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Convex domains
and unique continuation

at the boundary

Vilhelm Adolfsson, Luis Escauriaza and Carlos Kenig

Abstract. We show that a harmonic function which vanishes continu-
ously on an open set of the boundary of a convex domain cannot have
a normal derivative which vanishes on a subset of positive surface mea-
sure. We also prove a similar result for caloric functions vanishing on
the lateral boundary of a convex cylinder.

1. Introduction.

Bourgain and Wolff [BW] have constructed a counterexample of
a C!-harmonic function v in RY = {X € R?: X4 > 0}, d > 3, for
which u and its gradient vanish on a set of positive measure on ORY.
On the other hand, it has been shown (see [F2]) that when D is a C+!
domain in R%, d > 2, and u is a non-constant harmonic function in D
with v = 0 on an open set V contained in the boundary 0D of D, then
the Hausdorff measure of the set {Q € V : Vu(Q) = 0} is less or equal
than d — 2.

In general, the following conjecture still remains an open question:
if u is a harmonic function on a connected Lipschitz domain D in R¢
vanishing continuously on an open subset V of 0D and whose normal
derivative vanishes on a subset of V of positive measure, then u is
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identically zero on D.

When u is non-negative, we have from the comparison principle
for harmonic funtions vanishing continuously on an open subset of D,
[D], that the normal derivative of u is pointwise comparable to the
density of the harmonic measure with respect to surface measure do on
any compact subset K contained in V, and it is well known that the
harmonic measure is mutually absolutely continuous with respect to
do, [D]. Therefore, in this case the answer to the conjecture is positive.

Let D denote a Lipschitz domain in R? and w be a non-negative
function defined on 0D. We recall that a nonnegative function w is
a By(do)-weight provided that there is a constant C such that for all
Q@ € D and r > 0 the following holds

1 w? d 1/2 C___l wdo
(U(A_T(Q)) A(@) ) < o(Ar@) Jar@

where A,(Q) =0D N B.(Q).
In this note, we will prove the following regularity theorem.

Theorem 1. Let D be a Lipschitz domain in R?, d > 2, Q, € 0D,
and u be harmonic in D vanishing continuously on As(Qo). Assume
that there ezists a constant M, possibly depending on u, such that for
all Q € A3(Qo) and 0 < r < 2 the following doubling property holds,

(1.1) / WdX <M u?dX,
I2.(Q) T.(Q)

where T'r(Q) = B (Q)N D. Then, there exists a constant C depending
on M, the Lipschitz character D and d, such that for all Q € A3(Qo)
and 0<r <1

1 Ou |2 1/2 1 ou
- K1 <C— K 4o
(U(AT(Q)) Ar(Q)’aN ”) =" 5(A@) Ja.o aNl o

In particular, the absolute value of the normal derivative of u i3 a B,-
weight when restricted to Ay(Qy) -

In [F2] it is shown that the doubling property (1.1) holds for such
a harmonic function when D is a C'! domain, with M depending on
the C1! character and u. In this note we will show that the doubling
property (1.1) also holds when the domain D is convex, obtaining the
following theorem.
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Theorem 2. Let D, u and Qo be as in the previous theorem, and
assume that either D is a C1'! or a convez domain. Then, the absolute
value of the normal derivative of u on A1(Qo) 13 a By(do)-weight.

It is well known that the above B;(do) condition implies that the
set {Q € A2(Qo) : Ou(Q)/IN = 0} has zero surface measure unless
Ou/ON = 0 almost everywhere on Ay(Qo). Therefore, if u is harmonic
in D, vanishing continuously on an open subset V of 9D, and {Q € V :
O0u(Q)/ON = 0} has positive surface measure, both u and du/dN must
vanish identicaly on V. Extending u as zero outside of D, we obtain a
new function which is harmonic in an open set  of R? containing V
and identically zero on Q\ D. It is well known that this implies that u
must be identically zero in the connected component of its domain of
definition containing V. Hence we obtain the following theorem.

Theorem 3. Let D be a convez connected domain in R?, d > 2, and u
be harmonic in D. Then, if u vanishes on an open subset V contained
in 0D and the set {Q € V : Ou(Q)/ON = 0} has a positive surface

measure, u must be identically zero on D.

We want to remark that in [F2], the author claimed that his meth-
ods also applied to prove the above doubling property in the case of
CH% domains, 0 < a < 1. But in a personal communication we learnt
that his claim was incorrect.

This article is divided in two sections. In Section 2 we prove the
theorems 1, 2 and 3, and in Section 3 we show that a similar result
holds for solutions to the heat operator in convex cylinders.

2. Proofs of the main results.

To prove Theorem 1 we will need the following inequality.

Lemma 1. There ezists a constant C depending only on d, such that

if r > 0, n 18 a positive integer, 0 < < 1, and f € C§°(By, \ Bs-(0)),
the following holds

/ |f(X)[dX SCnﬂ3‘d'"r2/ IAf(X)| dX

r 2r
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+Co2 "2 / IAF(X)| dX .
Bdr\B2r

PROOF. By rescaling we may assume that » = 1. Let f € C§°(B;,\ Bp)
and n be an integer greater than 1. If I'(X,Y") denotes the fundamental
solution for the Laplace operator on R?, we have

FX) = /r,,(X,Y) Af(Y)dY, forall X eRY,
where

T.(X,Y)=T(X,Y) Z Z i'Ds"(I‘(O,Y)X“._

Since [D$T(0,Y)| < C(d)lel|Y|~(d-2+leD | we have for |X| < 1 and
Y]=>2
ITa(X,Y)| < C(d) ) 27F < C(d)27",

k>n

and, for | X| <1land B<|Y| <2,
T.(X,Y)| < IN(X,Y)| + C(d)n >4 ".

From these estimates and the support properties of f we obtain
[ ireorax <ot [ jareo)ax
Bl Bz

+C2" / IAF(X)] dX .
B4\ B,

PROOF OF THEOREM 1. Let u and Q) be as in Theorem 1, Q € A3(Qo)
and 0 < r < 1. Let B denote a vector field supported in I',(Q) with
VB < Cr~!, B-N > C~! on A, (Q) for some constant C' depending
on the Lipschitz character of D and - N > 0 on A, (Q), where N
denotes the exterior unit normal to D at points of 4D.

Integrating the Rellich-Necas identity

div (B - |[Vul?) = 2div ((8 - Vu) Vu) 4+ O(|VS]|Vul?)
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over I',(Q), and since Vu = 0u/ON almost everywehre on As(Qy), we

obtain
/ | | do < CT-I/ |Vul? dX
2.(Q) P20 (Q)

and from Cacciopoli’s inequality and the doubling property of u

/ | da<cr—3/ w?dX
an@) 10N L'r/00(Q)

where C' depends on the Lipschitz character of D, and M.

From standard estimates for subharmonic functions vanishing at
the boundary [GT, Theorem 8.25] we can bound the L? averages of u
by L' averages, obtaining

2 1/2
(/ I@-— da) < Cr"(“"l)/z/ || dX .
an(@) | ON T\ 30(Q)

We claim that for some constant C as above

/ lu| dX < C'r? /
I'r/50(Q) 2@

and assuming the claim, the theorem follows from the last two inequal-
ities.

To prove the last claim, we may assume without loss of generality
that Q@ = 0 and that near 0, dD coincides with {(z,y): z € R¥!, y =
@(z)} for some Lipschitz function ¢ with ¢(0) =

Let Z denote the point whose coordinates with respect to this coor-
dinate system are z = 0 and y = —r /2. From the Lipschitz character of
D we can find 0 < § < 1/8 such that Byg,(Z) is contained in the com-
plement of D. We extend u to be zero outside D and define u, = u=*6,,
where 8, is a regularization of the identity. Let ¢ € C§°(R™) with p =1
on By,(Z) and whose support is contained in By, (Z).

Setting f. = @u., we have that f, € C§°(Ba, \ Bgr(Z)) for e > 0
sufficiently small, and for X in By, (Z)

Ou ' do

[Afe(X)] < 2|1A¢] [(Vu) * 8e| + |ue| |Ap]

N /a ) %(Q)'Lp(st(x - Q)do(Q).
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Applying to f. the translation to Z of the inequality in Lemma 1, and
letting € tend to zero, we obtain from the support properties of ¢ and
standard estimates for harmonic functions the following estimate

Ou
|u|dX§C(d,ﬂ,n)r2/ == do
/I‘,,z(Q) Ase(Q) laN.

+C(d) 2"”/ |u| dX .
F5r(Q)

Using the doubling property of u, the second term above can be hidden
on the left hand side of the inequality after choosing n large enough,

getting
2 au
lu|dX < Cr —lda,
Tr/2(Q) As.(Q) 1ON

where C' depends on d, the Lipschitz character of D and M; and this
proves the claim.

PROOF OF THE DOUBLING PROPERTY. Assume now that D is convex
and let u be as in the statement of Theorem 2. For Q € A3(Q) we
define

@)= |

u? do and D(r,Q) = / |Vu|?dX .
8B.(Q)nD I {(Q)

As Almgren, [A], we consider the frequency function

r D(r
wnQ) =2
We will prove that
Ti o r 7~l—d :QT‘D(T,Q)z r
i Gog(H (@) r'%) = ) = N(r @),

and that the frequency function N(-,Q) is non-decreasing for Q@ €
A3(Qo). Therefore, if 0 < r < 2, we have

r 3 (og(H(r, Q)r'~) < N(2,Q).

Standard arguments imply that the doubling constant M is bounded
by 29+ where f is an upper bound of N(2,Q) on A3(Qo).
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To prove our claim, we may assume that @ = 0, H(r,0) = H(r),
B, = B,(0), and D(r,0) = D(r). Then,

(2.1) diTH(r) = é%lﬂ(r) +2D(r).

From the Rellich-Necas identity with vector field X, i.e.,
div (X |Vul?) = 2div (X - Vu) Vu) + (d - 2) |[Vu|?,

and the fact that the tangential derivative of u is zero on A3(Qo) we
get

d Ou \ 2
H—T_D(v) = 2-/;BrnD (5—]\7> d0+

But in a convex domain with 0 € 0D, @ - N is non-negative on 9D.
Hence,

d— Ou
- 2D(r)+%/Ar(Q-N)(5N)2da.

Ou , d—2
(b’ﬁ) do + ——=D(r).

From the above inequality (2.1), and the quotient rule we obtain
d /7 D(r) —2 Ou \?2 2
— >2rH =—) d d
dr( H(r) ) 22 H() /,.,BTHD (0N) "/(.,BT,WD“ 7
(Lo ) )
8B,.nD ON ’
and from Holder’s inequality we get

() 2o

%D(r)ZZ/

aB.NnD

as we wanted.

3. The parabolic case.

Here we show that a similar result holds for caloric functions van-
ishing continuously on the lateral boundary of a convex cylinder D x
(0,00). The reader will observe in the next proof, that in general, the
same result can be obtained when D is just a Lipschitz domain and the
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corresponding “unique continuation property” holds at points (Q,0)
with @ € 8D, for harmonic functions defined on W N D x (0,00) and
vanishing continuously on W N 9(D x (0, 00)), where W is an open set
in R**! containing the boundary point (@, 0).

Theorem 4. Let D be a convez connected domain in R?, d > 2 and
u(X,1) satisfy

Au— 0w =0, on D x (0,00),

u(X,0) = f(X),

uw(Q,1) =0, for Q €0D and t>0,

for some f in a suitable class. Assume that the set

E= {(Q,t) € 9D x (0, 00) : %(Q,t) - o}

has positive surface measure on 0D X (0,00). Then, u must be identi-
cally zero.

ProoF. Without loss of generality we may assume that (Qg, 7), where
Qo € @D and T > 0, is a density point of E, i.e.,

m(EN (A(Qo) x [T —12,7]))
o(Ar(Qo))r?

where dm = do dt on 9D x (0,00).
We claim that this implies that u(-,7) vanishes to infinity order

at Qo:

(3.1) lim =1,

/ lu(X,7)]dX = O(r*), forall k>1 asr—0.
u Pr(QO)

Assuming this claim, we have

w(X,t) =Y arpr(X)e ™,
k>1

where
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and {¢1,02,...,0k,---}, 0 < A1 < Ay < -+ < Ag+-- denote respec-
tively the eigenfunctions and eigenvalues for the Laplace operator on
D.

Defining v(X,y) for X € D and y > 0 as

i .., sinh(A}/%
o(X,9) = 3 appe(X) e SO V)
k>1 Ak

we have that v is a harmonic function on @ = D x (0,00) with v =
0 on the bottom and sides of Q. From the convexity of D, Q is a
convex domain in R**!, and from our previous estimates for harmonic
functions in convex domains vanishing on a boundary portion we have
for0<r<1

[ pxwlaxa<cn |
I'r(Qo,0) Ar(Qo,0)

where T'r(Q0,0) = Br(Q0,0) N 2, A(Qo,0) = Br(Qo,0) N O, dy de-
notes surface measure on d2 and C > 0 is a constant depending on d,
the Lipschitz character of D and v. From the doubling property of the
absolute value of the normal derivative of v on 992 and the fact that

O0v(X,0)/ON = —0,v(X,0) = —u(X, 1) on the bottom of 2, we obtain

[
Ar(QOaO) alv

From the above inequalitics we conclude that v vanishes to infinity
order at (Qo,0) and since v is doubling with respect to balls centered
at (Qo,0), it can only happen when v is identically zero, which implies
that u must be equal to zero.

Therefore, to finish our proof we must prove the above claim. It
will follow from the analogue of the Lemma 1 in the parabolic case.

Ov

an |

dy < C/ [W(X,7)] dX = O(r¥), forall k>1.
rr(QO)

Lemma 2. There ezists a constant C depending on d > 2, such that
ifr>0,0<B<1,feC®(Byr\ Bsr) x (—(4r)?2,0]), and n is an
integer greater than 1, the follouing holds

0 0
/ / |f| dX dt < Cng=(d+2n=1)) 2 / / (A —8,)f| dX dt
—-r2 JB, —(2r)2 J By,

+02—nr2// (A = 8,)f] dX dt,
Hr
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where H, = By, \ Bar x (—(4r)%,0]U By, x (—(4r)?, —(2r)?].

PROOF. As usual we may assume that r = 1. Setting I'(X,t,Y,s) =
(4m(t — s))~ % exp(—|X — Y|*/4(t — s)) for t > s and '(X,#,Y,s) =0
for t < s we obtain using the fact that D*9] f(0,0) = 0 for all d-tuples
and j > 0, and a simple argument of integration by parts, that for t <0
and X in R?

f(X,t) = /_Ow /Pn(X,t, Y,s)(A = 8,) f(Y,s)dY ds,

where

n—1
TW(X,t,Y,s) =T(X,t,¥,s) = > > ;% D$&T(0,0,Y,s) X7 .

k=0 |a|+i=k

Interior estimates for caloric functions imply that for s < 0 we have

|D%8] T(0,0,Y,s)| < C(d)lelH27 |s|=UelF2i+d)/2 = gor |y |2 < |s],
|D$IT(0,0,Y,s)| < C(d)leH2 |y|~UeH2i+d) — for |¥|2 > |s].
These estimates imply that for |X| <1, =1 <t <0 we have
IT.(X,t,Y,s)| < C(d)(T(X,t,Y,s) +np~(d+2n=1)y

for 8 < |Y| <2 and —4 < s < 0, and for (Y,s) € H; we can estimate
I, using the generalized mean value theorem, obtaining

ITa(X,1,Y,s)| < C(d)2™",  for (Y,s)€ H; .

The inequality follows from these estimates and the support properties
of f.

Let now u be as in Theorem 4. Without loss of generality we
may assume that (Qo,7) = (Qo,0), and that u is caloric for X € D,
—2 < t < 0. As before, for 0 < r < 1 we let Z denote a point outside
of D such that |Z — Q¢| = r/2, and § be a number with 0 < 8 < 1/8,
and such that Byg,(Z) does not intersect D.

We extend u to be zero outside the cylinder with base D and
define fo(z,t) = u.(z,t)¢(z,t), where u.(X,t) = u(-,t) * 6.(X), and
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where ¢ € C$°(Bir(Z) x (—(4r)%,0]) is such that ¢ =1 on By, (Z) x
(—(2r)2, 0.

Applying to f, the translation of the inequality in Lemma 2 to
(Z,0), observing that

(A = )X, 0] < 219l (Fu) * ] + el [(A = Do)
Ou
+ [ |5@a] e -a)d(@),

for X in R? and —1 < ¢ < 0, letting ¢ tend to zero, and using standard
estimates for caloric functions we obtain

0 0
/ / fu| dX dt < C(d,n,ﬂ)r"’/ /
—r2 F,/Q(Qo) —(57)2 JA5+(Qo)

0
+C(d)2 / / fu| dX dt
—(57)2 JT'5-(Qo)

On the other hand, the first term of the right hand side of the last
inequality can be bounded by

%ldadt

%|2dodt)l/2

0
r? m((As(Qo) X [—(57”)2’0])\12)1/2(/;(5 )2/A (Qo)

If v denotes the solution to Av — 8w = 0 on T, (Qo) x (—(67)2,0]
satisfying v(Q,t) = 0 for Q@ € Bsr(Qo) N D and t € (—(67)%,0],
and v(Q,t) = 1 on the remaining part of the parabolic boundary of

Tsr(Qo) x (—(67)2,0], we have from [FS] that for some constant C de-
pending on d, and the Lipschitz character of D,

0
<-/—(5r)2 ~/Asr(Qo)

On the other hand, from the parabolic maximum principle and standard
estimates for caloric functions vanishing on the lateral boundary of a
Lipschitz cylinder we have

Ov (2 1/2
- < (d+1)/2
0N1 dodt) <Cr .

0
(X, )] < Co(X,1)r=(@+?) / / lu| dX dt,
—(8r)2 JT8,(Q0)

for all (X, ) in Te~(Qo) x (—(67)2,0].
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Thus,

0
([-(W)’ AM’(QO)

Ou |2 1/2

0
< Cr—(d+5)/2/ / lu| dX dt,
—(87)2 JT's,(Qo)

where C' depends only on the Lipschitz character of D, and d.
From the above chain of inequalities we have that for 0 <r < 1

0
/ / |u| dX dt
=12 JT1;2(Qo0)

m((Ds,(Qo) x [—(57)%,0]) \ E)\1/2
< (C(d,n,ﬂ)< U(ASr(Qo))(5T)2 )

0
1 C(d) 2-") / / lu| dX dt .
"(87')2 FBr(QO)

Therefore, from (3.1) and choosing n large enough, we find that for all
€ > 0 there exists r(e) > 0, such that for 0 < r < r(¢)

0 0
/ / lu] dX dt < 5/ / lul dX dt .
—r2 JT'+(Qo) —(12r)2 JT12,(Qo)

This is well known to imply that

0
/ / lu| dX dt = O(rF), forall £>1.
—7% JI'+(Qo)

On the other hand, estimates for caloric functions vanishing on the
lateral boundary give

0
/ [u(X,0)] dX < Cr_Z/ / |u| dX dt,
T'+(Qo) —(2r)2 JT2:(Qo)

where C' depends on d and the Lipschitz character of D, and this implies
our claim.
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