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1. Introduction.

In 1966 de Branges and Rovnyak introduced a concept of com-
plementation associated to a contraction between Hilbert spaces that
generalizes the classical concept of orthogonal complement. When ap-
plied to Toeplitz operators on the Hardy space of the disc, H?, this
notion turned out to be the starting point of a beautiful subject, with
many applications to function theory. The work has been in constant
progress for the last few years. We study here the multipliers of some
de Branges-Rovnyak spaces contained in H?2.

This introductory section is devoted mainly to general background
on Hilbert spaces contained contractively in H?; all its material can be
found in [15], and especially in [13]. Also, at the end of the section we
give an account of the main results obtained in this paper.

Let H, H, be Hilbert spaces, and A : Hi—H be a contraction.
We denote by M(A) the space formed by the range of A with the
Hilbert space structure that makes A a coisometry from H; onto M (A).
With this structure the inclusion of M(A) in H is a contraction, so we
say that M (A) is contained contractively in H. The space H(A) =
MI[(1 — AA*)Y/?] is called the complementary space of M(A). The
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overlapping space M (A) N H(A) equals AH(A*), and it is not difficult
to prove that if a € H, then a € H(A) if and only if A*a € H(A*). If A
is a partial isometry (and only in this case), M(A) and H(A) are closed
subspaces of H, orthogonal complements of each other; otherwise the
overlapping space AH(A*) is always nontrivial.

Let b be an element of the unit ball B(H*°) in H*, and let T} and
T3 be the Toeplitz operators associated to b and b acting on H2. Since
these operators are contractions, we can consider the spaces H(T}) and
H(T5), which from now on will be denoted by #(b) and #(b), respec-
tively. Using a classical criterion of Douglas to factorize contractions,

it is easy to show that 7(b) is contained contractively in H(b) (see [15,
II-2]). Now a simple calculation shows that if f, g € H(b), then

(F 9uwy = 9 i + (), T5(9)) ) -

Ifb = blbg, with bl and bz in B(Hoo), then %(b) = %(bl) + blfl‘[(bg),
where #(b1) is contained contractively in H(b) and T}, implements
a contraction from H(by) into H(b). Besides, this sum is direct (i.e.
H(b1) Nb1H(b2) = {0}) if and only if H(b1) is the orthogonal comple-
ment of by (b2) in H(b). In particular this holds if b is an inner func-
tion, because since in this case Tp, is an isometry, so that (1—Tp, Tgl)l/2
is the projection (in H?) onto the orthogonal complement of b; H?.
Moreover, H(b1) is an ordinary closed subspace of H?2.

For ¢ € H*, the Toeplitz operator T is a bounded operator on
H(b) and H(b) with norm (in both cases) not exceeding ||¢||o -

The spaces H(b) and H(b) can be represented in terms of Cauchy
integrals. Let pu be a Borel finite positive measure on 0D, the boundary
of the unit disc. For f € L2?(u), define the Cauchy transform of f
respect to u as

KN = [ Tz I due®). ze C\oD.

pl—e iz

It is an analytic function on C\ dD. We often (not always) use the
restriction of this function to D, its meaning being clear from the con-
text. If the measure p is given by a weight, du(e?®) = g(e'?) df /27 with
g € L' (= L*(df/2x)), g > 0, we simply write K, for K, . In particular,
if g =1 we write K.
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Let b € B(H®°). The real part of the function (1+b(2))/(1—b(2))
is (1 —1b(2)|%)/|1 —b(2)|? > 0, so it can be represented by the Herglotz
formula

1+0b(2) et? + 2 ; , 1+ b(0)
(1) 1_b(z):/aDeiQ_Zdub(69)+7’1m<1_b(0)> ’ ZEDv

where (e)2
’ 1—|b(e* do ’
d 10y _ ' d 1%
i) = [T (e 20 T s ()

with p1 a positive finite singular measure and

1P
TP

eL'.

First Clark [3] for b inner and then Sarason in general [17] proved that
the operator given by Vu(f)(z) = (1 — b(2))K,, (f)(2) (for f € L*(up)
and z € D), establishes an isometry from H?2(u) onto H(b), where
H?(up) is the closure in L?(pp) of the analytic polynomials (see [1]
and [2] for vector valued versions). Also, in [13] it is proved that if
p(e?) =1 — |b(e?)|?, then K, is an isometry from H?(p) (=

H?(p(e*®) df/27)) onto H(b). For a given b € B(H*), p, o and pp will
always denote the functions and measure associated to b as in the above
paragraph.

At this point two very different cases appear in the study of the
spaces H(b) and H(b), according to whether b is or is not an extreme
point of B(H°), or equivalently, according to whether p is not or is
log-integrable on 0D (see [11, p.138]). The reason for this distinction
is a famous theorem of Szeg6 ([11, p.49]), which asserts that for a
positive finite measure p on 0D, H?(u) = L?(p) if and only if the
Radon-Nikodym derivative of p with respect to the Lebesgue measure
is not log-integrable. Thus, if b is extreme in B(H*) (and only in
this case), H?(p) = L?(p) and H?(up) = L?(up). Notice that logo =
log p — log|1 — b|%, where log |1 — b|? is integrable because 1 — b € H*!
([11, p.51]). _

A multiplier of H(b) (or of H(b)) is a function m € H* such that
H(b) (respectively H (b)) is invariant by Ty, . If f € H?, then f € H(b) if
and only if bf € H(b). This immediately implies that every multiplier
of H(b) is also a multiplier of H(b). Also, for u an inner function,
the decomposition H(ub) = uH(b) + H(u) together with the fact that
uH?NH(u) = {0}, implies that every multiplier of H(ub) is a multiplier
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of H(b). It is known that both inclusions of multipliers can be proper.
D. Sarason [16] gave an example of a nonextreme outer function b for
which the multipliers of H(b) and H(b) are different. However, it is
unknown if the multipliers of 7(b) and H(b) can be different when b is
outer and extreme. If b is inner, H(b) is trivial, and it is easy to see that
only the constant functions are multipliers of 7 (b); otherwise there are
plenty of nonconstant multipliers (see [13]).

Information about multipliers for the nonextreme case can be found
in [5], [12], [14] and [16]. The main source for the extreme case is the
paper of Lotto and Sarason [13]. The latter case is the subject of this
paper, so we assume from now on that b is an extreme point of B(H>)
unless the contrary is stated. Also, we exclude the trivial case b inner.

Since in our case the backward shift S* is an invertible operator
on H(b) ([13, Theorem 3.6]), it is easy to prove that every multiplier
of H(b) is in H(b) + C. Since H(b) has no other constants except the
zero function, the above space is a one-dimensional linear extension of
H(b). If f € H(b)+C, the Cauchy representation of H(b) shows that for
z €D, f(z) = Ky(q)(z) + ¢ with ¢ € L?*(p) and ¢ € C. Now define the
following conjugation in H(b) + C, f.(2) = —K,(q)(2) + K,(q)(0) + <.
A straightforward calculation shows that if we think of f as defined on
C\ 0D, then

fe(2) = f(1/7).
Let us denote by M(b) and M (b) the algebras of multipliers of H(b) and
H(b) respectively. The above conjugation has the important property
that if m belongs to any of these algebras, then m, belongs to the same
algebra. In particular, m(z) and m(1/z) are in H* (for z € D), which
implies that m(z) = K,(q)(2) + ¢ must be bounded for all z € C\ OD.
In other words, the algebras of multipliers are contained in the space

K>®(p)={m=K,(q)+c: g€ L*(p), ceC, sup |m(z)] < +oc}.
z€C\oD

The space K> (p) is closed under multiplication, and if f, g € K°°(p)
then (fg)« = fi«g«. Moreover, if m = K,(¢) + ¢ € K*¥(p), the norm
M|l &> (p) = sup,eo\p M (2)| + llgllL2(p) makes K*°(p) a +-Banach al-
gebra. Summing up, we have the following string of inclusions

(2) Mo (b) © M(ub) C M(b) € M(b) C K=(p),

where u is an inner function and My (b) =), inner M (v0). If m belongs
to any of these algebras, the spectrum of m in the respective algebra is
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the closure of m(C\0D). Also, the operation m — m, is a multiplicative
conjugation in all the algebras (see [13]).

The paper is organized as follows. In Section 2 we give a charac-
terization of the group I' = {f € K®(p) : f. = f~1'} and we show
that if M; and My are any of the algebras in (2), then M; = M if
and only if M; NI' = My NT. This observation will be fundamental
in the sequel. In Section 3 we establish some known relations between
multipliers and weighted norm inequalities. We study these relations
in terms of our characterization of I'. Section 4 answers a question
by Lotto and Sarason by giving an example of b € B(H>) extreme,
such that M(b) does not coincide with K>°(p). We obtain a complete
characterization of M(b) for this example. In Section 5 it is proved
that Moo (b) is dense in M(b) and M (b) with the respective strong
operator topologies. Section 6 discusses the way in which the singular
component of yu affects the algebras M(b) and K>°(p). In Section 7 we
introduce a partial isometry from #(b) onto H(b), which is used to ob-
tain a sufficient condition for a function m € K°°(p) to belong to M(b).
It follows as a corollary that H(b) is imbedded in L?(p/|1 — ub|?) for
every inner function u. Also, we show several characterizations of the
equality M (b) = K (p). In particular, this turns out to be equiv-
alent to Moo (b) = M(b). In Section 8 we investigate how H(b), H(b)
and their multipliers are affected if we replace b by 7o b, where 7 is an
analytic authomorphism of the unit disk. In Section 9 we prove that
the multipliers of #(b) and H(b) coincide when b is continuous up to
the boundary of the disk. Finally, Section 10 contains some information
about the interaction between the conjugation * and the inner factors
of functions in any of the algebras M (b), M(b) and K*(p).

[ am indebted to D. Sarason for many valuable comments.

2. Some special functions in K> (p).

One of the main problems when studying the algebras of multi-
pliers is the lack of examples, in particular, the difficulty to exhibit
nonconstant elements of K°°(p). The next theorem will allow us to
construct functions m = K,(q) + ¢ in K*(p), where r = |gp| has a
preestablished behaviour. We need two lemmas.
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Lemma 2.1. Let f = K,(q)+c € H(b)+C. Then the (inner) boundary
function of f(z) — fi«(z) equals qp. Conversely, if f and g are analytic
functions on D such that f — g = P xqp, where P denotes the Poisson
kernel and q € L*(p), then in D,

f(2) = Kp(q)(2) + 9(0)

and
9(z) = K,(q)(1/2) + ¢(0) .

The lemma is just a particular case of Lemmas 10.1 and 10.2 in [13].
Lemma 2.2. Let s be a real valued function in L°°. Then

25| < lef — e < 2¢ells].

ProOOF. Both inequalities follow from simple calculations with the
Taylor series
|es _ e—s| 2n

2 @

n>0

If f and g are functions defined almost everywhere in 0D, and f
takes the the value zero whenever g does (except for a null set), the
quotient f/g makes sense and it is finite almost everywhere with the
convention 0/0 = 0.

Theorem 2.3. Let s be a real valued bounded function defined on
0D such that s?/p € L*. Then m = et € K>(p), where § is any
harmonic conjugate of s. Moreover, if m = K,(q) + ¢ with ¢ € L*(p)
and c € C, then

1) gp=(Im|*—1)/m.
2) Ifr=|qp|, then 2|s| < |r| < 2elsll<|s].

3) me=m"1.

Conversely, every m € K> (p) such that m, = m™1!

form with s = log|m]| .

1$ of the above
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PrOOF. The function m = e*1%* is invertible in H>. Hence, the
bounded harmonic function m—m ! is the Poisson integral of its (inner)
boundary function (|m|? — 1)/m. Write ¢ = (|m|*> — 1)/mp. Since

|(Jm|? — 1)/m| = |e® — e~%|, Lemma 2.2 asserts that
(3) 2Bl <o i o=l
p p

Therefore |q|%2p < C? (s?/p) € L' and consequently q € L?(p). By
Lemma 2.1, m = K,(q) + m~1(0) and m, = m™1.

On the other hand, if m = K,(q) + ¢ is any element of K°°(p) such
that m, = m™!, then by Lemma 2.1 the boundary function of m—m, =
(|m|* — 1)/m equals qp. Hence ¢ = (|m|*> — 1)/mp € L?(p). Since m is
an invertible function of H® then m = e*t% where s = log |m| € L°°.
A new application of Lemma 2.2 shows that the inequalities (3) hold

for these ¢ and s, thus s2/p < (1/4)|q|?p € L*.

Definition. Let b € B(H*®) and p(e?®) = 1 — |b(e'?)|?. If s is a
real valued, essentially bounded function on 0D such that s?/p € L,
we will say that s s an admissible function for p, or simply, that s is
admissible.

Theorem 2.3 implies that for every s admissible there is m =
K,(q) € K*(p), where = |gp| behaves like |s|. On the other hand, if
m = K,(q) + c is any element of K*°(p), then r = |¢p| is admissible.

We fix for the rest of the paper the notation £ for the set where p
does not vanish. That is,

E={® coD: p(e?) #£0}.

In Theorem 13.3 of [13] it is proved that m = K,(q) +c € K> (p) is a
multiplier of H(vb) for every inner function v if and only if ¢?p € L. If
we write r = |gp|, this condition can be rewritten as r2/p € L*°. Since
r is bounded, the above condition holds for all m € K*(p) if x,/p €
L% (where x,, denotes the characteristic function of E). Theorem 2.3
immediately implies that the converse also holds, because if x /p & L
then there is an admissible function s such that s2/p ¢ L.

Theorem 2.3 gives a characterization of the functions in

P={feK>(p): f.=[""}.
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Denote by M; and M5 two different algebras of the string of inclusions
(2), with M1 C M.

Proposition 2.4. My C My if and only if MoNT C M1 .

PROOF. Suppose that there is m € Ma\ Mj. Since m = (m+m,)/2+
i(m — my)/2i, then (m + my)/2 or (m — m,)/2i is not in M;. Hence
there is f € M2\ M; such that f = f,. Let @« € C\ R be a number
which does not belong to the spectrum of f. Then

f—« a—a

a
f—a:1+f—a

€ ManT)\ My .

For m € K*(p) denote by sp (m) the spectrum of m. Let M be
any of the Banach algebras M(b), M(b) or K*(p).

Lemma 2.5. Let m € M with sp (m)NoD = @. If f is a continuous
function on 0D, then

2 —1i6
My — € o df
I — * ' 10
£(m) o m—etf Fe) 2m

s in M.

ProoOF. The continuity of the map w—(m, — @)/(m — w) for w ¢
sp (m) = sp (my) assures that I¢(m) is well defined (because sp (m)NoD
= @), and that it is the limit (in norm) of

- —2mik/n
E : l 27r1,k/n my — € /
m — e2mik/n

3

Proposition 2.6. Let m € K>®(p) with |m|| < 1. If fi(e®?) = e'*?
(with k an integer) then

mE=2 (1 —mm,), if k>2,
It (m) =< —my, if k=1,
0, if k<0,

ProOOF. It is a straightforward calculation with the power series ex-
pansion (in e*?) of (m, — ™) /(m — e'?).
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Corollary 2.7. Let M be as in the preceding lemma. Then the span
of ' " M s dense in M.

Proor. The proof of Lemma 2.5 shows that if f is continuous on 0D
and m € M is such that sp (m)NdD = @, then I¢(m) is in the closure
of span(I’ N M). Given any m € M, take m! = m,/2||m.]||, where the
norm ||m.|| is taken in K°°(p), and f(e*) = ¢*. By Proposition 2.6,
—I (m') = ml = m/2||m.|. Hence, m = —2||m.]|| I, (m') is in the

=

closure of span (I' N M).

3. Weights and Multipliers.

In [13] some criteria are given for a function m € K°°(p) to belong
to M(b) or M(b). Those criteria are the starting point of most of the
sequel. The next theorem is a different formulation of Theorem 12.2
and Lemma 13.1 in [13].

Theorem 3.1. Let m = K,(q) + c € K*=(p). If r = |qp|, then
1) m € M(b) if and only if f € L?(r?/p) for every f € H(b).
2) m € M(b) if and only if f € L*(r?/p) for every f € H(b).

3) If m € M(b) and u is an inner function, then m € M(ub) if
and only if f € L?(r?/p) for every f € H(u) .

The advantage of this point of view for the present paper is that
Theorem 3.1 is given in terms of the admissible function r. Theorems
3.1 and 2.3 immediately yield the fact that M(b) (or M(b)) coincides
with K (p) if and only if for every admissible function r, f € L?(r?/p)
for all f € H(b) (respectively, for all f € H(b)).

By a standard argument involving the closed graph theorem, if any
of the conditions of Theorem 3.1 holds, then it holds with continuity.

Let 4 be a finite Borel measure on 0D and f € L!(u). Then, as a
function on D, K,(f) belongs to H? for 0 < p < 1; so it has a finite
nontangential limit for almost every e® € 9D (see [8, pages 17 and 39]).
Most of the time it will be convenient to think of K, (f) as its (inner)
boundary function. Since K, : L2(p)—H(b) is an onto isometry, then
for f = K,(q),

11325y = llallz2p) = llap*"?l 2 -



384 F.D. SUAREZ

Thus every f € H(b) can be written as f = K 1/2(h) with gp'/2 = h €
L? h =0 outside of E, and || |35 = |hllz2 = [|hllL2(x,,) . Conversely,
if h € L? then hxy, = qp’? with q € L%(p) (tak_e qg= hXE/pl/z), and
Ihx gz = llallp2(p)- Then K ,i/2 : L?(x ) —H(b) is an onto isometry.
On the other hand, if du, = odf/2m + dpg is the measure associated
to b by formula (1), then K,, = K, + K,,_, and V,, = (1 —b) K, is
an onto isometry from L?(pp) onto H(b). As before, we can replace
the operator K, on L?(c) by K,1/2 on L?(x,). We just obtained that
Wi = (1-0) (K,1/2 + K, ) is an isometry from L*(x ) ® L*(ug4) onto
H(b). With these facts in mind we can rewrite Theorem 3.1 once more.

Theorem 3.2. Let m = K,(q) + c € K*¥(p). If r = |qp|, then
1) m e M(b) if and only if K 12 maps L*(x ) into L*(r?/p).

2) m € M) if and only if K,/ maps L*(xp) into L*(r?/o)
and K, maps L*(pg) into L*(r?/o) .

3) If m e M(b) then m € M(ub) if and only if (1 —u) K,, maps
L?(py) into L2(r?/p), where p, is the measure associated to u in the
representation (1) .

PROOF. 1) and 3) are immediate. By Theorem 3.1 and the above
comment, m € M(b) if and only if for every ¢; € Lz(XE) and ¢y €

L (pg),
(1=0) (Ky12(q1) + Ky (g2)) € L*(r%/p) .

Since r2/o = r2|1 — b|*/p, this is equivalent to K, 1,2 (q1) + K, (q2) €
L?(r?/o), and clearly this is the same as 2).

Again, if any of the conditions of the theorem holds, it does with
continuity. Then, the problem of establishing whether a given m €
K(p) is a multiplier is transformed into a problem of weighted norm
inequalities. It is not surprising then that Helson-Szego weights play
an important role in the theory. A Helson-Szego weight is a function
v = e*t¥, where ¢ and 9 are bounded real valued functions on OD
and [|Y]lcc < m/2. The relevance of these functions is that they are
precisely the positive weights v in L! such that the Cauchy transform
is a bounded operator from L2(v) into itself [10].
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Theorem 3.3. Let r be an admissible function. If there is a Helson-
Szeqo weight vy, such that r2/p = Xg Vrs then K1/ is a bounded oper-
ator from L*(x ) into L*(r?/p). The statement also holds replacing p
by o everywhere.

PRrOOF. Take f € L?(x,); then fp'/? € L*(x,/p) C L*(r*/p), and
since fp/? = 0 outside of E, then fp'/? € L?(v,). By the Helson-Szegd
theorem K,i/2(f) € L?(v;), hence K,1/2(f) € L*(vxy) = L*(r?/p).
The same argument works for o.

Corollary 3.4. Let b € B(H®™). If there is a Helson-Szegi weight
v such that x,/p = Xy 7, then K, 2 maps L*(x) into L*(r?/p) for
every admissible function r. If du, = o df/2m, the same holds replacing
p by o everywhere.

PROOF. Since Helson-Szego weights are in L1, Xg/P € L (i.e. Xp 18
admissible). By Theorem 3.3 K12 maps L*(x,,) into L*(x,/p), and
since r is bounded, L?(x,/p) C L*(r?/p).

The assertion for o can be similarly deduced from Theorem 3.3
if we show that x, is admissible, that is, XE/P € L'. So we assume
that x /0 = x 7, with v a Helson-Szego weight. Clearly 1
Helson-Szegd weight, thus o2y = X /v € L, or what is the same, o €
L?(). Then, by the Helson-Szegd theorem, K (o) € L*(y) C L*(x57)-
Since dup = o df /2w, then by [15, III-7],

1s also a

K(0) = K, (1) = K, (1) = (1 = 0) (1 = 5(0)) (1 = b(0)b) ,
which implies that (1 — )~ € L?(x 7). Thus,
|]' - b|_2XE7 = |]' o b|_2 XE/J = XE/P
is in L', as claimed.
The statement for o in the above corollary already appears in [13,

Theorem 14.1] with a different formulation and a similar (slightly dif-
ferent) proof.
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4. An example.

It is asked in [13] if for b extreme, not an inner function, the al-
gebras M(b) and K°(p) coincide. We give here an example for which
those algebras do not coincide. We also obtain for this example a com-

plete characterization of the multipliers of H(b) among the elements of
K>(p).

When convenient, we identify a function f(e®?) defined almost ev-
erywhere on 0D with a function f(f) defined for almost every 6 €
(—m,m]. Let 8 be a function in L (of D). For f € L'(3) define the
Hilbert transform of f with weight 3 as

H(O) =t [ T B de.

e—0
e<|p—0|<m

We write H if 3 =1.

Proposition 4.1. In Theorem 3.2 we can replace K /> and K172 by
H /> and H1/2, respectively.

PROOF. We prove the proposition for K12, the proof for K ,i/» is the
same. Let f € L?(x); then for z € D,

Ko (£)(2) = ((Px fo?)(2) +i(Q * fo/?)(2) + (P * fo'/?)(0)),

2

where P is the Poisson kernel and () is its harmonic conjugate. Since
f and o2 are in L2, fo'/2 € L'; hence the boundary function of
(P x fo'/?)(z) is fol/2. The fact that f € L? and 7 € L™ now implies
that fol/2 € L?(r?/o). Also L%(r?/o) contains the constants because
r?/o € L'. That is, K,1,2(f) € L*(r?/o) if and only if the boundary
function of (Q * fo'/2)(z) is in L?(r?/o). Let us denote this boundary
function also by Q * fo'/2. A simple computation shows that

1
Qx fo!l? = — Houa(f) +dx fo'/?,
s
where d() = cotgf/2 — 2/0 is a bounded function, |d(0)| < 2/7 (see

[9, p. 105]). Hence |d* fol/?| < C||fo*/?||p1 < +00, and then d x fol/?
always belongs to L2(r?/o).
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For 6 € (0, 27| the function (1 — 6_1/9)1/2 is log-integrable, so that
there is b € H™ such that |b(e?)| = (1 — 6_1/9)1/2 almost everywhere
with respect to df. Furthermore, p(f) = 1 — [b(e?®)|* = e~1/¢ is not
log-integrable; thus b is an extreme point of B(H). We consider this b
for the rest of the section. It will be convenient to think of p as defined
on (—m, |,

o — e~ 1/0 if 0<f<m,
PO = vemsd) it pcp<o.

Theorem 4.2. For m = K,(q) +c € K®(p), put v = |gp|. If m €

M(b), there is a constant C > 0 such that

/ r2(#)et?dy < Ce, for alle € (0, 7).
0

Proo¥. For 6 € (0,7), the function r2(0) e*/¢ = r2(0)/p(0) € L', from
which it is immediate that the conclusion of the theorem is equivalent
to

1 €
4 lim = [ r*(0)e'?df < +oo.
(4) sup6_1>rf)1+€/0 r“(f)e +00

If (4) does not hold, there are v, 0 < v < 1, and two sequences
(o), (Br) C (0,m) such that oy < v0 for all k, ap—0, Br—0 and

1 Bk
/ r2(0) et/ d) — +oo.
Br — ak Ja,
Taking suitable subsequences of () and (f) we can also assume that
Bri1 < ay for all k. Let (s3) be a sequence in £ (the space of absolutely
summable sequences) such that s > 0 for all &k, and

(5) Z Sk ! /ﬁk r2(0) et/? df = 400

et Br — ak Ja,

Take

dk:<ﬁk?€ak)l/2 for k>1,
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and consider the function

PO = diX g 0

k>1

Then p~'/2f € L?, because

[ a1y S (5 )

—r —7<H<0 et Br — ag
= el/7 |(sk)]|in < 400

By Proposition 4.1, if we show that H,/:(p~/2f) = H(f) does not

belong to L2(r?/p), then m is not a multiplier of #(b).
A simple computation shows that the Hilbert transform of

X(— e —an) is log(|0 + Bk|/|0 + axl), and this function is positive for
6 > 0. Thus, for # > 0 we have
0 + Bk
H 0) > d; 1 >1.
(6) (f)(0) > k0g9+ak’ forall kK >1

In particular, (6) holds for o) < 6 < (. Besides, if a, < 0 < (g,
(20) " > (0 + ag) ™" > (B + ax) "', and consequently

9+ﬁk_1+ﬁk—ak>1+ﬁk—ak_ 2 B

0+ ap 0 + ay, Br+ar B+ ax
2 > 2 > 1
= =c :
L+ag/Br = 1+7y
Therefore,
0
(7) log 9152 > logc, for all 0 € (ag, k) -

Now (6) and (7) yield

Pr Bk
/ H(f))?r2e? dg > / 2 log? (w) 2 01/0 gp
(8) Uk 0+«

(677 k

Sk 2 Ok 2 1/0
> log c/ r2el’?do .
Br — ag ok
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Then,

i Bk
[ R a2 06 3 [T = o
0 et Br — ak Ja,

by (8) and (5). That is, H(f) & L*(r?/p) .

Theorem 4.3. Form = K,(q) + c € K®(p), put r = |qp|. If for some
constant C' > 0,

/ r(9)261/9d9§05, forO<e<m,
0

then m is a multiplier of H(b).

PROOF. By Proposition 4.1, we must show that H .2 (f) € L*(r?/p)
for every f € L?. For f € L2, the function fp'/2? is in L?, and the
Hilbert transform maps L? into itself (see [9, III}), so that H,i,2(f) €
L?. Besides, for —m < § < 0, p~1(0) = /7% is bounded, and so is
r2/p. Thus H,/(f) is square integrable with respect to the measure
r2/p df in (—m,0). So, we only have to show the square integrability in

(0, 7). We can assume f > 0. Write f = f1 + fo, where f; = f)((_7T 0)
and fo = fx(oﬂ). For 0 <0 <,

H,po(f1)(6) = limg / hig)p(e)

e—0 9—(,0 14
e<|p—0|<m
0 Fule) p () J
= - ay
- 9_(10

Since f1 > 0, this equality shows that H,,.(f1)(f) is decreasing for
0 < 0 < m. Then for A > 0, the set

Ex=1{0€(0,7): [H,u:(f)(0) > A}

is some interval (0,ay) with 0 < a) < 7 (the possibility E\ = @ is
covered by ayx = 0). Denote by v the measure on (0,7) defined by
dv = r2(0) /% df. For a (Lebesgue) measurable set F' C 0D we write
|F'| for its Lebesgue measure. By the hypothesis of the theorem,

ax
v(Ex) =v((0,ax) = / r2(0) e/ do < Cay = C|Ex|.
0
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Hence,
/ |Hp1/2(f1)|2dz/_/ 2Av(Ey) dA
0
<c/ IN| By d) = 0/ L (F)P o,

and the last integral is finite because fip'/2 € L. For f, and 6 € (0, )
we have

Hyi 2 (f2)(8) = H(f2(p)e™/*%)(6)
H[f2() (7122 — e712))(0) + H(f2(p) e7/*)(6)
I

1(0) + 12(0) .

The function I5(#) is equal to e~ /20 H(f,)(6), hence

| m@F e a = [ (o) e ds

0 0
< |2 [[H(f2) |72 < +o0.

Finally,

no)-lm [ Re)NEo B,

e<|p—0|<m

where
e—1/2¢ _ o—1/26

N(p,0) =

0—¢
can be continuously extended to [0, 7] x [0, 7], and therefore is bounded.
Hence |I1(0)| < C||f2llzr < 400, which implies that I;(f) is square

integrable with respect to the (finite) measure r2/p df = r2e'/? df in
(0, 7).

For our example, Theorems 4.2 and 4.3 give a complete charac-
terization of the multipliers of H(b) among the elements of K (p).
However, it is not clear at this point that there are elements in K°°(p)
which fail to satisfy the condition of the theorems. Theorem 2.3 will be
the fundamental tool to construct such an element.

Corollary 4.4. There are elements in K°°(p) which are not multipliers

of H(b).
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PROOF. If s is an admissible function for p, then Theorem 2.3 asserts
that m = e57*% is in K°°(p). Besides, if

1 >
lim —/ s2(0) e/ df = +o0,
e—0 € 0

part 2) of Thegrem 2.3 together with Theorem 4.2 immediately implies
that m ¢ M(b). A straightforward calculation shows that if 0 < a <
1/2, then

o—1/20
5(0) = ga ifo<d<m,
0, it —m<6<0,

does the job.

If we take as b an outer function such that |b(e*)| = (1 — 6_1/9)1/2

almost everywhere with respect to df/, then b is invertible in H°°. Hence
by [13, Theorem 7.1], H(b)=H(b).

5. Strong operator topology.

Let f and ¢ be measurable functions on dD. Denote

1 2m 1/2
Jo(f) = llafllz2 ) = (%/0 |qf|2pd9>

Notice that if K,(q) + ¢ is in M(b) (or in M (b)) then by Theorem 3.1,

e
Jo(f) < oo for all f € H(b) (respectively f € H(b)). Actually, the

above conditions are equivalent.

Lemma 5.1. Let m = K,(q) +c¢ € M(b) and f = K,(g) € H(b).
Then

||mf||7{(3) < Jo(f) + Jm. (9) -

PROOF. By Lemma 2.1, mf = K,(h), where h is the boundary function
of mf —m,f,. This boundary function is

Thus [[mf |l = laF + g2 < To(F) + Jrm. (9)
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Lemma 5.2. Let m = K,(q) +c € M(b), f € H(b) and g be the
function in L*(p) such that Tpf = K,(g). Then

Imfllww) < lImfllaz +2J4(T5f) + Jm. (9) + Jo(f) -

PROOF. The equality [[mf(|3,,) = [mfllZ7. + ||Tg(mf)||i(g) implies
(9) M lnw) < [lmfllaz +11T5mf)l g -

We have

(10) Ty(mf) = mT5f + Pr{(bf — Py (bf)) m},

where Py is the orthogonal projection from L? onto H?. The function
h=(1-P)(bf) is in H?, so Lemma 12.1 of [13] says that

P {(bf — Py (bf)) m} = Py (R(K,(q) + ) = K, (hg)
Thus

1P+ (hmm) |3, 5y = [1hall 2 o)
(11) = [|(bf — P1(bf)) allz2(p)
< Jo(f) + Jo(T5f) -

Besides, m € M(b) (because M(b) C M(b)), so by Lemma 5.1,
(12) ||ngf||H(5) < Jo(T5f) + Jm.(9) -
Therefore (9), (10), (11) and (12) yield the conclusion.

Theorem 5.3. M, (b) is dense in M(b) and M(b) with the respective
strong operator topologies.

PrRoOOF. We prove the theorem for M(b); the same argument works
for M(b). Let I' = {m € K=(p) : m, = m~'}. By Corollary 2.7,
span (I' N1 M(b)) is dense in M (b) with the operator norm. So, it is
enough to prove that every m € I' N M(b) can be approached (in the
strong operator topology of M(b)) by a sequence (m,,) C I' N M (b).
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By Theorem 2.3, m = e*t%® with s some admissible function.
Consider
) {s(ei%, it [s(e)] < n pH/2(e)
sp(e"”) = . . . .
V), [s(e)] > n g2,

Since s2/p < n?, my, = e»T¥n is in M (b). Clearly s,—s in L?, so
by the continuity in L? of the harmonic conjugation, also §,—3§ in L2.
Taking a suitable subsequence, we can assume that s, (e?®)—s(e?) and
5, (e?)—5(e') for almost every ¥ € OD.

By Theorem 2.3, m = K,(q) + ¢ with ¢ = €'*(e®* — e™*)/p and
c € C; and m, = K,(q,) + ¢n with g, = e“n(e®» — e™%)/p and
¢, € C. Hence, m,—m, ¢,—q and (my). = m, '—m~1 = m, almost
everywhere. Theorem 2.3 also shows that

gu] < 2elont 5l <o st 190 st

Thus |¢ — gn| < Cg| for all n > 1, where C > 0. Since m € M(b),
then hq € L*(p) for any h € H(b). Hence, if f € H(b) then J,_,, (T5f)
and J,_4, (f) tend to zero when n—oo by the dominated convergence
theorem. Besides,

max{ || (mn ) «[loo s [|Mnlloc} < ellslloo

So, if T;f = K,(g), then Jy,,__(m,.). (9) and ||(m—my) f|| z> also tend to
zero when n—o00 by the dominated convergence theorem. Thus, Lemma
5.2 shows that |[(m — mp) f||2@)—0.

6. The singular component of the measure ;.

It is natural to ask how the singular component of the measure
p affects the algebras M(b), M(b) and K> (p). We address now this
problem. Let b, by be extreme points of B(H*), and u be an inner
function such that pup = pp, + pty, - Since w is inner, it is clear from the
Herglotz representation (1) that p, is a singular measure. Conversely,
every Borel positive finite singular measure is associated (via the Her-
glotz formula) to an inner function. Put p; = 1—[b1]?, p = 1 —|b|? and
o for the Radon-Nikodym derivative of p, (and of up, ) with respect to
the normalized Lebesgue measure. In order to simplify notation, we as-
sume without loss of generality that the respective additive imaginary
constant for by, b and u in formula (1) is trivial.
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Lemma 6.1. Let g € L*(p) and q1 € L*(p1). Then K,(q) = K,, (q1)
if and only if gp = qup1 -

PROOF. Suppose that K(gp — q1p1) = 0; then gp — q1p1 € Fz, so it
must be trivial if it is not log-integrable. The equality

P1 _ P
=0

11— b2 TEE

implies that the sets E = {z € 0D : p(z) # 0} and {z € 0D : p1(z) # 0}
coincide almost everywhere. Then,

p\1/2
ap — qip1 = (qpl/z(a) — q1p1/2> pi/?

1-b
_ 1/2 . 1/2 1/2
(QP 1_b by ‘ q1p1 ) P1

— (qp1/2|1 —b| _q1p1/2|1 _b1|) 0.1/2 _ }?,0.]-/27

where the function h is in L2. Thus, loglgp — qipi| < log™ |h| +
(1/2)logo is not integrable and the lemma follows.

Lemma 6.2. Let b, by and u be as before. Then

1-0 1-0b
2 =3-b-2
) ]-_bl ].—’U,7
. 1—0b; 1—-b
2 =1+5b 2 .
) 29—y =l+h+29—)

PrOOF. Both formulas are straightforward calculations from the iden-
tity

1+b 1+0b + 14+u

1-b 1-b; 1-u

given by the Herglotz representations associated to b, b; and w.

Theorem 6.3. Let b, by and u be as before.
1) Letm = K,(q) € K=(p), |gp| =r. Then

m € K®(p1) if and only if (1 —u)~' e L?*(r*/0).
2) Let mq = K, (q1) € K®(p1), |qip1| =r1. Then

my € K®(p) if and only if (1 —u)~' e L?(r3/0).
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Proor. 1) Let m = K,(q) € K¥(p). If m(z) = K,(¢)(2) =
K, (q1)(z) + ¢, with ¢1 € L?(p1) and ¢ € C, then letting z—oo0 we
obtain that ¢ = 0. Hence K,(¢) = K,,(¢q1), and Lemma 6.1 says that
this happens if and only if r = |gp| is admissible for p; (so g1 = ¢ p/p1).
That is, if and only if 72/p; € L. Now

r2_pr2_‘1—b‘2r2 ‘3—b 1—0b27r?
l1—by

1 P11 p P

where the last equality follows from i) of Lemma 6.2. Since (3 —b)/2 is

bounded and r%/p is in L, we have that 72/p; € L! if and only if

1—b272
‘ “ert

p

or, what is the same, if and only if (1 —u)™! € L?(r?/co). Assertion 2)

follows in the same way using formula ii) of Lemma 6.2.

Y

2 1-u p

1—u

Theorem 6.4. Let b and by be as before. Then M(b) C M(by) .

PRrROOF. Let m = K,(q) + ¢ € M(b). We will show first that m belongs
to K*(p1). The measure pp, decomposes as duy, = odf/2m + dpg |
where I, is the singular component of . On the other hand, u,

can be decomposed as dj, = avdpg + dpo, where o € Ll(,usl), a>0
is the Radon-Nikodym derivative of pu, with respect to fhg, s and o
is singular with respect to fhg, - These decompositions together show
that the measure dv = (1 + «) dszl + dpg is the singular component

of dup. Put r = |gpl|; since m € M(b), Theorem 3.2.2) asserts that
K,(f) € L?(r?/o) for all f € L?(v). Let x be a function which takes the
value 1 almost everywhere with respect to du s, and the value 0 almost

everywhere with respect to dug, and consider f = a(1+a) tx+1—x.
Since a > 0 and pg and po are finite measures, then f € L*(v) (f

is bounded almost everywhere with respect to dv). Thus K,(f) is in
L%(r?/o). But

Kv(f) = K(l—f—a),usl (a(l + a)_1X) + Kuo (1 - X)
— Ko () + Ky (1)
= Koy (1) = Kp (1),

Hence K, (1) € L*(r?/o). It is well known [15, III-7] that

(13) (1 —u) Ky, (1) = (1 —u(0))~" (1 - u(0)u).
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Since |(1 — «(0))"}(1 — u(0)u)| is bounded from below by a positive
constant, we obtain that (1 —u)™! € L?(r?/o). Now Theorem 6.3.1)
says that m € K (p1) .

The fact that m € M(b) implies by Theorem 3.2.2), that K 1/2(f)
€ L*(r?/o) for all f € L?(xy). So, by the same theorem, in order
to prove that m € M(bi) we must show that if g € L*(pg ) then

K, (g9) € L*(r*/o). Consider the function g(1 + )~ "x. Since

lg(L+a)" xPdv = |g[* 1+ |72 (1 + @) dug,
= lg[* (L + )" dp,, <|g|*dpg,

then g(1 + «)~x belongs to L?(v). Therefore, since m is a multiplier
of H(b), Theorem 3.2.2) says that K, (g(1 + «)~'y) is in L%*(r?/o);
but Ky (g (1+ ) 7'%) = Katap, (9(1+a)7") = Ku_ (g), and the
theorem follows.

Two particular cases are of special interest in Theorem 6.4, when
iy, 1s absolutely continuous, and when g, is singular with respect to
the singular component of up, (i.e. o = 0 in the proof of the theorem).
If by is a nonextreme point of B(H®) and py, is absolutely continuous,
Theorem 6.4 was obtained by Davis and McCarthy [5].

Theorem 6.5. Let by be an extreme point of B(H*) and pg = py +
<o+ py be a purely atomic measure, where each p; (1 < 5 < n) is
an atom at the point w; = "9 € 0D (with wj # wy if j # k). Let
b € B(H™) such that py = pp, + pg. If m = K, (q1) + ¢ (with
q € L*(p1), c € C and r = |qp1|) is a multiplier of H(by), then the
following conditions are equivalent.

1) me K>(p).
Ky (1) € L*(r?/o) .
K, (1) € L*(r?/o) for every j .
m e M(b) .

" Fi(0) = (0— ;)2 r*(e’®) /o () € LM[dO, (p; — 7, 0 + )] for
all j .

ProOOF. 1) if and only if 2) is in Theorem 6.3.2), using again that if
w is the inner function associated to pg , then (1 —u)~" behaves like
K, (1) (formula (13)).
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2) implies 3). Let V' C 0D be an open neighborhood of w; such
that the closure of V' does not contain any of the w;, 2 < j <n. Then
K, (1) is continuous on 0D \ V' and therefore it is square integrable
with respect to the measure 72/ dfl there. On the other hand,

Ky, (1) = Kus (1) - ZKM (1),

and since Y7, K, (1) is continuous on V and by hypothesis K, (1) €
L3(r? /o), then K, (1) is also square integrable with respect to r2/o df
in V. Analogously, K, (1) € L*(r?/o) for all 2 < j <mn.

3) implies 4). Hypothesis 3) clearly implies that K,, (f) € L*(r?/o)
for all f € L?(ug). In particular 2) holds, and since 2) implies 1),
m € K*(p). Since m € M(by), by Theorem 3.2.2) and the comments
preceding it, K, (h) € L*(r?/o) for all h € L*(up,). The decomposi-
tion py = pp, + pg now clearly implies that K, (f) € L*(r?/o) for all
f € L*(up). Hence by Theorem 3.2 again, m € M(b).

Obviously 4) implies 1). To prove the equivalence between 3) and
5), write aj = ||pj]]. Then K, (1)(e”) = a;(1 — w;je*) ™. Therefore,

i ipj _ Lif|— - -1
K, (D(e)]* = o *[e"r — €] = |ag[* 271 (1 = cos(0 — ;)

The equivalence now follows from the fact that 1 — cos(f — ¢;) behaves
like (0 — ¢;)? when |0 — @;| < 7.

7. A partial isometry from 7(b) onto #(b).

If ¢ and f are measurable functions on 0D such that ¢ f € L2, we define
T,(f) = Py(¢f), where P, is the orthogonal projection from L? onto
H?. Hence T, is an operator defined on the space {f measurable: pf €
L?}. If ¢ € L, My, will denote the operator on L? of multilplication

by .

Lemma 7.1. The operators T| 3K 1/2 and K, 1/2M,_3 are contrac-
tions from L*(x ) into L* and coincide.

PROOF. Notice that since (1—b) K,1/2(f) € H(b) C H? for f € L*(x),
then (1 —b) K,1/2(f) € L?, so T,_3 K,1/2 is well defined on L*(x ).
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Let f = (1 —b)g, with g € L*(x ), then

_ 1-b
T 5K (1-0)g) =T, 5K, (m 9)

:KF”Chi?|@

= Kal/z((l - 5) f)
- Kgl/z M1—3f7

where the second equality follows from [13, Corollary 3.5]. Hence both
operators coincide on (1—b)L*(x ;). This is a dense subspace of L*(x ),
because if h is orthogonal to this subspace, then for all g € Lz(XE),

0= (hv (1_E)g> = ((1_b)hvg>7
which implies (1—b) hx, = 0, so h = 0 almost everywhere with respect

to df on E. Therefore, we only have to show that both operators are
contractions. Let f € L?(x,); then

IT, 5 Kgrre(f)llzz = 1PL[(1 = ) Kqpur2 ()]l

<1 =) Kgara ()12
= [|(1 = b) Kpur2 ()| a2
<11 = b) Kpus2 ()l
= [[fllzz(x,) -
Also,
B 1-b
||K01/2((1—b) f)”L2 = Kp1/2<|1_b| f) L2
1-b
= Kp1/2(|1_b| f) e
1-b
- }gﬂ”(|1—b|f> #(E)
1—b
- m f‘ L2(x,) N ||f||L2(XE) '
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The decomposition of the measure p, = o df /27 + dpg induces an
orthogonal decomposition L?(up) = L*(0)®L?*(p), which according to
our treatment we identify with L?(x )@ L*(ug) (via the onto isometry
(f,9) — (6'/2f,g)). This decomposition translates into an orthogonal
decomposition for H(b) as H(b) = H(b)” & H(b)°, where

H(b)7 = (1= b) Kpu2(LP(xp))
and

HB)® = (1= b) Ky (L (ng))-

Theorem 7.2. T\, ),y is a partial isometry from H(b) onto H(b)
with initial space H(b)”. Further, if g € L*(x ),

. 1-0
T(l—E)/(l—b) (Kp1/2 (g)) = (1 - b) Koy (m g) .

PROOF. First we show that #(b)° is contained in the kernel of
T(1_%)/(1—1)- Denote by u the inner function associated to pg in (1).

Let f € H(b)®; then there is g € L?*(pg) such that

f=( -0 K (9)= 2 (1 -wEK, (9) e ~—2

1—wu 1—u

Besides, [|fll#@) = l9llz2(uy) = 11 —w) Ky (9)|l#u)- We can now
begin with g € L?(ug), obtaining that

B 1-b
T l-u

H(b)® H(u).

It is well known that the span of the functions

L u@u(e?)

ko(€) 1—wet

, webD,

is dense in H(u). Thus the span of the functions (1 — b) (1 — u) "1k
(w € D) is dense in H(b)°. Hence, it is enough to prove that these
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functions belong to the kernel of T (1 5)/(1—-b)" Let us denote by z the
function z(e*) = €*. Then

Ta-sa- b)(l LE) =P+<<1<I_5)u(>1<lf;"l)>“>
(£

:P-f—(y)v

where

B (1-05)(u—u(w))=z
(1—-u)(z—w)
In (15, ITI-11] it is proved that (1—b) (1 —u)~! belongs to H?; therefore

g € H§ and consequently Py (g) = 0. Now let f € L?(x,). By Lemma
7.1,

Tty —p) (L = 1) Ko12(f)) = Ty _5 K12 (f) )

_ 1—-0b
= Ko (1=0) 1) = K (=57 1)

and clearly

=5 71.ee

That is, Ty _g/(1_p) maps ”H(b)a isometrically into H(b). To see that
this map is onto, let g € L*(x,) and take f = (1 —b)g/|l —b|. By
Lemma 7.1,

3= [ fllz2(x,) -

1-0J?
T(l—E)/(l—b) ((1 - b) K01/2 (f)) = K01/2 (| | ) = Kpl/z (g) .

This also proves the formula for T(*1 B)/(1-b) "

Corollary 7.3. The measure jp is absolutely continuous if and only if
T(l—B)/(l—b) (1T, T3)1/2
is one-to-one (from H? into H?).

Proor. By Theorem 7.2, u; is absolutely continuous if and only if
T(1_E) /(1_b)|H(b) is one-to-one. Hence, the corollary will follow if we
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show that (1 — T3, T5)1/2 is one-to-one. Since b is not an inner function,
|52 < 1|0 flle < ||f]lz= unless f = 0. Hence, f # T,T5f if f #0.

Theorem 7.4. K, maps L*(ju,) into L*(p) .

PROOF. Let h € L?(up), and consider f = (1—0) K, (h) € #(b). Then
T3 f is in H(b), and

Tf = Py ((b—1+1—[b?) K,, (1))
— Py (1 =) K,y (1)) + P+(pKub(h>)
= T 5,00 f + K(pKu ().

Notice that p |Ky, (h)| < 2[(1 —b) K,,(h)| € L*. By Theorem 7.2 the
first summand is in H(b), therefore K(p K,,(h)) belongs to H(b), too.
Then there is ¢ € L*(p) such that K (p K, (h)—pq) = 0, or equivalently,

—2
pK,,(h)—pqge H,. Now,

1
log |p K, (h) = pal <log™ /2 Ky, (h) — p*/? q| + 5 logp,

and since p is not log-integrable, p K, (h) — p ¢ cannot be log-integrable
if we prove that p'/2 K, (h) — p*/2q is in L. The function p'/2q is in
L2. Besides

1/2

1/2 K h)| = 14

(1= b) Ky, (h)] = o2 | £,
which is in L! because it is the product of two functions of L?. Hence

K, (h)(e?) = g(e?) almost everywhere with respect to the measure
p(e®) db, so K,,(h) € L*(p).

A direct consequence of the above theorem is that V3, = (1-0) K,
maps L2(up) into L%(o), in other words H(b) C L?(c). Let us return
to the multipliers.

Corollary 7.5. Let m = K,(q) +¢c € K®(p), and put r = |gp|.
A sufficient condition for m to be a multiplier of H(b) is that there

exists a constant C > 0 such that r?/o < Cp (or what is equivalent,
lglx, < c/?|1 — b|='x , where E = {z € 0D : p(z) #0}) .
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PrOOF. By Theorem 3.2, m € M(b) if and only if K, (h) € L*(r?/o)
for all h € L?(up). By Theorem 7.4 this holds if L%(p) C L2(r%/o),
and this is clearly equivalent to r2/0 < Cp for some constant C' > 0.
Besides,

2 2

< Cp if and only if |q|2p2:r2§0p0:0|1p7b|2,

r
o

which is equivalent to

X
" xp < TR
and X
< 01/2 E
gl x5 < 1oy

REMARK 7.6. If s is any bounded real valued function which satisfies
s?/o < C p for some constant C' > 0, then s?/p < Co € L!, that is, s
is admissible for p. Hence m = et € K*(p), and if m = K,(q) + c,
then r = |g p| behaves like s. Therefore the corollary asserts that m €
M(b).

The unexpected condition for multipliers given by Corollary 7.5
is not always necessary. For instance, let b be an outer function such
that p(e?®) = e~ for § € [—m, 7). Then b is continuous on OD
because b is outer and |b] is continuously differentiable on OD. Moreover,
|b(1)] = 1, so we can assume multiplying by A € C with |\ = 1 if
need be, that b(1) = —1. The function p'/2 is admissible, even more,
m = "+ ¢ Moo (b) because (pl/z)z/p = Xy is bounded (see
Section 2). If m = K,(¢q) + ¢, r = |¢ p|, and r satisfies the condition of
Corollary 7.5, then also p'/? satisfies this condition, that is, p/o < C p.
This is equivalent to |1 — b(2)|> < C (1 — |b(2)]?) for all z € OD. And
this inequality obviously does not hold for z close to 1.

Corollary 7.7. Let b be an extreme point and u be an inner function.
If oup = p/|1 — ubl?, then H(b) C L*(oyp) -

PROOF. If s = p*/25/? then s2/o,p = p, so by Remark 7.6, m = e5+i%

belongs to M (ub). In particular, m is in M(b), thus

(1-0)K,,(f) € L*(s*/p) = L*(owp) for all f € L*(up) -
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That is, H(b) C L?(ousp).

The idea of the example in Remark 7.6 will be exploited more in
the sequel. For expository reasons, it will be convenient to prove the
next lemma in C; = {z =z +iy € C: y > 0}. Of course, the result
also holds in the disc (with obvious translation).

Lemma 7.8. Let (o) be a sequence of real numbers such that oy, # o
ifk # j andlim oy, = a, with o # oy, for all k. Let (wy) be a sequence in
0D and (gr) be a decreasing sequence of positive numbers that tends to
zero. Then there exists an interpolating Blaschke product B, continuous
on the closure of Cy except in z = «, such that |B(ay) — wg| < e for
all k .

PROOF. We can assume ¢, < 1 for all k. Take d; = (1/4) infjz1 |oy —
aj| and r1 = e1d1/22. Counsider the half circle S; = {z € C4 : |z—a1| =
r1}. There is z; € Sy such that

Arg (al — Zl) — Arguw,

ap — 21

€1
< 9
where Arg is the argument taken in [0,27). Hence, if b1(2) = (2 —
z1)/(z—%1) then |by (1) —w1| < €1/2. If x € Ris such that |z —ay| > dy,
then Arg ((z —z1)/(x —Z1)) belongs to the union of the intervals (0, a1)
and (27 — ay,2m), where a; = 2arctan(ry/dy) < 2ry/d; = e1/2. We
can repeat the process with ap, taking do = (1/4)inf;z |as — ],

ry = €2dy /2 and by (as) wo instead of wa. So, we obtain a point 2o €
So ={z € Ct : |z — 2| = 12} such that if ba(z) = (z — 22)/(z — Z2),
then .

|b2(r2) — bi(av2) we| < 32 :
and for z € R with |z — ag| > da, Argby(z) € (0,a2) U (27 — ag, 27),
where ag < 2715/dy = 52/22 . Consider the Blaschke product By = by by.
Then,

0 | B2 () — wa| = [b2(2) bi(az) — wy )
= |b2(2) — w2 ba(a2)| < 7
and
|Bo(a1) — w1 < |ba(ay) by(ar) — ba(ay) wi| + [b2(ar) wy — wy
2) = [bi(a1) — wi| + [b2(a1) — 1

€1 €1 €2
< = < =4 =
g Taz< 5+ 5>
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where (2) holds because |a; —asz| > da. Repeating this process k times,
where dj, = (1/4) inf; 2, |ag — aj|, 1 = exdy /25T and wy, is replaced
by Bj—1(ak) wk, we obtain a point 2z, € S, = {z € C4 : |z —ax| =11}
such that if By = bpBr_1, then

€
(1) |Bi (k) — wi| <
and
€ . €j € :
(27) |Bk(aj)—wj|<2—;+2;ii+---+2—Z, for all j < k.

For j < k the fact that (g,) is a decreasing sequence implies

k k
€ 1
(14) |Bk(0£j)_wj|<E:z_z<€j§:2_n<5j-
n=j n=j

The sequence (By) obtained in this process is the sequence of partial
products of B(z) = [[r—(z — #zk)/(# — Zx), where the points z; are as
above. The usual factors used to make the arguments convergent are
not required because {z : k > 1} is bounded.

Simple estimations show that |z — z;|/|z — Z;| > 1/3 for k # j.
Since Imzp < 1, < C27F for some C > 0, it is clear that B(z) is
an interpolating Blaschke product (see [9, VII)). It is well known that
the set of continuity on C; of a Blaschke product coincides with the
complement of the limit set of its zeros in R. Then B is continuous on
Cy \ {a} and by (14), |B(ag) — wi| < e for all k > 1.

Theorem 7.9. The following conditions are equivalent.
1) Meo(b) = K>=(p).
2) Moo(b) = M(D).

3) There is a constant § > 0 such that p(e”) > 6 x , (") almost
everywhere with respect to df .

4) For every inner function u there is a constant C' = C(u) > 0

such that ,
1 — [b(e”)P?
11— u(e?) b(e??)|?

almost everywhere with respect to do .

<C
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5) For every inner function u there is a constant € = e(u) > 0
such that _
i 1— [b(e”)?
e () S Ty e

almost everywhere with respect to df .
6) Condition 4) holds with C' independent of u .
7) Condition 5) holds with € independent of u .

PROOF. The equivalence of 1) and 3) is in the comments following the
definition of admissible function (Section 2). The string of inclusions
(2) in Section 1 clearly shows that 1) implies 2).

2) implies 4). Take s : OD—R bounded such that s?/p < Co
(where C' is some positive constant). As we pointed out in Remark 7.6,
s is admissible and m = e*** = K,(q) + ¢ belongs to M(b), where
r = |q p| behaves like s. Hypothesis 2) says that m € M, (b). This
is equivalent to the boundedness of s2/p (Section 2). So, s2/p < Co
implies that s2/p is bounded. Take s = p'/20'/2 = (1 — |b]?)|1 —
b|=! < 2. Then s*/p = po/p = o, and consequently s/p = o must be
bounded. We arrived to this conclusion only assuming M, (b) = M (b),
and if this happens, then M, (b) = M(ub) for every inner function
u. Besides, the characterization of M (b) given in Section 2 is not
sensitive to the inner factor u, thus My (ub) = Moo (b) = M(ub).
Therefore o, = (1 — [b?)/|1 — ub|?> must be bounded for every inner
function wu.

4) implies 3). If 3) does not hold, there is a positive decreasing
sequence (gx) which tends to zero, such that the sets

Ty ={z2€0D: ex, <p<eg_1}, k>2,

all have positive measure. Then there are points wy € 0D such that
b(z)
Ek:{ZETkZ ‘——wk‘ <€k}
[b(2)]

also have positive measure. For each k£ > 2 let «aj be a density point of
Ej . By compactness we can extract a convergent subsequence of (ay),
we also denote this sequence by (ay). Even more, we can assume that
ay oy for k 4 and limay # a4 for all j. By Lemma 7.8 there is an
interpolating Blaschke product B continuous on {«y : k& > 2} such that

|B(ay) — wg| < ek, forall k > 2.
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Since «y, is a density point of Ej, any open arc-interval centered at ay
small enough satisfies |ExNIg| > |Ix|/2. Furthermore, by the continuity
of B in «ay we can assume (shrinking Iy if necessary) that

|B(2) —wg| < €k forall z € Iy and all k > 2.

Hence, for almost every z € Ej N Iy,

|B(2) b(2) — [b(2)] < |B(2) b(2) — wi. b(2)[ + ‘Wk b(z) —

(15) <|B(z)—wk|+‘wk—%‘<2sk.

The first summand is smaller than ¢ because z € I, and the second
because z € Fy . Then, for almost every z € Ex N I,

1= B(2)b(2)| < |1 = [b(2)[| + [ [b(2)[ — B(2) b(2)]
< p(z)+2¢e, < 3p(z),

because since z € Ey, N I, C Ty then e < p(z).
Hypothesis 4) says that there is a constant C' = C(B) > 0 such
that for almost every z € F,

C™hp(z) < 1= B(2) b(2),

and since Ty C E this equality holds in Fy N I. Therefore, for almost
every z € B N Iy,

C™hp(2) < 1= B(2) b(2)|* < 3% p(2).-

Then (9C)~! < pin Ey N I, and since E, N I C Ty, also (9C)~1 <
p < €k_1, which contradicts the fact that (¢j) tends to zero.

5) implies 3). We assume that 3) does not hold and retain the
notations of the above proof. Consider the Blaschke product —B. For
almost every z € Ex N I},

b(2) (2)
1+ B()b(2)| > | [1+b(2) o [~ Joz) o (=) B(3)||
(16) =[1416(2)| = | [b(2)[ — b(2) B(2)]|

1
>141b(2)] — 2 > 3
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if e, < 1/4 (i.e. for k big enough), by (15). By hypothesis there is
e = ¢(B) > 0 such that

11+ B(2)b(2)]> < et p(2), for almost every z € E.

In particular this holds for almost every z € Ey N I, and since p(z) <
€k—1 in this set, (16) implies

1
1 <1+ B(2)b(2)]> <e tp(z) <elers

for almost every z € Ej N I . Again, this contradicts e5—0.

Clearly 6) implies 4) and 7) implies 5), so the theorem will follow
if we show that 3) implies 6) and 7). If p > 6 x,, then |1 —ub|x, >
(6/2) x, for every inner function u. Then,

§ < ﬂ P =
fXe= s wpE =2 S 2 e

8. Almost conformal invariance.

Lemma 8.1. Let b be extreme and p = 1 — |b|2. For zop € D put
bo = (b - Zo)/(l - zob), Po — 1-— |b0|2, Opy = p0/|1 — b0|2 and A =
(14 20)/(1 4+ Zp). Then

1 — |z
1) Pozpm;
1—\b
2) 1—b0:(1+20)172b7
— 20
po 1|z p

3 = = ;
) by 11— bo2 L+ 202 [X— b2

Proor. The above formulas follow from straightforward calculations
with the following two identities (for z € C)

) z—zo |? 2y 1 — |20
1-— =(1-— _
(i) 7.2 (1—1z] )|1_20Z|2 :
— 1 1+7Z
(ii) 1—Z_@::(+?—¢) Rl
1—2p2 1+72 1—2p2
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Theorem 8.2. Let b be extreme, zo € D and by = (b— z0)(1 — Zob) .
Then H(b) = H(by) and (1 — Zob) H(by) = H(b).

PROOF. The easy estimate

1—|Zo|2 1—|Zo|2 1+|Zo|
4 _|1—20b|2_1—|20|

together with Lemma 8.1.1) shows that by is also an extreme point of
B(H®°), and that

E={e?coD: pe?) £0}={e? coD: py(e'’) # 0}
almost everywhere. Also, if f € L? (Xg), Lemma 8.1.1) implies

(1 — |z0[*)*/2

K — K L El) -

o) =K (£ ST ED

and consequently H(b) = H(by). Write ¢ = (1 — |20]?)/|1 + Zo|? and
A= (1+20)/(1+4Zp). By formula 3) of Lemma 8.1, for z € D,

() = B0 = cox ()
Hence,
L+bo(z)) oo (2) — ¢ Re 1+ X2b(2)
Re <71 — bo(z)> = 0p,(2) = cox(2) =cR <71 —Xb(z)) .

Two analytic functions with the same real part must differ in an imag-
inary constant. Thus, there are v, § € R such that for z € D,

1+b 1+ b i .
1y = + bo(2) —c +— (2) _/ €w+z du(e”) + 6,
l_bO(Z) 1—)\1)(2) oD €7 — %2

where du(e®) = dup, () — cdus,(e*®). Since p is a real measure,

evaluating at z = 0 we obtain v = 0. The identity

.6

e’ +z n —inf

ew_z—1+2g z'e ,
n>1
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with uniform convergence of the series in |z| < r < 1, now shows that
[e=m? du(e®) = 0 for all n > 0. Since p is a real measure, taking
complex conjugation we also obtain that [ e™? du(e?) = 0 for alln > 1.
Then p = 0 and therefore pup, = ¢ pix,. Thus, for f € L*(up,) = L*(pig)s

Voo (f) = (1 = bo) Ky, (f)
1—\b

:(1+Z0)1—20bKCNXb(f)
o l—f—Zo -
— 2 (1R Ky (1)
o 2
. L= Ieo| V_b(f)

T 1—%b 1+z *
by Lemma 8.1.2) and the equality of the measures. Thus

(1= 200) Vi) = 1 V1),

which clearly implies that (1 — Zgb) H(bg) = H(Ab). Since H(Ab) =
H(b), the theorem follows.

Corollary 8.3. Let b be extreme, and denote by sp (b) the spectrum
b in H*°. Then for zo # 0 the following conditions are equivalent.

1) zoeD\sp(b).
2) (1—2Zob)H(b) = H(b).
3) (1—zob)~te M(b).

f

=

PrOOF. 1) if and only if 2). 2y € D\ sp(b) if and ouly if by =
(b— z9)/(1 —Zpb) is invertible. Since by is extreme, Theorem 7.1 of [13]
says that by is invertible if and only if H(by) = H(bo). If this happens,
Theorem 8.2 implies that (1 — Zob) H(b) = H(b). On the other hand, if
this equality holds, then by Theorem 8.2,

(1 —Zob) H(b) = H(b) = (1 — Zo b) H(by) .

Thus H(b) = H(by), and Theorem 8.2 again, shows that H(by) = H(by) .
2) implies 3). H(b) D H(b) = (1 —Zo b) " 1H(b).
3) implies 2). Let f € H(b); then (1 — zgb)~1f = g € H(b).
Therefore
g—Eobg: (1 —Zob)g: f
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Since g € H(b), we have that bg must be in #H(b); but for a function
g € H? it is well known that bg € H(b) if and only if g € H(b) (see
Section 1). Hence,

f=(1-Zb)ge(1—zb)Hb).

For zp = 0 condition 3) is trivial. The equivalence of 1) and
2) for this case is proved in Theorem 7.1 of [13]. More can be said
now. Suppose that zp € D\ sp(b), then by and by' are multipli-
ers of H(bp). Since by Theorem 8.2 M(by) = M(b), we also have
byt € M(b). Besides, by Corollary 8.3 (1 — Zgb)~* € M(b), then
bot(1—Zob)~t = (b—20)~t € M(b).

Corollary 8.4. Let b be extreme. If u is an inner function such that
sp (ub) is not the whole closed disc, then M(ub) = M(b) = M(b).

PROOF. Since sp (ub) is compact, there must be some point zy # 0
such that zp € D\ sp (ub). By Corollary 8.3 (1 — Zou b)H (ub) = H(ub);
then clearly M (ub) = M (ub). The assertion now follows from Section
1, taking into account that H(ub) = H(b).

9. Continuity conditions.

Theorem 9.1. Let b € B(H*) with duy = 0df/27 + dpg. Ife >0
and 0 < r <1, then

]l = lim 1 1—72|b(e’)]? do
Psll = 20 22 11— rb(e?)2 27
|1-b(ei®)] <e

PROOF. Since the Poisson kernel

1 1—r%|z2
Po(z) = — " IFL
(2) 2 |1 —rz|?

is harmonic (for z € D and 0 <7 < 1), then

1 1—r2|b(2)]?
B OR) = o T
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is harmonic. Thus

/271' 1 —7"2 |b(ei9)|2 d_9 B 1 —7"2 |b(0)|2
o |[1—=rbe®))2 20 |1 —rb0)2 "’

which tends to (1 — [b(0)|?)/|1 — b(0)|?> when r—1. By formula (1) of
Section 1, this is the norm of pp. On the other hand, for € > 0,

lin / Po(b(e?)) df = / Py(b(e®)) db,

r—r1
|1-b(ei?)[>e [1-b(ei?)[>e

because the integrand converges uniformly in |1 — b(e?)| > e. Since
Pyob = o/2r € L', the last integral tends to fozw o(e)df/2r =
|lo df /27| when € tends to 0. Substracting, we obtain

gl = Nl = llod6/2x|

_ i0 T i0
= lig [P0 d0 — Jiay Ty / Po(b(ei%)) d
1b{eit) e

e—0r—1
[1—-b(ei?)|<e

= lim lim !/ P,.(b(e'?)) db.

Corollary 9.2. If (1 —b)~t € L2, then pp is absolutely continuous.

PROOF. Since |1 — rb(e??)] > |1 — b(e??)|/2 almost everywhere with
respect to df, then

1— 2 102
rrbe™)I” 4
[1—rb(e?)> ~ [1—b(e?)?
Hence, by the dominated convergence theorem,
. o do
. 20 _ 0\ Y
rlgnn / P.(b(e")) df = / o(e )27r ,
|1—-b(e*?)|<e |1-b(e*?)|<e

and since o € L, the last integral tends to 0 when e—0.

Notice that the above result also holds for b nonextreme. We keep
assuming that b is not an inner function.
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Theorem 9.3. Let b be an extreme point of B(H™), continuous on

OD. Then M(b)= M(b).

PrRoOOF. Factorize b = ubgy, where u is the inner factor of b and by
is its outer factor. Since b is continuous, by is continuous (see [11 ,
p.69]); and why is also continuous. It is well known ([9, IV]) that for
a function f continuous on JD there is a unique best approximation
g € H®, and that |f(e'?) — g(e¥)| = dist {f, H>®} for almost every
e € OD. Therefore, dist {mwby, H®} < 1, because otherwise since
|[wbo|| = 1, the best approximation for uby in H* must be the trivial
function. So |[wbg| = 1 almost everywhere, which is not the case. Thus,
dist {bg, uH*} < 1 and then Theorem 13.5 of [13] implies M (uby) =
M(by). Now it is clear from the equality H(uby) = H(by) that we can
assume b = by outer.

Then b has square roots, and we will show that M(b) = M(b%")
for every integer n. We only have to prove that M(b) = M(b?). By
Section 1, H(b?) = H(b) +bH(b), thus M(b) C M(b?). Let m € M(b?)
and f € H(b). Then bf € H(b?) and therefore mbf = g; + bgy with
g1, g2 € H(b). Hence,

g1 ="b(mf —g2) € bH> N H(b) = bH (D) C bH(D).

Thus bmf = g1 + bgs € bH(b), that is, mf € H(b). Also, H(b) =

H(b ) for every integer n. As before, it is enough to take n = 1. This
immediately follows from the inequalities

L—[pl* < 1= b <2(1— |p?))

and the Cauchy transform representations of H(b) and 7-[(52) .

It will therefore bne enough to prove that there is an integer n such
that M(b2") = ./\/1(52 ). Since the argument of b is continuous on the
compact set F'= {z: |z| <1, |b(z)| = 1}, there is some negative integer
n such that the argument of b2" () lives in (—n/4,7/4) for z € F. The
continuity of 2" implies that for A € 9D with Re A < 0,

(17) I1-Xb%" ()] >6 >0, for all z, |z] < 1.
Therefore |1 — Ab%" ()| =t € L2, and Corollary 9.2 implies that py, is

absolutely continuous, say dus, = o df/2r. Also, if p=1— |b2" |2, con-
dition (17) implies that the spaces K i/2(L?(x)) and K,1/2(L*(xy))
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coincide. Then,

2TL

(1=A)HO )= (1=Xb*") K,u2(L%(xy))

(1= X0*") K,12(L2(x)) = HAD™) = H(*").

n

Hence, M(b?") = ./\/1(52 ) and the theorem follows.

The argument to reduce the preceding theorem to the case in which
b is an outer function is by D. Sarason (personal communication). My
original proof of this fact was slightly more complicated.

The equality M (b?") = M(b" ) for n a suitable negative integer
can be also proved using Corollary 8.4. Of course, Theorem 9.3 implies
that the preceding algebras coincide for all integers n .

10. Inner factors in #(b) + C.

Denote by H(b), the linear space H(b) + C. The map a — a.

defines a conjugation on #H(b) , where, for a = K,(q) +c € H(b) , the

function a, is defined by a.(z) = —K,(q)(z) + K,(7)(0) + ¢ = a(1/2)
(see Section 1).

Theorem 10.1. Let a € H(b), and let u be an inner function. Then
ua € H(b), if and only if a, is in uH?. In this case, (ua), = a./u.

PROOF. We can assume that u is not a constant function. If a € H(b)
then a = K,(q) + ¢, with ¢ € L?(p) and ¢ € C.

Sufficiency. The inner boundary function of a — @, is ¢ p, so the
boundary function of ua — ua, is u ¢ p. By hypothesis a,/u is in H?, so
u(2) a(z) — (a.(2)/u(z)) is harmonic, and since u(z)~! and u(z) have
the same nontangential limit almost everywhere in 0D, the boundary
function of ua — (a./u) is also uqp. Hence, Lemma 2.1 gives

4+

u(2) a(z) = K, (uq)(2) + (ax/u)(0) € H(b),

and
a«(2)/u(z) = Kp(uq)(1/Z) + (a./u)(0).
Thus, a.(z)/u(z) = (ua). .
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Necessary condition. If ua € H(b), , then also d = (ua), € H(b), .
Further, d, = ua € uH?; so by the other implication of the theorem,

ud € H(b) . and
(ud)y = dy/u=ua/u=a.

Hence, a, = ud € uH(b), C uH>.

Corollary 10.2. If m belongs to any of the algebras M(b), M(b)
or K*=(p), and u is an inner function, then um belongs to the same
algebra as m if and only if m, € uH? .

PRrROOF. The necessary condition is immediate from the above theorem,

since all the algebras are contained in H(b) . For the other implication,

the argument for M(b) and M (b) is the same. So, suppose that m €
M(b), m, € uH?, and take a € H(b). Since m, € M(b), then m.a €
H(b). Thus, (m./u)a = Tz (mea) € H(b). That is, m./u € M(b)
and then (m./u). also belongs to M(b). Besides, (my/u), = um by
Theorem 10.1.

If m e K~(p) C #(b), and m, € uH?, then m, € uH?> N H> =
wH®>. By Theorem 10.1, um € H(b), N H* and (um), = m,/u €
H(b), N H>. Thus, um and (um), belong to H>, which means that
(um)(z) is bounded for all z € C\ dD. Consequently um € K> (p).
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