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Abstract. Our main result implies the following theorem: Let f be
a transcendental meromorphic function in the complex plane. If f has
finite order p, then every asymptotic value of f, except at most 2p of
them, is a limit point of critical values of f.

We give several applications of this theorem. For example we prove
that if f is a transcendental meromorphic function then f'f™ withn > 1
takes every finite non-zero value infinitely often. This proves a con-
jecture of Hayman. The proof makes use of the iteration theory of
meromorphic functions.

Introduction and main results.

In this paper by meromorphic function we mean a transcendental
meromorphic function in the complex plane C, if the domain of def-
inition is not explicitly specified. Let f : C — C = C U {00} be a
meromorphic function. The inverse function f~! can be defined on a
Riemann surface which is conformally equivalent to C via f~!. In this
paper we identify the Riemann surface of f~! with C. We want to
study the singularities of f~!. This can be done by adding to C some
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ideal points and defining neighborhoods of these points.

Let us start with precise definitions. Take a € C and denote by
D(r,a) the disk of radius r > 0 (in spherical metric) centered at a.
For every r > 0 choose a component U(r) of the preimage f~1(D(r,a))
in such a way that r1 < 7y implies U(ry) C U(rz). Note that the
function U : r — U(r) is completely determined by its germ at 0. Two
possibilities can occur:

a) NsoU(r) ={z}, 2 € C. Then a = f(z). If a € Cand f'(2) # 0
or if a = oo and z is a simple pole of f, then z is called an ordinary
point. If a € C and f'(z) = 0 or if @ = oo and z is a multiple pole
of f, then z is called a critical point and a is called a critical value.
We also say that the critical point z lies over a.

b) M,soU(r) = 9. Then we say that our choice r — U(r) defines
a (transcendental) singularity of f~!. For simplicity we just call
such U a singularity. We also say that the singularity U lies over
a. For every r > 0 the open set U(r) C C is called a neighborhood
of the singularity U. So if z, € C, we say that zp — U if for every
e > 0 there exists ko such that z, € U(e) for k > k.

If U is a singularity then a is an asymptotic value, which means
that there exists a curve I' C C tending to oo such that f(z) — a as
z — 00, z € I'. Such T' is called an asymptotic curve. To construct an
asymptotic curve take a sequence 1, — 0 and a sequence z; € U(ry) and
connect zx to zgxp1 by a curve v, C U(rg), which is possible because
the U(r) are connected. Then I' = U~y is an asymptotic curve. In
particular it follows that every neighborhood U(r) of a singularity U
is unbounded. If a is an asymptotic value of f, then there is at least
one singularity over a. Indeed, let I' C C be an asymptotic curve, on
which f(z) — a. Then for every r > 0 the “tail” of I' where f(z) €
D(r,a) belongs to f~1(D(r,a)) and we define U(r) as the component
of f=1(D(r,a)) which contains this tail.

Certainly there can be many different singularities as well as critical
and ordinary points over the same point a. Remark that if f is a
meromorphic function, and D C C contains no critical values and no
asymptotic values then f : f~1(D) — D is a covering. This justifies
the name “singularities of f=1”.

The connection between asymptotic values of f and singularities
of f=! was stated for the first time by A. Hurwitz [17]. The following
classification of singularities is due to F. Iversen [18] (see also [21], [26]).
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A singularity U over a is called direct if there exists » > 0 such that
f(z) # a for z € U(r). (Then this is also true for all smaller values of
r.) The simplest case of a direct singularity is the so-called logarithmic
branch point. We say that U is a logarithmic branch point (or logarith-
mic singularity) over a if f : U(r) — D(r,a)\{a} is a universal covering
for some r > 0. Thus if f = exp then the inverse function f~! = log
has two logarithmic branch points: one over 0 and one over co. The
function arccos, inverse to cos, has two logarithmic singularities over
00.

A singularity U over a is called indirect if it is not direct, i.e. for
every r > 0 the function f takes the value @ in U(r). In this case
evidently the function f takes the value a infinitely often in U(r). A
simple example of an indirect singularity is given by the inverse function
of f(2) =sinz/z. Note that in this example the asymptotic value 0 is
a limit point of critical values. M. Heins [15, Theorem 5] proved that
the set of direct singularities of a function inverse to a meromorphic
function is always countable.

For a meromorphic function of finite order p the celebrated Denjoy-
Carleman-Ahlfors Theorem states that the inverse function has at most
max{2p, 1} direct singularities [21, p. 309]. This implies that an entire
function of finite order p has at most 2p finite asymptotic values [21, p.
313]. On the other hand, there are meromorphic functions of any given
order p > 0 such that every point in C is an asymptotic value [7]. So
in this case the number of indirect singularities is infinite.

In the simplest examples like f(z) = sin z/z the indirect singulari-
ties are limits of critical points. More complicated examples show that
this is not the case in general. One such example is contained in the
book of L. I. Volkovyskii [27, p. 70]. He constructs a meromorphic
function f with no critical points such that the set of asymptotic val-
ues has the power of the continuum (it is actually a Cantor set on the
unit circle). So the inverse function of this function has many indirect
singularities because the set of direct ones is countable by the result
of Heins mentioned above. See also [25], where a similar example is
discussed.

Our main result is that in the case of finite order the nature of the
singularities of f~! is much simpler.

Theorem 1. If f is a meromorphic function of finite order, then every
indirect singularity of f~! is a limit of critical points.



358 W. BERGWEILER AND A. EREMENKO

We can easily derive from Theorem 1 a formally stronger version
of this theorem.

Theorem 1°. Let f be a meromorphic function of finite order. Then
every indirect singularity of f~' over a € C is a limit point of critical
points zx such that f(zy) # a.

PrROOF. Assume that f has an indirect singularity U over a such that
for some 7 > 0 the set V = U(r)\ f~1(a) contains no critical points. As
the number of direct singularities is finite we may assume that there
are no direct singularities over A = D(r,a)\{a}.

Let us show that

(1) f: VoA

has an asymptotic value o’ € A. If this is not the case then (1) is a
covering. As the fundamental group of the annulus A is Z we conclude
that the fundamental group of V' is Z or trivial. In the first case V is
a degenerate annulus and a cannot be an asymptotic value in U(r). So
the fundamental group of V' is trivial, that is, (1) is a universal covering.
Then f : U(r) — A is also a universal covering, which contradicts to
our assumption that U is a neighborhood of an indirect singularity over
a.

Thus there is an asymptotic value a’ € A such that the correspond-
ing (indirect) singularity U’ has a neighborhood U'(r') C V. Now
we apply Theorem 1 to U’ to conclude that there are critical points
2, € U(r) such that f(zx) # a. This proves Theorem 1'.

Corollary 1. If f is a meromorphic function of finite order and a s
an asymptotic value of f, then a is a limit of critical values ay # a or
all singularities of f~1 over a are logarithmic.

Corollary 2. If f is a meromorphic function of finite order p and E
15 the set of its critical values, then the number of asymptotic values of
f is at most 2p + card E’, where E' stands for the derived set of E.

PROOF. Let a be an asymptotic value, a ¢ E’. By Corollary 1 there
is a logarithmic singularity over a. Let us show that the number of
logarithmic singularities is at most 2p. For p > 1/2 this follows from
the Denjoy-Carleman-Ahlfors Theorem quoted above. It remains to
show that there are no logarithmic singularities if p < 1/2. Suppose



ON THE SINGULARITIES OF THE INVERSE TO A MEROMORPHIC FUNCTION 3959

that there is a logarithmic singularity over a € C and that f : U(r) —
D(r,a)\{a} is a universal covering. Then U(r) is a simply-connected
unbounded domain. Assume without loss of generality that a = oo.
Then there exists R > 0 such that R < |f(2)| < +oo for z € U(r) and
|f(2)] = R for z € OU(r). Define a function u by u(z) = log(|f(2)|/R)
for z € U(r) and u(z) = 0 for z € C\U(r). It is easy to see that u
is subharmonic in C. Since u is bounded on QU (r) we deduce from a
classical theorem due to Wiman (see for example [14, Theorem 6.4])
that the order of u is at least 1/2. But the order of f is greater or equal
than the order of u.

Corollary 3. If a meromorphic function of finite order p has only
finitely many critical values, then it has at most 2p asymptotic values.

Corollary 3 was conjectured by the second author in his talk on
the A.M.S. meeting in Springfield, Missouri, in October 1991.

Theorem 1 and its corollaries may be useful in many questions
involving meromorphic functions of finite order, in particular in the
iteration theory of rational [1], [3], [24] and transcendental meromorphic
[2] functions. The role of singularities in the iteration of transcendental
functions is discussed in [2, Section 4.3]. The connection with rational
functions is via Poincaré functions.

We will apply our result to the distribution of values of some differ-
ential polynomials. In [13, Problem 1.19] W. K. Hayman conjectured
that if f is a nonconstant meromorphic function and n € N, then f’f"
takes every finite non-zero value. Earlier he had proved this for n > 3.
More precisely, he had shown that if f is transcendental, then f’f"
takes every finite non-zero value infinitely often if f is meromorphic
and n > 3 [11, Corollary to Theorem 9] or if f is entire and n > 2 [11,
Theorem 10]. J. Clunie [5] proved this for the case that f is entire and
n = 1. Later E. Mues [19, Satz 3] settled the case that f is meromor-
phic and n = 2 and W. Hennekemper [16] extended Clunie’s result to
functions which have few poles in some sense.

We prove here the last unsolved case (n = 1 for meromorphic
functions). Our method gives also a unified proof of all results on
Hayman’s conjecture mentioned above.

Theorem 2. If f is a transcendental meromorphic function and m > 1
are positive integers then (fm)(l) assumes every finite non-zero value
infinitely often.
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Hayman’s conjecture corresponds to the case [ = 1 in this theorem.
The example f(z) = e* shows that 0 and co can actually be omitted.
Actually only the case m =2, [ =1 in Theorem 2 is new. Recently Y.
F. Wang [28] proved the statement of Theorem 2 for all m > 3 and all
[ > 0. Applying Theorem 2 to 1/f instead of f with m =2 and [ =1
we obtain the following result.

Corollary 4. If f is a transcendental meromorphic function then f'+
I3 has infinitely many zeros.

The corresponding result for f/ + f™, n > 4, can be found in the
papers of Hayman and Mues cited above.

Theorem 2 will be deduced from the following result which may be
of independent interest.

Theorem 3. Let f be a meromorphic function of finite order. If f has
infinitely many multiple zeros, then f' assumes every finite non-zero
value infinitely often.

The proof of Theorem 3 uses iteration theory of meromorphic func-
tions. The deduction of Theorem 2 from Theorem 3 is based on a rescal-
ing lemma of Zalcman and Pang (Lemma 4), which allows to reduce the
matter to the case of finite order. On the other hand we will construct
an example which shows that Theorem 3 fails for functions of infinite
order.

As a second application of Theorem 1 we give a unified proof of the
following results recently obtained by J. Clunie, J. Langley, J. Rossi,
and the second author [6], [8].

Theorem 4. Let f be a transcendental meromorphic function of order
p.

a) If p <1 then f' has infinitely many zeros.

b) If p < 1/2 then f'/f has infinitely many zeros.

c) If f is entire and p < 1 then f'/f has infinitely many zeros.

Examples in [6] show that all bounds for p in this theorem are
sharp.
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REMARK. First we proved Hayman’s conjecture (Theorem 2 with m =
2 and [ = 1) only for functions of finite order. A preprint with this
result was widely circulated. It was then realized independently (and
almost simultaneously) by H. H. Chen and M. L. Fang, by L. Zalcman,
and by the second author of this paper how the infinite order case can
be reduced to the finite order case (Step 2 in the proof of Theorem 2).
We are grateful to L. Yang for telling us about H. H. Chen’s and M. L.
Fang’s result and to Y. F. Wang for sending us a preprint of their work
[4], to L. Zalcman for informing us about his work and to D. Drasin for
bringing to our attention the papers of X. Pang [22], [23].

2. Lemmas.

The proofs of the following two lemmas use some ideas of A. Weits-
man [29] (compare also [8, Proposition 2.1]).

Lemma 1. Let p > 3 be an integer and g be a transcendental mero-
morphic function of order less than p — 3. Then there exists an integer
no = no(g) and a sequence R, € (2p"_2,2p"), n > ng, such that the
total length of the level curves |g(z)| = Ry, in K, ={z: |z| < 2"} is at
most 2P™/2,

PROOF. We use the standard notations of Nevanlinna theory [8], [12],
[21]. For R > |g(0)| + 1 (or R > 0 if g(0) = c0) and 6 € [0, 27| we have

1 1
o — | <N (2" ——— | <T(2"F? log" R+ C
n( ’g—Re’9>_ ( ,g_Rew>_ (2"*2,g) +log" R+ C,

where C' depends on g only. Thus

(R) = / S PO T
n = — n , ——
(2) P 27 J, g — Rei®

< T(2"+2,g) +log" R+ C.

Let [,,(R) be the total length of the level curves |g(z)| = R in K,,. Put
Bn = 2P" and ay, = 2P"~2. By the length-area principle [10, p. 18] we

have 5

" In(R)?dR 2 62

VAR o area (K,,) = 272 227
/a Rpn(R) ~ (52)
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So there exists R,, € (ay, B,) such that

1
ln(Rn)2 S - Rnpn(Rn) 27T2 22n S 2pn7 n Z no ,
Bn — an

in view of (2) and the estimate
T(2"*2,g) < 2(P=3)(n+2) n>ng.
This proves the lemma.

Lemma 2. Let p > 3 be an integer and f be a meromorphic function
of order less than p — 3. Given ¢ > 0 there exists C' > 0 such that for
every component B of the set E = {z: |f'(2)] < C7! 2|72} we have

(3) diam f(B) < e.

Here diam S denotes the (Euclidean) diameter of a set S C C.

PROOF. Apply Lemma 1 to the function g = 1/f’. Note that f and g
have the same order because f and f’ have the same order by a result
of J. M. Whittaker [30]. Increase if necessary ng from Lemma 1 such
that

o 2P/2 4 2o

€
4 2 TvTers =
(4) > oA <3

n=no
and hence
>, ontl ¢
(5) > <3
n=no

For n > ng we set

and
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Note that the boundary 9V consists of some arcs of the level curves
lg(2)| = R,, which are in K,, and some arcs of the circles |z| = 2™ on
which we have R,, < |g(z)| < R,4+1. Applying Lemma 1 and (4) we
obtain

— 27P/2 4 272" ¢
6 “Hdz| < — <.
©) [ o e < 3 S <

We may assume without loss of generality that there are no poles of g
on |z| = 2™, Choose C' > 1 such that the set £ = {z : |g(z)| > C |2|*"}
does not meet the circle |z| = 2™ and such that for all components B
of this set contained in {z : |z| < 2™} the condition (3) is satisfied.
Let us show that EN{z: |z| > 2™} C V. If z € E and |z] > 2",
we can find n > ng such that 2771 < |z] < 2". Then we have [g(2)] >
Clz|?P > |z|?P > 222("=1) > R, so that z€ V,, C V.

Now let D be a component of V' which contains a component B of
E such that B C {z: |z| > 2™ }. If z; and 2z, are in B, connect them
by the straight line segment L. If L C D takey = L. If L ¢ D consider
a segment [a,b] C L such that (a,b) C C\D and a,b € 0D. Replace
(a,b) by a bounded arc of 9D connecting a and b. After performing this
procedure on every segment of L\ D we obtain a curve y; connecting z;
and z5. Delete if necessary some parts of y; to obtain a simple curve
connecting z; and zo. The part of v in D consists of some segments of L.
Denote by Tj, the union of these segments which lie in 271 < |z| < 2.
Then |g(z)| > R,, for z € T}, and thus by (5) and (6)

e z2|</|g (2)1" ]
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3. Proof of Theorem 1.

Let a be an asymptotic value and U be an indirect singularity over
a such that U(Ry) contains no critical points and 0 ¢ U(Ry) for some
Ry > 0. Without loss of generality we may assume that a = 0. We are
going to construct inductively the following objects:

e a sequence of asymptotic values a,, , Ro/2 > |ai| > |az| > - - -,

e a sequence of disjoint simply-connected domains G,, C U (RO_/ 2)
such that f is univalent in G,, and D,, = f(G},) is a disk, 0 ¢ D,, ,

e a sequence of asymptotic curves I',, C G,, such that f(I';,) is a
straight line segment and f(z) — a, as z = o0, z € 'y, .

Let us show how to construct a,, G,,, and I',, assuming that ay,
G, and I'y are already constructed for £ < n.

First choose a positive number R, < |a,—1| (if n = 1 we take
R; < Ry/2) such that U(R,) N Gy = @ for k < n. This is possible
because 0 ¢ Dy = f(Gy). Then we take a point z, € U(R,,) satisfying
f(zn) = 0. The existence of such a point follows from the definition of
an indirect singularity. We have f’(z,) # 0 by assumption. So there
exists a branch ¢ of f~1 of the form

oo
o(w) = 2z, + Z cmw™ .
m=1

Denote by r,, the radius of convergence of this series.
We claim that

(7) 0<r, <R, .

To prove the right inequality, suppose that r,, > R,,. Then A = p({w :
lw| < R,}) is a component of f~'({w : |w| < R,}), containing the
point z, € U(R,). This implies that A = U(R,,) because U(R,,) is
connected. Hence f is univalent in U(R,,), which is a contradiction.
This proves (7).

Let a, = r,e'" be a singular point of ¢. We have |a,| = 7, <
R, < |an_1| < e < R0/2.

Consider the disk

2 .
D, = {w : ‘w — %e’s"




ON THE SINGULARITIES OF THE INVERSE TO A MEROMORPHIC FUNCTION 365

Then ¢ is holomorphic on D,\{a,} and 0 ¢ D,. Set G, = (D).
Then G, is a simply-connected domain in C bounded by one analytic
curve tending to infinity in both directions. Indeed, if G,, is bounded,
then z* = p(a,) € C. If 2* is an ordinary point, then ¢ has no singular
point at a,. But z* € U(R,) C U(rp) cannot be a critical point by
assumption. Moreover, G,, C U(R,,) so that in particular G,, NG = &
for £ < n. Finally we consider the segment

; 2
Ln:{’w:tezsni §Tn§t<’rn}CDn

and put I';, = ¢(L,,). This completes our construction.

Now we want to estimate the rate of convergence f(z) — ay,
zely,. Let ¢, € 0G,,, ,, = |gn|. For > x,, we denote by 0,,(x) the
angular measure of {0 : e’ € G,,}. Then

because the G,, are disjoint. Now, by the Ahlfors distortion Theorem
[21, p. 98] applied to the conformal map f : G,, — D,,, we have

1 = dy
9 log —— > o, T, .
I e kA o

-z 0y(7)

where the C,, are constants. We want to conclude from here that for
all n with at most 4p + 2 exceptions
(10) liminf  |f(2) — a,|[2|?*T! =0.

z—o0, z€ly,
(Here p > 3 is a natural number such that the order of f is less than
p—3.) To prove (10) assume that |f(z)—ay,| > ¢|2z|7?P~1 for K = 4p+3
values of n and all large |z|, say for n = 1,2,..., K and |z| > z¢, where
xp > max{z, : 1 <n < K}. Then we have by (9)

2l e
11 < (2 1)1 1 1<n<K.
() xRS <@ logld +0), 1<n<

Now using Schwarz’s inequality and (11) we get

2
(o) = (%) -
g = S
o zo xr
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</'Z| dx: /|z|9n(x)da;
T ey wO(x) Sy, x

< (Fepsnogli+om) [

=19, () da:

o T

Adding these inequalities for n = 1,2, ..., K and using (8) we obtain

2| ’ ||
- < -
K <log ) (2 (2p+1) log |2| + O(l)) log 2

which is a contradiction because K = 4p + 3. This proves that (10) is
satisfied except possibly for 4p 4 2 values of n. Dropping those a,, and
I',, for which (10) is not satisfied and changing the enumeration of the
remaining a,, and I';, we may assume that (10) is satisfied for all n.

Next we prove that for every n there exists a sequence z, ; € Iy,
Zp,j — 00, such that

(12) |/ ()| < lzn gl 72770

Recall that f maps I',, monotonically onto a straight line segment. Thus

wa—%b/muwmwu

where the path of integration is I',,. If we assume contrary to (12) that
|f'(2)] > |2|72P~! for all z € T, with sufficiently large moduli, then we
obtain

o 2 1 1 2
Iﬂ@ﬂMZl 2172 ] 2 o |2

which contradicts (10). Hence (12) is true.
Recall that Ry/2 > |a1| > |az| > -+ and put

1 . .
€= min{|a; —a;|: 1 <i<j<2p}.

Then € < Ry/8. Apply Lemma 2 using the value of € just specified.
Lemma 2 gives some value C' > 0. For every n choose a point z; =
Zn.j(n) using the relation (12) such that the following conditions are
satisfied for 1 <n < 2p:

(13) |20 = C
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and
1f(z),) —an] <ce.
Then
(14) |f(z) — f(z5)| > 2¢€, 1<n<k<2p,
and
. 3
(15) |f(zn)|-|—€<ZR0, 1<n<2p.

Using (12) and (13) we get
(16) [fz) <CTH a7, 1<n<2p.

Let B,, be the component of the set {z: |f'(z)| < C~1|z|~?"} contain-
ing z» . Applying Lemma 2 we conclude that

(17) diam f(B,) < ¢, 1<n<2p.

By (15) we have f(B,) C {w : |w| < 3Ry/4}. But U(Ryp) is a com-
ponent of f=1({w : |w| < Rp}) and U(Ry) and B, have a point 2} in
common. So we conclude that

(18) B,, CU(Ry), 1<n<2p.

Comparing (14) and (17) we conclude that the B,, are disjoint.
The function

u(z) = —log|f'(2)| — 2p log |z| — log C

is subharmonic in U (Ry) because U(Ry) does not contain critical points
of f by assumption. Also 0 ¢ U(Rp) by assumption. Now the B,, are
components of the set {z € U(Rp) : u(z) > 0} and we have u(z) = 0
for z € 0B, by (18).

Now a standard application of the subharmonic version of the
Denjoy-Carleman-Ahlfors Theorem [14, Theorem 8.9] shows that the
order of u is at least p. So the order of f/ and hence f is at least p and
we have a contradiction which proves the theorem.
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4. Proof of Theorems 2 and 3.

PROOF OF THEOREM 3. Let ¢ € C\{0} and consider the function g
defined by g(z) = z — f(z)/c. Then g has finite order because f has
finite order.

We shall use some results from the iteration theory of meromorphic
functions. By ¢°" we denote the n-th iterate of g. The largest open set
where all g°™ are defined and form a normal family is called the Fatou
set of g and denoted by F(g).

Let now ¢ be a multiple zero of f. Then ¢g(¢) = ¢ and ¢'(¢) = 1.
Classical results from iteration theory (see for example [1, Theorem
6.5.4]) now imply that there exists a component U of F(g), a so-called
Leau domain, such that ¢ € OU and ¢g°" — ( locally uniformly in
U. Moreover, U contains a critical or asymptotic value of g, see for
example [1, Theorem 9.3.2]. (In [1] as well as in [3], [24] only the case
of rational functions is discussed, in which case only critical values need
to be considered, but the proof extends to the transcendental case, if we
also take asymptotic values into account.) Since f has infinitely many
multiple zeros and since Leau domains related to distinct fixed points of
g are disjoint, we deduce that the set of critical and asymptotic values
of ¢ is infinite. By Corollary 3 this is possible only if ¢ has infinitely
many critical values. In particular, ¢’ has infinitely many zeros which
implies that f’ assumes the value c¢ infinitely often. This completes the
proof of Theorem 3.

For the proof of Theorem 2 we also need the following lemmas.

Lemma 3. Let f be a transcendental meromorphic function. If f has
only finitely many zeros, then f®_ 1> 1, assumes every finite non-zero
value infinitely often.

Lemma 3 was proved by W. K. Hayman ([11, Theorem 3] or [12,
Corollary to Theorem 3.5]).

Lemma 4. Let F' be a non normal family of meromorphic functions in
the unit disk D, and —1 < k < 1. Then there exist sequences f, € F,
zn € D and a,, > 0 such that |z,| <r <1, a, — 0 and

gn(C) = a;k fn(zn +anC) = g(q),

where g 18 a non-constant meromorphic function in the plane of order
at most 2, normal type, and the convergence is uniform on compacta in
C with respect to the spherical metric.



ON THE SINGULARITIES OF THE INVERSE TO A MEROMORPHIC FUNCTION 369

The case k = 0 in Lemma 4 was proved by L. Zalcman [31], [32],
and the general case by X. Pang [22], [23].

PROOF OF THEOREM 2.

Step 1. We first prove the theorem for the case when the order of
f is finite. If f has finitely many zeros then the conclusion follows
from Lemma 3. If f has infinitely many zeros then h = (f™)¢=Y has
infinitely many multiple zeros and we apply Theorem 3 to h.

Step 2. Now we reduce the general case to the case of finite order, using
Lemma 4. We use the notation

.7
=10

for the spherical derivative.
Suppose that there exists a transcendental meromorphic function
f such that the equation (f™)®(z) = a has a finite set of solutions for
some a # 0. We may assume without loss of generality that a = 1.
Put k£ =1/m and define a family F' consisting of all functions

fu(z) = 27Fm F(272), 1/4< |z <2, n=12,...

This family cannot be normal in {z: 1/4 < |z] < 2}. For otherwise we
would have for some M > 0

M > fF(z) 2 2070 ph(2nz) > phma),  1j2< 2] <1

from which follows that
// (f#(z +iy))*dedy = O(r?), 1 — +oo,
|z4iy|<r

so the order of f is finite which contradicts Step 1.

Now notice that (f™)V(z) = (f™)®(2"2), so (h™)V(z) # 1 for
every h € F.

Now we choose a disk in the annulus {z : 1/4 < |z| < 2} such that
F' is not normal in this disk, apply Lemma 4 to F' with k = [/m and
obtain a non-constant meromorphic function g of order at most 2 which
also has the property (¢™)")(z) # 1, z € C. This contradicts Step 1.
So Theorem 2 is proved.
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Here is another application of Theorem 3.

If P is a non-constant polynomial and if f is a transcendental
meromorphic function of finite order, then P(f) f' assumes every finite
non-zero value infinitely often. This was proved by E. Mues [20, Satz 1]
for the case that f is entire, but without the restriction on the order. To
see this we choose a zero a of P, with the property that f has infinitely
many a-points if such a zero exists. We define Q(2) = [ P(t) d¢ and
proceed as in the proof of Theorem 2, Step 1, with h = Q(f).

Now we will show that Theorem 3 fails for functions of infinite
order.

EXAMPLE. Define
f(z)=2z+ a/ exp(bexpt — t) dt,
0

where a and b are complex numbers with the properties:
(19) l1+ab=0 and 1+4+aexpb=0.

Such numbers are easy to find by taking any solution of exp(z) = z
as b and putting a = —1/b. From the first condition (19) follows that
f(2mi) = 0. (Use the substitution w = exp ¢ and residues to evaluate the
integral). So f has period 2mi. From the second condition (19) follows
that f/(0) = 0. By periodicity f has multiple zeros at the points 2mik.
On the other hand f’ omits the value 1.

5. Proof of Theorem 4.

We start with the following simple
Proposition Let f be a meromorphic function with infinitely many
zeros and no asymptotic values in C* = C\{0}. Then there are infinitely
many critical points lying over C*.

PROOF. We have infinitely many branches of f~! of the form

ar(w) = e (W) = 2 + Y e w/Pr

n=1
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where py, are some integers, zj, are the zeros of f and ¢y, are univalent. If
the radius of convergence r; of the series ¢y is infinite then ¢y, is linear
as a univalent holomorphic function in C. So all r are finite which
means that the branches g have singularities in C*. These singularities
are algebraic branch points and only finitely many ¢;’s may share one
such singularity. Thus the total number of critical points of f over C*
is infinite. This completes the proof of the Proposition.

We will also use a theorem of F. Iversen [18], [21], which states
that if a transcendental meromorphic function takes some value a € C
finitely many times then a is an asymptotic value.

PROOF OF THEOREM 4. To prove a) assume that f’ has finitely many
zeros. Then all but a finite set of critical points lie over co. From
Corollary 2 we conclude that there is at most one asymptotic value a €
C. If @ = oo or there is no asymptotic value at all, then f has infinitely
many zeros and we apply the Proposition to get a contradiction. If a is
finite we may assume without loss of generality that @ = 0. Then f has
infinitely many poles by Iversen’s theorem and we apply the Proposition
to 1/f.

To prove b) we assume that f’/f has finitely many zeros. This
means that all except finitely many critical points lie over 0 and co. By
Corollary 2 there are no asymptotic values. So we have infinitely many
zeros by Iversen’s theorem and the Proposition gives a contradiction.

To prove ¢) we assume that f'/f has finitely many zeros. Then all
critical values lie over 0 and by Corollary 2 and Iversen’s theorem the
only asymptotic value is infinity. Again there are infinitely many zeros
and the application of the Proposition finishes the proof.
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