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On the Sphere Problem

Fernando Chamizo and Henryk Iwaniec

1. Introduction and Statement of Main Results.

One of the oldest problems in analytic number theory consists of
counting points with integer coordinates in the d-dimensional ball. It is
very easy to find a main term for the counting function, but the size of
the error term is difficult to estimate. Namely the problem is to prove
the approximate formula

/2

#{xecz: ||x| <R} = R*+O(R?),

for any R > 1 with 0 as small as possible. Let 6; be the least number
such that the above approximation is true with any 6 > 6, .

In dimension d = 1, #; = 0 follows trivially. The problem is also
settled when d > 4. In this case, starting from a classical formula for the
number of representations as sum of four squares and using elementary
arguments, it can be proved 04 = d — 2 (see for instance [Fr]).

The evaluation of 6; in the remaining cases d = 2, d = 3 is an
outstanding problem in number theory and intractable by the methods
of nowadays. The conjectures (supported by some mean results) are
O =1/2,05=1.

The two dimensional problem is called “the circle problem” and it
has a long history coming back to Gauss, who proved 6, < 1. In this
century several authors gave some improvements of this result, very
often creating new methods in the theory of exponential sums; the best
result so far is 0y < 46/73 due to Huxley [Hul].
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The three dimensional case, the so called “sphere problem”, is also
closely related with the work of Gauss about the average of the class
number for negative discriminants (see Art. 302 of [Ga]). The litera-
ture about the sphere problem is not so wide as in the two dimensional
case, although it seems more interesting because it has profound rela-
tions with others topics in number theory: class number, L-functions,
etc. The best result until now was 05 < 4/3 due to Chen [Ch] and
Vinogradov [Vi]. The purpose of this paper is to improve this bound
(03 < 29/22, see Theorem 1.1).

Before stating our main theorem we shall introduce some notation.

First of all we define r3(n), for a positive integer n, to be the
number of representations as sum of three squares

ra(n) = #{(n1,n2,n3) € Z3: n?+n2 +n2 =n}
and R3(n) to be the number of primitive representations
Rs(n) = #{(n1,n2,n3) € Z°: ged (ny,n2,n3) =1, ni+n3+n3 =n}.

These two functions are related by the formula
n
(1.1) ra(n) =Y Ry (ﬁ) .

There are also the following relations with other arithmetic quantities

(see [Gr)):
(12)  Ry(n) = e h(—dn) = % e VALLY,),  n>1,

where h(—4n) is the class number for the negative discriminant —4n ,
L(s,X,,) is the L-function associated with the character

X (m) = (~4n/m)
and
0, ifn=0,4,7 (mod 8),
¢n =14 16, ifn=3 (mod 8),
24, ifn=1,2,56 (mod 8).
In order to write some formulas in a more symmetric way, we nor-

malize r3(n) by
I(n) =r3(n)n~t2.
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The previous formulas show that [(n) is very similar to L(1, X,,). In fact
our method is based in that we can consider a sum of [(n) as a lattice
point problem or as a sum of character sums. This duality allows us to
employ, in different ranges, Poisson’s summation or Burgess’ inequality
[Bu].

Let S(R) be the number of lattice points in the sphere of radius
R and S(R, H) be the number of lattice points between the spheres of
radius R and R+ H, i.e.

S(R)= > r3(n) and SRH) = >  r3n).

n<R2 R2<n<(R+H)?

Our main results are the following;:

Theorem 1.1. For any R> 1> H > 0 and € > 0 we have

(1.3) S(R) 4% R3+O(R29/22+5)

and

(1.4)  S(R,H) = ArHR?+ O((H"/8R'/® 1 H?>/3R%3/18 + R)R*) .

REMARK. One should be able to establish an asymptotic formula for
the mean value of h(—n) with an error term as good as in Theorem 1.1.
We intend to deal with this problem in another occasion.

2. A summation formula for [(n).
In this section we shall establish

Lemma 2.1. If f € C3([0,00)) with f"(0) =0 then

i:: _47r/000 Frydr—f +Zl

where [ is the sine Fourier transform

) = 2/000 f(x) sin(2rzf) dz
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PROOF. By our hypothesis on f, the function

F(Va? +y° +2°)
9(z,y,2) = —
Ve ty +z

can be extended to a CZ function in R® and then by the classical Poisson
summation formula we get

7O+ fv/) = 3 §lnangna).

ni,n2,n3

The Fourier transform of a radial function is radial, therefore we
can suppose that the point (n1,n9,n3) is on the z-axis, in which case
by a change to spherical coordinates it follows easily that

R f(y/n? +n2 +nk
g(n17n2an3) = ( 21 22 23) 3
v/ ni+ns+n3

if nf+n3+n3#0

and

/9\(07070):47['/007“]((7")6&“,
0

hence the proof is complete.

3. Exponential sums over lattice points in spheres.

If we had chosen f(z) = z for 0 < z < R in Lemma 2.1 (actually
one has to make some smoothing) then we could infer that

S(R) = 4?” R® + O(R3/*%9),

or equivalently 3 < 3/2. This result was first proved by Landau [Lal,
other better results were established by Walfisz [Wal], Fomenko [Fo,
Chen [Ch] and Vinogradov in several papers culminating in [Vi]. As
we quoted in the introduction, the best exponent in the error term
until now was 4/3 +¢ due to Chen and Vinogradov (in fact Vinogradov
replaced R® by a logarithmic factor). These results require non-trivial
estimates for exponential sums of the type

Vn(R) =) r3(n) e(Rv/n)

nxN
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where here and thereafter we write n < N to say that c; N <n < ca N
with some unspecified constants ci, co, not necessarily the same ones
in each ocurrence.
We prove in this section (by arguments similar to those in Chen
[Ch] and Vinogradov [Vi])
Lemma 3.1. For R > 1 we have

Vn(R) < NO/4+e 4 Ne min{R3/8N15/16 + RY8NIT/16
RT/24N49/48 R5/24N53/48}_

PrRoOOF. We shall deduce that

VN(R) < ‘ Ze(R a? + b2 +c2)‘

a,b,c
< N° Z ‘ Z e(ﬁc)e(R\/nnch)‘
n=N c&KVN

for some 6 € R. To prove the above we select the smallest variable, say
¢, and apply [Gr-Ko, Lemma 7.3] for the sum over ¢ in order to remove
the involved summation conditions. From the variables a, b we create
a new variable n = a2 + b2. Splitting the range of the inner sum into
segments of lenght N'/2¢ by Cauchy’s inequality,

<% | 35ty )

c1,c2 nxXN

where c;, ¢y are restricted by c1,ca < N2 and ¢ — o] < NY/27¢,
Hence for a suitable D < N17¢ we get

V2(R) < NO/2+e 4 N1+e Z ‘ Z e(f(x,y))‘

y=<xD xxN

where

fl@y) =Rz - Vo +y).

If D < N3/2R~ the innermost sum is < N*/2R=1D~1 by [Gr-Ko,
Theorem 2.1] of so it contributes < N%/2+e,
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If D > N32R-! we apply the B-process of the one-dimensional
van der Corput’s method (Poisson sumation and stationary phase),
more precisely [Gr-Ko, Lemma 3.6 of with F = R DN~1/2 getting

V]%(R) < N5/2—‘,—6 +R_1/2 D1/2 N9/4—‘,—6
.1 FREDTENS ST | S e(g(a.0)

yxD xxU

where U = RDN—3/2,

(32) g(x,y):f(a(x,y),y)—xa(a:,y)
and a(z,y) is the implicit function defined by
(3.3) fola(z,y),y) ==.

The middle term in (3.1) comes from the error term in [Gr-Ko, Lemma
3.6].

Next, by Cauchy’s inequality and dividing into dyadic intervals,
there exists 1 < T < U such that

(3.4) Va(R) < N°*€ + RTIDNO/2%e 4 RTIN/2¥e Vypp

Vorp < Z Z ‘ Z e(G(a:,y, Z))‘

exU zxT yxD

where

with
G(r,y,2) =g(x+2y) —g(z,y) .

Now we apply two well known van der Corput’s estimates (see
[Gr-Ko, Theorem 2.2] and [Ti, Theorem 5.11] to obtain

(35) VUTD <L UT min {D /\21/2 + )\2_1/2,D/\31/6 + D1/2 )\3—1/6}

where Ay < |Gyy| and A3 < |Gyyy|. Here, by the mean value theorem
A2 X T'|ggyy| and Ag < T'|ggyyy|- On the other hand, by (3.2) and (3.3)
gz = —a, hence Ay < T|ay,| and Az < T'|ayy,| -

It remains to estimate the partial derivatives ay,,, oy, . By the
definition of f and (3.3) we have a™'/2 — (o +y)~%? = 20R™1. Dif-
ferenciating with respect to y and eliminating « + vy, we get

1 3/2
—=(1+2)" -1 and YW _ (1 p)s
Oy o ay +1
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with 12
27« D
h = = — <K< N7°,
R NS
The first formula (recalling y < D, a < N) implies o, < ND~! and
differentiating the second formula we obtain
—ay, =61 R72hH (1= h)? ay (o + 1)2.
Using oy, = (1 — h)?/(1 — (1 — h)?) we get
—yy =62 R?h™H (1= h)° (1—(1—h)%)2.
Since h < DN~! and z < U = RDN~3/2 this formula gives |a,| =<
N D2, Differentiating again
_ h%(2—h)
Qyyy = 3 (1 _ h)6

(3 = 3h + h*)? (5h* — 6h + 6) o,
whence o,y < N D3, From the above estimates for the partial deriva-
tives we conclude that
M <TND™? and A3=<TND?.
Substituting in (3.4) and (3.5) we have
V]%(R) < N5+6 +R_1D N9/2—‘,—6
+ N°R™'U min {T3/2N® + TY/2D N*,
T7/6D1/2N14/3 + T5/6D N13/3} .
Finally, recalling that U = RDN 32, T < RDN~3/2 and N3/?R~! <«

D < N the lemma follows.
4. A character sum estimate.

The objective of this section is to proof the following character sum
estimate

Lemma 4.1. For 1 < K < N2 and o, , 5, arbitrary complex num-

bers
>3 et ()

N<n<N+K mx<M
< |l |8]| (K**M*? + K2 MYAN®/%%) (MN)®.
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As a corollary it can be obtained the following L-function estimate

Corollary 4.2. If1 < K < N2

2
Z L(1,X,) = 3¢(2) K+ O(K"/8N® + K*/3N/32Fe)

N<n<N4+K 28¢(3)
n=v (8)

PrROOF OF LEMMA 4.1. Dividing the range of summation into dyadic
intervals, it is enough to estimate

N+ k
S = . (7> )
KM E E anN+k B -
k<K m=xM
By Cauchy’s inequality

St <ol 3| 32 B (F)]

k<K mxM

Again by Cauchy’s inequality and interchanging the order of summation

Sk < lel* K Y [ 32 ﬁm(¥> \4

k<K mxM
N+k
4
my,msa =K 1 2 3 4
m3z,mng

Finally we apply Cauchy’s inequality once more and put
h = mymomsmy
getting
. N+k
S < ol 1o1F &2 0= 37 | 32 ()

h=xM* kxK

<<||a“8||6“8K2Me(KM4+ Z Z ((N-Hﬂ)(N-sz))).

h
k1,k2 <K hxM*
ko1 ks

Notice that ky # ko implies (IV + k1) (IV + k2) is not a square because
ki, ko < NY2. Applying the Burgess bound [Bu] to the innermost
character sum we get

Sk < llal®lI81° K2 (KM* + K*(M*)Y2(N?)?/1) (MN)?

and this concludes the proof.
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PrROOF OF COROLLARY 4.2. By the Polya-Vinogradov inequality we
truncate L(1,X,,) to get

S oLax)= Y Z%(%nwo(m).

N<n<N+K N<n<N+K m<N
n=v (8) n=v (8)

We shall consider separately the contributions of square and non-square
m’s.
The squares contribute

Yy me Y S Ed- Ko,

N<n<N+4K (kdn)=1 N<n<N+K klin
n=v (8) n=v (8)
Therefore
2
S L(1,X,) = 2384(3) K + W + O(N¥)
NN K ¢(3)
n=v (8)

where W denotes the contribution of the non-squares terms, i.e.

1 /—4n
w= > > (50)
N<n<N+K m<N
n=v (8) m#k>

Dividing the range of summation of W into dyadic intervals it is
enough to estimate sums of the type

Wi =M1 3 (N”)

k<K mxM

for some M < N where the outer summation restricts £ to a fixed
arithmetic progression mod 8 and the inner summation restricts m to
non-square odd integers belonging to a fixed arithmetic progression
mod 4. Applying Polya-Vinogradov inequality for each character sum
in k gives

Wy < M 1/2+4e .

On the other hand by Lemma 4.1

WKM < (K7/8 +KM_1/4N3/64) Ne.
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From both estimates it follows that
Wi < K7/8N® + min { KM ~Y4N3/6% A1/2} Ne .

Choosing M = K*/3N'/16 the corollary is proved.

5. Proof of Theorem 1.1.

First we shall derive (1.4) from Corollary 4.2. By (1.1) and (1.2)

1 Cn/dz
R<\/n<R+u d?|n

- DD SRSV TS EeI

d<R+u R/d<n<(R+u)/d

where O(1) is introduced to correct the contribution of terms with d? =
n. This expression and summation by parts in Corollary 4.2 (or the
trivial estimate if it does not apply) prove (1.4).

Now we proceed to prove (1.3). We shall not deal with S(R) di-
rectly but first smooth by means of the following function

T, if x € [0, R],
fe)=X R(R+H—-z)/H, ifze[R,R+ H],
0, otherwise,

more precisely we consider

Sp(R) = "I(n) f(v/n).

This sum exceeds S(R) by

Sp(R,H)= > 1n)f(Vn),

R<y/n<R+H
so we have

(5.1) S(R) = S4(R) — S4(R, H).
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The smoothed sum S¢(R) will be treated by exponential sums from
Section 3 and the short sum Sy¢(R,H) will be treated by character
sums from Section 4.

By Lemma 2.1 we have

4 2
(52)  Sy(R) = ?” R® + 2rHR? + % H®R ~1+ 57 (R)

where

~ sin(27 R R sin(mH
f(&) = Q(ngf) ol % cos(m(2R+ H)¢E).
Note that the application of Lemima 2.1 is justified, although the regu-
larity conditions are not fulfilled, because the involved series converges
uniformly on compacta by virtue of Lemma 3.1.

The first part of f, namely sin(27 R £)/272£2, contributes to S7(R)
at most O(RE) by estimating the tail of the series using Lemma 3.1.
Hence we have

S7(R) = _7T2RH Z @ sin(mH+/n) cos(m (2R + H)\/n) + O(R®) .

Dividing into dyadic intervals by partial summation we get

Sz(R) < RH*(H* Ny Vi, (R1)| + Ny */***|Viy, (Ro)|) + R®

f
for some Ny < H™? < Ny and Ry, Ry = R+ O(H). For simplicity
we assume R < H~ 2. Now we estimate Vy, (R1) and Vi, (Rz2) by
Lemma 3.1, if N; < R we get

N]__IVNl(Rl) <<R5/16+€,
if R< Ny < H? we get
N]__1VN1 (R]_) << (H—1/2 +R5/24H_5/24) H—E

and if Ny > H2 we get

N2—3/2+€VN2 (RZ) < (H1/2 +R3/8H9/8) HE.
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Collecting the above estimates and substituting in (5.2) we obtain

4
S¢(R) = ?” R® + 2rHR?

(5.3)
+O((RH_1/2 +R9/8H_1/8 +R21/16) H—E) )

Now we shall deal with S;(R,H). By Abel’s Lemma and (1.4) we
have

du

(5.4) Syl H) = =5

= 2rHR® + O((H"/®R™/® + H**R*/*® + R) R°) .

R(R+ H) /H S(R,u)
o (R4 u)?

Finally substituting (5.4) and (5.3) in (5.1) and choosing H =
R~/ (1.3) follows.
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