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Weyl sums and

atomic energy oscillations

Antonio Cérdoba, Charles L. Fefferman and Luis A. Seco

“...cuando hay vino beben vino

cuando no hay vino, agua fresca.”

A. Machado.

Abstract. We extend Van der Corput’s method for exponential sums
to study an oscillating term appearing in the quantum theory of large
atoms. We obtain an interpretation in terms of classical dynamics and
we produce sharp asymptotic upper and lower bounds for the oscilla-
tions.

1. Introduction.

The purpose of this paper is to study a certain sum that plays a
crucial role in the asymptotic analysis of non-relativistic atomic ener-
gies. The sum is given by the expression

21+1
Yo(2) = Z -1/
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where u(z) = dist {z,Z}? — 1/12, V.Z is the Thomas-Fermi potential
with charge Z (see [Li]), which satisfies the perfect scaling condition

(1.a) VZ(r) = Z4PVL (21/3 r)

and we have

(Lb) Vigy=¥en (%)/

r

and y is the Thomas-Fermi function, solution of the Thomas-Fermi
equation

3/2
" y oo
v =L,
y(0)=1,
lim y(r)=0,

r—-+4oco

and Iyp is the greatest integer such that V.Z(r) — (I 4+ 1)/r? is positive
somewhere. Here, and throughout this article, we set

+ 0, ifz<0.

The role of the function ¥g(Z) in atomic physics is as follows:

Consider a non-relativistic atom, consisting of a nucleus of charge
Z fixed at the origin, and N quantized electrons at positions z; € R3.
The hamiltonian of such a system is given by

N

HZ,N:Z<_AI‘—|1|> %Z |z — ]

i=1 i#]
acting on

N
veH=N\L*(R°©Z) .

=1

We define the energy of such an atom as

E(Z)= jpf B(Z.N),  E(%,N)= ” ‘g%;{ (Hznd,4).
sll=1
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The computation of E(Z) can only be done explicitly for Z = 1, when
it equals —1/4. For Z = 2 good upper and lower bounds are known,
but the situation gets more and more complicated as Z grows. It was
observed very early in the history of quantum mechanics, in 1927 (see
[Th] and [Fe]), by Thomas and Fermi, that for Z large, E(Z) must
approximately equal crpZ7/3 for crr a well known explicit constant.
This was made rigorous by Lieb and Simon in 1973 ([LS] and ([Li]), a
very beautiful result which also holds for molecules.

Comparisons with numerical results showed that the Thomas-
Fermi approximation was only good up to a term of size Z2, and Scott
([Sc]) in 1950 was the first to realize that this Z2 effect was due to
electrons very near the nucleus, which behave as if they were in the
exactly solvable model without electronic interaction. His argument
was make rigorous in a series of papers by Hughes-Siedentop-Weikard
([Hu], [SW1], [SW2] and [SW3]) in 1985-89. This was proved to be true
also for molecules by Ivrii-Sigal [IS].

A smaller effect, of size Z5/> was observed by Dirac, in 1930 ([Di]),
which comes from a delicate analysis of electronic correlations. Addi-
tional effects were also found by Scott ([Sc]), corrected by March and
Plaskett [MP], and then finally established by Schwinger ([Sch]), who
argued that the asymptotic energy expansion should then contain the
term cpsZ°/ 3 for cps an explicit constant. The proof of Schwinger’s
result was announced in [FS1}, and is as follows:

E(Z)=CTFZ7/3+%Z2+CDS Z5/3+0(Zs/3_a) y a>0'

Its complete proof appears in [FS2], [FS3], [FS4], [FS5], [FS6], [FST7]
and [FS8].

It has been known for some time that nice asymptotics for atomic
energies in powers of Z!/3 will stop after the Dirac-Schwinger term.
This can most easily be conjectured by looking at simpler, exactly solv-
able .models such as the harmonic oscillator (see [Si]). Comparisons
with numerical results also show that the next correction will be oscil-
latory in nature. We refer the reader to the book of Englert ([En]; see
also [ES1] and [ES2]) for a physical discussion of the energy asymptotics
up to including oscillatory terms. The exact form of the function ¥g
above originates from the proof of the Dirac-Schwinger’s term in [FS1],
where it is seen that
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where a > 0, although the current estimates for a above do not yet
guarantee that ¥q really dominates over the O-term.

Note that in establishing (2) not only do we need estimates for the
error terms with a large enough, but also we need lower bounds for the
size of the function ¥q, which are not completely obvious. It follows
from our results in the present article that one would need @ > 1/6 in
order to show that ¥ dominates over the error terms contained in the
O-term.

From the abstract mathematical perspective, sums such as ¥ are
quite old, the best known going back to Gauss, which is related to
estimating the number of integral lattice points inside a convex curve:
most notably, a circle, which gave rise to the circle problem, and a
hyperbola, which comes from the divisor problem, two of the most
elusive problems in analytic number theory (see [GK] for a general
description; [IM] and [Hx] for the latest results). It is worth noting
the close similarity between our problem and the circle problem, which
comes from a refined analysis of the number of bound states of quantum
free particles in a box.

A step higher in sophistication, but still within the same realm of
problems, is the Selberg trace formula, which, very loosely speaking,
expresses spectral information about the laplacian on an abstract man-
ifold in terms of the closed geodesics on that manifold, which can also
be seen as the mathematical version of the Feymann Path integrals for
abstract systems. We refer the reader to [G] and references thereof for a
wealth of ideas in the theory of trace formulas, quantum chaos, classical
mechanics, and all that.

An announcement of our results, which are described below, ap-

peared in [CFS].

Our work is organized as follows: First, after making some trivial
modifications to the well known stationary phase lemma (Section 1),
we set out (in Section 2) to study sums of the type

0= 2(2) s (1(2)

where ¢"(z) > ¢o > 0, and p is a periodic function of average 0. Ex-
amples of such sums are
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1. If f =1, p(z) = ¥, ¢(z) = z?, we have the well-known
Gauss sums modulo A.

2. If f=1, p(z) =z — [z] — 1/2, then S represents the error term
in the lattice point problem for a curve ¢ dilated by A.

While the first item above is well understood, the second remains
very hard. In our analysis, we will have to deal only with functions y
whose Fourier coefficients decrease rather rapidly (i(n) ~ |n|=3/2%¢),
and this allows a complete analysis of the sums via the usual method of
Van der Corput (Poisson summation followed by stationary phase; see
[GK}), since all expressions turn out to be absolutely convergent in this
case. A little elementary number theory will be needed here to rule out
the possibility of a small denominator problem, which gives rise to an
error term whose size depends on whether a certain number is rational
or irrational.

In Section 3, we apply the results of Section 2 to ¥, obtaining a
new sum ¥, a leading “dual” version of ¥q, reminiscent of the Jacobi
identity for the modular function. Sharp upper bounds for ¥q are
an easy consequence of this. However, obtaining the right regularity
properties for the curve and amplitude involved in the formula for ¥¢
turns out to be rather tedious.

In Section 4 we obtain lower bounds for ¥q in the form of an
Q-result, by understanding how ¥, behaves on average.

In Section 5 we use the dual expression ¥y to give us a dynamical
interpretation of the sum ¥q as a sum of classical data extended over
all closed trajectories of a classical hamiltonian. This result appears to

have similarities also with a recent result of Bleher [B2].

Section 6 is devoted to side issues.

1. Stationary Phase Estimates.

We begin with a review of stationary phase. Consider f € C§°(R).
Then, if t > 0,

+oo 2 : s too 2;¢2 £
/ eite f(’l) dz = e1r1/4 \/;/ e~ g%/t f({) d{
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Using the identity
1
e’ = 1+/ e’ sdu,
0

we deduce

/ O gt f(z)dz

—00

+oo 1 2, ¢2

_ mif z ; -7 —n2iug?/

=i [ (50 [ de [ T e “aud)
. +oo 1

_ wif _7_!' l_ T —w?iug?/

=e 4\/:<f(0)+4t - f ({)/0 e ¢ tdud{)

wi [T " ! itz?ju @
=e M,/%f(O)—#—é/_oof(x)/oet / ul—%da:

1 1/2
9+(z) =/ eite’ /v (—t-) du.
0 u

Note that g¢(z) = t'/2g; (t!/2z), and

for

. 3/2 1 3 [ 1/2
g1(x)=ie”2/“-u$—20—52/0 e“”z/"ux—zdu,

hence |g1(z)| < 2/|z|? and thus, g; is integrable. Furthermore
llgelly = llgall, = O(1)
and |g¢(z)| < 2 |z| 271/

We also consider one-sided integrals of the form

+oo 2
/ et f(z)dz.
0

Define
f(z), if >0,

+$ —
f*(=) {f(—a:), if <0,
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and consider f. = f * ., for a suitable approximation to the identity
pe. Using our previous identity, we obtain

+oo +oo
/ eits” f(z)dz = - hm/ eit=’ f, (z)dz
0

1 m' . +oo J

=3° “M—ﬂm+§ﬁﬁh%/ () gi(x) de
1 7rz/4 ' e "
=3 f t3/2 f'(2) gu(z) de.

The last step follows since g; is integrable and both functions ¢g; and
fT are even.

Definition. Let ¢ such that
60(2)| < Cny, (0<n<5), o =infl|g"(z) >0,

for z in a certain interval which will be clear in our applications. We
denote by

+

54
¢ =min{l,c}, B(¢) = (%ﬁ)

0

Lemma 1 (Stationary Phase Lemma). Let f(z) € C¢(R), such that

Fancd M TS
| N2y i el > L, e

and

M, , if |z|>L,

and let ¢(z) such that ¢(0) = ¢'(0) =0, qu(")(a:)l <Cpfor0<n <5,
and ¢"'(z) > ¢ > 0 for all x in the support of f.
Then

(3.) ’/_ﬂoeit‘ﬁ(z) f(z)dz — (El_g%(_o_))l/z Gsign(t) mi/4 f(0)’

< AB#) 2 (Iflleo + N1 + 5727

" Ml ) Zf |$| S Lv
If"(z)] < (My < M)

N,
a4+ )
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Simalarly,
too . /2 ,
itp(z) _ 7r sign(t) ri/4
b ‘ /0 e f(z)de (2 Il ¢~(0)) ¢ f(o)‘
(3.b) N M
< AB(6) 1 (|flle + Ns + g+ M+ 57T )

We also have the usual L-independent estimates

0 | @i () w0 10)

< AB($) ([ flloo + 11, + 1F"111)
and
too T 1/2 .
ezt¢(z) T — sign(t) i /4
(3.d) |/0 fla)de (2It|¢”(0)) - f(O)‘
< AB@®)t™* (I flloo + Il + 1£"111)

where A is a universal constant, and B(¢) i3 as defined above for = in
the support of f. Here, sign(t) stands for the function which equals 1
ift>0and -1 3ift <O.

PROOF. It will obviously be enough to consider the case t > 0. Consider
the change of variables given by

u(z) =z %(:—;2

and its inverse z(u). We begin by obtaining regularity properties of u
and z.

Let k£ > 1. In what follows, A; will denote a collection of universal
constants depending only on k. First, we consider |z| < 1 and define

bi(2) =272 §(z).

Since Lo
¢1(l‘)=/ / ¢"(stz)sdtds
o Jo

[$1llcx < Ak Illcr+= -

we have



WEYL SUMS AND ATOMIC ENERGY OSCILLATIONS 173

Next, define
$2(z) = v/ #1(x), lz| <1,
and note that
Yoo D @) ¢ P ()

1iy+-+p-ip=k
d*gy(z) | >0

dz¥ k 1/2( ) ’

which can easily be checked by inductlon. As a result, we have

(1+ lIgallce)" (1 + lIgllcr+2)®
l|g2llcr < Ax =Y < Ak =V R
0 0

where we have used the fact that ¢;(z) > ¢y/2. Therefore, since u(z) =
z ¢(z), we conclude that

d”U(ﬂf)l < A (1+H¢||c'=+=)’°

ko172 , when |z| < 1.
c

When |z| > 1 we obviously have that

d( ) Z¢1/2 '(;,;) Z ‘1’ y ¢(z)11. .¢(p)($)i1,
zk =1 1- i1+----;p-ip-k
ij_O

hence .
(1+|[¢llcx)
4+k—-1/2 ’
Co

[u®)(z)] < Ak z| > 1,

so altogether we obtain

”u“ (1 + “¢”C"+2)k
cr < HE172 :
0

Finally, since
2'(u(z))u'(z) =1,
and, for k > 2,

d* =
T @) W @) = 3 Kip o= (u(x))
p=1
> el @) el (),

Liy+edgig=k+1—p
1; >0



174 A. CO6rDoOBA, CH. L. FEFFERMAN AND L. A. SEco

and

/()] = ]¢§§zc, =gt

we obtain by induction that

Vﬁﬁﬂsm(%%%“u+mmmf

3‘
N

With our previous estimate for ||u||cr we then conclude that

df2(u)) 1+ ||gllcr+2 2%
du Tduk | = Ak( cg' ) )
Then
+oo +oo 2 -
/ e't#(2) f(z)dzz/ e f(u)du,
for

flu) = f(z(w)) ' ().
Note that f(0) = f(0) \/2/¢"(0). Since z'(u) < ¢!,
Ny, if |u|<cL,

[f'(z(u))l < {

N, , otherwise,

Mla if |U|SCL,

M, , otherwise.

1" (2(u))] < {
As a result, using stationary phase, we arrive at

|/ Wmﬂ@“’(%ﬁﬁ)ﬂw“ﬂm

<t (L] + 15|+ 15)),

for
h=/mmwmwwwwm,
h=/meMMVWVMMm
=/Qm0ﬂuw»£wfmh
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Now,
1+ ||d|lcs\ 54
151 < Bellos Wfl [ lontw)l du < A (FELEE)™
o
Next,
Co \ (1t lI¢llcs\e
<
|I2|—A(\/a)( & )
-(N1 / lg¢(u)| du + 2 N, / t-1/2u—2du)
|u|<cL |u|>cL
1+ I¢lles ) 2N,
< _ —_—
<4( o ) (Ml + 57)
Finally,
|I] < Myc™3 / lge(2)| dz 4+ 2 My ™3 / t72y "2 du
lui<e L lui>c L
2M.
-3 2
<Mc ||91||1+m»

which proves the first claim in our lemma. The one-sided integral is
estimated in the same way. The L-independent estimates are obtained
in a similar manner, except that integrals I, and I3 in this case are
estimated directly by

Co (1+119llce\" | o
L) <
B < 2= () 1 s Ngdl

3] < 7 1" llo Nlgelly -
The one-sided estimate in this case is also analogous.

This lemma will be complemented with the following trivial results:

Lemma 2. Let f € C(R), and ¢ such that |¢'(z)| > d for all z in the
support of f. Then

(4.a) 'Aeit¢(z) f(:z:)d'b' < ¢! (”f:i”l 4 ”sznul) |
‘/eim&(z) f(z) d1:| < ¢! (”f_jz”i)
R
o +4t7? (”Z;Hl + ||f’d<;§”111),
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" 1 an
l/ eitd’(t) f((t)d.’l," < 10t—2 (”f ”1 + ”f ¢ “1
R

i ¢'" ||f’ ¢">2Ill)
d4 )

(4.c)

b,

PROOF. Integration by parts yields

/me“d’(z) f(z)dz = _i_lt / 't dc:iv (¢,((z))) dr

i
_ l ite(z) f((l?) ¢ (III) dz
T

This yields (4.a). For (4.b) we perform another integration by parts to
the first integral above, which equals

l :t¢(z) f (.’1}) zt¢(z:) f’($) ¢"($)
t2/ e Tt e / PR "

which yields (4.b). For (4.c), we integrate by parts also the last integral
in (5), which gives

o [(F@8@) |, f@ @) @@ s g
e ( F@r Ty (@) ) 4

as needed.

Lemma 3. Let f € C%((a,b)) and ¢ such that ¢"(z) > ¢y > 0, and
#'(z) #0 for z € [a,b]. Then,

| /"e,-w(z) f(z)dz| < 71 |b—a|(”f;’”°° N Hfllooll¢”l|oo).
a 0

Co

REMARK. The point in this result is that the estimate is independent
of inf |¢'(z)].

PROOF. f vanishes at a at order 2, which implies

@] <N Nloo |z —al®, 1F'(@)] < Nf"lloo |z — al.-
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So,
¢'(z) 2 co(z —a).

The lemma follows trivially by integration by parts, since

frewn e (-5 e

The following is a trivial variant of the usual Van der Corput lem-
mas.

Lemma 4. Let f be differentiadle in [a,b], and ¢ such that ¢"(z) >
co >0 for z € [a,b] Then,

b
[ f)da] <82 (1 fln + 111).

a

PROOF. Let R =t"1/2¢}/? and consider
E; ={z: |¢'(z)| > R}, E, ={z: |¢'(z)| < R}.

It is obvious that E; has at most two components, and |Ez| < R/c¢p .
The contribution of the integral over E, is thus trivial. The integral
over E,, after integration by parts, equals

f(z)
it ¢'(z)

+:(L — I)
9F,

for

- eitd(z) f'(z) _ itg(z) f(2)8"(2)
I] /El t¢'($) d:b, I2 /;31 € t¢'(;,;)2 dz .

The boundary terms contribute with at most 4| f||s/(t R), which is
fine, and the I; are trivially estimated by

“f,“1
l < =
| ll - tR

»nd $@ 4l
T 0o
g, 1(2)? de<—p

which gives us the bound in the claim of the lemma.

12| < [ flloo
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2. The heart of the matter.

In this Section we consider a function p periodic with period 1,
average 0, and Fourier coefficients satisfying

a(m) < Mn|™, o 21.

We also assume that

(6) >~ Vinl li(n)] < +oo

n#0

Our estimates will depend on M in a trivial way, but since for the
applications we will be satisfied with M = 10, we will not bother to keep
track of the dependence on M. In fact, we will be mostly interested in
f(n) = |n|™°, with s = 0 + it and o > 1, and for the applications to
the energy asymptotics we will be dealing with

1 e—'}rin
=di . 2 _ 7 S
p(z) = dist {z,Z} 5 p(n) R

However, our estimates will be independent of the value of the sum in
(6), which could even be A-dependent.

Consider also ¢ smooth, defined on [a,b], and satisfying the cru-
cial nondegeneracy condition —¢"(z) > ¢o > 0: of course, the same
argument would work if we assumed ¢"(z) > ¢, with only a few signs
being flipped, but we choose this sign in our non-degeneracy condition
because it is exactly the one satisfied by the function ¢ in our applica-
tion to the sum ¥q(Z).

We also assume the bounds

’¢(n)($)|gcn, 0<n<5, forz€]la,b],

where |b — a| is bounded by a universal constant, and define

sw= ¥ 1(3)n(re).

lE(Z+~)N[aAr,bA]

where « is a real number.

In our applications, we will be concerned with the following two
situations: on the one hand, we will have functions f and ¢ independent
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of ); this simplifies some estimates, but the amplitude function f does
not vanish at the endpoint b, which gives origin to a certain diophantine
analysis of the phase ¢. On the other hand, we will have to deal with
functions f and ¢ which depend on A, which will force us to keep track of
error terms in a careful way: furthermore, there is no obvious multiscale
analysis in the problem and we thus have to analyze blow up manually.
However, in this case the amplitude function is supported inside [a,b]
which avoids diophantine discussions.

We summarize both cases as follows.

Case I: f € C§°((a,b]). In this case, we shall impose that the
bounds satisfied by ¢ and f are universal, t.e., independent of A. The
obvious singularity in the sum appearing around ! = bA will give rise
to a purely arithmetic behavior of the sum.

Case II: f € C§°((a,b)). In this case, the functions ¢ and f
will depend on A in the sense that the bounds satisfied by ¢ will grow
(slowly) as a function of \. We will thus keep track carefully of the
dependence of our error bounds in terms of the regularity assumptions
of f and ¢. The absence of singularities in this case will make the study
of the sums purely analytical.

We wish to understand the behavior of S(A) for large A in both
cases.

Case 1. As mentioned above, f and ¢ will satisfy universal bounds for
its derivatives of the type

1¢'(@)les <C,  —¢"(x)2co, (fllc=<C,

for constants C' and ¢y independent of A\. As a consequence, we will not
keep track of the dependence of constants on the regularity properties
of either f or ¢, and the constant C will be ubiquitously used to denote
a universal constant depending on the regularity properties of f and ¢
as stated above. Another constant will play a role, though, which is
#'(b) in the case that it is a rational number p/q: in this case, some
constants will depend on ¢, and this dependence will be made explicit.

Let ¢(z) supported on (—o0,b), identically equal to 1 on [a,b —
A~1/2=¢] for € = 1/20, © as smooth as possible. We denote by
@

In=[b—A"127¢ b
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the set where ¢’ is supported.
It is clear that

l l
S(\) = fl= A3(5) ) @A) + O(|| fll o A/%70)
= 21 (5) n (o)

and that in the new sum above, only finitely many terms are non-zero.
Moreover, u(Aé(z/A))(f)(A~1z) is a piecewise smooth function of
compact support. We set

pr(z) = (fe)(z)
which satisfies ||¢f|lco < || f]loo , and

, 1f:1:¢I,\,
5@ <1 .
A/2+e if z€ly,

if = ¢ IA )
]cp (1)' = /\1+2£ ) if ze€ly,

The Poisson summation formula yields

> k() o)
€2+~

= Zeh“" [+wu ()\ 45(;)) ‘Pf(/\'lx)e-z"izlda:
=S / (28(3)) psAayePmistd

= z n) 627”1‘7/ 27ri(An¢(z/A)—zl) le()\_lx) dz

leZ
n#0

b
= Z #(n) e21r:17/ 2rid(ng(z)—zl) le(l') dr .

lez
n#0

We will show below that the sum is absolutely convergent, due to the
fast decrease of /1 assumed in (6), and the fast decrease of the integrals;
therefore, the infinite sum can be taken in any order we like.
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Define
. b .
I(n, l) — 6211'11-7/ eZm;\(nd:(z)—-z:I) (pf(.”l?)dl' .

For integers. n and [, define z,; as the unique point (when it exists)
satisfying ¢'(z,1) = I/n. Note that

-1 l ! > =1 l I
|7~ | 2l e 214 |- -
Define also
9(71, l) = nqﬁ(:vn,,) —_ lwn,l
and
0¢(n, l) = )\1/2 _1__ e—sign(n) mif/442mi(A 6(n, )+~ 1) .

n ¢ (za)|'/?

We write o4 to point out that o depends only on ¢: the amplitude f
does not appear.

We begin with the following crude estimate, which is a trivial con-
sequence of Lemma 4.

Lemma 5.
|I(n,1)] < C A7V |n|7V/2,

This already implies that only the terms appearing for small n play
a role in our sum.

Theorem 6. With the previous notation, we have

SN = D i(n)ent flzap)a(n, 1)+ A(N),

n#0
lEZ
Tn1€(a,b]

where e, = 1, unless ¢'(b) =1/n when e, =1/2, and
A(X) = o(AV/?).
If ¢'(b) = p/q, then we have
AN =0(C /27y 4 >0.



182 A. C6rboBa, CH. L. FEFFERMAN AND L. A. SEco

If, however, ¢'(b) is irrational, the o-term depends on the diophan-
tine properties of ¢'(b).

In any case, |A(N)| < CV/X for C which only depends on || f||c2
and B(¢).

PROOF. Note that there are three types of pairs (n,[): those for which
¢'(z) = l/n for some z = z,; € [a,b), those such that ¢'(z) never
equals //n for any = € [a,b), and those (if any) for which [/n equals
¢'(b) (¢'(a) will play no role here since f vanishes to infinite order at
a). We need to deal with these cases separately, and we thus write

S(A) = S51(A) + S2(A) + S3(X),
where

SSA) =X > n)I(nD),

¢'(a)<1/n<¢'(b)

SN =X D Awm)I(n1),

lI/n=¢'(b)

SN =2 > An)In,D).
l/n¢[¢'(a),8’ (b)]

Sum S;: For every term in this sum, the integrand in I(n,!) has a
stationary point z, ;. Our stationary phase analysis then shows, using

(7), that

'/\I(Tl,l) - f(a:n,l)o'n,l| S )‘En,l ’
(8)

/\1/2-{»25
. —3/2 : 1+2
E,1=C(\|n|) (H’mm{/\ g In|1/2 dist {zn 1, In} }) ’

where the minimum appears as the best of estimates (3.a) and (3.b)
above.

The terms in S; will be grouped into three categories. First, those
for which z, falls far from b, and second, those for which z, ; falls near
b. Within the second class, we will have to consider separately those
that appear only when n is large, and those with n small.

Fix n in the sum above. For each n, the number of terms in the
sum in [ is at most C |n|. And of those terms, the number of [ for which
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1 falls within d of I is bounded by at most 1+ C |n|(d + A™1/27¢).
If, say, ¢'(b) = p/q is rational, and we take d > A\~1/2, we have

-1
d>|b—zn | >C;t %-3‘>CL

which means that, if
In| <|i¢lligz g d™,

then there are no [ such that z,; falls within d if Ix. Similarly, if ¢'(d)
is irrational, the number of such [ is at most 1 for

n| < |l¢llcs d?

if d > A71/2=¢, We denote this unique ! (when it exists) by lo(n,d, )),
and we denote by no(d, ) the smallest |n| for which n has such an .

After all this, we choose
{ I¢llce » if ¢'(b) is irrational,

d=/\_7€, = _
Igllcs a7, ﬂwm=§,

and break up
VEN = Y I+ S an)I(n,)
Inj<ct d~! |n|>ct d?
d(zn,1,Ix)>d all !

+ > a(n)I(n,lo(n,d, X))

ctd=1>|n|>no(d,N)

where it is understood that if ¢'(b) is rational, the sum in the third
term.above is null, and the sum in n also in the third term is extended
only to those n with a corresponding ly(n,d, A).

For the first term we use (3.a) to obtain

En1 < C(M|n|)™%/2 (1 + |n|"Y2 /\1/2+95) ,

Since |n| < ¢! A7¢, we obtain (recall ¢ = 1/20),

En,l < C ln|—2 /\-—1+9£
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and, using again € = 1/20, we obtain

> XNa(n)I(n,0)
[n|<ct a?
d(zn,1,1x)2>d

> M) fEag)oni+ 0NN \ﬁg‘—)D .

|n|<ctdt n7#0
d(zn,1,Ix)2d

For the second term in (9), we use the trivial estimate (3.b) in (8) to

conclude that
En,l - O(/\_1/2+2€ |n|—3/2)

and since |n| > cf A7¢,
En,l — Oq()‘—l/Z—s |n|—15/14)

and we obtain

> Aum)I(n,])

[n|>ct d-1

= 3 M) fEn)oni+ 0, (3 Y Jf{f?ﬂﬁ) -

|n|>ct d-1 n#0

Note that, here, we could simply have used Lemma 4 to conclude that

both I(n,l) and o, give a negligible contribution, but this would have

required, either, to use the stronger assumption that ¢ > 3/2, or to

obtain an error estimate which depends on the value of the sum (6).
Finally, for the third term, it is clear that

)‘lim no (A7, 1) = 00,

which, using Lemma 5, implies that

> I d )| <C Y lam)] (An) 2

In|2n0(d,2) In|2n0(d,A)

< C A2 |ng(d, M) F/2

=o(A71/?).
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Similarly, observe that

Z ﬁ(n) f(xn,l) On,lo(n,d,\) < C,\l/2 |no(d, /\)|—0+1/2
In|>no(d,A)

= o(A1/?).
Therefore, we can conclude that

Si(\) = > i(n) f(2n1) ong + o(A/?).

l/n€[d'(a),8'(b))

Sum Sy: If ¢'(b) is irrational, this sum is empty. We thus assume
that ¢'(b) is rational.

If we tried to proceed as we did for S;, we find that E,; is too
big, and this has no remedy. This is so because we would be comparing
I(n,l) with the wrong thing: it is not f(z, )0, what we should look
at, but f(z,:)0on,1/2 instead. We proceed as follows:

Say ¢'(b) = l/n. We have, by (3.d), that

1
621rzl'y/0 621rz/\(n¢(:c)—l:c) Lpf(l‘)d”t

1
— leril'y/ eZ‘rri,\(n.d)(z)—lJ:) f(.’L‘) dz + O(,\—l/2—5)
0

oy f(@n 1) on + O((Jn|A)=3/2) + O(A~1/2=¢) |

which yields

1 ~ —&
SN =5 Y in) f(zn1)oni+ OA/E),
21/n=¢'(b)

Sum S3: As for S, we deal separately with those ! and n for
which ¢'(z) — {/n is small or large, and for those for which it is small,
we distinguish between small and large n.

When |¢'(z) — I/n| > d for all € [a,b], we use (4.c) to obtain

/\—3/2+5 )\—2 /\—2
N =
I(m.1) O( P P aEE TP d4> !
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which implies

> i(n) I(n, z)’

{(n,0): |¢'(z)—1/n|>d}

-3/2 f(n)| (A 1 1
=CA nz;ol n ‘ d gt Eg )

If we now set d = A\~ we obtain
> f(n) I(n, 1) = O(A/27¢).
{(n,0): |¢'(z)—=1/n|>d}

When 0 < |¢'(b) — I/n| < d, for a fixed n there are at most 1+ |n| d
terms in the sum. And, as before, if ¢'(b) is rational and |n| < d7!,
then there are no [, and if ¢'(b) is irrational, there is at most one such
[, which, if it really existed, we would denote by ly(n,d, \); we denote
by ng(d, A) the first |n| for which n has such an I. Therefore we break
up the remaining part of Ss given by 0 < |¢'(b) — {/n| < d, into

> A(n) I(n,1)

{(n,0): |¢'(x)=1/n|<d}
In|>d ™!

and

> awn)I(n,lo(n,d,N)) .

[n|>no(d,A)

The first sum above is trivially controlled by (4.c), which implies
I(n,1) = OA™*" 3 |n| ™),

hence

> i(n) I(n,1) = O(A~1/27¢)
{(n,D: |¢'(z)=1/n|>d}
In|>d~?

For the second term, note as before that limy_.o, no(d,A) = oo, and
therefore, using Lemma 4, we get

> MmImbnd )| <C Y )] (A

|n|>n0(d,A) [n|>no(d,A)

< C/\_1/2 n(;'0’+1/2

= o(A71/?).
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All this implies that
S3(A) = o(A1/?)

and the theorem follows.
Case II. In this case we will not need ¢(z) since f is compactly sup-
ported and smooth. In fact, u(Aé(z/N)) f(A~1z) is a piecewise smooth

function of compact support, and by the Poisson summation formula,
as before,

5 u(2e5)) 1070

l€EZ+~

b
=\ § [L(n) e21ril~// e21riz\(n¢(z)—zl) f((l‘) dr .
l€eZ a
n#0

Define, as before,
b
I(n,l) — 627ril-y/ e27\’1',\ (ng(z)—zl) f(IE)d.’L'
and z,,; as the unique point (if it did exit) satisfying ¢'(zn1) = I/n.

Also as before, we have

11! 4
> l-”«'n,l - -Tn’,l‘l > ”¢””oo ;l. - ? .

gl

g |———

n n

Define also 6(n,l) and o(n,l) exactly as in Case I.

Theorem 7. With the previous notation, we have

S(A) =Y in)o(n,1) + O(B(#)lIfllcr (1+[1f'lls0)) -

n#0
l€Z

PROOF. In this case now there are only two types of pairs (n,!): those
for which ¢'(z) = I/n for some @ = 2, € [a,b], and those such that
#'(z) never equals [/n, and thus we write

5(A) = 51(A) + 52(A),
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where

SSN=xr Y wn)I(n),

I/n€[¢'(a), ¢’ (b)]

SSN=x Y ).
U/n¢[¢'(a),d'(D)]

Sum S1: We proceed as in the previous section,
|/\I(TL, l) - f(l'n,l) Un,ll < A En,l 3

where, by (3.c), E,; is given now by

Eng = CB($) |Ifllc: (MIn)~*/2.

For each n, the number of terms in the sum is at most (3 + C;)|n|.
Therefore, we can conclude that

SN =X S in) f(@ar) ot + O(CT B(8) | fllcs A7)
l/n€l[¢'(a),d' ()]

for

Cff = max{1,C;}.
Sum Sy: By Lemma 3, we have
[I(n, D] < Clifllc2 B(¢) (M) ™",
which we use when || < 2C|n|' 7%, for § > 0, to obtain

lu(n)l

>, a(m) I(n, D] < CA7Hflle= B(8) G 3_ 1

{(n,1): [I<2CF[n]1-0} n#0

Outside of this range, we have

FOEHES

| for all z € [a,b].

Therefore, (4.b) implies

Ciflic> B(#) nf* | nt
lf(n,l>|<—ﬂj‘7l,,—( 4 bEe g )
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Therefore,

la(n)|
[n|1—2

> i(n) I(n, )] < CA72||fllc= B(8) Y

{(n,D): [1>2CF|n|1-%} n#0

3. Energy Asymptotics.

We plan to apply our previous estimates to the function

\IIC(Z)=27I'Z4/3 Z n(lZ_l/s),u(Zl/s¢(ZZ_1/3)),
I€(Z+1/2)N[1,a=1/221/3Q,]
where
1
. . 2 _
p(x) = dist {2, 2" - — |
1 0?2 1/2
¢(Q)=;/(V;F(7~)—T—2)+ dr
a—1/2 / (y(r) aQ2>1/2
= -— dr,
T T T +
Q
77( ) ma

-1/2

1 QZ
P(Q) = VTF(T) - 1’_2 dr
+
r2(a'/? Q) 2\ ~1/2
:a—3/2/ (y(r)_‘a? ) dr .
r1(al/2Q) T T

Here, r;(Q2) are the two points where y(r)/r equals Q2/r? (see below)
and Q. is the supremum of the Q for which

ur) @

r r2

is positive somewhere.

The crucial result we need is the non-vanishing of the second deriva-
tive of ¢. This was proved in [FS8]. Because of its vital importance,
we display it explicitly:
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Theorem 8. There exists a number cg such that

—¢"() 2 ¢ >0, for all € (0,9,).

We will first recall some known results (which appear, for example,
in [FS8], [Hi] and [Hu]) which we will need here. After that, we will
complement them with further properties of ¢ and P, some of which
are taken from similar estimates appearing in [FS2-8].

Review of earlier results. If we set u(r) = ry(r), then u has a

unique maximum at r = r., where r, ~ 2.1. We set Q2 = u(r.). Then,

u is increasing on [0,7.] and decreasing on (r.,+oc0). This is a crucial

fact whose proof goes back to Sommerfeld, and can be found in [Hu].
Around 0, u satisfies the expansions

oo
u(e) =Y una™?,  up=1, ug=0, wuy~—1588.
n=2

Rigorous numerical bounds for u4 can be found in [FS8]. However, it
is easy to see analytically that uy < 0. We also have

oo
Zlunlpg<+00, p0>07

n=2

therefore, the function
oo
f(z) = Z upz™
n=2

is analytic in a small neighborhood around 0.
Around infinity, we have the expansion

o0
u() = o2 3 bzl
x

n=0
where

b0=1, blN—13, « ~ 0.772.

_VT3-T
-

Again, rigorous numerical bounds for b; are found in [FS8], and it can
be seen analytically that b; < 0. We also have that

oo
Y lbalpf <400,  p1>0,
n=0
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and, as a result, we have

(10) u(z) = =t f(zmel?)

z2

for a function f analytic in a neighborhood of 0.
Given any Q € (0,Q.), there exist two numbers, r;(Q2) < r,(Q2)
where u equals Q2. We then have

Lemma 9. The following formulas hold:

/
() = = ; " Fa29),
where
1/2 dz
F@) = [ ) -9} T
FI(Q) _ ——Q/ (u(”c) _ Qz);1/2 d_;l,_ ’
r2(Q)—6 2o
F'(Q) =~ lim (/ (u(@) = 02) 7" y(a) do + c(9)5—1/2> ,
- r1(R)+6

where ¢(2) is uniquely specified by requiring the finiteness of the limit.
Moreover, if b is any number less than ro(2), then

d? /b 1/2 dz
— u(z) — Q2 —_
e NCOREOVaE-

b
— lim (/ (u(z) — 92) % y(z)dz + c1(Q) 5—1/2>
r1(2)+6

again, for a constant ¢, that makes the limit finite. The corresponding
symmetric case also holds.

Furthermore, F' can be extended as an analytic function to a com-
plex neighborhood of (0,Q.]. However, 0 is an essential singularity of
¢ (or F), and, moreover,

: " Y _ _
m ()W =k,  y=
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where k 13 a strictly negative real number.

A consequence of this which is of importance to us is that although
¢ and ¢' remain bounded as we approach 0, the second derivative blows
up slowly, and third will blow up much faster. In other words, ¢ does
not satisfy sensible non-degenerate multiscale analysis bounds.

Further background results. Here we will obtain growth and regu-
larity properties of the functions ¢ and P above. We define

-2

g(z) = / (t- 1)"1/2 t7dt, for 0<z <
1

N =

We begin listing several elementary results of calculus.
Lemma 10. For v € R, we have
(11.a) ¢ (@) S Ci (] +1)F T a2k for k21,

Furthermore, of v < —1/2, then

(11.b) L2 (z) <100 100
. — < g4(7) < + —
y+1/2] =77 Iy +1/2]

and if v > —1/2, then

7211

S SRSV

100
< g4(z) < (100+ ——-—) g7t
(@) h T 12

where 0 < 2 <1/2.

PROOF. Estimate (11.a) is completely trivial. For (11.b), we use

2 +oo
/ t71/2 gt < g (z) <4 +/ (t—1)"Y2v gt
1 2

For (11.c), we use the fact that ¢t —1 > t/2 for ¢t > 2 to write

=2 -2

z z
/ t72dt < g (2) < 21013 4 2/ t712 gt |
1 2
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which implies (11.c) after using the fact that 217+1/2 < 4 z=2v-1,
Lemma 11. Define

f@) = (@2 -9~
Then, |f®(Q)| < Cr Q71 7F for Q< Q. /2 and k > 0.

PROOF.

(12)  f@)=07"g(

Sl

) , for g(z) = (1 - 12)_1/2 .

Lemma 12. Gwen 8 > 0, 6 > 0, 2, > 0, 7, d and w, for n =
0,1,2,... let

n=0

where v, =T+ fn and |y, +1/2| > 6 for alln > 0.
Assume that 3" wp2™ has a radius of convergence p and Q2 < p/2.
Then,

dkf(Q)) < { cQrrHdk i r<_1/2,

— when Q< Q./2,
dQ* C Q1% if ™>-1/2, < 8/

for a certain constant C which depends on everything ezcept 2.

PROOF. Let us consider first those n such that v, > —1/2. In this
case, using Lemma 10 we obtain

d*m,

1
ria e ()]

a! Q.

k
()] < Y Clhki6) (n+ D=t @rmte=th=D gt
=0
< C(k;8) (n+ 1)k Q2w+ qd-1-k
If, on the other hand, v, < —1/2, the | = 0 term above has to be

estimated by
C(k;6)(n+ 1)k Q2wmtd=k
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and we obtain

d*m,

L2 ()| < O(ks6) (n + 1) (21041 Q175 4 Qrmra=h)

< 2C(k;6) (n + 1)k Q2wmtd=k

because 2 < (2, . Since we can only have v, < —1/2 for finitely many
n, we conclude that

3 wam®(Q) = <L
n=0 wn () = dQk (),

where the sum converges absolutely, and we obtain the required esti-
mate.

This ends our presentation of calculus results. In what follows we
will develop the regularity bounds for ¢ first and then P.

Lemma 13. For constants C,, and ¢ > 0 we have

d"¢
aqr

<C QI (> 2)

l6(t) < Co, 161 < Cu,

and

-—¢"(Q) 2 cQ—l+a .

PROOF. As in Lemma 9, in order not to bother with the presence of
the constant a, we will prove this result for the function F' instead.

The inequalities for ¢ and ¢' are obvious. For the higher deriva-
tives, the bounds outside a neighborhood of 0 are a direct consequence
of the analytic extension of F' to a complex neighborhood of (0,Q.],
which is Corollary 1.3 in [FS8]. We are thus left with proving the
bounds in an arbitrarily small neighborhood to the right of 0, given by
(0,9.), for a small universal number Q. to be picked up later in the
proof.

Arguing as in formula (4.1.a.b.c) [FS8], using Lemma 9, we write

—F”(t) =L+ + 13
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for

b
L= [ (ur)-2) " yryar,

I = Jim </ (u(r) = 9%) ™ y(r) dr - Gl(a)é—l/z) ,

8=0 \Jri(@)+5
ra(R)—6 32
I = %in(l) / (u(r) — QZ) y(r)dr — Go(Q)671/2 | |
- b

with G; such that the limit is finite, and a and b any numbers such that
r1(Q) < a < b < (). In practice, we will take a and b such that

u(a) = u(b) = Q2

for Q. a small number, and later, we will take Q. < Q. .
First, I;(2) is C* in a neighborhood of 0, and therefore satisfies

ldk[l

W(Q)] < Ci(Q), for Q€ (0,9.),

no matter which 2, we will end up choosing.
For I, we write I, = diz/dQ, where, by Lemma 9,
a

L(Q)=Q (u(r) — Q%)
() r

-1/2 dr

Let r(t) be the inverse of u near 0, u(r(t)) = ¢, and set w(t) = r'(t)/r(t).
Changing variables above we obtain,

Q?
L) =0 (t - Q?)
Q2

T2 w(t)dt

Q-2q2
= 92/ (t—1)""? w (tQ?) dt
1

which implies, after differentiation,

a-2q?
Iz(ﬂ)=29/ (=177 h(t02) dt—2(22 - 02) T w(d) 2
1
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for
h(t) = tw'(t) + w(t).
Next, we recall that u(r)=r f(r'/?)for f analytic around 0 and f(0)=1.
Therefore,~u1/2(r) =~r1/2 f(rl/z), for f also ~a,na.lytic around 0, or
ul/?(r) =f~£r1/2), for f also analytic around 0, f(0) = 0 and f'(0) = 1.
Therefore, f has an analytic inverse g, with g(0) =0and ¢'(0) =1, and
therefore, r1/2 = u1/2 §(u!/?), for § analytic and §(0) = 1. Squaring
both sides, we obtain 3
r(t) = t§(t'/?)

for § analytic around 0, 5(0) = 1. As a consequence of this, we also
have

w(t) =t~ W(t/?)
for W analytic around 0 and
h(t) =t~ H(#/?).
It was shown in [FS8] that H(0) = H'(0) = 0, and H"(0) = —2y'(0),
which implies that in fact
A(t) = fu(#/%),  fa(0) = —y'(0).
Therefore,

SS bt lhal g} < oo

n=0 n=0

for p, a small universal constant.

We break up () = f1(Q) + f2(Q) for

Q202 Q
f]l(Q)=2Q/1 (t—1)"2h (¢t Q%) dt = Z‘)h Q't" g, /2(9)

-1/2

F(R) = —2(02 - 02) 7 w(a2) a2

Lemma 11 shows that fék)(Q) is bounded for all £ > 0 and Q@ < Q./2
by a constant that may depend on .. For f;, we apply Lemma 12
withd=1,7=0and 8 =1/2 to obtain

d* f
d({L(Q)]<CLQ )k
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We conclude the analysis of I; by observing that all the bounds we
obtained are in agreement with the statement of the lemma.

We continue now with I3. Denote by r(t) the inverse function of
u(r), such that u(r(t)) = t. We proceed as in Section 4 in [FS8] to
construct w(t) = —r'(t)/r(t) and then set h(t) = tw'(t) + w(t) which
allows us to argue as before to obtain (equation (4.21.a) in [FS8])

Q-2q?
L = zQ/ (t—1)"12h (:Q2) dt — 2 (Q2 — %) w(?)0? .
1

By (10) we have that r?u(r) = g(r~*) for ¢ analytic in a neighborhood
of 0, with ¢g(0) = 1/144. Therefore, setting z = r~ and u(r) =t
we have t = 2%/%g(z), or t*/2 = j(z) for a new § analytic in a small
neighborhood of 0, with §(0) = 0 and §'(0) # 0. Thus, § has an
analytic inverse, f, with f(0) = 0, f'(0) # 0, and we have z = f(t*/2%),
or z = t*/2f(t*/2?) for f analytic around 0 and f(0) # 0. Therefore,
r(t) = 27Y/* = t71/2y(4*/2) for a new function v analytic around 0
which also satisfies v(0) # 0. Hence,

(13) r'(t) = t=%/ ”p(ta/z)’ r'(t) = t_s/zvpp(ta/z)a

for functions v, and v,, analytic in a small neighborhood around 0.
Therefore,

h(t) = ;llgf,,(t"/?),

where, by (13), fi(z) is analytic in a small neighborhood around 0,
|z| < pi. It is observed in [FS8] that f,(0) = 0 and f;(0) > 0 (Equation
(4.20) in [FS8]). This allows us to put

I3(2) = f1() + f2(2),

where
Q)= 2k, ma(Q),
n=1
(14) 9—293
1
and

F2(Q) = —2(22 - Q) w202 .
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If we make sure that

(15) 02 < = pi

N =

we can invoke Lemma 12, with 7 = —1 + a/2, which is less than —1/2,
B =a/2 and d =1 to obtain

&h (@) < C(@.; ket

dQk - i )

This ends the proof of all upper bounds in the statement of the lemma.
For the lower bound for —¢", we use the notation in (14) to write

AQ@) =2k mi(Q)+f1(Q),  A@) =) 2k ma(9Q).
n=2

Applying Lemma 10 to the first term above with v = —1+a/2 < -1/2,
and Lemma 12 applied to f;(2) with 7 = -1+ a > —1/2, we obtain

f1(Q) > chy Q7 1Fe /1) < C(Q.).

Since all other terms in the break-up of —¢" remain bounded as 2 — 0,
we conclude that

—¢"(2) > cQ7 M, Q2<Q.,
for Q. < ., as required.

We now turn our attention to P. In this case, rather than intro-
ducing a new function that allows us to do without the bothersome
constant a, we will simply proceed as if a did not appear in the def-
inition of P. This simplification clearly does not change the result,
except of course, that the details of the proof will not contain the a
dependence.

The following result is a trivial adaptation of Lemma 1.2 in [FS§]
for P instead of ¢.

Lemma 14. We have P € C*(0,9.). Furthermore, P admits an
analytic extension to a neighborhood of (2. .
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PROOF. Let
r2(Q)—6

H(5,Q) = Q/ (u(r) — 92) "% rdr.
T (Q)+6

Consider the analytic change of variables given by

@ -umn), 2,
(16) in=1{" "
— (922 —u(r)) / , i r<r..

Note that ¢ is smooth and strictly increasing in the range (0, +00). We

can therefore consider its inverse, r(t), and use it to rewrite

t2(6,Q2)

H(6,Q) = Q/ (D2 — )% () dt,

t1(6,92)
where .
ti=t(r1+6), ta=t(rs—=8), D*=Q2-Q%  w(t)=r'(t)r(t).
Note that w is smooth on ( —§2.,Q.), and that
a7 ty =—-D(1+7(8)), t =D(1+ 1 (9)),
‘ cd< || <Cé for 1 =1,2,
uniformly on compact subsets of (—€.,.), which implies that
D™t -1/2
H(6,Q2)=Q (1-1%) w(tD)dt

D_lh

converges as § — 0 uniformly to the C? function

1

(18) H(O,Q):Q/ (1-1¢%)

-1

—-1/2

w(tD)dt = P().

To show analyticity around 2., note that w(t) is analytic around 0;
thus, it admits a convergent power series expansion given by

o0
w(t)=Y wat", [t <p,
n=0
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which implies
) 1
PQ) =0 w, D"/ 1-2)" e ar.

n=0 -1

The integral corresponding to the odd terms in the sum is 0, which
implies that in fact

oo 1
P(Q) =0 ws, 192"/ (1—#2)7? g2n gy
n=0 -1
which defines an analytic function of  around ., since D? now is
analytic in Q.

Lemma 15. For constants C,, and ¢ > 0 we have

d*P

d—m(n)] <CLQ3F L |PQ)| > 0.

PROOF. Lemma 14 establishes our inequalities outside an arbitrarily
small neighborhood of 0. For a neighborhood to the right of 0 given by
(0,82, ) we proceed as before, setting

f)=hL+L+1I

for

b
L =/ (u(r) — 02) ™ rdr,

L= / (u(r) — Qz)—l/2 rdr,

1(R)
r2($2)

L = / (u(r) — 92) 7 rar |
b

with @ and b any numbers such that 71(22) < a < b < 72(2). We will
take a and b such that u(a) = u(b) = Q2 for Q. a small number to be
picked later.

I is C*° around 0, and thus satisfies all the required upper bounds.
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For I, denote by r(t) the inverse function of u(r) around 0, such
that u(r(t)) = t, r(t) < r., and set w(t) = r'(t)r(t). By the same
argument as before, we can see that

w(t) =t fo(t'/2)

for

fo(z) =) waz"

n=0
analytic for |z| < p3, ps a small universal number, and f,(0) # 0.
Then,

Q2
L =/ (t—02) 7% w(t) dt
92

0-202
= Q/ (t— 1)1 w(tQ?)dt
1

= i Wa Q7" g14ns2 (QE') '
n=0 ]

Thus, Lemma 12, for Q. < p3/2, 7 =1, =1/2,d =1, yields

d*I,

Lk 1
W(Q)‘ <C(kQ)Q™*,  for Q<5 Q..

For I3, denote by r(t) the inverse function of u(r) around infinity,
such that u(r(t)) = ¢, r(t) > r¢, and set w(t) = —r'(t)r(t). By the
same argument as before, we can see that

w(t) =t2 f1(t%/%)

for

analytic for |z| < p4, ps a small universal number, and f;(0) # 0.
Then,

Q2
I =/ (t— 02) 7% w(t)dt
Q2
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Q-2q?
= Q/ (t—1)72 w(tQ?)dt
1

o Q20?2
-3 Z anan/ (t— 1)-1/2 $—2+an/2 gy
n=0 1

= z Wp Ma(R),
n=0 )
where 0
ma(@) = 27" g_ypna (o)
Thus, Lemma 12, for 2, < py/4, 7 = -2, f = a/2, d =1, yields

d* I

—3— 1
W(Q)\gcw;ﬂe)a E, for @550

For the lower bound, we write
L(Q) = wamo(Q) + L(Q),  B(Q) =) wama(R).
n=1

Lemma 10 applied to mo and Lemma 12 applied to I3 with 7 = —2 +
a/2 < -1/2, B =a/2,d=1, yield that

Imo(Q)] > cQ3, |L(Q)] < C(Q,) Q3+ for Q< %QE .
Therefore, for Q2 small enough, we obtain
LQ)2c07°, <.,

for a number Q. < Q.. Since I; and I, remain bounded as Q2 — 0, the
lemma is proved.

Corollary 16. For constants C. and ¢y we have

k
W) 2a0t, |

W(Q)‘ <CV*, k>0,
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We apply now our growth estimates for ¢ and n to show that ¥U¢
is very much like ¥q in the introduction.

Lemma 17.
|¥o(Z) — ¥c(2)| < C 2473,

PROOF. Set
1+1/2

A )

[=

A=2Z'3,

and note that )
4z
We then use (1.a) and (1.b) to conclude that

(+ 1A= -

Itr i

\I'Q=27rZ4/3Z \/~ - ,u(Zl/3¢( iz—z—li_?))'
2 _

=1 p(

Define Ipax as the largest | appearing in the sum defining ¢ . Note:

1. Each term appearing in the definition of either ¥ g above, or in
¥, is bounded by a constant independent of Z .

2. The sum in ¥q is taken over integers, while the sum in ¥q is
taken over half-integers.

3. The number of terms in either sum (¢ for ¥g and lpax — 1/2
for ¥¢) may differ slightly because in general, lrz +1/2 # lnax -

We show now that the number of terms in both sums differ by at
most 1. Ipax is the greatest element in Z + 1/2 which is less than or
equal to a~1/2 Z1/3 Q. . Similarly, l;; is the largest integer that satisfies

1 1
= ht - - < g V2z13Q .
lre (It + 1) (lTF+ 2) \/1 (2l +12 = ° Z7" Qe

An immediate consequence of this is that
cZ\3 <l <CZYV3, cZMV3 < lpax < C 23

Then, for Z large enough, Iz +1/2 < a='/2 Z'/3 Q_ + 1, which implies

1
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On the other hand,

lmax = lrp S @72 Z2V3 Qe —lpp .
Since we must have

a—1/2 Z1/3 Q.

l >
TF+2
\/1 —(21TF+3)

b

which implies

a_l/z Z1/3Qc—lTp— Sg .

N =

we conclude that l,x —1/2 -l < 1, or

(20) lmax - % S lTF .
Thus, using (19),

’ 1
(21) lmax"é_lTF Sl,

for Z large enough.
As a consequence of this, if we rewrite

Ue(Z) = 2r Z%/3 Imgl/zn((z + %) Z—l/a)
.”(21/3 ¢((l+ %) Z—1/3)) ’
lmax—1/2 ~
Vo(2) = 2n Z4/3 Z - l 1 ﬂ(Zl/qu( jz_&))’

= P(P- )

which makes sense by (20), and by noting that Iy in fact refers to a
half-integer, we see that

|%0(2) - ¥q(2)| < C 2*,
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since, after all, the difference is at most one term of size at most Z 4/3,
Next, we compare ¥¢ and ¥ term by term. To this end, we observe
that, since [ > Z~1/3, we have

LT )
200 P( jz_ﬁ) P(i)P(\/iz—:T)
gCi65_4i(1_ 1 : )

Y

(for & € [1/12 —1/(4X2),1])

which implies

1+1/2 ] |1 1
o3l

=

Similarly, since ¢' is bounded,

s i)

[~1)\2

IA
Q

and since p is Lipschitz, we conclude that

vo(532)) sy ) 1o

Therefore, the terms indexed by [ in \ilQ and V¥¢ differ by at most

c (/\‘2 i? 4 sup In(z)| A~ i-l) :
€[ (I12—-1/(422))1/2 1]

which implies

l
|x1:Q(Z) - @C(Z)} <z i (2-4/3 12 4 Zz74/3 13) <C 2z,
=1
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as required.

In what follows, we will denote either of the sums ¥¢ or ¥q simply
by ¥, since we now know that both are the same modulo errors of order

Z413,
Define Q,; such that ¢'(2,,) = I/n, and
0(n, 1) =n¢(Qni) =1, .

Theorem 18.
U(Z) = Vo(Z) + o( 2°/?),

where

\IIO(Z) =97 Z3/2 Z n(Q",I)ﬁ(T;’)Z e27ri Z1/3 g(n, D)+ mi(l—sign(n)/4) .
w1 ne"(Qn)l

Also, U satisfies the bound
|0(2)| < C 2372

for a constant C.

PRrOOF. Construct now a partition of unity given by {U,,8,} for v =
0,1,..., such that

U, =[ay,b], a, =2"""24712Q,, b,=2""a"12Q,,

def
duébu“au, du"’au"’bu,

1, if 0<z<Q,,

;9(95):{0,

otherwise,
6, € Cg° and suppb, CU,, for v>1,
6o(2) =0, for 2 ¢ [ao,bo],
d*e, —k
dz* (2)| < Cud,®

for universal constants C) independent of v. Clearly, we have

(22) ‘IIC(Z)=27TZ4/3§:S,,(ZI/3)’

v=0
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for

so= Y e () u(red), A=z

lez+1/2
Note that we have

(l#@)<C,  1#@I<C,
cd;i*e < |¢"(2)| < CdjHe,

(23.&) ﬁ |d (.’E)’<Cd1 —k+o (kZ?),
d*(8,
[T @) <car k20,

for z € U, , which implies that, in each S,, we have
(23.b) B(¢) < Ca;*° < C2407.

We consider
141 =€1|10g2 /\l, &1 =10—3.

For v = 0, we apply Theorem 6 to obtain

(24)  So=D_ entfi(n)80(nt)n (i) o(n,1) +0(Z/%).

n#0
leZ

For 0 < v < vy, we use (23) and Theorem 7 to obtain

(25) Sy =3 in) (B,1) (Rmy) o(n,1) + 0(22°) .

n#0
leZ

If v > vy, we argue directly as we did before Theorem 6 to obtain that

S, =AY in)I(n0),  I(nl)= / (8, n)(z) 2mMme(=)=12) 4y,

n#0
leZ

In order to analyze I(n,l), we use Lemma 4 to obtain

(n, D] < C (Anf) 2 (d51+e) 72 a+e,
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which we will use when |/| < 4||¢'||e |7/, to obtain

(26.a)

Z fi(n)I(n, l)l < C ATV gi+alz
{14114 llco Inl}

When |l| > 4||¢'|| 2|, we have |¢'(z) — I/n| > |l|/(4|n]); thus, we
apply (4.b) directly to I(n,!) to obtain

_ d4+o: _ d3 d3+a
|I<n,l>|s(A|n|)’"—2+4(A|n|)"’( . )

(3w) ) Gm)’

which implies that, for n fixed,

ATy A d3+a)

In| I

> I(n,l)‘ <C (A-l dite 4

{E l124116' lloo In|}

which finally implies

(26.b)

3 ﬂ(n)f(n,l){ S

[11>4 116" llco |

Putting (26.2) and (26.b) together, we obtain
1S, < A2 dS

which implies

(27) I Z S,,‘ < A/2g=3w _ y\1/2-3e1

v>r

Also,

Z z fi(r) (1 60)($2n 1) (2miX B(n 1)+ mi(l—sign(n) /4)
|n ¢II(QnJ)|1/2

”>V1 {(n,l): Qn,leuu}

<C  sup |p(x)]

z€UPL, U

= 0(dt) =0(r™*%).



WEYL SUMS AND ATOMIC ENERGY OSCILLATIONS 209

and, putting (22), (24), (25) and (27) together, we obtain

U(Z) = 0o(Z) + o(z3/2) .

4. Lower Bounds.

Theorem 18 told us two things: that ¥ has a leading expression as
a trigonometric sum, and that the size of this trigonometric sum, and
therefore of U, is at most of order Z3/2. The question remains whether
this bound is sharp or not. In related problems, such as the lattice point
problem, sharp upper and lower bounds on average have been known
for over fifty years (see [B1] and [HB] for recent developments). This,
in our context, would translate into the statement that indeed Z3/2 is
best possible.

The aim of this section is to derive such estimates on average for
the function ¥y . Classical ideas will work effortlessly after we show
that a certain number is not 0. This number can be viewed as a certain
(analytic, not necessarily arithmetic) L-function evaluated at the point
s = 2. Thus, it is not surprising that such a condition appears if one
thinks, for example, about the lattice point problem for parabola.

First, we will consider real values for Z, and then use this to study
the case of interest, integer Z, as it relates to our original goal to un-
derstand the ground state energy of an atom of nuclear charge Z.

We begin by defining

A AM) (@) rigi—sign(n)/a)
nl=—=T—"F"7—"3, € .
T n g (z)|H?

Let {6,} the set of all possible values of 8(n,!), selected such that
6, # 6, for v # v'. Define

L, , = Z] 3 auy

v 6(n,l)=6,

2

)

which Lemma 20 will prove to be non-zero; if, however, L were equal
to 0, then it is easy to see that in fact we would have that

Uo(Z)=0, allZ.
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In the meantime, we will simply assume L # 0.
Define also

4 ' 2/3
0= 14 (Bl
C()L

¢ = inf {[6(n, 1) — 6(n', )| : 6(n,1) % 8(r',1') and |n|, |n'| < C*} .
Therefore, setting as usual A = Z/3,

23 NW(2) = Y an T OO0
n,n' LI

> Z Ap 1 T 1

n,n' 11U

6(n,l)=6(n",l")
+ Z an,lmeZWiA(O(n,I)—G(n',I')) _
8(n,l)#6(n’ I)
The first term above is our L defined above. In the second term,
we separate the terms for small |n|, |n'|, which we keep untouched, and
the ones for which either n or n' are large, which we estimate using the

fact that |I] < ||¢'|leo 7] and |I'] < ||¢'||eo |7, to obtain

> L— Z an Imehri/\(e(n,l)—ﬁ(n',l'))
[8(n,l)—6(n",I")|>0
], |n'|<C*
-1 2 2 1—=5/2
=267 Il l14'l3 Y Inn'|™
In|>C*
all n’
2 L - Z an Imemriz\(ﬁ(n,l)—e(n',l'))
[8(n,1)—6(n",I")|>0
[nl, In'[<C”

—24¢5 Inll% 114113 (C* = 1),

which, by our choice of C*, implies

— L N — g
Z73 | 0(2)) > 5- Z e CCORLCR O

16(n,1)—8(n' I')|>0
o], |n'|<C*
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Now we consider Zy > 1 and Z < Z;/2 and prepare to integrate both
sides from Zy to Zy + Z. For that, note that dZ = 3A%2d\ and, if we

set A\g = Z3/3, then
(Zo+ 2P =X +A, A<Z/Z23.
Also,

b 2
/ A2e"\9d,\‘ < % a,b>0.

Therefore,

Zo+Z dz 7z B
[ Sz 5 =362 e il 141
Z |nn'|'5/2
o7 18(n, 1) — 8(n, 1]

[6(n,)—6(n",I")[>0
In], [n'|<C*

2y goge MEL 5~ e

25 1

“ O paplwi<cr
> E L— 23/3 18000”"7“20 ”¢,“go .

2 co ct

As a consequence, taking Z/Zg/3 large depending on L, co, c*, |[7]co
and |[¢'||ec, but still Z not larger than Z,/2, we have

Zo+Z d VA
2 z
=>Zr.
[ mer 23

Next, we turn to the non-vanishing of L. In preparation for the proof,

set
ar = ¢'(0), az=4¢'(a"?Q,)

and note that 0 > a; > a,. Clearly, the (n,l) that enter in the sum
for ¥y are determined by the lattice points in Z? which fall in the
double-cone

I'={(u,v): as |u| < —|v|<ag |u], uv<0}.

Define z, », for (u,v) € T, as the unique point satisfying

¢,(l‘u,v) = % .
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Note that z, , is strictly positive.
Then, we define

O(u,v) =ud(Ty,y) —VZy,, (u,v) €T.
The following is a trivial fact

Lemma 19. On T we have

VO(u,v) = (¢(2u,), ~Tu,0) -

A consequence of this trivial fact is the result we mentioned above.
Lemma 20. L # 0.

ProOOF. We will show that there is one 6, which only has one (n,{) € T’
such that 6(n,l) = 6,. This clearly shows that L is not 0.

Let ng be the smallest positive integer such that (n,!) € T for some
l. In our case, this I'is negative. Choose the largest (negative) such I,
which we denote by . That is, I is the largest negative integer that
satisfies | < a; ng. Then we claim that there is no other pair (n',1') € T
such that 8(ng,ly) = 0(n',!"). Indeed, since é(n,!) is strictly positive
for n > 0, and strictly negative for n < 0, such n’ would also have to
be positive. It cannot equal ny because, since we should have I' < [y,
by the previous lemma we have

6(no, ') > 8(no, o).
We must then have n' > ng, which also implies
'<ain' <ayjng (<0)
thus showing that I’ < . But this is also impossible because, also by
the previous lemma, there exists a pair (£,7n) on the segment joining

(no,lp) to (n',1'), such that

6(n',1") — 0(ng, ly) = d)(:cf‘n)(n' —Ng) — Teq (I' = 1p)

and this last expression is then strictly positive.
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We summarize all this in the following lemma

Lemma 21. There 13 a small constant ko and a large constant K such
that

Zo+Z
/ 273 | Wo(2))? dz > Ko Z,
Zy

whenever Z > K Zgls, and Zy > K.
PROOF. Our previous calculations show this result in the case that

zZ > CZgl3 but Z < Z/2, for a certain large constant C. For the
general case, break up

Zo+Z ) N Zny1 .
/ 273 | Wy(2))° dz = Z/ 273 |Wo(2)|° dz,
Z n=0"2%Zn

0
where
Zpy1=1012, whenn=0,...,N—1; In+1 =20+ 2,

and N is chosen so that 1.01Vt1 Z, < Z, + Z < 1.01¥*2 Z,. Our
previous calculations would apply to each of the integrals in the sum
provided

Zn—Zna >CZM%, (n=1,....N);, Z+2Zy> 2,

n—1>

which amounts to requiring Zp > 10°.

This mean value information can be used to obtain information
about the oscillating behavior of ¥y, as follows

Let X
I=[2,2+C 2% = I

for
=20 +85 23", 20 +2(i+1) 23],

where C is large depending on K and ¢ is small depending on &g .

Denote also, for any function f,

my(f) = inf |+ f(2)].
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Corollary 22. Given any ¢ > 0 small depending on ko, any C and
¢ as above, with the extra requirement that ¢ i3 small depending on ¢,
and Zy also large enough, there exists a constant 0 < a < 1 such that
m;(¥o) > ¢ for at most aC /¢ of the I;.

PrOOF. Put
Z-3/2 Uo(Z)=F(Z)+ E(Z)

such that F(Z) contains only finitely many terms in the sum, and
|E(Z)| is always less than . In particular, we have that in order that
m;(¥o) < € we must have m;(F) < 2¢. It will therefore be enough to
count how many of the m;(F') stay below 2¢ to obtain the conclusion
of the lemma.

Since both ¢ and ¢' are bounded, we have the trivial bound
|F'(2)| < C. 2723,

for some constant C. which depends on €. Thus, if m;(¥,) < €, we
have F(Z) < 2e + ¢C. which implies

/1. |F(z)>d= < 16|L;] (2 + & C?) .

Therefore, if we denote by
M = number of j such that m;(¥,) < ¢,

we use the trivial bound [F(z)| < C for all z, for a universal constant
C, to get

Ko CA'Z;/3 §/|F(z)|2 dz
I

1

<(§-m)cezil v16mazt? (42 c?).
c

This implies that

»

C—Ko

M< :
=« C —16(c2 + &2 C2)

, for a =

G)I

By adjusting ¢ depending on ¢ it is easy to make a < 1.
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A consequence of this corollary is another which shows that the
size of ¥y(Z) is at most ¢ Z3/2, for a small constant ¢, even when we
restrict our attention to integer values of Z.

Corollary 23.
lim inf Z7M39y(2)| #0.

— 00
Z=123,...

PROOF. Apply the previous corollary to any € > 0 small as required,
and to any C large and ¢ small also as needed, and then to infinitely
Zy to conclude that there are infinitely many intervals of lengths going
to infinity where |£=3/2 ¥y(z)| is never smaller than .

5. The Classical Picture.

In this Section we identify all quantities appearing in the expression
for ¥y in terms of data coming from the classical dynamics of a particle
in the field created by the Thomas-Fermi potential. We begin with
a brief review of elementary classical mechanics, which can be found,
among many other places, in [Ar].

Consider a particle with mass 1/2, in R?, moving in a negative
radial potential —V/(r), which for us, will equal —V](r). The motion
is planar, and can be described by the distance to the origin r(t) and
the angle ¢, which satisfy the relations

(r? +r2p?) —V(r)=E

Y
Il
=

where M is the angular momentum, and E is the energy of the orbit.
We begin assuming that the particle travels counter-clockwise in our
frame of reference (r,p). The motion takes place between radii rmyin
and rpax given by the two solutions of the equation

M2
—V(’l“) + 7 =F.

This implies that all trajectories for a fixed energy and angular momen-
tum can be obtained by rotation of a fixed one.

At energy 0, we denote by tyi, and tpax the times at which the
particle passes through ryi, and rpax respectively. The angle of motion
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¢ and the distance to the origin r satisfy the equations
2 2
ﬁ=21lv(r)_£, gf=—M/r .
dt r2 dr M
V(r)-—=

As a consequence, the particle going from rmin to Tmax sweeps out an
angle given by

Tmax M -1/2 dr
[T (ver-z)  E=mrean,

and the trajectory is clearly symmetric with respect to either rpy;, or
Tmax - Therefore, the angular momentum M will give rise to a closed
orbit if and only if

(28) (M) =1

and in this case, n represents the number of times the particle oscillates
between successive ryin (Or ryax) before closing, and ! represents the
winding number of the orbit around 0. Our initial assumption that the
particle travels counter-clockwise means that n,! > 0. In our previous
notation, we also have

M=Q,_.

If (I,n) =1 (where (-,-) denotes greatest common divisor), the orbit is
usually called primitive.
The period is given by

tmax

T(M)=2n/ dt:n/ m-—-—d"—xﬁ
tmin Tmin ’V(T) _ r_2

In order to find the action S along this closed trajectory,

=nP(M).

tmax
S=2n / (Kinetic Energy + V) dt,
t

min
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we note that, since we are at energy 0, Kinetic Energy = V(r), which
implies

S 4 / max V(,,.)

2/ V(r) - M2
sy s

=2r(n¢(M)+1M)
=21 (N ¢(Qn,—1) + 100 1) .

As a consequence, denoting by S(M) the action along a closed counter-
clockwise trajectory at energy 0 with angular momentum M, we have

27 B(n, —1) = S (Un.—1) -

When the particle travels clockwise, we agree that S, T', n and [ change
sign, but we keep M > 0.

We have so far identified all terms in the definition of ¥, except
n @"(Qn,1). For this one, consider a closed trajectory arising from angu-
lar momentum M, which gives rise to n oscillations between successive
rmax(M); for € small, consider a trajectory with angular momentum
M + ¢ which begins at ryax(M + €) and denote by 27 a(e) the abso-
lute value of the angle the particle forms between the initial position at
rmax(M + €) and the position after n oscillations also at rmax(M + ¢€),
where we take a between 0 and 1/2. Then

D(M) Y lim e ™" anr(e) = |n ¢"(M)].

It is clear now that the nonvanishing of the second derivative of ¢
translates into the fact that closed trajectories are isolated modulo the
trivial symmetry given by the rotation group.

The motion degenerates for the one circular orbit arising from
Mp.x = a”/2Q,, the maximum angular momentum allowed in our
system. In this case, we define the above classical variables simply in
terms of ¢’ using the formulas we derived for the other trajectories.
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Theorem 24.

W2y=2mzt Y PO pp

closed trajectories
energy 0

. ei(Z”sS—ﬂ'(H-sign(n)M))
b

where circular trajectories appear in the sum only when they have asso-
ciated a finite number of oscillations n. We have § = 1 ezcept for the
circular trajectories, when 6 = 1/2. The sum is absolutely convergent.

REMARK. Note that the contribution of each trajectory depends on the
particular frame of reference we take to compute n and [/, but the sum
is independent of it.

REMARK. One might think of the different values for é as follows:
non-circular trajectories contribute fully to eigenvalues, while the cir-
cular ones, being right at the outskirts of the classically allowed region,
contribute half as eigenvalues, half as resonances.

6. Further Considerations.

In this section we will compute the derivatives of ¢ at the ends
of our interval of interest [O,a‘l/2 Q¢]. The derivative at a~1/2Q,
plays a role in the sense described on Section 2, since its rationality
or irrationality translates into the appearance or absence of a certain
contribution to ¥ or size Z3/2. The derivative at 0 does not play such
a role since the amplitude vanishes there.

Lemma 25.

1 1 -2 1
—=F'(Q) = (1 —5r? yi“) = ———— ~ 1.9376783.
1-— 5 Te Qc

PROOF. We use the change of variables ¢(r) given by (16), and its
inverse r(t), to write

1
_F(Q) = / (A=) ar,
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with
r'(0) 1 V2
w(0) = = = - 77
Tc Tc (TC) Te lu (T‘C)l
Thus,
1,0 Q. | 2y(re) |V
T F (QC) - 1/2 - Tc u"(rc) L]
re |5 u"(re)
since

1 1
;/ (1—-tH Vgt =1.
-1

Manipulations using the identities

uz) =zy(z), u'(z)=zy'(z)+ylx),
u'(z) = zy"(z) + 2y (z) = 2"?y**(z) + 20/ (2)
and
rey'(re) = —y(re),

yield our result.

Lemma 26. 3
ey 3T
él_ll}o F'(Q) = 5

219

PROOF. Let ro(f2) and r;(Q2) be the two solutions of u(r) = Q2. We

study first the asymptotics of ro and r; .
For ry, put z = r(l,/2; then, for

f(z)=u(z®) =22 —wz* + 0(2%)

we have that f(z) = Q2. This implies that z = Q@ + O(Q?) and thus

ro(R) = 22 + O(°) .

For r;, since u(r) decreases monotonically to 0, r;(2) — +oo0. Since

we have that u(r) = 144772 + O(r=27%), for a > 0, we get that

r(Q) = 19-2- +o(Q71).
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In order now to analyze F'(Q2), take € be a small enough constant
to be picked up later and rewrite

9() = /E (u(r) - 92)‘1/2 _‘i_r

0($2)

r1(2)
+/ (u(r) — )/ &

(29) : i
= u'(rg)(r — 7 —1/2ﬂ
o RCIOIE
()
+/ (u(r) — 02) 7/ ?JFRO(Q),
for
€ —1 —1 dT
Ro= [ ((utr) =997 = @) —ro) 7).

We show first that Ry = O(1).
Fix Q:
(u(r) = 9%) " = (' (ro)(r = 70)) 2
=" e (W(ro) (r —10)) "2 ((u(r) = u(ro))=u'(ro) (r —r0))".
n=1

Throughout this analysis, ¢, will denote a generic sequence of bounded
constants.

Note that

[u(r) = u(ro) — u'(ro) (r —ro)| < % sup |u"(r)| (r —ro)°
0<r<e

< (y'(O) + % 6”2) (r —ro)°

< Cy (r—ro)°

since u'(r) = 2y/(r) + ry"(r), |y'(r)] < [y'(0)] and y"(r) < r=V/2.
Therefore, the sum converges uniformly for |r — ro| < Co/2 and inte-



WEYL SUMS AND ATOMIC ENERGY OSCILLATIONS 221

grating with respect to dr/r on (ro,¢), for € < Cp/2, we obtain

=
IN
s

T

-_n— ‘ n n— dT
lea] [t (ro)] /2 / Cp fr—ro" 2 L
T

0

3
Il
-

M

_1yz [T d
leal [u'(ro) | "2 G g T / (-1 Ty
1

3
Il
—

-1
Ty €

Jeal lu'(ro) | =" 2 € g 7% (y — 1) 2|

M

3
Il
-

Jenlfu(ro)] 7112 G en /2.

M

3
Il
f

For Q small enough, we can make [u'(r¢)| < 2, and this will make the
previous sum converge to O(1) for € small, thus proving that Ry is
bounded.

Recall now that Qr¢(2)~!/2 — 1, what implies

< _1/2 dr -1/2 rote
Q/ (r-—ro)+/ — =Qr, / y"l(y——l)'lﬂdy
To r 1
oo 1 1/2
_>/ y Ny -1)"dy =,
1

which, with the fact that u' (ro(2)) — 1, implies that

imQ [ (ur)—2) &
Q=1 Sy, r
. f -1/2 € —1/2 dr
= lim Qu'(ry) (r —ro(2)) — =,
a1 ro(%2) r

which completes the analysis of the first integral in (29).

As for the other integral, we break it up into 5 pieces as follows

f Yy -y &

T
M rfs/wo /2 7'1-—1‘12/3 ry
5 M 7'199/100 r1/2 rl—rlzls

=h+L+L+1,+I5 .
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It is clear that I; = O(1), so we do not worry about it.
For I, note that, if M is large enough so that u is decreasing from
M on, we have on its domain that

lu(r) — Q*| > |u (7?9/100) _ u(rl)‘ >C (rslag/loo) -z 25 9950

and thus.

99/100

1
L] < c/ |r§’9/5° < Crd®1% 1og ry
M

’

‘1/2 dr
r
which does not contribute to the result.
Similarly, for Is, note that
‘u(r)—92| > ( inf |u (r)[) |r —r1] >C'r1 |r — 1],
[r=—m|<
thus

T1 d
,I5| < C 2/3 T?/Z (Tl 7“)_1/2 4

T —T}
T1
<cn’? (ry—r)"2dr
1 2/3
T —Tl
< Cr/2
<C r";’/s ,

and again, it does not contribute to the total outcome.
For I, note that

[u(r)—92|2(1nf |u’ (r)|) 23> 0r o3 2/3.

This implies two things:

First, since |u(r)— 14472 < Cr~27* < Cr*7 % for a = (V73—
7)/2 > 1 — 2/3, we have that 144772 — Q% > 0 on this range, for
small enough.

And second,

‘ (u(r) _ Qz)—1/2 _ (1;14 B Q2)—1/2(

< ch lu(r) — Q2|72 (Crm )"

n=1

oo
Z 3 2/3 n+1/2 —n(2+oz)

n=1
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and thus
2/3
T =T o2 __1/2_ %_ 2 -1/2 ﬂ
[, == (G —et) |

(e ]
< 3 (ORI )

n=1

< C (11D B1)~(2+a)

= o(r1(R2)) .
Finally, for I,

/2 _
2\ —1/2 144 2\ ~1/2 _d_r
xfs/mo (u(r)—Q) _(7 _Q) r
n/z 2 ry S\ 172 dr
1y —n(24+a) 20
< fres oo (130 =) " et

o]

1‘1/2
—2|—n=1/2 _n(2+4a) ﬂ
< oo S en lOrH| T e S

2n+1/2 —99n(2+4a)/100
E cn |Cri ) /
n=1

IN

S C 7"? r1—99 (2+a)/100

= o(r1(2)) .

Therefore, the second integral in (29) agrees modulo o(27!) with
2/3
/”‘Tt 144 _\-1/2 dr
()
#99/100 r r
1
2/3
_ [ (144 Uz Qe dr
“/rgsuoo 7~2) ( B 144) r

1 Q(ri—ri’*)/12 2\—1/2
—at | (1) 2 dy

7‘?9/100/:12

and therefore

: e . n-1/2 _ [ 2y-1/2 3 _ T
lim (u(r) — Q%) = [ 1-vy% dy_-2—,
€ 0

Q—0
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which proves the lemma.
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