt do| < e00,(@) o gl

where ¢ is a constant independent of j .
By BMO(dh) we mean, modulo constants the space of functions f
such that

1
su
{Q:volh(%)gl} VOIh(Q)

/ f = (mh)o f|dh(z),
Q
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where @ is a cube in R% with sides parallel to the coordinate axis,
dh(z) = dz/z% and

1
.(mh)qf=m/fdh-

For other domains different than R% we can get a partial result for
Q a simply connected domain in R? bounded by a Jordan curve that is
a K-quasicircle with K =1+ ¢, € > 0 very small and R an operator
associated to a kernel R(z,w) that is closely related to a hyperbolic
standard kernel when p*(z,w) > 1, p* is the hyperbolic distance in Q.
In Section 3 we prove,

Theorem 3.1. Let Q be a simply connected domain in R? bounded
by a Jordan curve that 13 ¢ K-quasicircle with K = 1+¢ and e > 0
very small. Let p* be the hyperbolic distance function in Q and §(z")
the euclidean distance dist {z',00}. Let R(z',w') be a kernel defined
on Q x Q such that R(z',w') = 0, if p*(2',w') < 1 and |R(z',w')| <
ce=p (WK ip px w') > 1.

. Then, if R 13 the operator associated to R(z',w'), we have that
there ezists n = n(e) > 0 such that

R(6")(z") < c87(2"), dh almost everywhere,
where dh = dz'/6(2')? is equivalent to the hyperbolic measure on Q.

By Schur’s Lemma it is an immediate consequence of Theorem 3.1
that R defines a bounded operator on L?(Q,dz'/§(2')?).

Actually, if G(z w') is the Green’s function on any simply con-
nected domain of R? (with non trivial boundary), then |G(z',w')| <
ce P W) if (2 w!) > 1.

REMARK. We also have that

IG(z',w')| < ¢ (1 + log — for p*(2',w') < 1.

( I I)2)

This estimate is enough to prove that C~;'~, the operator associated to
the kernel G(z',w'") X pr (2 i<t ® satisfies G(67)(2') < 6"(z'), dh almost

everywhere, for 0 < n < 1, Q simply connected in R?.



108 A. R. NAHMOD

The Green’s operator on A, the unit disk, defines a bounded opera-
tor on L?(A, dh). Therefore the Green’s operator on 2, any simply con-
nected domain in the plane, defines a bounded operator on L%(2,dh).

REMARK. Kernels K(z',w') defined on Q x @, 92 a K-quasicircle,
K =1 + ¢, satisfying: K(2',w') =0if p*(2',w') < 1 and
min{6(z')?, §(w')?}

|I{(z',w’)lgc Iz’_w'lz

, if p*(z',w') > 1,

are also kernels of the kind described in Theorem 3.1:

Being 09 a K-quasicircle, there exists F': R2 — R?, F(c0) = oo,
f = F|a: A — §Qis univalent and F is a K2-global quasiconformal
map (recall that F~! is also K2-quasiconformal).

Also F satisfies: if z,w,u € R? then (cf. [A])

min{lz—wl”’” |z—w|"”} < |F(z) = F(w)

lw—ul 7w -yl I F(w) — F(u)
_ o 1/K? . K?
Smax{‘z w| ’|z w| }
|lw — ul |lw — ul

Therefore,

min{&(z’)2,6(w’)2} < e—p(h(z’),h(wl))/}(z :
|2 —w'[* -

where h = f~! and p is the hyperbolic distance function in A.
Before proving Theorem 2.1 we wish to recall,

Schur’s Lemma. If K(z,y) is a nonnegative kernel, if p and q are
strictly positive measurable functions on X and Y respectively, and if
a and 3 are positive numbers such that

/ K(z,y)q(y) du(y) < ap(z),  for almost every z-dy',

/K(z,y)p(z)dp'(z) < Bq(y), for almost every y-du,

then K(z,y) is a bounded kernel and |K||> < a8. That 1s, the oper-
ator associated to K(z,y) maps L*(X,du') — L*(Y,du) continuously.
(X,du') and (Ydu) are measure spaces, p' and p are positive measures

(cf. [HS]).
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2. Proof of Theorem 2.1.

Write,

1= [ Kewfwgh+ [ Keniwgs
{p(z,y)<1} {o(z,9)21}
= T() + (),

for f € Cf and z ¢ supp f. Then, the theorem will follow from:

A) T, : 25 L® — z5 L. Recall that on R?, §(z) = zo if
z = (z1,z2).

B) If T: L?(dh) — L%(dh), then T : 2§ L — z§ BMO(dh).

C) If T} has the LWBP on each Q; and T1(1) € BMO(dh), Ty(1) €
BMO(dh), then T; is bounded on L?(dh).

PROOF OF A). We need to show that there exists a constant ¢ = ¢(¢) >
0 such that ||T2(f)(:)/6()lec S ¢||F||loo; f =25 F, F € L*™.

. e dy
ITo(f)(2)] < / K (2,0)] 45 Flw) o
{p(z,y)>1}
1 . dy

) 2
{p(z,y)>1}

T2Y2 dy
< "||Flloo / Iﬂf——y_Py;y_% ;
{o(z,y)>1}

since for r = p(z,y) > 1, sinhz(r/2) ~ ¢e", and then,

1 1 T2Y2
m(z,y) = |z -y

By means of a (Mobius) transformation we get,

2
T3 -1
<c||Flles 5 / —|$ e wy dw

+oo 1% +o0 1
<cl||F a:E/ dw; dw
<c||Flloo 5 o w;_€($2+$2w2)2 _°°1+(x1—x2w1)2 L
Ty + Tows



110 A. R. NAHMOD

+oo 1
<cm||F .1:5/ — dw
Pl [ o o

S e(e) || Flloo 23,

where

1 1
c(e)—c(g+ 1—5)'

PROOF OF B). Assume T : L%(dh) — L%(dh). By A) and Schur’s
Lemma we have that T; : L2(dh) — LZ%(dh) continuously, therefore
we know that Ty : L%(dh) — L?(dh). We define the action of T} on
x5 Lo

Let @ be a cube such that volx(Q) < 1, then everything is like in
the euclidean case ([DJ], [DJS]). .

Let f =fo +f(1_XQ) =fi+ f2. Q@ = 2Q is the cube with
the same center as () and sidelength 24(Q).

(Tif)g = PEIE | B _ g,
where !
cqQ= / \(:Ean) f ( )

{v:p(zq,¥)<1,y¢Q}

where z¢ is the center of Q.

(T1 f)o(z) = ﬂ%()

K(z,y) K(zQ Y)
+ . foly) —=
(- ne
{o(z,9)<1}NnQ¢

(T1f)q is well defined up to constants (depending on Q).
Now, denote by dg = d(Q,R), and let fi(z) = zéF(z)xQ(z) €

L%*(R%, dh). By the boundedness of T} and Jensen’s inequality we have,

1 [ A@)|de _ _dg de
voln(Q) Jo =% 2= volh(Q)AlTlfl(x)'zg

y 1 , dz 1/2
qu (volh(Q)_/QlT]fl(x)l l%)
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< (g /Q @) ii—)/ .

But |fi(z)] £ ||F|lec d, therefore the last expression is less or equal
than ¢||F)|oo -
On the other hand,

K(z,y) _K(zq,y) dy
’ / ] ( z5 z5 fa(y) yg
{p(z,y)<1}NnQ°

- . dy
< || Flloe / K (@,9) ~ K(zq.0)| 5
2

{p(z,y)<1}NQ°

1
<c|QM?||F / _ 1
{y:0(z,9)<1}NQc
+oo 1
<CIQM PN [
lQ]l/zr
<c||Floo -

Therefore, T} : 25 L — x5 BMO(dh), which proves B). Similarly, we
have that if T*: L?(dh) — L?(dh) then, T*: 2§ L — z§ BMO(dh).

It is easy, and left to the reader, to check that if T': L%(dh) —
L?(dh) then T has the LWBP on each Whitney Q.

Now we should prove the converse. Once more we remark that A)
has already established, by Schur’s Lemma, the L?(dh)-boundedness of
T;.

ProoOF OF C). If T} has the LWBP on each @; and T1(1) € BMO(dh),
Ty (1) € BMO(dh), then T is bounded on L%(dh).

To see this we take the Whitney decomposition {Q;} for the upper
half plane and we divide it into 9 subfamilies F;, F,, F3, ..., Fg so that
if f is a function supported in @;; and g a function supported in Qy,,
and Qk;, € Fi, Qj; € Fi, ki # ji. Then, suppTi(f) and supp Ti(g)
have disjoint interiors.

For Q) a Whitney cube denote by N; = Q U {8 neighbors}. A
neighbor of @) is a Whitney cube having one side or one vertex in
common with Q.
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Now let f be in Cg(R?2) and let {Q;} be the Whitney decomposi-
tion for R? and write

9 9

J Ji Ji

=1 j; =1
Then,
9
ITL(HIE < e9) DD ITa( £l -

=1 ji
We wish to conclude that || T3 (f;;)||3 < co || fj; ||3 where cg is independent

of Q;, any Whitney cube. Observe that || f||3 = E?=1 > 5 II%.
To see this, let us write 7} in the following way: for h such that

supph C Q;
Ty(k) = Lj(h) + E;(h),

L= [ xg@Kenht) .

{o(z,y)<1}
. dy
Ej(h)(z) = Xn,\g; (2) K(2,y) h(y) = .
A Y2
{p(z,y)<1}

Then L; : L*Qj,dw;) — L*(Qj,dw;) continuously. Indeed,
T2(w) € wBMO and T(w) € wBMO, w(z) = z5. Then Ti(w) €
wBMO, and

% € BMO(dh) implies %I—U—)- € BMO(Qj, dw;).

Now, if z € Q; then
w(z) = z; =d; b(z)°,

.where 1/4 < b(z) < 4 is independent of j and d; = d(Q;,R). Therefore,
on Q;,
Ti(w)(z) Ti(b)x)
w(z) — bz)

and so

T3 (b)(2)
b(z)

€ BMO(Q;, duwy).
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Observe that b(x) is a positive, Holder continuous function on Q;
with constant cd; ®.
Then by Stegenga [Sg] we can prove that if

leg(bi()m")-e BMO(Qj,dw;)  then  Ty(b)(z) € BMO(Qj,dw;)

with constant depending on the BMO constant of Tj(w)/w, on ||b]|es
and on

a= g gy (Ps5gy) [, e) ~ matlds

1
mqgb = Te) /; b(z) dw; .

It is easy to see now that since |b(z) — b(z')| < c|z — 2'|*/d5, we
have that a <1.
Then T (b) € BMO(Q;, dwj) with constant independent of j .

On the other hand,
Ti(b) = Ta(bxg,) + Ta(b(1 = xq,))-

But T1(b(1 - Xq, )) is in BMO(Q;, dw;) with constant independent of j
(this follows from Lemma 2.1 at the end of this section; in fact, T (b(1 —
Xg, (@) ~ log(1Q;|'/?/d(,8Q;))). Then Ti(bxy, ) € BMO(Q;, dw;).
In the same way T} (b Xg, ) € BMO(Q)j,dw;j). Therefore,

1) Lj(bxg,) € BMO(Q;, dwj),

i) Lj(bxg,) € BMO(Q, dwy),

iti) L; has the WBP on Q; -relative to dw; .
Therefore, by the T'1-Theorem (cf. [DJ])

dz dz
Lj : L2(in F) — L2(QJ" ?)
2 2

with constant independent on j .
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Now we concentrate on E;. We wish to show that

By AN, 2y — 12w, 5,
3 T3
K(z,y
Ei(1)@) = [ xg,0) = x10, ) F0) .

If we call K(z.y)

: — Ay

e,(:t,y) - XQ, (.’E) y% XN,\Q, (y)
then c
Ie,(:l:,y)lSm, fOI‘.'IIGQj, yEN]'\QJ'.

We will show that there exist two positive measurable functions p(z)
and ¢(y) and two positive numbers a and 3 such that

(51) /|ej(a:,y)| q(y)dy < ap(z), for almost every z,

(S2) /{ej(_z,y)|p(z) dz < Bq(y), for almost every y .
Let

a(y) = d(y,0Q;) %,  yeN;\Q;,
p(z) = d(:z:,BQj)_l/z, r€Q;.
‘We need to show that

(S1) xg, (“‘)/N\Q lej(e,v)] d(y,0Q,) 7 dy < ad(z,0Q;)7"2,

(52) Xy, @) [ les(o, ) dlw,00,) /2y < pilz, 0;)77.

First we observe that it is enough to prove (S;) and (S;) for C=2j instead

of N;\ Q; where C_Qj is the cube with the same center as @} and 5 times
its side length.
Next we observe that it is enough to show

() x5, (®) [ Vet )y, 9B;)7 /7 dy < e d(z, 9B,) 7

S x. (2) / e, (2. )| d(y,0B,)~"? dy < B d(z,dB;)""/2,
B;\B; B;
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where B; is a ball with same center as @; and radius comparable to
£(Q;).

Indeed, given Q; and Bj, there is a bilipschitz map h : R? — R?
sending B; to ;. The interior of B; goes to the interior of Q}; and
there exists M > 0 such that

1 _h@)=hw)

zZ—w

Therefore if Jh is the jacobian of h, |Jh(z)] < 2M? almost every-
where. Moreover, there exists a bilipschitz map & : R? — R? send-

ing BJ \ B to QJ \ @;. First consider h; bilipschitz from R? to
R? sending B to QJ and the interior to the interior. Then we con-
sider a neighborhood C; of h;(Bj) at a distance proportional to OB j
and dB; and consider h; : RZ — R? a bilipschitz map such that
ho(z) = ho(z2) if z € Cj and ho(2) = z if z € R?\ Cj.

Here, h, is the map that sends C; to another neighborhood C; and
maps hy(B;) -inside Cj- to Q; -inside C}-. Also, C;\ h1(Bj;) is mapped
to C;\ Q; .

Finally, we take h = hyoh;, h:R? — R? and 1—3,~\Bj to é]'\Qj
and is bilipschitz with constant M’ independent of j, (¢f. [T], [JK]).

To prove (S}) and (S3) we can proceed in two different ways. One
is elementary, the other more constructive. We choose to prove (S))
in the elementary and (S5) in the other way. We can assume Bj; is

centered at 0, that « lies in the real axis, and it is in the interior of B; .
Let r be the radius of B;. Then,

L lesteldiv, 28,7 2 ay
B;\B;
1
< ——— d(y,0B;)"*dy
/B \B lz —y|? ( 2
3r _ -1/2
/ / p(p—r) dp d6
—xJr P2+ |z|? —2p|z|Ccos 6
P
=2 d
T[ (-2 —JzP) 7

3r
™ dp
=2 [ (= ""(p—[2])
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3 3r+|z| dp

=27 1/2
r—|z| P(P + lxl - T‘)
™

< —
Vr =z

= nd(z,0B;)"/?,

where we have used

1) if 8% > ¢?,
dz _ 2 (b — c)tan(az/2)
/ b+ccosaz  a(b? — c2)i/2 ar“t"m( (B2 — )1/ ) T
2) if b<0,
dz 2 (az + b)!/?
= arctan ———— +c.
z(az +b)1/2  /=p V—b

To prove (Sj) we can assume with no loss of generality that B; =
A, the unit disk centered at 0. We wish to prove that there exists 8 > 0
such that

—.1 - —
Alx—y|2(1_|ylz) V2dy < B(|z> —1)71/2, forz ¢ A,

1 1

1 _
/Am(l —|yI*)M?dy < —

TSR

where @ = 1/z and |a| < 1. There is no loss of generality in assuming
that z is real and that |a| > 3/4. So, it is enough to prove that

1 _ _
/Am(l—lylz) Y2dy <c(1—|af?) /2.

To do so we look at the level lines for 1/|1 — ay|, at the points ¢, =
27" /(1 — |af?)

1 2 }
[1—ayl (1-laf?)

12 _2"(1—|a?)?
={ven: |z -y =)
{vea: |-y laf )
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These are circles centered at 1/a@ and radius 2*(1 — |a|?)/|a|. Observe
that if n = 0, the radius is (1 — [a|?)/|a|] ~ 1/|a| — 1. This gives us
the first circle whose intersection with A occurs in its boundary. As n
increases we obtain a sequence of circles each time with double radius.

Then

= >—1/2dy<2/ T (1 ),

n=0

where

An={yeA: 27 (1-]af) < (1-ay) < 2"(1-[aP)}, AC | 4n

n=0

But the last inequality is less than or equal to

22n - 1/2d
Z<1—|a|2>2/f‘,.<1—|y|2)1/2 / T (1= )™ s,

where Ry, = A\ UnM_"O A,. Now, A, is contained in a larger region
T, for n £ My where M, is the last integer n before C, touches or
includes 0 in A,41. In polar coordinates, Ty, is defined by letting 8 vary
between 0 and 4(T,) and r between 1 — 27(1 — |a|?) and 1. We call
Tp = 0(Uj=e4;) N OA.

If y € Ry, then |1 —ay| > 1/10, and

1 1 1
dy < 102/ 1 4
/RM 11 —ay|? (1 |y[2)~1/2 y 3 A=)z Y

<co(1—|a?)7V2.

Now,

«ry)
dG/ dr
L" (1- |y|2 T=ppe / 1-27(1—[a|?) (1—7"2)1/2

< cl(T,)2"2(1 — |a|?)Y/2.

But circle is chord arc and so we have that ¢(T'y) ~ |bp —dn| < c2™(1—
|a|?), where c is a positive absolute constant and by, d, are the points
where C,, crosses 9A. Therefore,

Mo 9-2n oo
3n/2 1 _ 1,12\3/2 1412V —1/2 —n/2
© 2 Toqapp 2 A < e - o) 2.2

Se(l— o).
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Therefore we have (S5) and with this we conclude the proof of Theorem
2.1.

Lemma 2.1. Let S be a singular integral operator associated to a
kernel s(z,y) satisfying standard estimates. Then S(1 — Xo, )z) s in
J

BMO(Q;) with constant independent of the size of Q; .

PROOF. The proof of this uses the same sort of argument used to show
that a Calderén-Zygmund operator maps L™ into BMO continuously.
We refer the reader to [DJS], [N].

Preliminaries for Section 3.

We would like to recall some of the results necessary for the proof
of Theorem 3.1. No proofs are shown but they can be found at the
indicated references.

Given a simply connected domain 2 (with nontrivial boundary)
the Riemann mapping Theorem tells us we can construct a univalent
mapping -that is a conformal homeomorphism- f of the unit disk A
onto 2.

Lemma P.1. Suppose Q and Q' are domains on C and f : Q' — Q
i3 conformal. Then if G(z,w) 18 a Green’s function on Q, G'(z,w) =

G(f(2), f(w)) s a Green’s function for Q'.

Theorem K. (Weak form of Koebe 1/4 Theorem). Suppose f: A —
C is univalent, f(0) = 0, and f'(0) = 1. Then there exists ¢ > 0
(independent of f) such that D(0,cq) C f(A).

Corollary K. If f: Q@ — Q' is conformal, then for all z € (2,
v dist { f(z),0Q'}
! z ~y
Q! dist {z, 00}

If f is a univalent function on A, f' never vanishes, so we can write
f' = e¥ for some holomorphic ¢ on A.

Theorem P.2. There is a universal constant ¢ > 0 such that of f 13
univalent on A and f' = €% then |p'(2)]| < co(1—|z])7! forallz € A.
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Theorem P.3. There is a universal constant €9 > 0 such that if f' =
e? where ¢ 1s holomorphic and |p'(z)] < €(1 — |2])7! for € < € and
z €A, then f: A — f(A) 13 a conformal map onto a Jordan domain
bounded by a quasicircle (with constant ~ 1+ ce).

And conversely, let Q be a simply connected domain in R? bounded
by a Jordan curve that is a K-quasicircle (co 13 fized), K = 1 + ¢.
Let f be the Riemann map from A to Q (f has o K2-quasiconformal
eztension to R?, oo remains fized) and let f' = e¥. Then,

sup ' () (1= |2I") S eoe,

where ¢g > 0 is an absolute constant (cf. [P], [L]).

A quasicircle is a Jordan curve I in R? that is the image of the unit
circle T under a globally quasiconformal homeomorphism of R? onto
R2. Conformal maps are mappings sending small circles to small cir-
cles. Quasiconformal mapping take small circles to ellipses of bounded
eccentricity, (¢f. [A], [LV], for an exposition in the subject).

Definition P.4. For g defined on A we define
lglls = sup l9' ()l (1~ |2]*).

The set of holomorphic functions g on A with ||g||p < +o0 is called the
Bloch class B; || - ||g s conformally invariant.

Note that on A, 1 — |z| ~ 1 — |2|? so if f is univalent and f' = e¥
then by Theorem P.2, ¢ is in the Bloch class.
Recall that on A the hyperbolic distance is defined by

11— zw| + |z — w|

=1 .
plz,w) =log "5 =74

Lemma P.5. If ¢ 1s holomorphic on A then ¢ € B if and only if
there 1s an A > 0 such that |p(z) — p(w)| < A p(z,w) for all z,w € A,
Moreover, if Ag 1s the smallest such constant Ag ~ ||¢|l8 (cf. [P]).
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3. Proof of Theorem 3.1.

Set K = 1+¢, then K% ~ 1+ 3¢, € is very small and it will become
clear at the end of the proof how small it should be.

Let f : A — Q univalent. Let A = f~! : @ — A univalent,
p* the hyperbolic metric on Q, p*(z',w') = p(h(z'), h(w')) = p(z,w),
z' = f(z), w' = f(w), p the hyperbolic metric on A. We want to prove
that if 6(w) = dist {w, 0N} then there exists n = n(¢), 0 < 7 < 1 and
¢ > 0 an absolute constant such that for 2’ € Q,

/R(z w')§(w') — 6( ,)2 <cé(")".
Recall that if A C Q, volu(4) = [, dw'/6(w')?,
/R(z', w') §(w')"? dw'

(1= [R(")P)VE" (1 = |h(w") ) /X
|1 — h(2')h(w")[2/ K

< s(w')" 2 dw'

{w'ip* (', w')>1)

1 —|h(z")|? = d(h(Z),04) and fl(z) = -I;(lz_') if h(z')=z.
By Theorem K we have that
d(w',00) ~ |f'(w)|d(w,08)
1 )2
lhl(u)’)l (1 lh(w )l )
h is conformal. Therefore, if w = h(w')
dw dw'
§(w)2  §(w')?
Then, the last inequality is
1/K249
< N/K? NIV (1-|w | ) g _GW
_C6(Z) lh( )| |1 h(Z’) |2/1\2 |f( )l 6( )2
{w:p(w,z)>1}
. 6(w l/I\ +n
< 1 — 2\1/K? o\ n_____
___C( lzl ) |1 ZU.7|2/I\2 |f( )I (S( )2

{w:p(z,w)>1}
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We know that f' = e for some ¢ in the Bloch class such that ||¢||s <
co€; call § = ¢ge. Then we can make the last expression less than or
equal to

—p(z,w)/K* jnRep(w) g0, \n dw
c/Ae e (w) 5wy
_ 2 _ dw
= ce™™2) [ =p(z,w)/K* n(u(w)-u(2)) 6(w)"
A §(w)?’

where u = Rey and |f'(w)|" = e"(*). But,
lells <6 implies  u(w) —u(2) < |p(w) — p(2)| < 6 p(w,2).
Therefore,

< cenu(Z)/ e~ (1/K*=n8) p(w,2) 6(w)"? dw
A

< goute) [ A= [2DVETT (1 — fw]t)= A/ ntad)
= s (11 = zw[2) /K™ =wb

w .

Let 1+a=1/K? —n§,r = —=(-1/K? + 2 —n + 76)/2. Then

2\2r
_ nu(z) _ 2\14a (1 — |’U)| )
=ce (1-1z)%) A—_Il—zwl""”“’ dw.

Call B(z,2)™" = (1—|2|?)?>". We know that forr > —1/2anda—r >0
(cf. [CR)),

B(w,w)™" 1
_ Lm0 .
/A [1 — zw|2(1+e) dw < (1 — |z[2)2(e=")
But,
1,01 1 . . 1 1
7‘—5(7\;2-—2—775-|-T]>>—§ lfandonlylf T]>(1—I—{E)-1—_—5
And,

1
"SGR

Recall that § = cg¢, and that K? ~ 1 + 3¢. Then, for ¢ sufficiently
small, we have that

a—r>0 if and only if

1y 1 1
°<(1‘ﬁ)1—5<(1+5)1{2'
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Therefore, altogether, we have that

_ 22 1+o
Qe < clf () (1 - J2)7 < cd(s!,09)" = co(z')"

nu(z) -~ 191 J
ENCEEOE

for
(]_.__1_)___1__.< <___1___..
K2)1-6 "SR’

since 1 + a — 2a + 2r = n. This concludes the proof of Theorem 3.1.
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