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L’ multipliers and

their H 1—L1 estimates

on the Heisenberg group

Chin-Cheng Lin

Abstract. We give a Hormander-type sufficient condition on an oper-
ator-valued function M that implies the LP-boundedness result for the
operator T,, defined by (T,,f) = Mf on the (2n + 1)-dimensional
Heisenberg group H". Here “°” denotes the Fourier transform on H"
defined in terms of the Fock representations. We also show the H!-
L' boundedness of T,,, ||T,, fllzx < C||fl|g, for H* under the same
hypotheses of LP-boundedness.

1. Introduction.

Let f — f be the Fourier transform, f — f the inverse Fourier
transform, and m a bounded measurable function on R". We say that
m is a multiplier for LP(R™), 1 < p < +o0, if f € L? N LP implies (mf)
is in LP and satisfies

[mf) ]l < Collfllee

with €}, independent of f. The multiplier theorem was originally due
to Hormander [H] on R":
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Theorem (Multiplier theorem for LP(R™)). Let m be a function in
CFR™\ {0}), k > n/2. Assume that m € L™(R") and

sup R2lol-n / |D*m(z)|? dr < 400
R>0
R<|z|<2R

for all differential monomials D of order |a| < k. Then the multiplier
operator mapping f into (mf) is bounded on LP(R"), 1 < p < oo.

There are two general methods of proving multiplier theorems.
The first one follows Hormander’s process [H| and works mostly on the
Fourier transform side. The second one applies the theory developed by
Coifman and Weiss [CW1] of constructing a well-behaved approximate
identity and working mostly on the group. DeMichele and Mauceri
[DMM] applied Coifman and Weiss’ theory to extend the LP multiplier
theorem to the three-dimensional Heisenberg group H. Here we follow
the same machinery as in [DMM], and extend to the more general case
of the (2n + 1)-dimensional Heisenberg group H".

Theorem 1 (Multiplier theorem for LP(H™)). Let M be an operator-
valued function with each entry in C*(R\{0}), k > 4 [(n+5)/4], where
[-] denotes the greatest integer function. Also assume

sup [|M(A)]| < +oo,
A#£0

+o0
sup RdegP—"—l/ APMWITRW||” | A" dA < +o0,
> —00

for every monomial P with degP < 4 [(n + 5)/4], where Ap is a

difference-differential operator, fIR()\) a projection operator to a part
of main diagonal (both operators will be defined in the next section).
Then M is a multiplier of LP(H™), 1 < p < oo, and is of weak type

(1,1).
We also show the H!-L! boundedness of T, as follows.

Theorem 2. Suppose M satisfies the same hypotheses as Theorem 1.
Then T,, maps H'(H") boundedly into L*(H"). Moreover, there exists
a constant C' > 0, independent of f, such that |T,, fl|lLr < C||f||lgr for
all f € HY(H").
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In Section 2 we review some basic tools of harmonic analysis on H".
In Section 3 we prove the LP(H™) multiplier theorem, and in Section 4
we show the H!'-L! estimate. Finally, we mention that C' will be used
to denote a constant which may vary from line to line.

This paper is a part of author’s Ph. D. dissertation. I would like to
express my gratitude to my advisor, John A. Gosselin, for his invaluable
guidance and support. I also thank the referee for his suggestion about
the proof of Lemma 2.

2. Preliminaries.

Most results in this section were given in [DMM] for the three-
dimensional Heisenberg group H. We extend those to H" and give
more detailed proofs here.

H" is the Lie group with underlying manifold R x C* and multi-
plication defined by

(t,2)(t",2")=(t+t +2Im(z-2'),z+ 7),

n
where 2-2' = ) z;2; . The Heisenberg Lie algebra h of the left-invariant
j=1
vector fields on H™ is generated by

0
T=—
ot’
0 0
7z = S .
J 8zj+m38t’
A 0 0 j=1,2,...,n,

= o — 1% o7,

I 823' I ot
and the only non-zero commutations are

[Z;,Z;] = —2iT, j=1,2,...,n.

The Haar measure on H" coincides with the Lebesgue measure dV on
R x C*. H" is endowed with a family of dilations {0, : 7 > 0} defined
by 0,(t,z) = (r?t,rz). We say a function f on H" is homogeneous of
degree d if f o6, = ref for every r > 0. Furthermore, we define the
homogeneous norm of (t, z) € H*, denoted by |(t, 2)|, to be (£2+|z[*)/4.
The norm is homogeneous of degree 1. For simplification of notation,
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sometimes we use z = (¢, z) to denote a point of H", ro = §,(t,2) =
(r?t,rz) a dilation of z, and |z| = (2 + |z|*)!/* a homogeneous norm
on H™. Guivarch [Gu] has shown that the triangle inequality |zy| <
|z| + |y, x,y € H", holds. Moreover, using polar coordinates, we have
(cf- [FS, Corollary 1.16])

(1) / |.7;|a dr = ¢ (bcx—|—2n+2 o acx—|—2n—|—2)
o+ 2n+ 2 ’
a<|z|<b

for a # —2n — 2, 0 < a < b < 400, where C' is an absolute constant.
The convolution of two functions f,g € L(H™") is defined as usual,

@ D@ = [ sl iwdi= | o) f 0 dy.

n

Let S(H") and S'(H™) denote the Schwartz space of rapidly decreasing
smooth functions and space of tempered distributions, respectively.

It was observed by Stone, von Neumann, and Weyl in the early
1930’s that the irreducible unitary representations of H" split into two
classes. The representations which are trivial on the center Z = {(¢,0) :
t € R} of H* are just the usual one-dimensional representations of
C* 2 H"/Z lifted to H". Since these representations form a set of
measure zero in the decomposition of L?(H" ), we will not consider them
further. The representations which are nontrivial on Z are classified by
a parameter A € R* (= R\ {0}) and may be described as follows. For
A > 0, let H) be the Bargmann space

Hy = {F holomorphic on C" :

17 = (2

™

) /(C F(QP e M ag < oo}

Then H, is a Hilbert space and the monomials

(22)"!
a!

e, a:(al,a2,...,an)ENn

Fa,A(O =

(N=NU{0}), form an orthonormal basis for H, , where

al = (a!) (ag!) -+ (ay!), o =a1+as+ -+ ay ,
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and
Ca: ]C-XI élz_._CTOLln .

For A € R*, the representation II acts on H,y| by

SIAMF2A(C2—|2[2/2) F(-2), for A >0,

I\ (¢, 2)F(C) =
(6 2)F () { eM=2ACE /D (¢ — 2), for A< 0.

A straightforward calculation shows that II)(¢,z) is unitary and its
adjoint operator IIy(t,2)* = [Iy(—t, —z). For f € LY(H"), A € R*, set

f\) = . F(t, 2)T\(t, 2) dV

where the integral is defined in the weak sense, and the operator f())
is called the Fourier transform of f. It follows immediately from the
definition that for f,g € L'(H")

and

~ [+ D) a(a) do

= (g% f)(N).
For (A\,m,a) € R* x Z" x N", we use the notations

m; = max{m;, 0}, = —min{m;,0},

m+:(+ + —l—)

m;
My, Moy ey My ) m-

=(mi,my,...,m, ),
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and define the partial isometry W7*(A) on H 5 by

WA Fgx = (=)™ 16yt g Faiem- x> for A>0,

and for negative A by

Thus {W™(A) : m € Z" a € N'} is an orthonormal basis for the
Hilbert-Schmidt operators on H,y|, and W has the matrix expression
Wit @Wir - -@ Witr if we view Fy A(C) as Fiy A(C1) @ Fo, A (C2) ®
-+ ®@Fq, A(Cn), where ® means tensor product, W[ corresponds to the
infinite dimensional matrix whose (o, m;+a;)-entry is (—1)" and zero
everywhere else for m; > 0, (o; —m;, a;)-entry is 1 and zero everywhere
else for m; < 0, and F,, A(¢;) corresponds to the infinite dimensional
vector whose «;-th components is 1 and all other components are zero.
(Note: all entries and components here are counted from the 0-th posi-
tion.) For each ¢, the matrix form of W[ is

[0 7+«0-th row
1 +—a;-th row
m
(=1)m 7 for m; > 0,
M0 7 +<+0-th row
S for m; < 0.
]_/ < (a;—m;)-th row
Proposition [G]. If f € L' N L?(H") is of the form
F(t,2) =D fmlts |21l |z]) @mOrtotmabn) g — 2] e

mezZ"™

then
FO) =D Re(Am,a) W),

mez"
aeN"
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where

Ri(A,m, o) = fm(t,|z1|,...,|zn|)e“‘t
(2) H"

A2 2 f?) -l 2 A |2l
and lg?” 1s the Laguerre function.

NoOTE. For a poly-radial function f(¢,z) = f(¢t,|z1],-..,|2n|), the sum-
mation ZmEZ" in the above proposition contains only the term with

m = 0. Hence f()) is poly-diagonal.

~

Recall (6,f) (€) = r=" f(r~1¢) on R™, where 8, f(z) = f(rz). If
we define

Jrlt,2) = r=CFO2 7200 ) e >0,

on H", from identity (2) and a change of variables we have a similar
relationship between Fourier coefficients Ry, (X, m, ) and R¢ (X, m, «)
as follows:

(3) Ry, (A, a) = Ry (Vi m, o).

We also have [—z'xjf(a:)]A(&) = 8jf(£) on R". More generally if
P(x) = P(x1,x2,...,%,) is a polynomial on R™ and the differential op-
erator D = 97" 057 - - - 0% is defined as usual, then [P(—ix) f(a:)]A(é“) =
P(D)f(£). Let P be a polynomial in t, zj, Z; on H". Define the

difference-differential operator Ap acting on the Fourier transform of
f € LN L?>(H") by

Ap (Z R (A, m, ) WZ}(A)) = 3" Rpp(Am,a) WA

m,o m,o

Let {e; : 1 < j < n} be the standard basis of Z"™. We have the following
explicit expressions for Ag, A, , and A, .

BufO) == 5 3 (5 RO ) WY

)
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_ % SN Vas(ay + Iml) Ry(Am, @ — ) WI(A)

m,x j=1

+ 33 o+ e + g+ 1)

m,x j=1

RN m,a+e;) W (A);

Az f(N) FZ‘/a9+mJRf)‘m ej, ) Wi (A)

2

FZ\/% LRs(A,m—ej,a+e;) WIH(A),

2[A|
if m; > 1;
A, f(N) = MZWRf)\m ej, ) W\
ﬁWZfWAm%—@WW,
if m; <0;
Az f(N) WZWRJC)\WL—{—GJ, o) W™(N)
erRMmm, a—e;) W),
if m; > 0;
Az f(N) = mzm&xmm, @) Wi (\)
mz\/a]in/\m-l—e],a-l—e])W (A,
if m; < -—1.

Using these formulas, we obtain similar results for polynomials
and extend the operators Ap as formal difference-differential operators
acting on operators which are of type

=Y B\, m,a) WI(A).
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We establish the formula for A, . The others are proved similarly by
using the recurrence relations and differential properties of {I'}. We
use identity (2) and write

AL, f(N) ZRZf)\ma)W (\)

= Z/H (23] frnmey €N A 20 [) - - 1571 (2 |2 251%)
A2 A fzalP) AV W)
The recurrence relations for Laguerre functions tell us
V2IAl |z 172 AT 2517
m;— m 1
=V +myly? H2 N 125)%) = ey + Ly (217 1%1%)
ifm; > 1, and
V2IAl |z 172 A 2517
m —m +1
=V —my + 1IgM 2N [27) — ag 127 (2 1A 1z)7),

Thus, we have

/\

f mZme)\m €5, )W ()‘)
Z\/er)\m €J,O!+€J)W ()‘)7

2|)\

for m; > 1, and

AZJf()‘) FZ\/ —mj+ LR (A m —ej, ) Wir(A)

2

ﬁWZfWAm%—@WW,

for m; <0.
This proves the formula for A, . Similarly, applying the same
techniques we can obtain the formulas for Az and A .
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Denoting ||A[j%, = tr(A*A), the square of the Hilbert-Schmidt
norm of A, we have the following Plancherel formula

2n—1 +oo 9 .
3= 25 [ IO, s, rertniie).
By this we can extend the Fourier transform as an isometry from L?(H")
onto the Hilbert space of the operator-valued functions A — A(A),
A € R*, satisfying

i) A(M) is a Hilbert-Schmidt operator on #y, for almost every
A e R,

ii) (A(MN)P, Q) is a measurable function of A, for every polynomial
P,Q) on C",

7.[-n—i—l

2n—1 “+oo .
i) [|All3 = / [A) g A" dA < +o0.
Definition. A left invariant multiplier of LP(H"), 1 < p < o0, is an
operator-valued function M : A — M(\), A € R*, such that

a) for every A € R*, M(A) is a bounded operator on Hy ,
b) the operator T, defined by

A~

(T, )N =M fN.  fel'nLrH"),

extends to a bounded operator on LP(H™).

From the Plancherel formula iii) above it follows immediately that
M is aleft L?(H") multiplier if and only if supy_ [|M(A)] < +00. We
also remark that everything we say for left multipliers may be trans-
lated for right multipliers similarly defined, because the group H" is
unimodular. .

On R" we have (0;f) (§) = ié’jf(ﬁ). On H™ we have the following
analogues: for A > 0,

~

(Zif) (M) F(C)
= —2XAf(\) G F(Q)
0
1 0
:—\/ﬁf()\) {11®"'®Ij_1® vz 0 ®Ij+1®'”}F(C)

v 0
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and
(Z; ) (V) F(C)
~ o OF
= fN) == (¢
3 5¢ )
0 1 -
0 vz
— VIO (L& 0L 0 Vs enae - }F(Q),
0
where I, kK = 1,2,3,..., is the infinite dimensional identity matrix;

for A < 0, we switch the formulas for Z; and Z;. For all A € R\ {0},

A~

(Tf) (A\) = —iAf(A). Thus, for A > 0, we can consider the correspond-
ing multiplier of the differential operators Z;, Z;, T to be

0
1 0
—‘/2)\{I1®"'®Ij—1® v2 0 ®Ij+1®"'}v
v3 0
01 .
0 v2
\/2)\{]1®---®Ij_1® 0 \/§. ®Ij+1®"'},
0 .

and
—iAMLR L 1QL;@lj11® -},
respectively. To prove these formulas we consider the case n = 1, A > 0,

and the formula for Z only; for all other cases the following proof can
be easily carried over. By definition

A~ ~ A~

(ZF) (A) = (0-1) (N) +i(20:f) (A)

and integration by parts yields

A~ ~

(20:f) (A) F(Q) = =i A (2f) (A) F(C) -
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We have . . .
(Zf)(A) = (0:0) N+ AZ]) ().
Furthermore,

F) (CF(©Q) = / f M@l (¢ _ 2y F(¢ - 2)dV
=CFNFEQ) - EH N FE),

/f8 (TI\F)d
= 2XCfNF (C)+A(2f)A(>\)F(C)
=21 f(N) (CFQ) = AEF) N F(Q).
Hence,

(ZF) N FC) =—-2Xf(\) (CF()-

As for the matrix form, we recall that

(2)\)(1/2
Va!

is an orthonormal basis for H, , and write

Fax(Q) = ¢

ao

00 aq
:ZaaFa)\(C)E ay | aq € C.

a=0 .

Then

— Z Ay CFa,A(g)
a=0

— \/% Z Va+1ag Foy1.2(C)
a=0

0
ao

_ \/50,1
\% 2A \/50,2
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0
1 1 0
= v F(O).
V2A V3 0

On H"™ the sub-Laplacian is the differential operator Ly defined by

1 —
Lo=-2> (2;Z;+2;Z;) .
7j=1

The above calculations can be used to compute Lo. We apply the
matrix expressions of Z; and Z; to get

Lo = =5 SAZNZLW) + LW Z (W)

=Y {he oL
j=1

1 0

2 1
|)\|( 34 + 2 >®1j+1®"'}

3

n 3

:Z{[1®...®[j_l®|)\| 57 ®Ij+1®"'}
j=1

= Z (2]a] +n) N WI(A) -

. . . . + ~
We now introduce the partition of the identity I = >, °°  TIlkp,
R > 0, where II; is the spectral projection of Ly corresponding to
the multiplier

I, (\) = >, Wa ().

s<(2|lal+n) [A[<V2s

Then the LP(H™) multiplier theorem can be stated in the following way.
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Theorem 1 (Multiplier theorem for LP(H"™)). Let M be an operator-
valued function with each entry in C*(R\ {0}), k > 4[(n+5)/4], where
[-] denotes the greatest integer function. Also assume

(4) sup ||[M(N)]| < 400,
A#£0
+oo R
(5) sup Rdegp—"—lf H[APM(A)]HR(A)H; A" d\ < 400,

for every monomial P with deg P < 4[(n+ 5)/4]. Then M is a multi-
plier of LP(H™), 1 < p < 00, and is of weak type (1,1).

3. Proof of the LP(H") multiplier theorem.
We follow [DMM] fairly closely. According to [CW1, Theorem

3.1], to establish the multiplier theorem it suffices to construct a well-
behaved approximate identity {¢, : r > 0} satisfying

(6) /H T, e ()| (1+ (@)) dr < C, 0<r<4o0,

for some € > 0 and C' > 0, where
4 42 - 2\
bo=dr—dp  and  plo)=lalt =+ (315
j=1

Note that [CW1, Theorem 3.1] adopts |z|?"*2 rather than |z|*. How-
ever, if we check their proof carefully, we find that the inequality (6) also
implies the LP(H") boundedness of T',, due to Lemma 3 and Lemma 4
below.

Since we assume sup, g [|[M(A)|| < +o0, by Plancherel formula,

the homogeneity of ¢,.(z) = r~+1)/2¢, (r=1/42) (see Lemma 1 below),
and changing variables, we have

(7) / T,y (2))de < Cr~ D2 0 <r < 400.
Hn

If we can also obtain

(8) / T, 1y (2) 2 p(x)2[(n+5)/4] dz < C r2ln+5)/4=(n+1)/2
Hr
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for 0 < r < +o0, then we claim both inequalities (7) and (8) imply (6),

and hence the multiplier theorem for L?(H™) follows. To see this we
choose 0 < e < [(n+5)/4] — (n+ 1)/4. Then by (8) and (1)

[ 1T @ oty do

p(z)>r
1/2 1/2
S( / [Ty o () [ par) /4] dw) < / p()2e 2 +0)/4] d:r>
p(:n)>r p($)>7"

< O pln+5)/4=(n+1)/4 pe=[(n+5)/4]+(n+1)/4
=Cre.

This implies

[ 1T @) s

p(z)>r
< <p(Z>lTM¢T(m)| (@)edagyz (p(ZJTMwT(x)I (p(x))edxyﬂ
sc( / |Ter<x)|da:)l/2-

p(z)>r

Combining this and the previous inequality, we obtain

) [ @ (4 (22) ) <0,

p(z)>r

On the other hand, from (7) we have

/|Ter(x)|da:§< /m«)l/z( /|TM¢T(:1:)|2da:>1/2§C.

p(z)<r p(z)<r p(z)<r
Thus
(10) /|TM¢T(x)|(1+(@)E) de < 2 /|TM¢,,(3;)|dxgc.

p(z)<r p(z)<r
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Combining (9) and (10) establishes the claim. Therefore, we only have
to prove the inequality (8) to establish the multiplier theorem.

Compare with the construction in [DMM]. The construction of the
approximate identity is contained in the following.

Lemma 1. Let ¢1 € S(H™) be the poly-radial function with Fourier
coefficients

Rp, (M, 0,0) =exp{—(2|a| +n)* A}, AER*, aecN .
Define
br(t, 2) = r~ (P2 g, (r_l/zt,r_l/4z) , r>0.

Then Ry, (X, 0,a) = exp{—r?(2|a| + n)* M} and satisfies, for some
n >0,

i) / ot 2)] (14 p(ijz))"dv <c,

ii) . ¢ (t,2)dV =1,
i) ¢ x5 = b5 x ¢,
W) [ 160202 — o) av < € (L)
V) r(t,2) = dr(—t,—2).
PROOF. The identity (3) gives
Ry, (A, 0,a) = Ry, (VTA,0,a) = exp{—72(2|a| + n)* A*}.

By the homogeneity of ¢, and a change of variables, we have

/Hn |60 (£, 2))| (1 + p(t’z))"dv = [ 1612 (14 p(t,2))" AV < +oo

r
for all n > 0, since ¢; € S(H™). This proves i). Since (2(0) = 1 and
exp{(—7%(2 |a| + n)t X'} = Ry, (A, 0,)
= bp(t, |21], . o, |20]) €M

Hnr
oy 2 A [2]?) -, (21A] [2n]?) dV
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Letting A — 0 and applying the Lebesgue dominated convergence theo-
rem, we have ii). Properties iii) and v) follow from the facts that ¢, ()
is poly-diagonal and by (A = qgr(—)\). To prove iv) it suffices to prove it
for r = 1 by the homogeneity of ¢, and changing variables. Let L € b
be the normalized generator of the one parameter subgroup through
(0,20)~!. Then the fundamental theorem of calculus gives

Hr |61((t,2)(0,20) ") = $1(t, 2)| AV

|zo]
g//o L ((t, ) exp(sL))| dsdV

= |20l | Loallx
= p(0,20) " | L1,

which proves iv) for to = 0. For the general case, we write

(to,20) = (to, (20)1,-- -, (20)n) € H"
and let

hoj = (0,0,...,0,(20);,0,...,0),

i
hij = (0,0,...,0,m\/%,0,...,0),

1
haj = (0,0,...,0,m\/%,0,...,0),

where each hgj, (K =0,1,2), (j = 1,2,...,5n), has its only non-zero
entry in the zj-component. By a straightforward calculation we have

t
(to,Zo) = H( 0,0,...,0,(,20)]',0,...,0)

J:
[1 hojhajhajhy; hy) ., if to <0,

=1

{ [T hojhajhaihi; hyy . if to >0,
=1

Thus we can express ¢1((t,2)(fo,20) ') — ¢1(¢, 2) as a sum of 5n dif-



286 C. LIN

ferences

P1 ((tv Z) (tOv ZO)_l) - ¢1(t7 Z)

= ¢1(xx122 - THn) — P1(2)

= ¢51($5E1$2 e '375n) - ¢51($5E1$2 i '$5n—1)
+ ¢1(ZE$1ZE2 e '$5n—1) - ¢1(ZE$1ZE2 o '$5n—2)
+ ¢r(rr179 - T50—2) — P1(TT1T2 - T5p_3)

+ ¢1(zz1) — P1(T)

for which each z; (= hy; or h,;jl, k=0,1,2), 5 =1,2,...,5n, has t-
component zero, and apply the result just established to complete the
proof of iv).

Lemma 2. For every homogeneous polynomial P in H" with 1 <
deg P < 4[(n+5)/4], one has

sup{‘Rpwr()\,m, cv)‘2 :meZ", R<(2lal+n)\ < \/ER}

< CP T(l—n)/2+2[(n+5)/4] Rl—n+4 [(n+5)/4]—deg P fP (TR2),

(11)

for 0 <r < +oo, where f, € L*(Ry). Moreover,

Ry, (A, 0,0))|

(12) < Co(r(2|a|+n)2)\2)2, for 7(2|a]+n)2A2 <1,
- 1, for r(2]al+n)? A% >1.

Because the proof of Lemma 2 is messy, it will be postponed to
the appendix. That will enable the reader to follow the paper without
getting lost. We now let k = [(n+5)/4], p(t, 2)k = (t>+|z|*)ln+2)/4 By
the Plancherel formula, the inequality (8) is equivalent to the following
inequality:

—+o00
(13) / Z\Rkaer(/\,m,a)\2|/\|"d,\gcr2k—(n+1>/27

m,a

for 0 < r < 4+00. Assume we can express p(t, z)¥ as a linear combina-
tion of products of powers of 27, 27, z; — 25, z; — 25, 6(¢', 2'), o(t', 2"),
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5((1 2)(t', 2) ), 6((E 2)(t, 2') 1), and (¥, 2'), where 8(t, 2) = L+i]2[?
and each term is homogeneous of degree 4k. (We use ) to denote this
linear combination.) Then we have a Leibniz formula for the operator

Apk [M Z C AP ]@br( )
(14) + Y L Ag,MW)] [Arwr(N)]

for some homogeneous polynomials P;, QQ;, R; with deg P; = degQ; +
deg R; = 4k, and constants Cj, CJ’-. To see this we check some of terms

in 3, for instance [p(¢/, 2')]* and i (2 —z;-)4k_3(5((t, 2)(t',2)~1). Write
M(X) = f(X) for some f and ¢, = g. Then

A [MON) (V)] = Api[(f + 9) V] = [0(f % 9)T (V)

and
(S  9)(t 2)
— / (A T2 ()Y gt ) V()

: {Crp(t',2")F + Co 2] (27 — 2)* 736 ((t,2) (', ) ) + -+ }

() ()T gt 2) avi(E, )
= Cl Al(t,Z) + 02 Az(t,z) + - N

where
Ai(t, 2) = / p(t', 2V F((t,2)(t,2) 7Y g, 2) dV (H, 2')
= (f * pkg)(tv Z) .
Thus A R A A
Ar(N) = () (0°9) (\) = M(A)[A o (V)] -
Also
A2 (t, Z)

:/nz;-(zj—z;-)%_?’é((t, 2) ', )Y F((t2) (2T gt 2 dV(E, 2)
= (Qf x Rg)(t,2),
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where Q(t,2) = (z;)*736(t, 2) and R(t,2) = z; . Thus,
A0 = (QF) (V) (Rg) (V) = [Ag, M (V)] [Ar,$r (V)]

and the same process can be carried over to the other terms of 2 We

now show that p(t,2)* can be expressed as the linear combination > .
We note that

plt,z) —p(t', 2"y = (t —t)2 +2t'(t — t')
F(SlaP-X15P)
+2(EP) (X1l - X 15P).

Since

2 2
> Ll =17
2 2 - s = 2

+ Z(|Zj_ L2 = 20252 + (25— 25) 2 + (25— 75) 25 + 2 12%)
is a linear combination of products of powers of 27, 2}, z; — 2}, Z; — ;.
Thus p(t, z) is a linear combination of products of powers of ', t — ¢/,
25, 25y 2j — 25, Zj — Zj, and p(t', 2) with homogeneous degree 4 in each
term. Also

This gives p(t, 2)¥ = 2 as a linear combination of products of powers of
2, Zhy 25— 2, Bj— 25, 0(t,27), O (', 2'), 6 ((t, 2) (¢, 2}~ 1), (¢, 2) (¢, 2')~1)
and p(t’, z’), in which each term is homogeneous of degree 4k .

By the Leibniz formula (14) we write

+o00 )
‘/_ Z‘Rkaqur()\,m,a)‘ |)\|nd)\
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400 R 9
— [l AnB ) I, A ar

+o0 . )
S [ lAn M2,

finite ¥ —

(15) gC(

“+o00

= HmQjMun[ARJ¢T<A>]\|1SMm)

Recall that {W™(\) : m € Z", o € N'} is an orthonormal basis for
the Hilbert-Schmidt operators on H |, and

M,(A) = >, Wa(h).

s<(2]al+n)|A|<V2s

If P is a homogeneous polynomial with degree 4k, then

+o0 R 9
1= [ flarM W], 1A dr

2
A" dA
HS

+00
:/_oo [2p MO Ry, (1, 0,0) T2, 1/2()] |

JEL

+o0 R
- Z/ H[APM()‘)] H21/2r—1/2()‘)“is ‘Rwr()\, O,Oz)‘2 |AI™ dA
JEZY T

=3y

j<0 35>0

=I'+1",
where the coefficients R, (A, 0, o) satisfy
21/2p=12 < (2)a|+n) |\ < V2202712,
For j < 0, we have r'/2(2 |a| + n) |A\| < V2 27/2 <1, s0

Ry, (A 0,a)] < C(r(2]a] + n)2/\2)2 < C 2%+
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by (12). For j > 0, we get r*/2(2]a| + n)|A| > 29/2 > 1, and hence
from (12)
IRy, (X, 0,0)| < 1.

The basic assumption (5) on the multiplier now implies

“+oo
I' < 0224f+4/ H[APM(,\)]ﬂ2j/2r,1/2()\)\\; IA|™ dA
3<0 e
<O 2t () pm1/2) Ak
J<0

—C T2k—(n—|—1)/2 7

I < Z/ [1ARM )] Tl 2,12 (V)2 A" dA

i>07—

S CZ 2,7/2 T‘_1/2)1+n_4k
j20
_ (2= (n+1)/2
For n fixed, there are at most a finite number (depending only on n)
of terms of the form I. This proves (13) for the first sum of (15). Next

consider two homogeneous polynomials ), R with deg () + deg R = 4k,
deg R > 1, and

+oo . 9
1= [ MO Barb I, A" A

+o0
= /_ Z AQMMIWa W[ [Rep, (A mg @) X" dA

since zﬁr(/\) is a poly-diagonal matrix and each of {As, A, Az }7 4
maps a poly-diagonal matrix into a pseudo-poly-diagonal matrix (i.e.
the one in which each factor has its only non-zero entries on one sub or
super diagonal), Agt),(\) is pseudo-poly-diagonal and hence

ArRy, (A, m,a) =0 except for some m,, € Z".
Using (11), (5), and the orthonormality of {WZ*(A)}, we have

+oo
J_Z/ [AgM (A)] Ly ( )His\RRwr(A,mR,a)‘2|)\|”d)\
JEL”
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< ZCR p(1=n)/2+2k (2j/2)1—n+4k—degR fR(2j,r)

JEZ
“+o0
- f I[AQM )] Ty 2 [} A" dA
< Zcr(l—n)/2+2k (2j/2)1—n+4k—degR fR(2jr) (2j/2) 1+n—degQ
JEZ
— CT(I_n)/2+2k_1 Z 2j r fR (2] T‘)

JEL
~ O p(I=m)/242k=1) ¢ 1)

=C T2k—(n—|—1)/2 )

There are only finitely many terms of the form J, so the inequality (13)
for the second sum in (15) is proved. This establishes the multiplier
theorem for LP(H").

4. H-L' estimate.

In Theorem 1, the multiplier theorem is valid for LP, p > 1. For
p = 1 we only have a weak-type estimate, so in this section we are
trying to extend to another sense of strong type ||T,, fllz: < C||flla:-
Here H' is the Hardy space on H" defined either in terms of maximal
functions or in terms of an atomic decomposition [FS]. When p > 1, L?
and H? are essentially the same.

REMARK. We have in fact proved that ||T,, f||lg» < C||f||me for 0 <
p < 1. The proof is more complicated than the one here and requires
the theory of molecules (¢f. [TW]). The details of this proof will appear
elsewhere.

Specifically, we define a (1,2,0)-atom as an L3-function f having
support in a ball B, = {z € H" : |z| < R} and satisfying

1/2

Ifll2 < |Bg|™ and 8 flz) do =

It is obvious that ||f]|; <1 for any (1,2,0)-atom f.
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Theorem (Atomic decomposition of H') [FS, Chapter 3]. Any f
in H* can be represented as a linear combination of (1,2,0)-atoms
=272 fi, N €C, where the f; are (1,2,0)-atoms and the sum
converges in H'. Moreover,

| f|| g =~ inf { Z |Aql : Z)\i fi is a decomposition

=1 =1

of f into (1,2,0)—at0m8}.

Let {¢, : r > 0} be the approximate identity in Section 3. It is
easy to check that {¢, x ¢, : 7 > 0} is also an approximate identity and
satisfies the same properties i)-v) of Lemma 1. Therefore,

Po-i x pp-i x [ = f in LP

and

f= "}gnoo Z(%*i*l * g—i—1 — Py—i * ¢52*i) *f+drxdr*f
i=0

= lim Y ik (foi o)k fhdrrdixf  inLP.
1=0

Since we only concern the tail terms in the approach ¢o-i ¥ pg—ix f — f,
we may assume ¢ = 1. Thus if [ f(z)dz =0, ¢1xp1 % f=0.
In the proof of Theorem 1, we have shown

(6) /JTWA@NH(@)E)MSC, for all 7> 0.

Let n and ¢ be the constants in Lemma 1 and (6), respectively. Setting

¢r = ¢r+¢r/2 y A = er*qﬁr ’ K, = — Z;Zo ag-i, and 0 = miﬂ{na 6}7
we now have the following two lemmas.

Lemma 3.

) [ @)@’ i<,
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PrROOF. Lemma 1.i) and inequality (6) give the uniform boundedness
of HQSTHI and ||T,,%.||1. Applying the triangle inequality, we have

p(x)° < Cs (p(y)° + ply~'2)°)

and then

| a@lp@?de < [ [ 10001167 9 @) dedy
< Ca[3r ], [ Tl o(w)*

+Cs Tl | 190(a)]| ple)’ de

<Crl.

The last inequality is given by Lemma 1.i) and (6) again. The inequality
b) is an easy consequence of Lemma 1.iv).

Lemma 4. Suppose M satisfies the same hypotheses as Theorem 1.
Then there exist constants Cy and Csy, independent of m and y, such
that

|Km(xy_1) — Kp(2)|dx < Cy
p(x)>C1p(y)

for all y € H" and for allm > 0.

PROOF. For i € ZT, Lemma 3.a) shows

/ |az-i(2)] da < % / ‘GQ—i(x)‘p(aj)d dx < @)

p(z)>A p(z)>X
Therefore, choosing C; > 16, we have

|ag-i(zy™") — ap-i(a)| da

p(z)>C1p(y)

< / |ag—i(zy~")| do + / |az-i(z)| d

p(z)>C1p(y) p(z)>C1p(y)
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< |as-i ()| dx + / |as-i(z)| d
p(zy)>Cip(y) p(z)>C1p(y)
< / |az-i(2)| do + / |az-i(2)| du
p(z)>Csp(y) p(z)>Cip(y)
o

= @)
since 16 (p(z) + p(y)) > p(zy) > C1 p(y) implies

C: - 16

plz) > —

p(y) = Csp(y).

The above inequality and Lemma 3.b) get

|az-i(zy™") — az-i(z)| dz < C min { (2° p(y))(s #} .

(27 p(y))°
p(z)>C1p(y)
Taking the summation of these inequalities, we obtain
| K (zy™) — K ()| da
p(z)>C1p(y)
< Z / ‘az—i(xy_l) - (lg—i(l’)‘ dx
=0 p(@)>Crp(y)
. 5 1
ST DRNCY) (RGN piee
o . (27 p(y))
i<—log, p(y) i>—logy p(y)
C C

< .
_25—1+1—2_5

The proof is thus complete.
Now we are ready to prove the H-L! estimate of T, .

Theorem 2. Suppose M satisfies the same hypotheses as Theorem 1.
Then T,, maps H'(H") boundedly into L*(H"). Moreover, there exists
a constant C' > 0, independent of f, such that |T,, fl|lLr < C||f||lgr for
all f € HY(H") .
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PROOF. By the atomic decomposition of H', it suffices to show
T, fll: <C, for any (1,2,0)-atom f.

Given a (1,2,0)-atom f with supp f C {z € H" : |z| < R}, then || f]|2 <
CR™™ 'and [ f(z)dz =0. The L?-boundedness of T, implies

TMf:Tr}EIIOO;—Tszi*¢2i*f=mli_1;nooKm*f in L7,

Thus there exists a subsequence {mn;}, such that
T,f= lim Ky, xf almost everywhere.
j—00

Let Cq, C5 be the constants in Lemma 4. Then

| mseld

|w|>C11/4R
< lim inf / | K, * f(x)|dx
j—00
lz|>Cl/*R
< lim inf / ‘ / (Km, (zy~1) — K, (z)) f(y) dy| da
j—00

lz|>C,/*R |YISRE

gliminf/|f(y)|dy / | Ko, (2y™ ") — Ky, (2)| da

J—o0
lylsk 2>y

< Ca [l

<Cy.

On the other hand the Schwartz inequality gives

T, f (@) de < CR™ T, flla < CR™ | fll2 < C.

z|<Cy 'R

This completes the proof.
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Appendix. The proof of Lemma 2.

The purpose of this appendix is to prove the lemma that occurs in
Section 3.

Lemma 2. For every homogeneous polynomial P in H* with 1 <
deg P < 4[(n+5)/4], one has

sup {‘de,r()\,m, oz)‘2 :meZ", R<(2la)+n)A < \/iR}
< CP T(l—n)/2—|—2[(n—|—5)/4] Rl—n—|—4 [(n+5)/4]—deg P fp (TRz),

(11)

for 0 <r < +oo, where f, € L*(Ry). Moreover,

Ry, (A0, )]

(12) < Co(r(2|a|+n)2)\2)2, for 7(2|a]+n)2A2 <1,
- 1, for r(2]al+mn)2A2>1.

PROOF. The mean value theorem gives |[e™* — e_“”/4| < Cypz for 0 <
x < 1. Then,

‘Rwr (A, 0, a)‘ = ‘R¢r (A0, ) — R%/z (A, 0, a)‘
_ ‘6—7’2(2|cx|+n)4)\4 _ 6—7’2(2|cx|+n)4)\4/4‘

< Cor?(2|al +n)*tAt
for 0 <7 (2|a]+n)2A? < 1. For the second estimate of (12), we note

that |e™® — e~%/4| < 1 for 2 > 1. Thus (12) is proved. As for (11) we
let 0 = (2]a|+ n)|A| and claim

Rpg, (\m,a)| < €, e g~ desP/2

deg P
(16) ) ( Z (T'O'Z)Zk + (T_O_2)2degPe807’2U4/81>

k=1

for R < (2]a|+n) |\ < V2 R. Assuming the claim for a moment, we
have

IRpg, (A, m, a)
S CP (,’,,0_2)(1—71,)/4—1—[(71,—1—5)/4] P deg P/2 (7,0_2)2—(1—n)/4—[(n+5)/4]
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deg P—1
. (e—r204 Z (7,0_2)2k + (,’,,0_2)2degP—2 e—rza4/81>
k=0

— CP (TO_Z)(I—n)/4+[(n+5)/4] o~ deg P/2 gp (7n0_2)7

where
deg P—1
9, (_1-) = 1-2_(1_")/4—[(”4-5)/4] (e—$2 Z 22k + e—m2/81 2 deg P—2) .
k=0

We note that o ~ R and the exponent 2— (1—n)/4—[(n+5)/4] > 1/2
for n € N. Hence, we set f, = g2 € L'(Ry).
To prove the claim, we need the following well-known summation

formula
(17) Z(—1)i<m>z‘k:0, for 0<k<m-—1, meN.

The idea of the proof of (16) is quite simple, but calculation is messy.
We use binomial expansion and apply (17) again and again to establish
the inequality (16). We show detailedly the inequality only for P(t,z) =
2¢ 2% with a > b and P(t, z) = 2§ z5; the proof can be carried over to
the other cases with minor modifications. It follows from (2) and the
recurrence relations and differential properties of {{'} that, for a > b,

Rz‘ffll’qbr ()‘7 (a’_b)617 a)

(a1 +a —b)!
al!

S () (1) e R0t e,

1=0 5=0

= (2A) (02

and R a4 (A, m, o) = 0 for m # (a — b)er. Then

‘RZ%?% (A, (a—b)ey, ) ‘
J(a_b)/2

<C—y—
Al

ZZ ”’( > (?) % o7 (2=

1=0 5=0
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O'(a_b)/2 2 4| — b o f(a b (()[1+2)'
< —r°o _1\¢t+I _\L v
<O 2,21 ()0 et
(18)
Co.(a—b)/2 2 4
_I_ e—r g
Al
a b . a+b—1
. ZZ(_UM(“) (5>M ) Al
g i)\i) (arvi-v)l &
gla—b)/2 2_4
+C e~
Al
a b . o) k
b (a1+z)!
0 ity £
;;( ) i) \J (a1+2—b)!k:za;_b k!
=51+82+853,
where
Ai,j = —Tz({0+ 2 (2 - j) |)\|}4 — 0'4)
= -8 Al (i j)

(0 +302 A (=) + 4 AP (i — )2+ 2P (i — j)?).

We immediately obtain S; = 0 since the summation Z?:O(—l)j (;’) =0.
To estimate S3, we have

g Cg(a—b)/2 2 4
< —r o
U S
> o () () e > L
0<i<a AN (a1+i_b)!k=a+b b
0<5<b
i>j
U(a_b)/2 2l
+C G e
> (_1)i+j<a> <b> (aq +i)! i A¥
0<i<a ZAY/ (a1+i_b)!k=a+b t
0<5<b
<7
J(a_b)/z 2 4 a b O'b
19 <C —rco . 2 A 3\a+b
o <eT e 3 (5)(5) et e
0<i<a
0<5<b

127
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o=tz

ol e
Al
a b O'b a r2ot
X () () et
0<i<a
0<5<d
1<J

< C o (eth)/2 e~ (r2 gt)at?

+ O g~ (atb)/2 e—r%“ (Tz 0_4)a+b 80 r2ot/81

since we apply the property of alternating series and the following es-
timate to the last two inequalities

00 Ak 00 k—(a+b)
E I o A0tD § : i,j
k! b k!
k=a-+b k=a-+b

< C'A‘Z'}'b eAivi
< O (r2|N| 03)atl (0" ={o=122G=) 1Y)
<C (1"2 A O,3)a—|—b 6807’204/817

for i < j and 2 |a|+n # |2 (i — 7).

For i < j and 2|a| +n = |2(i — j)|, the term e~ (+2G=DIAD" jp
(18) disappears. Thus

Re s, (A (a=b)er, )| < C %
o (a=b)/2
R Qastnzr )
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Hence S3 fits the format of (16). As to Sy, we write

(a—b)/2

g 2 4

So=C——e"7°
IAI“

‘ZZ +J(><;’)( > cupati’)

1=0 7=0 1<u+v<b

%1§ (=872l ( 2—])) Choomn TOF TN (6 — )™
!
k=1 m=0 k
(a—b)/2
g 2 4
=C———e "7
[AJe

EEEE 5 b))

10j0k1m01<u+v<b

k—i—mc m

Cup 4 i (—87%)k (i — )
O.(G—b)/Q 7’20'4

=C ———¢€"
Al

a b a+b—1 3k b
XYYy ¥ pe(9)()
10j0k1m01<u+v<b

k+m

Cuw a’lf ,1:11(_87,,2)16 Z Chm.i ik+m—l(_j)lo_3k—m|/\|k+m

0_3k—m|/\|k+m‘

a—>b)/2
=C —0(|A|a)—/ e Sy + S5,
where ¢, , and ¢y, denote constants dependent on their indexes,
a b a+b—1 3k k+m b
> 2 2 S ae(5)()
=0

k=1 m=0 1<u+v<b I=0

I |

1<k+m<a-—1

k—+m— l( A 3k—m|)\|k+m,

—j)o

=or e (0)()

Oy 0 1Y (— 8 12 ) Chym,l %

and
b—1 3

333

k=1 m=0

a

k4+m>a
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Cu aio iv(—8 T2) Chom.1 2k-{—m l( j)lO'Sk_m |)\|k+m )

It follows from (17) that

a+b—1 3k

Z Z 8T k 3k m|)\|k+m

k=1 m=0

1<k+m<a-—1
a b

b—1 k+m o
Y Y (YD) e (F)
1=0 =0 1<u+4v<b [=0 I=b
a b u k+m—+v—I -\
(5) ettt
a+b—1 3k

Z Z k 3k m|/\|k+m

k=1 m=0

1<k+m<a—1

a

b—1
. Z Z Z Cu,v,k,m,l (—1)i+l (a> a11L Z'k+m+11—l
=0 1<u+v<b =0 i
b
(b
. (_1)] ( >,]l
21

=0
a+b—1 3k

+ Z Z . k 3k m|)\|k+m

k=1 m=0

1<k+m<a—1

k+m b
Z Z Z Cuvkml )J-H(j)a%jl

7j=0 1<u+v<b I=b

=0,

since [ > b implies k+m+v—1l <k4+m+b—1l<k+m<a—1. Thus

we infer
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Similarly we estimate S5 as follows.

a b a+b—1 3k k+m b
s=22 25 > S pewn(f)())
1=0 j=0 k=1 m=0 1<u4v<b =
SN—~— u>k+m—a+1

k+m>a

“Cy an]_L -11(_87,2) Ck mlzk—i—m l( j)l0_3k—m |)\|k+m

a b a+b—1 3k k+m b
XYYy Y > pen(8)()
1=0 j=0 k=1 m=0 1<u+v<b [=0

———— u<k+m—a
k4+m>a

g @ 1 (=877) g g T (=) T AR

= SG + 57 .
Using (17) again, we obtain

a+b—1 3k a b—1 k+m

SYYYY s (S h e ()

k=1 m=0i=0j=0 1<u4v<b  [=0 I=b

u>k+m—a+1
k+m>a
'Cuyvaibiv(—STj) Ckml2k+m l( j)lO_Sk—m|)\|k+m
a+b—1 3k
k 3k m k+m
D IDIIC TS Al
k=1 m=0
—_——
k+m>a

S Y Y e (7)

=0 1<u+v<b =0
u>k+m—a+1

b
(b
a?]{, ik-{—m-{—'u—l E (_1)] ( >jl
=0 J
a+b—1 3k

+ Z Z i 8T k Sk m|)\|k+m

k=1 m=0

1<k+m<a-—1

Z > Y ()

= 1<u4+v<b [=b J
u>k+m—a+1
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aljz <>k+m+vl

=0,

since k+m+v—I < b—Il4+a—1<a—1forl <u+v <b,u>k+m—a+1,
and [ >b.

a b a+b—1 3k k+m b
s=YY Y Y Y Y e () (
k' 1) \J
1=0 j=0 k=1 m=0 1<u+v<b [=0
SN—— u<k+m—a
k+m>a
 Cu o/fi”(—Srz) cklek-{—m l( J)lo_?:k—m|)\|k+m‘
a+b—1 3k
SCa,b § : § :|a|k+m—ar2k 0_3k—m|/\|k+m
k=1 m=0
—_——
k4+m>a
a+b—1 3k
=Cup § : § :O_k+m—aT2ko_3k—m|)\|a
k=1 m=0
—_——
k4+m>a
a+b—1
SCa,b § ' r2k|)\|a0_4k—a.
k=1
Hence,
(a=b)/2 atb 1
o 2 4 _
SQSC e~ o E:r2k|)\|ao_4ka
Al
k=1
a+b—1
:06—1"204 U_(a+b)/2 2 : (,,,,0_2)2]67
k=1

Which combined with (18), (19), and S; = 0 proves (16) for P(t,z) =
2828, a > b. For P(t,z) = 2} 25, we use (2) and the recurrence relations
and differential properties of Laguerre functions again to obtain

—(a ay +a)! ao + b)!
Roostg, (A aer —beg, a) = (2]A]) (+b)/2\/( 1 )\/( 2+ )

O[l! O[z!
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a b

Z(_l)i+j (j) <;)> Re, (X0, +ie1+ jea)

i=0 j=0

and Razy (A, m, o) = 0 for m # aey — bez. Then

‘RzaZ% (A, ae; — beg,a)‘

(a+b)/2| 2 b o
O' + —r2(o4+23+7)|A])?
¢ ZZ )i g< )(J) o= (o +2(i1)AD
1=0 5=0
o@0/2 L | I i (@) (8
|)\|a+b e Z ]
(20) s Ob b—1
(a+b)/2 @ o p\ o7t Bk
g 2 4 a
_______ pTro 1 1+J 2]
HO e T [ 2 D () ()X %
1=0 5=0 k=1
(a+b)/2 a b o b © Bk
g 2 4 a
(@ e —1)¢tI i,J
= Tl + T2 + T3 )

where

Bi,j = —Tz((0+2(i+j)|)\|)4_0-4)
= —87%[A[ (i + )
(P + 302N (i 4 §) + 40 A2 G+ )2+ 2|AP 6 +4)7).

We immediately obtain 7} = 0 since the summation

()=

To estimate T3, we use |A| < o and the property of alternating series
to get

U(a+b)/2 2o -
(21) fh=C Aato ¢ ZZ ( > ( > ")
1=0 5=0

S 06—1"204 —(a+b)/2 (T2 0_4)a+b.
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As to Ty, we write

o (a+b)/2 2 54

I=C |)\|a+b e’

120 (0)()

aili’é — 872 |\l 2+J))k0k,m03k_m|)\|m(i+j)m‘

|
k=1 m=0 k!
(a-+b)/2
(o 254
= O

SEEELoe()()

i=0 j=0 k=1 m=0

)

(S 49 0 g

olath/2

:Cwe_

a b at+b—1 3k b
1223 S v (5)()

1=0 5=0 k=1 m=0

k+m ‘

. (—8T2)k Z Ch, ml2k+m ljl 3k—m |)\|k+m
=0
O.(a+b)/2

2 4
= O T e 4 T,

where ¢y, and cg 4, denote constants dependent on their indexes,

b a+b—1 3k k+m b
=3y S S e ()())
1=0 7=0 k=1 m=0

1<k+m<a+b—1

‘k+m—I -1l Sk m|)\|k+m

-(—8T2) Ckmll ] o

and
a b a+b—1 3k k+m 1 a b
=335 55 g o (5) ()
i=0 j=0 k=1 m=0 [=0

k4+m>a+b
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'(—87'2) Ckmlzk+m ljl 3k— m|)\|k+m.

It follows from (17) that

a+b—1 3k

T4: Z Z k' 87“ k Sk m|)\|k+m

=1 m=0

1<k+m<a+b—1
b—1 k4+m LY+ a\ /b A
TR (TS )it (1) () s

1=05=0 =0 [I=b
a+b—1 3k

— Z Z k' 87" k Sk m|)\|k+m

k=1 m=0

1<k+m<a+b—1
a b—-1

b
i @) k4+m—I TEAW
S et 17 (§) 0 () 5
i=0 =0 §=0

a+b—1 3k

+ Z Z k' 8T k 3k m|)\|k+m

k=1 m=0

1<k+m<a+b—-1

S s () Sy (2 e

=0 1=b
= 07

since [ > bimpliesk+m—1<a+b—1—-1<a—1. Thus

(a+b)/2
o 254
T2 = Cwe T |T5|
O.(a+b)/2 2
O

a b at+b—1 3k k+m b
(oS e S hews(4) ()
1=0 5=0 k=1 m=0 [=0

——

k+m>a+b

‘k+m—I

'(—87“2) Ckle

,]l 3k— m|)\|k+m‘
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(a+b)/2 a+b—1 3k
(2 2 4
—r“o 2k _3k—m k+m
SCa,b |)\|a,—|—b € E : E r-o |)‘|
k=1 m=0
k4+m>a+b
(a+b)/2 a+b—1 3k
o 2 4
—r“o 2k _3k—m a+b _k+m—a—>b
S Ca,b |)\|a+b € E E ro |)\| o
k=1 m=0
———
k+m>a-+b
a+b—1
2 4
= Cup e T O 0_—(a+b)/2 § : (,r0_2)2k,
k=1

which combined with (20), (21), and 77 = 0 proves (16) for
P(t,z) = 27 25,

and ends the proof of Lemma 2.
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