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Uniqueness of positive
solutions of nonlinear

second order systems

Robert Dalmasso

Abstract. In this paper we discuss the uniqueness of positive solu-
tions of the nonlinear second order system —u” = g(v), —v" = f(u) in
(=R, R), u(£R) = v(£R) = 0 where f and g satisfy some appropriate
conditions. Our result applies, in particular, to g(v) = v, f(u) = u?,
p > 1, or f(u) = A+ auPt + -+ + agpuP* with p; > 1, a; > 0 for
j=1,....,kand 0 < X < p? where p; = 72/4R?.

Introduction.

In this paper we discuss the uniqueness of positive solutions (u,v) €
(C?[—R, R])? of the nonlinear second order system with homogeneous
Dirichlet data

—u"(t) = g(v(t)), —R<t<R,
(1.1) —v"(t) = f(u(t)), —R<t<R,
u(£R) =v(£R) =0,

where R > 0 is fixed and the functions f, g € C*(R) satisfy the following
assumptions

(Hy) 0<g(v)<vg'(v), for v>0,
(Hy) 0< fu) <uf'(u), for u>0.
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248 R. DALMASSO

Of course (u,v) > 0 means that u >0 and v > 0on (-R,R).

It was proved by Troy [6] that v and v are symmetric about the
origin and that v’ < 0 and v" < 0 on (0, R). It should be noted that in
our situation the proof is considerably simpler. Moreover, by the Hopf
boundary lemma [5, p. 4] here we also have v/(R) < 0 and v'(R) < 0.
Therefore positive solutions of (1.1) can be treated as positive solutions
of

(v(t)) 0<t<R,
(U(t)) 0<t<R,

(1.2)

The existence of positive solutions of nonlinear elliptic systems was
examined by Clément, De Figueiredo and Mitidieri [1] in a bounded
convex domain of R™ when n > 2 and by Peletier and Van Der Vorst
[4] in a ball of R™ when n > 4. The question of the existence of positive
solutions of problem (1.2) will be discussed in the last section of this
paper.

Our main result is the following theorem.

Theorem 1.1. Let f,g € CY(R) satisfy (Hy) and (Hy). Let (u,v) €
(C?[—R, R])? be a positive solution of problem (1.1). Then (u,v) is
symmetric about the origin and is unique in the class of all positive
solutions in (C*[—R, R])?.

As a particular case of Theorem 1.1 we can state the following
corollary concerning fourth order equations.

Corollary 1.1. Let f € C*(R) satisfy (Hz). Let u € C*[—R, R] be a
positive solution of

(1.3) { ul(t) = f(u(t)), —R<t<R,
' u(+R) = u"(£R) = 0.

Then u is symmetric about the origin and is unique in the class of

all positive solutions in C*[—R, R] .

In our proofs we shall make an intensive use of the one dimensional
maximum principle and the related Hopf boundary lemma [5], which
we recall:
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Theorem A ([5, p. 2]). Suppose u € C%(a,b) N Cla,b] satisfies the
differential inequality

u' +g(x)u' >0, for a <x<b,

with g a bounded function. If u < M in (a,b) and if the mazimum M
of u is attained at an interior point of (a,b), then u= M .

Theorem B ([5, p. 4]). Suppose u € C%(a,b)NC*[a, b] is a nonconstant
function which satisfies the differential inequality v” + g(x)u’ > 0 in
(a,b) and suppose g is bounded on every closed subinterval of (a,b). If
the maximum of u occurs at x = a and g is bounded below at x = a,
then u'(a) < 0. If the mazimum occurs at x = b and g is bounded above
at x = b, then u'(b) > 0.

The outline of the paper is as follows. In Section 2 we introduce an
initial value problem and we establish some preliminary results. Theo-
rem 1.1 will be obtained as an immediate consequence of a crucial result
that we state and prove in Section 3 (Theorem 3.1). Finally in Section
4 we prove an existence result and we give some examples to illustrate
our theorem.

2. Preliminary results.

In order to prove our theorem we introduce the initial value prob-

lem
() =g, 20,
L) = flu),  t>0,
(21) u(0) = o, W/(0) = 0.

where a > 0 and § > 0 are parameters. Throughout this section
the functions f,g € C'(R) are only assumed to be nondecreasing on
[0, +00) and such that f(0) = g(0) = 0, f(s), g(s) > 0 for s > 0 and
limg s 4 o0 g($) = +00.

Below we prove some propositions which will be needed to state
and prove our crucial result: Theorem 3.1. In the following proposition
we establish the local existence and uniqueness of solutions of problem
(2.1).
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Proposition 2.1. For any a > 0, 8 > 0 there exists T > 0 such that
problem (2.1) on [0, T] has a unique solution (u,v) € (C%[0,T])?.

PRrROOF. Let o > 0 and g > 0 be given. Choose T' > 0 such that
T2%(#) <o and  T2f(a) < B

and consider the set of functions

<o(t)<pB

Z = {(u,v) € (C[0,T])* : % < u(t) < a and

VIR

for all ¢ e [O,T]} .

Clearly, Z is a bounded closed convex subset of the Banach space
(C[0,T])? endowed with the norm ||(u,v)|| = max{||u|/ec ,||v]|co }. De-
fine

L(u,v)(t) = (Oé—/0 (t—s)g(v(s))ds, [5’—/0 (t = s) f(u(s)) ds)

for t € [0,7] and (u,v) € Z. It is easily verified that L is a compact
operator mapping Z into itself, and so there exists (u,v) € Z such
that (u,v) = L(u,v) by the Schauder fixed point theorem. Clearly
(u,v) € (C?[0,T])% and (u,v) is a solution of (2.1) on [0,7]. Since f
and g are of class C'! the uniqueness follows.

In view of Proposition 2.1, for any «,3 > 0 problem (2.1) has
a unique local solution: let [0,7T}, 3) denote the maximum interval of
existence of that solution (T, 3 = +00, possibly). Define

Pop={te€(0,Thp): ule,,s)v(a,B,s) >0, for all se][0,t]}

where (u(a, 5, ), v(a, B, +)) is the solution of problem (2.1) in [0, Ty ).
Clearly P, p # @ .

Proposition 2.2. For any «, 3 > 0 we have

tag=supPopg<Thp.
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Proor. If not, there exist o > 0 and B8 > 0 such that sup P, g =
Twp. Suppose first that T, 3 < +o0o. Noting v = u(a,f, -) and
v ="v(a, [, -) we have

0<u<a on [0,T,p),
0<v<p on [0,Thp).

Since

(2.2) u'(t):—/og(v(s))ds and v’(t):—/o Fuls)) ds

for t € [0,T4,), we conclude that u, v, v’ and v’ are bounded on
[0,T, ) and we get a contradiction with the definition of T, 3. Now
assume that T, g = +00. Since u” < 0 on [0, +00) we deduce that

u'(t) <u'(1) <0, for all ¢ >1
from which we get
w(t) <wu(l)+4' (1) (t—1), forallt > 1.

Thus we can find ¢ > 1 such that u(t) < 0 and we obtain a contradiction.

Proposition 2.3. For any o > 0 there exists a unique 3 > 0 such that
u(av B ta,ﬁ) = v(a, B ta,ﬁ) =0.

PrOOF. We first prove the uniqueness. Let o > 0 be fixed. Suppose
that there exist # > v > 0 such that u(e, 8,ta ) = v(a, B,tap8) =
u(e,v,ta,y) = v(a,v,tay) = 0. In order to simplify our notations,
we denote u(a, ,1), v(on B,1), u(ay,t) and vle,,1) by ut), v(t).
w(t) and z(t). Define b = min{t, g,tq,y}. Suppose that there exists
a € (0,b] such that v — z > 0 on [0,a) and (v — z)(a) = 0. Since
u'"—w" = g(z)—g(v) and ¢ is nondecreasing on [0, +00), we deduce that
u”" —w"” <0 on [0,a]. Using the fact that (u — w)(0) = (v —w)’(0) = 0,
Theorems A and B imply that v — w < 0 on [0,a]. Thus v" — 2" =
f(w) — f(u) > 0 on [0, a] since f is nondecreasing on [0, +o0c). We have
(v—2)(0) >0, (v—2)"(0) =0 and (v — z)(a) = 0. Therefore Theorems
A and B give a contradiction. Thus v — z > 0 on [0,b]. As before we
show that w — w < 0 on [0, b]. Since we have

(v—2)(b) = 0, iftag="1tan,
_Z(tcx,ﬁ) <0, ifta,p < b,y
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necessarily b =t 4 < to,g. Now (u— w)(b) = u(ta,) > 0 and we get

a contradiction. The case 0 < 3 < 7y can be handled in the same way.
Now we prove the existence. Suppose that there exists a > 0 such

that for any 8 > 0 u(w, 5,ta,8) > 0 or v(a, B,ta,g) > 0. Since « is fixed

we shall write ug , vg , tg and T} instead of u(c, 3, - ), v(a, B, - ), ta,s
and T, g . Define the following two sets

B={3>0: ug(tg) =0 and wvg(tg) >0},
C={B>0: ug(tg) >0 and wvg(tg) =0}.
Then we have
(2.3) (0,4+00) =B UC.

The proof of the proposition is completed by using the next lemma
which contradicts (2.3).

Lemma 2.1. B=C=0.
The proof follows readily from (2.3) and the next two lemmas.

Lemma 2.2.
i) Suppose B # &. Then there exists m > 0 such that m < inf B.
i) Suppose C' # @&. Then there exists M > 0 such that M > sup C'.

Lemma 2.3. B and C are open.

ProOOF oF LEMMA 2.2. We have
t

(2.4) ug(t) = a — / (t—s)g(vs(s))ds, 0<t<Tg,
0

and
t

25) o) =B [ (=) fupe)ds. 0<1<Ty.

i) Let € B. (2.2) and (2.4) imply

(2.6) tg > <%>1/2
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and from (2.5) we get

(2.7) 8> [ ts =) Flupls)) ds.

Suppose that inf B = 0 and let (;) be a sequence in B decreasing to
zero. Then tg, — +o00 by (2.6). From (2.7) we deduce that

(2.8) @z[}%—@ﬂwﬁ»@

for j large. Using (2.2) and (2.4) we have

(2.9) ug, (1) 2 0 - 200

RS

for ¢t € [0,1] and j large. From (2.8) and (2.9) we get

Bj > c
for 7 large where ¢ > 0 is independent of j. This gives a contradiction.
ii) Suppose that supC = 400 and let (§;) be a sequence in C
increasing to +oo. By virtue of (2.2) we have

(2.10) 0 < ug,(t) < a, for ¢t €0,t5,].

(2.5) and (2.10) imply that g5, — +00 as j — +o00. Then we can assume
that tg, > 1 for all j and that

(2.11) flo) < By, for all j.
(2.2), (2.5), (2.10) and (2.11) imply

Bi

5 < wg, (t) < B, for ¢t € [0,1],

and using (2.4) we deduce that ug (1) < a — g(8;/2)/2. But then
ug, (1) < 0 for j large contradicting (2.10).

The proof of Lemma 2.3 depends on the following two lemmas.
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Lemma 2.4.

i) Suppose that B # @. Then for any § € B we have u’ﬁ <0 on
(0,tg] and ’v’ﬁ < 0 on (0,tg]. If in addition Ty < 4o, then for any
v > « (respectively, 0 > ) there exists t € (tg,Tp) (respectively, s €
(tg,1p)) such that |ug(t)| = v and [ug(r)| < v forr € [0, 1] (respectively,
lvg(s)| =6 and |vg(r)| <& forr €]0,s]).

ii) Suppose that C # @. Then for any € C we have u’ﬁ <0
on (0,2g] and vy < 0 on (0,tg]. If in addition Tg < +oo, then for any
v > « (respectively, 0 > ) there exists t € (tg,Tp) (respectively, s €
(tg, Tp)) such that lug(t)| = v and |ug(r)| < v forr € [0,t] (respectively,
lvg(s)| =6 and |vg(r)| <& forr €]0,s]).

Lemma 2.5. Suppose that B # & and C' # &. Then for any 8 > 0
there exists n > 0 such that min{Tg, T} > max{tg,t,} for any v €

PROOF OF LEMMA 2.4. The first part of i) is clear. Now assume that
Tp < 4o0. If ug (respectively, vg) is bounded on [0,7p), then (2.5)
(respectively, (2.4)) and (2.2) imply that vg (vespectively, ug), ujz and
v are also bounded on [0, T) contradicting the definition of Tj5 . Thus
ug and vg can not be bounded on [0,73) and the last part of i) follows
easily. ii) can be proved similarly.

PROOF OF LEMMA 2.5. Let (3 be a fixed positive number. (2.3) implies
that 3 € BUC. Let v > 0. In the same way v € B U C. From (2.4),
(2.5) using Gronwall’s inequality we obtain

max{|ug(t)—uy(t)|  Jvp(t) — Uv(t)|}

(2.12) <16 <1+/0th(3) exp(/strh(r) dr) ds>

for ¢ € [0, min{7g, T }), where the function h is given by
a(t) = max { sup |f'(pug(t) + (1= p) uy(1))]
0<p<1

sup g/ (Coa(t) + (1= Q) vy (6))]}

0<¢<1

(2.13)

for ¢ € [0,min{73,T,}). Suppose that max{ts,t,} > min{1p,T}.
Then, by Proposition 2.2, min{73,7T,} < +oo. If min{73,7,} = 1},
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then necessarily max{tg,t,} = t,. By Lemma 2.4 there exists ¢ €
(tg,Tp) such that |ug(t)] = 2a and |ug(s)] < 2« for s € [0,¢]. Since
0 < uy(s) <aand 0 < wy(s) <7 for s €[0,t] by Lemma 2.4, (2.12)
and (2.13) imply

(2.14) a < fup(t) —uy(t)] < c]f =7

where ¢ > 0 depends on «, 3,y and t € (tg,13); clearly ¢ is bounded
with respect to v when v is in a bounded set. If min{7g, 75} = T,
then necessarily max{tg,ty} = tg and the proof is the same but now
t € (t4,T). Since in this case Ty < tg we can choose in (2.14) the
same c as before. The lemma follows.

PrROOF OF LEMMA 2.3. 1) Suppose that B is not open. (2.3) implies
that there exists # € B and a sequence {(3;} in C such that 5; —  and
tg, — T € [0,+00]. By Lemma 2.5 we can assume that min{Tp,Tp, } >
max{tg,tg, } for all j and so T' < T . We first show that 7' < +oo.
If not, we can assume that {5, > tg for all j by Proposition 2.2. Let
t €10,tg]. Using Lemma 2.4 we get

/Ot(t —5) g(vg,(s)) ds < g(ﬂ;) £2 |

Choose t € (0, ¢g] such that g(3;)t?/2 < a/2 for all j. Then using again
Lemma 2.4 and the fact that

t
us, ()=~ [ (4= ) gl0n, () ds
we obtain ug, (s) > a/2 for s € [0,t] and for all j. Since
tg;
8= [ty = 5) Flu, () s
t
- , d
> / (ts, — ) f(ug,(5)) ds

ORCE)

for all j we reach a contradiction. Now suppose that 7' < Tjz. Then
from (2.12), (2.13) and Lemma 2.4 we get

(2.15) |Uﬁ(tﬁj) — Up; (tﬁj)| <c |BJ - B, for all j,
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where c is a positive constant independent of j. Since vg, (tg;) = 0 for
all j, (2.15) implies that vg(T") = 0. Therefore T' > tg. We can assume
that tg, > (T'+tg)/2 for all j. Let t € [tg,T). Again we can assume
that tg, > t for all j. By Lemma 2.4 we have for all j

0 <ug,(s) <a, for s€0,¢],
and
0 <wg,(s) < By, for s€10,¢].

Then (2.12) and (2.13) give for s € [0, ¢

(2.16) ug(s) —ug, ()| < clB; —pl,  forall j,

where ¢ is a positive constant independent of j. Let s = tg in (2.16), we
get
ug, (tg) =0 when j — 400.

Since ug, (t) < ug, (tg) we obtain
(2.17) ug, (t) =0 when j — 4o00.

From (2.16) with s = ¢ and (2.17) we deduce that ug(t) = 0. Since
t € [tp,T) is arbitrary we obtain a contradiction by using Lemma 2.4.
Thus T' = T. Then necessarily Tz < +00. By Lemma 2.4 we can find
s € (tg,Tp) such that |vg(s)| =20 and |vg(r)| < 2 for r € [0,s]. We
can assume that tg, > s and 3/2 < 3; < 33/2 for all j. Then from
(2.12), (2.13) and Lemma 2.4 we obtain

§|Uﬂ(3)_vﬁj(3)|gc|ﬁ1_ﬁ|v for all j,

RSN

where ¢ is a positive constant independent of j. Clearly this is impossi-
ble.

2) Suppose that C is not open. (2.3) implies that there exists € C'
and a sequence (3;) in B such that 8; — (8 and tg, — T € [0, +00]. By
Lemma 2.5 we can assume that min{7}, T, } > max{tg,tg,} for all j
and so T' < Tp. As in 1) we can show that T < +0o0. Now suppose that
T < Tp. Then from (2.12), (2.13) and Lemma 2.4 we get

(2.18) |U’ﬁ(tﬁj) — Ug, (tﬁj)| <c |BJ - B, for all j,
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where ¢ is a positive constant independent of j. Since ug, (tg;) = 0 for
all j, (2.18) implies that ug(T") = 0. Therefore T' > tz. We can assume
that tg, > (T'+tg)/2 for all j. Let t € [tg,T). Again we can assume
that {5, >t for all j. By Lemma 2.4 we have for all j

0 <ug,(s) <, for s€0,t],
and

0 <wg,(s) < B, for s€[0,t].
Then (2.12) and (2.13) give for s € [0, ¢
(2.19) lvg(s) —wvg, (s)| < c|B; — B, for all j,

where ¢ is a positive constant independent of j. Let s = tg in (2.19), we
get
vg, (tg) — 0 when j — +o00.

Since vg, () < vg, (tg) we obtain
(2.20) vg, (1) =0 when j — 4o00.

From (2.19) with s = ¢t and (2.20) we deduce that vg(t) = 0. Since
t € [tp,T) is arbitrary we obtain a contradiction by using Lemma 2.4.
Thus T' = T. Then necessarily Tz < +o00. By Lemma 2.4 we can find
t € (tg, 1) such that |ug(t)] = 2« and |ug(r)| < 2« for r € [0,t]. We
can assume that tg, >t for all j. Then from (2.12), (2.13) and Lemma
2.4 we obtain

a < Jug(t) —ug, (t)| < clB; — 8], for all j,

where c¢ is a positive constant independent of j. Clearly this is impossi-
ble. The proof of the lemma is complete.

Now we introduce
t t
Ft) = / f(s)ds  and  G(t) = / o(s) ds.
0 0
The following lemma will be needed in the next section.

Lemma 2.6. For any a > 0, > 0 we have
(2.21) W'(a, B, 1) v' (e, B, 1)+ F (u(a, B, 1)) +G(v(a, B, 1)) = F(a)+G ()
fort € [0,T,3) .

The proof is obvious.
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3. Proof of Theorem 1.1.

We keep the notations introduced in Section 2. Clearly Theorem
1.1 is an immediate consequence of the following result.

Theorem 3.1. Let f,g € CY(R) satisfy (Hy) and (Hz). Then for
any a > 0 there exists a unique (f(a),t(a)) € (0,400) x (0,400)
such that u(c, B(a), t(a)) = v(a, B(),t(a)) = 0 and u(a, B(a),t) > 0,
v(a, B(a),t) > 0 fort € [0,t(a)). Moreover () is a strictly increasing
function of o and t(«) is a strictly decreasing function of «.

PROOF. Let a > 0 be fixed. Since f and g verify the hypotheses used
in Section 2 the existence and uniqueness of (5(«), t(«)) satisfying the
conditions of the theorem are given by Proposition 2.3. Unfortunately
the proof of the last part of the theorem is rather long. For a > 0,
(> 0 define

0 0
pla,ft) = 5= (@ Bi1),  planBit) = o= (o, B,1).
and 5 9
plas ) = o (0 Bit), (s o) = 55 (0 Br1)
for t € [0,T%,8)- Then ¢, 9, p and x satisfy the linearized equations
©"(t) = g'(v(t) ¥(t) 0<t<Tap,
(3.1) w”(t) f'(u(t) o(t) , 0<t<Tap,
p(0) =1, ¥(0) = ¢'(0) = ¢'(0) = 0,
and
—p"(t) = g'(v(t)) x(t), 0<t<Tup,
(3.2) —x"(t) = f'(u(t) p(t), 0<t<Tup,
x(0) =1, p(0) =p'(0) = x'(0) =0

We first prove the following lemma.

Lemma 3.1. We have ¢’ > 0 (respectively, x' > 0) on (0,tq ] and
Y < 0 (respectively, p' < 0) on (0,tqpa] -
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PrOOF. We have ¢"(0) = —f'(a) < 0 (respectively, p”(0) = —¢'(08) <
0). Then ¢ < 0 (respectively, p < 0) in (0, 7] for some 7 > 0. Since the
proof is the same in both cases we only prove that ¢’ > 0 and ¢’ < 0
on (0,tq g]. By what we have just seen we can define

to =sup{t € (0,t48]: o <0 on (0,¢]}.

Since

o) = - / g'(v(s)) P (s) ds

- / £ (u(s)) o(s) ds

we deduce that ¢’ > 0 and 9" < 0 on (0, ty]. Therefore ¢(to)1(to) < 0
and necessarily tg =t g -

Now let D = {(«,3,¢) : >0, #>0, and t € [0,T4p3)}. Itis
well-known that D is open in (0, 4+00) x (0, 400) X [0, +00). Consider
the map H : D — R? defined by

H(a, p,t) = (u(a, B,t),v(c, 5,)) .
Then H € C'(D,R?) and

and

(3.3) H(a, p(a),t(a)) =0, for a>0.
Since by Theorems A and B we have
(3.4) u' (o, B(a),t) < 0 and v' (o, B(),t) <0
for ¢t € (0,¢()], using Lemma 3.1 we get
det Dy, H (v, 8(0), H)) = (p0' = x ') (@, Bla0) £(0)) > 0.

Therefore by the implicit function theorem o — (8(«),t(c)) is a C!
map for a > 0. Differentiating (3.3) with respect to o we get

(o, B(a), (@) + p(a, B(a), t(a)) 5(a)
(35) + u’(a,ﬂ(a),t(a)) (a) =0
and
(3.6) (e, Bla), He)) + x(o, Ba), H(e) B ()

+0'(a, Ba), t(@)) t'(e) = 0
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for o > 0. Since

B (o) = (det Dig o) H(ev, B(ar), t(c))) (¢ u' — o v') (o, Blev), H(ev))

we deduce from (3.4) and Lemma 3.1 that §'(«) > 0. Define

X(avt) = Qp(av 6(04)7 t) + p(a,ﬁ(a),t) ﬁ/(a)

and
Y(a,t) = P(a, B(@), 1) + x(e, B(a),t) B'(@) -

The proof of the theorem is completed by using (3.4), (3.5) and the
next lemma.

Lemma 3.2. There exists ty € (0,t(a)) (respectively, so € (0,t(cx)))
such that X (a,t) > 0 fort € [0,tg) (respectively, Y (a,t) > 0 fort €
[0, 50)) and X (a,t) < 0 fort € (to,t(a)] (respectively, Y (a,t) < 0 for
t € (so,t()]).

PROOF. In order to simplify our notations, we denote X («,t), Y (a,t),
u(a, f(a),t) and v(a, B(a),t) by X(t), Y(t), u(t) and v(t). We have

g ( (t) ’ 0<t< Ta,ﬁ(a) ’
(3.7) —Y"(t) = f'(u , 0<t<Typa)s
X(0)=1,X'(0) = 0,Y(0) = B(a) >0,Y"(0) = 0.

Lemma 3.3. X >0 on [0,t(«)] if and only if Y >0 on [0,t(c)].

PROOF. Suppose that X > 0 on [0,¢(«)]. From (3.4), (3.5) and (3.6)
we get Y (t(«)) > 0. Then Theorem A implies that Y > 0 on [0, ¢(«)].
The converse can be proved in the same way.

Now suppose that X > 0 on [0, #(«)]. By Lemma 3.3 we also have
Y >0 on [0,t(a)]. Then using (H;), (Hz) and (3.4) we obtain

t(a) t(a)
0</0 (f’(u,)u—f(u,))X:/O o X — Y u

t(a)
— (0 X)(H(a)) + (WY (t(e)) + /0 v X" — 'Y

t(a)
= (" X)(t(e)) + (') (t()) +/ (g(v) —g'(v)v) Y <0

0
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and we reach a contradiction. In the same way Y can not remain
nonnegative on [0,%(«)]. Thus we can define t( (respectively, sg) to be
the first zero of X (respectively, Y) on (0,¢(«)). Moreover there exist
x € (to,t(a)) and y € (sp,t(c)) such that X(z) < 0 and Y (y) < 0. We
shall prove that X < 0 on (to,t(a)] and Y < 0 on (sg,t(a)] and this
will complete the proof of Lemma 3.2. Suppose the contrary, then we
have the following lemma.

Lemma 3.4. There exist s1,t; € (max{so,to},t(a)] such that X < 0
on (to,t1), X(t1) =0,Y < 0 on (so,s1) and Y (s1) = 0. Moreover if
t = min{sy,t1}, then we have X'(t) > 0 and Y'(t) > 0.

Admitting the lemma for the moment, we show that we reach a
contradiction. Differentiating (2.21) with respect to « and [ respec-
tively and taking the value at (o, B(«),t) with t € [0, T}, g(a)) We get

o' v Fu' Y+ g(v) Y+ fu) o = fla)

and
p v +u' X+ g(v) x + f(u) p=g(B(a))
for t € [0, Ty g(a)), from which we deduce

(3.8) X' +Y'u +g(v)Y + f(u) X = f(a) + /() g(B(ex)) > 0

for t € [0,T, g(a))- Using (3.4), Lemma 3.4 and (3.8) for t = min{s;,#}
we see that the left hand side in (3.8) is negative and we get a contra-
diction.

In order to prove Lemma 3.4 we need

Lemma 3.5. X (t) < 0 on (to, t()] if and only if Y (t) < 0 on (so, t(c)].

PROOF. Suppose that X (t) < 0 on (to,t(c)]. Then from (3.4), (3.5)
and (3.6) we get Y (t(«)) < 0. Suppose that ty < s¢9. Then Theorem
A implies that Y < 0 on (so,t(«)]. Now if g > sg, Theorems A and
B imply that Y' < 0 on (0,%]. Thus ¥ < 0 on (sp,%o]. Then using
Theorem A we get Y < 0 on [tg, t(«)]. The converse can be proved in
the same way.

ProOOF OF LEMMA 3.4. Recall that our assumption is that X can
not remain negative on (¢g, t(«)] or that ¥ can not remain negative on

(s0, 1(@)] -
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Case 1. sp = top. By Theorems A and B we have X'(tp) <
0 and Y'(tp) < 0. Our assumption and Lemma 3.5 imply that there
exist s1,t1 € (to,t()] such that X < 0 on (tg,%1),X(t1) =0,Y <0
on (tg,s1) and Y(s;) = 0. If s; = ¢t; Theorems A and B imply that
X'(t1) > 0 and Y'(¢t;) > 0. If s; > ¢; Theorems A and B imply that
X" > 0 on [t1,s1]. Therefore Y < 0 on (¢1,s1]. Since Y (¢1) < 0 and
Y (s1) = 0 Theorems A and B imply that Y'(¢1) > 0. In the same way
if s7 < t; we show that X'(s1) > 0 and Y'(s1) > 0.

Case 2. sg < tp . By Theorems A and B we have Y’ < 0 on (0, to].
Our assumption and Lemma 3.5 imply that there exists s1 € (¢, t(a)]
such that Y < 0 on (sp,s1) and Y(s1) = 0. Let d € (to,s1) be such
that Y (d) = ming <s<s, Y (s). Since Y (d) = — f'(u(d)) X (d) we obtain
X(d) < 0. Then Theorems A and B imply that X'(t9) < 0. By virtue
of Lemma 3.5 there exists t; € (to,t(c)] such that X < 0 on (¢y,¢;) and
X(t1) = 0. Then we conclude as in Case 1.

Case 3. sp >ty . The proof is analogous to that given in Case 2.

The proof is complete.

4. An existence result and examples.

We begin this section with an existence result concerning positive
solutions of problem (1.2).

The method we use to prove the existence of a positive solution
of problem (1.2) consists of first obtaining a priori estimates on the
positive solutions and then applying well-known properties of compact
mapping taking a cone in a Banach space into itself (see [3]).

We denote by pup the first eigenvalue of the operator —d?/dxz? on
(=R, R) with Dirichlet boundary conditions and ¢ is the positive eigen-
function corresponding to p1 (1 = 72/4R? and ¢1(t) = C cos(nt/2R)
where C > 0 is a constant).

Theorem 4.1. Let f,g € C(R) satisfy the following hypotheses

(Hs) f(s),9(s)>0,  for s>0,

M) tminf L 5 050, it 2 > 550 and ab> 2,
s—+o0 8 s—too §

(Hs)  limsup I(5) <c¢, limsup 9() <d and cd<p3.

s—0 s s—0 s
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Then problem (1.2) possesses at least one positive solution (u,v) €
(C2[0, R])*.

Proor. We first prove that there exists M > 0 such that
(4.1) Julloo <M and  lvflc <M

for all positive solutions (u,v) € (C%[0, R])? of (1.2). By (Hy), there
exist K; > 0 for j = 1,2 such that

fls)>as— Ky, for s >0,

and
g(s) > bs— Ky for s> 0.

Now let (u,v) € (C?[0, R])? be a positive solution of (1.2). Then, C
denoting a generic positive constant, we have

R R R
u?/ SOIUdt:_Nl/ w’l’dt:—m/ oy u” dt
0 0 0
R R
=u1/ wlg(v)dtzbul/ prvdt —C
0 0
R R
:—b/ v<p'1'dt—C:—b/ prv"dt —C
0 0
R R
:b/ wlf(u)dt—Czab/ prudt —C.
0 0

From (4.2) we deduce that

R R
/soludtgc, /cpwdtgc,
0 0
(4.3) » R
[ erswarsc ma [Cpgmasc,

0 0

where C' is again a generic positive constant. Now we have

R R
(4.4)  u(t)= /0 G(t,s) g(v(s)) ds and v(t)= /0 G(t, s) f(u(s)) ds
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for t € [0, R|, where G(t, s) denotes the Green’s function of the operator
—d?/dx? on (—R, R) with Dirichlet boundary conditions. Since

.9 R—t, 0<s<t<R,
G(t,s) =
R—s, 0<t<s<R,

we have

(4.5) 0<G(t,s)<R-s, for 0<t,s<R.

We also have

(4.6) c1(R—5) <pi1(s) <ca(R—s), for s €0, R],

for some positive constants ¢;, j = 1,2. From (4.3)-(4.6) we easily get
u(t) < C and o(t) <C for tel0,R],

where C is a positive constant and (4.1) is proved.

Now we can establish the existence of a positive solution of problem
(1.2) by using Proposition 2.1 and Remark 2.1 of [3]. The arguments are
by now well-known. However, in order that the paper be self contained,
we provide details here (see [1], [2] or [4] for similar detailed proofs).

Let X denote the Banach space (C[0, R])? endowed with the norm
|(u, v)|| = max{||u||co, ||V]|cc }- Define the cone

C={(u,v) € X: (u,v) >0}.
For ((u,v),x) € C x [0, +00) we define
F((U,U),.T)(t) = (Fl((uvv)vx)(t)vFZ((uvv)vx)(t)) ) for ¢ € [OvR] )

where
Fl((u,v),x)(t):/ G(t,s) g(v(s)+ x)ds,

R
Ey((u,0),2)(t) = i G(t,s) fu(s) + x) ds

and
®(u,v) = F((u,v),0).
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By (Hs), F maps C x [0, +00) into C. Since G is continuous, it is well-
known that F'is compact. (Hs) and (Hs) imply that f(0) = ¢(0) = 0,
hence ®(0) = 0. Now the following properties hold:

i) (u,v) # 0 P(u,v) for all # € [0,1] and (u,v) € C such that
||(u,v)|| = r for sufficiently small > 0. Indeed by (Hs) we can choose
r > 0 such that f(s) < cs and g(s) < ds for 0 < s < r. Now suppose
that there exist 0 € [0,1] and (u,v) € C such that (u,v) = 0 ®(u,v)
with [|(u,v)|| = r. Then

—u"(t) =0g(v(t)), 0<t<R,
—0"(t) =0 f(u(t), O0<I<R,
u(R) =v(R) =4'(0) =2'(0) =0.

I
>

By Theorem A, u,v > 0 on [0, R). We have

R R R
u%/ prudt = —ul/ upy dt = —ul/ pru” dt
0 0 0

R R
:m9/ solg(v)dtﬁdm/ prudt
0 0

R R
= — / U(p'l'dt:—d/ o1 0" dt
0 0

R R
= d9/ 01 f(u)dt < cd/ prudt
0 0
and we reach a contradiction because the integrals are nonzero.
ii) By (Hy), there exists xp > 0 such that
f(s+z)>a(s+x)>as
and
g(s+xz)>b(s+x)>bs, for s >0, 2 >x9>0.

Then using the same arguments as in the proof of (4.1) and Theorem
A, we can show that F'((u,v),x) # (u,v) for all (u,v) € C and = > xy.

iii) Now we note that the constant in (4.1) can be chosen inde-
pendently of the parameter x € [0,z for each fixed z¢ € (0,+00) if
we consider positive solutions of (1.2) for the family of nonlinearities
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fo(t) = f(t+z), g(t) = g(t +x), t > 0. Thus we can find a constant
R > r such that F((u,v),z) # (u,v) for all z € [0,x0] and (u,v) € C
with ||(u,v)|| = R.

Thus we may apply Proposition 2.1 and Remark 2.1 stated in [3]
to conclude that ® has a nontrivial fixed point (u,v) € C. Theorem
A and the properties of the Green’s function imply that any nontrivial
fixed point of ® in C yields a positive solution of (1.2) in (C?[0, R])?.
The proof of the theorem is complete.

REMARK. Note that, for the a priori estimates, condition (Hs) is not
needed. We need it merely to insure that the maps ® and F' are cone-
preserving.

We conclude this section with some examples to which our theo-
rems apply.

a) We first consider problem (1.3) where g(v) = v. When f(u) =
Z?zlajupi for u > 0 withp; >1anda; >0forj=1,...,kand k > 1
or f(u) =u"/(1+u®) for u > 0 with r—1 > s > 0, Theorem 4.1 implies
the existence of a positive solution of (1.3) and Corollary 1.1 gives the
uniqueness.

b) For problem (1.1) we can take f as in a) and g of the same type
as f. Then the existence of a positive solution of (1.1) follows from
Theorem 4.1 and the uniqueness is given by Theorem 1.1.

c) Take
flw)=Au+u? and g(v)=pv+v?, u,v >0,

with p,qg > 1, A\, > 0 and Ap < p2. By Theorem 4.1 there exists a
positive solution of (1.1). Then Theorem 1.1 gives the uniqueness.

This is an example of a perturbed linear system. Consider the
linear eigenvalue problem

—u”" =Xy, in (-R,R),
o =\ u, in (—R,R),
(4.7) oo n (R, )
u>0, v>0, in (-R,R),

u(£R) =v(£R) =0.

The next lemma is a particular case of a result proved by Van Der
Vorst [7] (see also [2] for an extension of this result).
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Lemma 4.1. Problem (4.7) has a solution if and only if

Aj >0, for j=1,2, and A Ao = i .

The solution is given by u = c1 91 , v = co 1 where ¢1 > 0 is an
arbitrary constant and co = c1 (A1 /A2)Y2.

Clearly the above lemma shows that conditions (H;) and (Hsy) are

sharp.
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