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Abstract� Our main result implies the following theorem� Let f be
a transcendental meromorphic function in the complex plane� If f has
�nite order �� then every asymptotic value of f � except at most �� of
them� is a limit point of critical values of f �

We give several applications of this theorem� For example we prove
that if f is a transcendental meromorphic function then f �fn with n � �
takes every �nite non�zero value in�nitely often� This proves a con�
jecture of Hayman� The proof makes use of the iteration theory of
meromorphic functions�

Introduction and main results�

In this paper by meromorphic function we mean a transcendental
meromorphic function in the complex plane C � if the domain of def�
inition is not explicitly speci�ed� Let f � C � C 	 C � f�g be a
meromorphic function� The inverse function f�� can be de�ned on a
Riemann surface which is conformally equivalent to C via f��� In this
paper we identify the Riemann surface of f�� with C � We want to
study the singularities of f��� This can be done by adding to C some

���
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ideal points and de�ning neighborhoods of these points�

Let us start with precise de�nitions� Take a � C and denote by
D
r� a� the disk of radius r � � 
in spherical metric� centered at a�
For every r � � choose a component U
r� of the preimage f��
D
r� a��
in such a way that r� � r� implies U
r�� � U
r��� Note that the
function U � r� U
r� is completely determined by its germ at �� Two
possibilities can occur�

a�
T
r�� U
r� 	 fzg� z � C � Then a 	 f
z�� If a � C and f �
z� �	 �

or if a 	� and z is a simple pole of f � then z is called an ordinary

point� If a � C and f �
z� 	 � or if a 	� and z is a multiple pole
of f � then z is called a critical point and a is called a critical value�
We also say that the critical point z lies over a�

b�
T
r�� U
r� 	 �� Then we say that our choice r � U
r� de�nes

a 
transcendental� singularity of f��� For simplicity we just call
such U a singularity� We also say that the singularity U lies over

a� For every r � � the open set U
r� � C is called a neighborhood

of the singularity U � So if zk � C � we say that zk � U if for every
� � � there exists k� such that zk � U
�� for k � k��

If U is a singularity then a is an asymptotic value� which means
that there exists a curve  � C tending to � such that f
z� � a as
z ��� z � � Such  is called an asymptotic curve� To construct an
asymptotic curve take a sequence rk � � and a sequence zk � U
rk� and
connect zk to zk�� by a curve �k � U
rk�� which is possible because
the U
r� are connected� Then  	 ��k is an asymptotic curve� In
particular it follows that every neighborhood U
r� of a singularity U
is unbounded� If a is an asymptotic value of f � then there is at least
one singularity over a� Indeed� let  � C be an asymptotic curve� on
which f
z� � a� Then for every r � � the �tail� of  where f
z� �
D
r� a� belongs to f��
D
r� a�� and we de�ne U
r� as the component
of f��
D
r� a�� which contains this tail�

Certainly there can be many di�erent singularities as well as critical
and ordinary points over the same point a� Remark that if f is a
meromorphic function� and D � C contains no critical values and no
asymptotic values then f � f��
D� � D is a covering� This justi�es
the name �singularities of f����

The connection between asymptotic values of f and singularities
of f�� was stated for the �rst time by A� Hurwitz ����� The following
classi�cation of singularities is due to F� Iversen ���� 
see also ����� ������
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A singularity U over a is called direct if there exists r � � such that
f
z� �	 a for z � U
r�� 
Then this is also true for all smaller values of
r�� The simplest case of a direct singularity is the so�called logarithmic
branch point� We say that U is a logarithmic branch point 
or logarith�
mic singularity� over a if f � U
r�� D
r� a�nfag is a universal covering
for some r � �� Thus if f 	 exp then the inverse function f�� 	 log
has two logarithmic branch points� one over � and one over �� The
function arccos� inverse to cos� has two logarithmic singularities over
��

A singularity U over a is called indirect if it is not direct� i�e� for
every r � � the function f takes the value a in U
r�� In this case
evidently the function f takes the value a in�nitely often in U
r�� A
simple example of an indirect singularity is given by the inverse function
of f
z� 	 sin z�z� Note that in this example the asymptotic value � is
a limit point of critical values� M� Heins ���� Theorem �� proved that
the set of direct singularities of a function inverse to a meromorphic
function is always countable�

For a meromorphic function of �nite order � the celebrated Denjoy�
Carleman�Ahlfors Theorem states that the inverse function has at most
maxf��� �g direct singularities ���� p� ����� This implies that an entire
function of �nite order � has at most �� �nite asymptotic values ���� p�
����� On the other hand� there are meromorphic functions of any given
order � � � such that every point in C is an asymptotic value ���� So
in this case the number of indirect singularities is in�nite�

In the simplest examples like f
z� 	 sin z�z the indirect singulari�
ties are limits of critical points� More complicated examples show that
this is not the case in general� One such example is contained in the
book of L� I� Volkovyskii ���� p� ���� He constructs a meromorphic
function f with no critical points such that the set of asymptotic val�
ues has the power of the continuum 
it is actually a Cantor set on the
unit circle�� So the inverse function of this function has many indirect
singularities because the set of direct ones is countable by the result
of Heins mentioned above� See also ����� where a similar example is
discussed�

Our main result is that in the case of �nite order the nature of the
singularities of f�� is much simpler�

Theorem �� If f is a meromorphic function of �nite order� then every

indirect singularity of f�� is a limit of critical points�
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We can easily derive from Theorem � a formally stronger version
of this theorem�

Theorem ��� Let f be a meromorphic function of �nite order� Then

every indirect singularity of f�� over a � C is a limit point of critical

points zk such that f
zk� �	 a�

Proof� Assume that f has an indirect singularity U over a such that
for some r � � the set V 	 U
r�nf��
a� contains no critical points� As
the number of direct singularities is �nite we may assume that there
are no direct singularities over A 	 D
r� a�nfag�

Let us show that


�� f � V � A

has an asymptotic value a� � A� If this is not the case then 
�� is a
covering� As the fundamental group of the annulus A is Z we conclude
that the fundamental group of V is Z or trivial� In the �rst case V is
a degenerate annulus and a cannot be an asymptotic value in U
r�� So
the fundamental group of V is trivial� that is� 
�� is a universal covering�
Then f � U
r� � A is also a universal covering� which contradicts to
our assumption that U is a neighborhood of an indirect singularity over
a�

Thus there is an asymptotic value a� � A such that the correspond�
ing 
indirect� singularity U � has a neighborhood U �
r�� � V � Now
we apply Theorem � to U � to conclude that there are critical points
zk � U
r� such that f
zk� �	 a� This proves Theorem ���

Corollary �� If f is a meromorphic function of �nite order and a is

an asymptotic value of f � then a is a limit of critical values ak �	 a or

all singularities of f�� over a are logarithmic�

Corollary �� If f is a meromorphic function of �nite order � and E
is the set of its critical values� then the number of asymptotic values of

f is at most ��� card E�� where E� stands for the derived set of E�

Proof� Let a be an asymptotic value� a �� E�� By Corollary � there
is a logarithmic singularity over a� Let us show that the number of
logarithmic singularities is at most ��� For � � ��� this follows from
the Denjoy�Carleman�Ahlfors Theorem quoted above� It remains to
show that there are no logarithmic singularities if � � ���� Suppose
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that there is a logarithmic singularity over a � C and that f � U
r��
D
r� a�nfag is a universal covering� Then U
r� is a simply�connected
unbounded domain� Assume without loss of generality that a 	 ��
Then there exists R � � such that R � jf
z�j � �� for z � U
r� and
jf
z�j 	 R for z � 	U
r�� De�ne a function u by u
z� 	 log
jf
z�j�R�
for z � U
r� and u
z� 	 � for z � C nU
r�� It is easy to see that u
is subharmonic in C � Since u is bounded on 	U
r� we deduce from a
classical theorem due to Wiman 
see for example ���� Theorem �����
that the order of u is at least ���� But the order of f is greater or equal
than the order of u�

Corollary �� If a meromorphic function of �nite order � has only

�nitely many critical values� then it has at most �� asymptotic values�

Corollary � was conjectured by the second author in his talk on
the A�M�S� meeting in Spring�eld� Missouri� in October �����

Theorem � and its corollaries may be useful in many questions
involving meromorphic functions of �nite order� in particular in the
iteration theory of rational ���� ���� ���� and transcendental meromorphic
��� functions� The role of singularities in the iteration of transcendental
functions is discussed in ��� Section ����� The connection with rational
functions is via Poincar�e functions�

We will apply our result to the distribution of values of some di�er�
ential polynomials� In ���� Problem ����� W� K� Hayman conjectured
that if f is a nonconstant meromorphic function and n � N � then f �fn

takes every �nite non�zero value� Earlier he had proved this for n � ��
More precisely� he had shown that if f is transcendental� then f �fn

takes every �nite non�zero value in�nitely often if f is meromorphic
and n � � ���� Corollary to Theorem �� or if f is entire and n � � ����
Theorem ���� J� Clunie ��� proved this for the case that f is entire and
n 	 �� Later E� Mues ���� Satz �� settled the case that f is meromor�
phic and n 	 � and W� Hennekemper ���� extended Clunie�s result to
functions which have few poles in some sense�

We prove here the last unsolved case 
n 	 � for meromorphic
functions�� Our method gives also a uni�ed proof of all results on
Hayman�s conjecture mentioned above�

Theorem �� If f is a transcendental meromorphic function and m � l
are positive integers then 
fm��l� assumes every �nite non�zero value

in�nitely often�
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Hayman�s conjecture corresponds to the case l 	 � in this theorem�
The example f
z� 	 ez shows that � and � can actually be omitted�
Actually only the case m 	 �� l 	 � in Theorem � is new� Recently Y�
F� Wang ���� proved the statement of Theorem � for all m � � and all
l � �� Applying Theorem � to ��f instead of f with m 	 � and l 	 �
we obtain the following result�

Corollary �� If f is a transcendental meromorphic function then f ��
f� has in�nitely many zeros�

The corresponding result for f � � fn� n � �� can be found in the
papers of Hayman and Mues cited above�

Theorem � will be deduced from the following result which may be
of independent interest�

Theorem �� Let f be a meromorphic function of �nite order� If f has

in�nitely many multiple zeros� then f � assumes every �nite non�zero

value in�nitely often�

The proof of Theorem � uses iteration theory of meromorphic func�
tions� The deduction of Theorem � from Theorem � is based on a rescal�
ing lemma of Zalcman and Pang 
Lemma ��� which allows to reduce the
matter to the case of �nite order� On the other hand we will construct
an example which shows that Theorem � fails for functions of in�nite
order�

As a second application of Theorem � we give a uni�ed proof of the
following results recently obtained by J� Clunie� J� Langley� J� Rossi�
and the second author ���� ����

Theorem �� Let f be a transcendental meromorphic function of order

��

a� If � � � then f � has in�nitely many zeros�

b� If � � ��� then f ��f has in�nitely many zeros�

c� If f is entire and � � � then f ��f has in�nitely many zeros�

Examples in ��� show that all bounds for � in this theorem are
sharp�
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Remark� First we proved Hayman�s conjecture 
Theorem � with m 	
� and l 	 �� only for functions of �nite order� A preprint with this
result was widely circulated� It was then realized independently 
and
almost simultaneously� by H� H� Chen and M� L� Fang� by L� Zalcman�
and by the second author of this paper how the in�nite order case can
be reduced to the �nite order case 
Step � in the proof of Theorem ���
We are grateful to L� Yang for telling us about H� H� Chen�s and M� L�
Fang�s result and to Y� F� Wang for sending us a preprint of their work
���� to L� Zalcman for informing us about his work and to D� Drasin for
bringing to our attention the papers of X� Pang ����� �����

�� Lemmas�

The proofs of the following two lemmas use some ideas of A� Weits�
man ���� 
compare also ��� Proposition ������

Lemma �� Let p � � be an integer and g be a transcendental mero�

morphic function of order less than p� �� Then there exists an integer

n� 	 n�
g� and a sequence Rn �
�
�pn��� �pn

�
� n � n�� such that the

total length of the level curves jg
z�j 	 Rn in Kn 	 fz � jzj 	 �ng is at

most �pn���

Proof� We use the standard notations of Nevanlinna theory ���� �����
����� For R � jg
��j� � 
or R � � if g
�� 	�� and 
 � ��� ��� we have

n

�
�n�

�

g � Rei�

�
	 N

�
�n���

�

g � Rei�

�
	 T

�
�n��� g

�
� log�R� C �

where C depends on g only� Thus


��
pn
R� �	

�

��

Z ��

�

n

�
�n�

�

g �Rei�

�
d


	 T
�
�n��� g

�
� log�R� C �

Let ln
R� be the total length of the level curves jg
z�j 	 R in Kn� Put
n 	 �pn and �n 	 �pn��� By the length�area principle ���� p� ��� we
have Z �n

�n

ln
R�
�dR

Rpn
R�
	 �� area 
Kn� 	 ��� ��n �
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So there exists Rn � 
�n� n� such that

ln
Rn�
� 	

�

n � �n
Rn pn
Rn� ��

� ��n 	 �pn � n � n� �

in view of 
�� and the estimate

T 
�n��� g� 	 ��p����n��� � n � n� �

This proves the lemma�

Lemma �� Let p � � be an integer and f be a meromorphic function

of order less than p � �� Given � � � there exists C � � such that for

every component B of the set E 	 fz � jf �
z�j � C�� jzj��pg we have


�� diam f
B� � � �

Here diamS denotes the 
Euclidean� diameter of a set S � C �

Proof� Apply Lemma � to the function g 	 ��f �� Note that f and g
have the same order because f and f � have the same order by a result
of J� M� Whittaker ����� Increase if necessary n� from Lemma � such
that


��
�X

n�n�

�np�� � �� �n

Rn
�

�

�

and hence


��
�X

n�n�

�n��

Rn
�

�

�
�

For n � n� we set

Vn 	 fz � jzj � �n� jg
z�j � Rng

and

V 	
��

n�n�

Vn �
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Note that the boundary 	V consists of some arcs of the level curves
jg
z�j 	 Rn which are in Kn and some arcs of the circles jzj 	 �n on
which we have Rn 	 jg
z�j 	 Rn��� Applying Lemma � and 
�� we
obtain


��

Z
�V

jg
z�j�� jdzj 	
�X

n�n�

�np�� � �� �n

Rn
�

�

�
�

We may assume without loss of generality that there are no poles of g
on jzj 	 �n� � Choose C � � such that the set E 	 fz � jg
z�j � C jzj�pg
does not meet the circle jzj 	 �n� and such that for all components B
of this set contained in fz � jzj � �n�g the condition 
�� is satis�ed�
Let us show that E 
 fz � jzj � �n�g � V � If z � E and jzj � �n� �
we can �nd n � n� such that �n�� 	 jzj � �n� Then we have jg
z�j �
C jzj�p � jzj�p � ��p�n��� � Rn so that z � Vn � V �

Now let D be a component of V which contains a component B of
E such that B � fz � jzj � �n�g� If z� and z� are in B� connect them
by the straight line segment L� If L � D take � 	 L� If L �� D consider
a segment �a� b� � L such that 
a� b� � C nD and a� b � 	D� Replace

a� b� by a bounded arc of 	D connecting a and b� After performing this
procedure on every segment of LnD we obtain a curve �� connecting z�
and z�� Delete if necessary some parts of �� to obtain a simple curve �
connecting z� and z�� The part of � inD consists of some segments of L�
Denote by Tn the union of these segments which lie in �n�� 	 jzj 	 �n�
Then jg
z�j � Rn for z � Tn and thus by 
�� and 
��

jf
z��� f
z��j 	

Z
	

jg
z�j�� jdzj

�
�

�
�

�X
n�n�

Z
Tn

jg
z�j�� jdzj

	
�

�
�

�X
n�n�

�n��

Rn

� � �
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�� Proof of Theorem ��

Let a be an asymptotic value and U be an indirect singularity over
a such that U
R�� contains no critical points and � �� U
R�� for some
R� � �� Without loss of generality we may assume that a 	 �� We are
going to construct inductively the following objects�

� a sequence of asymptotic values an � R��� � ja�j � ja�j � � � � �

� a sequence of disjoint simply�connected domains Gn � U
R����
such that f is univalent in Gn and Dn 	 f
Gn� is a disk� � �� Dn �

� a sequence of asymptotic curves n � Gn such that f
n� is a
straight line segment and f
z�� an as z ��� z � n �

Let us show how to construct an� Gn� and n assuming that ak�
Gk� and k are already constructed for k � n�

First choose a positive number Rn � jan��j 
if n 	 � we take
R� � R���� such that U
Rn� 
 Gk 	 � for k � n� This is possible
because � �� Dk 	 f
Gk�� Then we take a point zn � U
Rn� satisfying
f
zn� 	 �� The existence of such a point follows from the de�nition of
an indirect singularity� We have f �
zn� �	 � by assumption� So there
exists a branch � of f�� of the form

�
w� 	 zn �
�X

m��

cmw
m �

Denote by rn the radius of convergence of this series�
We claim that


�� � � rn � Rn �

To prove the right inequality� suppose that rn � Rn� Then A 	 �
fw �
jwj � Rng� is a component of f��
fw � jwj � Rng�� containing the
point zn � U
Rn�� This implies that A 	 U
Rn� because U
Rn� is
connected� Hence f is univalent in U
Rn�� which is a contradiction�
This proves 
���

Let an 	 rne
isn be a singular point of �� We have janj 	 rn �

Rn � jan��j � � � � � R��� �
Consider the disk

Dn 	

�
w �

����w �
� rn
�

eisn
���� � rn

�

	
�
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Then � is holomorphic on Dnnfang and � �� Dn� Set Gn 	 �
Dn��
Then Gn is a simply�connected domain in C bounded by one analytic
curve tending to in�nity in both directions� Indeed� if Gn is bounded�
then z� 	 �
an� � C � If z� is an ordinary point� then � has no singular
point at an� But z� � U
Rn� � U
r�� cannot be a critical point by
assumption� Moreover� Gn � U
Rn� so that in particular Gn 
Gk 	 �

for k � n� Finally we consider the segment

Ln 	

�
w 	 t eisn �

�

�
rn 	 t � rn

	
� Dn

and put n 	 �
Ln�� This completes our construction�
Now we want to estimate the rate of convergence f
z� � an �

z � n � Let qn � 	Gn� xn 	 jqnj� For x � xn we denote by 
n
x� the
angular measure of f
 � xei� � Gng� Then


��
�X
n��


n
x� 	 ��

because the Gn are disjoint� Now� by the Ahlfors distortion Theorem
���� p� ��� applied to the conformal map f � Gn � Dn � we have


�� log
�

jf
z�� anj
� �

Z jzj

xn

dx

x 
n
x�
� Cn � z � n �

where the Cn are constants� We want to conclude from here that for
all n with at most �p� � exceptions


��� lim inf
z��
 z�	n

jf
z�� anjjzj
�p�� 	 � �


Here p � � is a natural number such that the order of f is less than
p���� To prove 
��� assume that jf
z��anj � c jzj��p�� for K 	 �p��
values of n and all large jzj� say for n 	 �� �� � � � � K and jzj � x�� where
x� � maxfxn � � 	 n 	 Kg� Then we have by 
��


��� �

Z jzj

x�

dx

x 
n
x�
	 
�p� �� log jzj�O
�� � � 	 n 	 K �

Now using Schwarz�s inequality and 
��� we get

�
log

jzj

x�

��

	


Z jzj

x�

dx

x

��

	



��� W� Bergweiler and A� Eremenko

	

Z jzj

x�

dx

x 
n
x�

Z jzj

x�


n
x� dx

x

	

�
�

�

�p� �� log jzj� O
��

�Z jzj

x�


n
x� dx

x
�

Adding these inequalities for n 	 �� �� � � � � K and using 
�� we obtain

K

�
log

jzj

x�

��

	
�
� 
�p� �� log jzj� O
��


log

jzj

x�

which is a contradiction because K 	 �p� �� This proves that 
��� is
satis�ed except possibly for �p� � values of n� Dropping those an and
n for which 
��� is not satis�ed and changing the enumeration of the
remaining an and n we may assume that 
��� is satis�ed for all n�

Next we prove that for every n there exists a sequence zn
j � n�
zn
j �� � such that


��� jf �
zn
j�j 	 jzn
j j
��p�� �

Recall that f maps n monotonically onto a straight line segment� Thus

jf
z�� anj 	

Z �

z

jf �
z�j jdzj �

where the path of integration is n� If we assume contrary to 
��� that
jf �
z�j � jzj��p�� for all z � n with su�ciently large moduli� then we
obtain

jf
z�� anj �

Z �

z

jzj��p�� jdzj �
�

�p
jzj��p

which contradicts 
���� Hence 
��� is true�
Recall that R��� � ja�j � ja�j � � � � and put

� 	
�

�
minfjai � aj j � � 	 i � j 	 �pg �

Then � � R���� Apply Lemma � using the value of � just speci�ed�
Lemma � gives some value C � �� For every n choose a point z�n 	
zn
j�n� using the relation 
��� such that the following conditions are
satis�ed for � 	 n 	 �p �


��� jz�nj � C
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and
jf
z�n�� anj � � �

Then


��� jf
z�n�� f
z�k�j � � � � � 	 n � k 	 �p �

and


��� jf
z�n�j� � �
�

�
R� � � 	 n 	 �p �

Using 
��� and 
��� we get


��� jf �
z�n�j � C�� jz�nj
��p � � 	 n 	 �p �

Let Bn be the component of the set fz � jf �
z�j � C��jzj��pg contain�
ing z�n � Applying Lemma � we conclude that


��� diam f
Bn� � � � � 	 n 	 �p �

By 
��� we have f
Bn� � fw � jwj � �R���g� But U
R�� is a com�
ponent of f��
fw � jwj � R�g� and U
R�� and Bn have a point z�n in
common� So we conclude that


��� Bn � U
R�� � � 	 n 	 �p �

Comparing 
��� and 
��� we conclude that the Bn are disjoint�
The function

u
z� 	 � log jf �
z�j � �p log jzj � logC

is subharmonic in U
R�� because U
R�� does not contain critical points
of f by assumption� Also � �� U
R�� by assumption� Now the Bn are
components of the set fz � U
R�� � u
z� � �g and we have u
z� 	 �
for z � 	Bn by 
����

Now a standard application of the subharmonic version of the
Denjoy�Carleman�Ahlfors Theorem ���� Theorem ���� shows that the
order of u is at least p� So the order of f � and hence f is at least p and
we have a contradiction which proves the theorem�
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�� Proof of Theorems � and ��

Proof of Theorem �� Let c � C nf�g and consider the function g
de�ned by g
z� 	 z � f
z��c � Then g has �nite order because f has
�nite order�

We shall use some results from the iteration theory of meromorphic
functions� By g�n we denote the n�th iterate of g� The largest open set
where all g�n are de�ned and form a normal family is called the Fatou

set of g and denoted by F 
g��
Let now � be a multiple zero of f � Then g
�� 	 � and g�
�� 	 ��

Classical results from iteration theory 
see for example ��� Theorem
������� now imply that there exists a component U of F 
g�� a so�called
Leau domain� such that � � 	U and g�n � � locally uniformly in
U � Moreover� U contains a critical or asymptotic value of g� see for
example ��� Theorem ������� 
In ��� as well as in ���� ���� only the case
of rational functions is discussed� in which case only critical values need
to be considered� but the proof extends to the transcendental case� if we
also take asymptotic values into account�� Since f has in�nitely many
multiple zeros and since Leau domains related to distinct �xed points of
g are disjoint� we deduce that the set of critical and asymptotic values
of g is in�nite� By Corollary � this is possible only if g has in�nitely
many critical values� In particular� g� has in�nitely many zeros which
implies that f � assumes the value c in�nitely often� This completes the
proof of Theorem ��

For the proof of Theorem � we also need the following lemmas�

Lemma �� Let f be a transcendental meromorphic function� If f has

only �nitely many zeros� then f �l�� l � �� assumes every �nite non�zero

value in�nitely often�

Lemma � was proved by W� K� Hayman 
���� Theorem �� or ����
Corollary to Theorem ������

Lemma �� Let F be a non normal family of meromorphic functions in

the unit disk D� and �� � k � �� Then there exist sequences fn � F �

zn � D and an � � such that jznj � r � �� an � � and

gn
�� 	 a�kn fn
zn � an��� g
�� �

where g is a non�constant meromorphic function in the plane of order

at most �� normal type� and the convergence is uniform on compacta in

C with respect to the spherical metric�
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The case k 	 � in Lemma � was proved by L� Zalcman ����� �����
and the general case by X� Pang ����� �����

Proof of Theorem ��

Step �� We �rst prove the theorem for the case when the order of
f is �nite� If f has �nitely many zeros then the conclusion follows
from Lemma �� If f has in�nitely many zeros then h 	 
fm��l��� has
in�nitely many multiple zeros and we apply Theorem � to h�

Step �� Now we reduce the general case to the case of �nite order� using
Lemma �� We use the notation

f
 	
jf �j

� � jf j�

for the spherical derivative�
Suppose that there exists a transcendental meromorphic function

f such that the equation 
fm��l�
z� 	 a has a �nite set of solutions for
some a �	 �� We may assume without loss of generality that a 	 ��

Put k 	 l�m and de�ne a family F consisting of all functions

fn
z� 	 ��kn f
�nz� � ��� � jzj � � � n 	 �� �� � � �

This family cannot be normal in fz � ��� � jzj � �g� For otherwise we
would have for some M � �

M � f
n 
z� � ����k�n f

�nz� � f

�nz� � ��� � jzj � �

from which follows thatZZ
jx�iyj�r


f

x� iy��� dxdy 	 O
r�� � r� �� �

so the order of f is �nite which contradicts Step ��
Now notice that 
fmn ��l�
z� 	 
fm��l�
�nz�� so 
hm��l�
z� �	 � for

every h � F �
Now we choose a disk in the annulus fz � ��� � jzj � �g such that

F is not normal in this disk� apply Lemma � to F with k 	 l�m and
obtain a non�constant meromorphic function g of order at most � which
also has the property 
gm��l�
z� �	 �� z � C � This contradicts Step ��
So Theorem � is proved�
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Here is another application of Theorem ��

If P is a non�constant polynomial and if f is a transcendental

meromorphic function of �nite order� then P 
f� f � assumes every �nite

non�zero value in�nitely often� This was proved by E� Mues ���� Satz ��
for the case that f is entire� but without the restriction on the order� To
see this we choose a zero a of P � with the property that f has in�nitely
many a�points if such a zero exists� We de�ne Q
z� 	

R z
a
P 
t� dt and

proceed as in the proof of Theorem �� Step �� with h 	 Q
f��

Now we will show that Theorem � fails for functions of in�nite
order�

Example� De�ne

f
z� 	 z � a

Z z

�

exp
b exp t� t� dt �

where a and b are complex numbers with the properties�


��� � � a b 	 � and � � a exp b 	 � �

Such numbers are easy to �nd by taking any solution of exp
z� 	 z
as b and putting a 	 ���b� From the �rst condition 
��� follows that
f
��i� 	 �� 
Use the substitution w 	 exp t and residues to evaluate the
integral�� So f has period ��i� From the second condition 
��� follows
that f �
�� 	 �� By periodicity f has multiple zeros at the points ��ik�
On the other hand f � omits the value ��

�� Proof of Theorem ��

We start with the following simple

Proposition Let f be a meromorphic function with in�nitely many

zeros and no asymptotic values in C � 	 C nf�g� Then there are in�nitely

many critical points lying over C � �

Proof� We have in�nitely many branches of f�� of the form

qk
w� 	 �k
w
��pk� 	 zk �

�X
n��

cn w
n�pk �
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where pk are some integers� zk are the zeros of f and �k are univalent� If
the radius of convergence rk of the series �k is in�nite then �k is linear
as a univalent holomorphic function in C � So all rk are �nite which
means that the branches qk have singularities in C

� � These singularities
are algebraic branch points and only �nitely many qk�s may share one
such singularity� Thus the total number of critical points of f over C �

is in�nite� This completes the proof of the Proposition�

We will also use a theorem of F� Iversen ����� ����� which states
that if a transcendental meromorphic function takes some value a � C

�nitely many times then a is an asymptotic value�

Proof of Theorem �� To prove a� assume that f � has �nitely many
zeros� Then all but a �nite set of critical points lie over �� From
Corollary � we conclude that there is at most one asymptotic value a �
C � If a 	� or there is no asymptotic value at all� then f has in�nitely
many zeros and we apply the Proposition to get a contradiction� If a is
�nite we may assume without loss of generality that a 	 �� Then f has
in�nitely many poles by Iversen�s theorem and we apply the Proposition
to ��f �

To prove b� we assume that f ��f has �nitely many zeros� This
means that all except �nitely many critical points lie over � and�� By
Corollary � there are no asymptotic values� So we have in�nitely many
zeros by Iversen�s theorem and the Proposition gives a contradiction�

To prove c� we assume that f ��f has �nitely many zeros� Then all
critical values lie over � and by Corollary � and Iversen�s theorem the
only asymptotic value is in�nity� Again there are in�nitely many zeros
and the application of the Proposition �nishes the proof�
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