Convex domains and unique continuation at the boundary

Vilhelm Adolfsson, Luis Escauriaza and Carlos Kenig

Abstract. We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.

1. Introduction.

Bourgain and Wolff [BW] have constructed a counterexample of a C^1 -harmonic function u in $\mathbb{R}^d_+ = \{X \in \mathbb{R}^d : X_d \geq 0\}, d \geq 3$, for which u and its gradient vanish on a set of positive measure on $\partial \mathbb{R}^d_+$. On the other hand, it has been shown (see [F2]) that when D is a $C^{1,1}$ domain in \mathbb{R}^d , $d \geq 2$, and u is a non-constant harmonic function in D with u = 0 on an open set V contained in the boundary ∂D of D, then the Hausdorff measure of the set $\{Q \in V : \nabla u(Q) = 0\}$ is less or equal than d-2.

In general, the following conjecture still remains an open question: if u is a harmonic function on a connected Lipschitz domain D in \mathbb{R}^d vanishing continuously on an open subset V of ∂D and whose normal derivative vanishes on a subset of V of positive measure, then u is

identically zero on D.

When u is non-negative, we have from the comparison principle for harmonic funtions vanishing continuously on an open subset of ∂D , [D], that the normal derivative of u is pointwise comparable to the density of the harmonic measure with respect to surface measure $d\sigma$ on any compact subset K contained in V, and it is well known that the harmonic measure is mutually absolutely continuous with respect to $d\sigma$, [D]. Therefore, in this case the answer to the conjecture is positive.

Let D denote a Lipschitz domain in \mathbb{R}^d and w be a non-negative function defined on ∂D . We recall that a nonnegative function w is a $B_2(d\sigma)$ -weight provided that there is a constant C such that for all $Q \in \partial D$ and r > 0 the following holds

$$\left(\frac{1}{\sigma(\Delta_r(Q))}\int_{\Delta_r(Q)} w^2 d\sigma\right)^{1/2} \le C \frac{1}{\sigma(\Delta_r(Q))}\int_{\Delta_r(Q)} w d\sigma,$$

where $\Delta_r(Q) = \partial D \cap B_r(Q)$.

In this note, we will prove the following regularity theorem.

Theorem 1. Let D be a Lipschitz domain in \mathbb{R}^d , $d \geq 2$, $Q_0 \in \partial D$, and u be harmonic in D vanishing continuously on $\Delta_6(Q_0)$. Assume that there exists a constant M, possibly depending on u, such that for all $Q \in \Delta_3(Q_0)$ and 0 < r < 2 the following doubling property holds,

(1.1)
$$\int_{\Gamma_{2r}(Q)} u^2 dX \le M \int_{\Gamma_r(Q)} u^2 dX,$$

where $\Gamma_r(Q) = B_r(Q) \cap D$. Then, there exists a constant C depending on M, the Lipschitz character D and d, such that for all $Q \in \Delta_2(Q_0)$ and 0 < r < 1

$$\left(\frac{1}{\sigma(\Delta_r(Q))}\int_{\Delta_r(Q)}\left|\frac{\partial u}{\partial N}\right|^2d\sigma\right)^{1/2}\leq C\;\frac{1}{\sigma(\Delta_r(Q))}\int_{\Delta_r(Q)}\left|\frac{\partial u}{\partial N}\right|d\sigma\;.$$

In particular, the absolute value of the normal derivative of u is a B_2 -weight when restricted to $\Delta_2(Q_0)$.

In [F2] it is shown that the doubling property (1.1) holds for such a harmonic function when D is a $C^{1,1}$ domain, with M depending on the $C^{1,1}$ character and u. In this note we will show that the doubling property (1.1) also holds when the domain D is convex, obtaining the following theorem.

Theorem 2. Let D, u and Q_0 be as in the previous theorem, and assume that either D is a $C^{1,1}$ or a convex domain. Then, the absolute value of the normal derivative of u on $\Delta_1(Q_0)$ is a $B_2(d\sigma)$ -weight.

It is well known that the above $B_2(d\sigma)$ condition implies that the set $\{Q \in \Delta_2(Q_0) : \partial u(Q)/\partial N = 0\}$ has zero surface measure unless $\partial u/\partial N = 0$ almost everywhere on $\Delta_2(Q_0)$. Therefore, if u is harmonic in D, vanishing continuously on an open subset V of ∂D , and $\{Q \in V : \partial u(Q)/\partial N = 0\}$ has positive surface measure, both u and $\partial u/\partial N$ must vanish identically on V. Extending u as zero outside of D, we obtain a new function which is harmonic in an open set Ω of \mathbb{R}^d containing V and identically zero on $\Omega \setminus D$. It is well known that this implies that u must be identically zero in the connected component of its domain of definition containing V. Hence we obtain the following theorem.

Theorem 3. Let D be a convex connected domain in \mathbb{R}^d , $d \geq 2$, and u be harmonic in D. Then, if u vanishes on an open subset V contained in ∂D and the set $\{Q \in V : \partial u(Q)/\partial N = 0\}$ has a positive surface measure, u must be identically zero on D.

We want to remark that in [F2], the author claimed that his methods also applied to prove the above doubling property in the case of $C^{1,\alpha}$ domains, $0 < \alpha < 1$. But in a personal communication we learnt that his claim was incorrect.

This article is divided in two sections. In Section 2 we prove the theorems 1, 2 and 3, and in Section 3 we show that a similar result holds for solutions to the heat operator in convex cylinders.

2. Proofs of the main results.

To prove Theorem 1 we will need the following inequality.

Lemma 1. There exists a constant C depending only on d, such that if r > 0, n is a positive integer, $0 < \beta < 1$, and $f \in C_0^{\infty}(B_{4r} \setminus B_{\beta r}(0))$, the following holds

$$\int_{B_r} |f(X)| \, dX \le C \, n \, \beta^{3-d-n} \, r^2 \int_{B_{2r}} |\Delta f(X)| \, \, dX$$

$$+ C 2^{-n} r^2 \int_{B_{4r} \setminus B_{2r}} |\Delta f(X)| dX.$$

PROOF. By rescaling we may assume that r = 1. Let $f \in C_0^{\infty}(B_r \setminus B_{\beta})$ and n be an integer greater than 1. If $\Gamma(X, Y)$ denotes the fundamental solution for the Laplace operator on \mathbb{R}^d , we have

$$f(X) = \int \Gamma_n(X, Y) \, \Delta f(Y) \, dY$$
, for all $X \in \mathbb{R}^d$,

where

$$\Gamma_n(X,Y) = \Gamma(X,Y) - \sum_{k=0}^{n-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} D_X^{\alpha} \Gamma(0,Y) X^{\alpha}.$$

Since $|D_X^{\alpha}\Gamma(0,Y)| \leq C(d)^{|\alpha|} |Y|^{-(d-2+|\alpha|)}$, we have for $|X| \leq 1$ and $|Y| \geq 2$

$$|\Gamma_n(X,Y)| \le C(d) \sum_{k>n} 2^{-k} \le C(d) 2^{-n}$$
,

and, for $|X| \leq 1$ and $\beta \leq |Y| \leq 2$,

$$|\Gamma_n(X,Y)| \le |\Gamma(X,Y)| + C(d) \, n \, \beta^{3-d-n} \, .$$

From these estimates and the support properties of f we obtain

$$\int_{B_1} |f(X)| \ dX \le C n \beta^{3-d-n} \int_{B_2} |\Delta f(X)| \ dX$$

$$+ C 2^{-n} \int_{B_4 \setminus B_2} |\Delta f(X)| \ dX .$$

PROOF OF THEOREM 1. Let u and Q_0 be as in Theorem 1, $Q \in \Delta_3(Q_0)$ and 0 < r < 1. Let β denote a vector field supported in $\Gamma_{2r}(Q)$ with $|\nabla \beta| \le C r^{-1}$, $\beta \cdot N \ge C^{-1}$ on $\Delta_r(Q)$ for some constant C depending on the Lipschitz character of D and $\beta \cdot N \ge 0$ on $\Delta_{2r}(Q)$, where N denotes the exterior unit normal to D at points of ∂D .

Integrating the Rellich-Necas identity

$$\operatorname{div}(\beta \cdot |\nabla u|^2) = 2\operatorname{div}((\beta \cdot \nabla u)\nabla u) + O(|\nabla \beta| |\nabla u|^2)$$

over $\Gamma_{2r}(Q)$, and since $\nabla u = \partial u/\partial N$ almost everywhere on $\Delta_5(Q_0)$, we obtain

$$\int_{\Delta_{r}(Q)} \left| \frac{\partial u}{\partial N} \right|^{2} d\sigma \leq C r^{-1} \int_{\Gamma_{2r}(Q)} |\nabla u|^{2} dX,$$

and from Cacciopoli's inequality and the doubling property of u

$$\int_{\Delta_r(Q)} \left| \frac{\partial u}{\partial N} \right|^2 d\sigma \le C r^{-3} \int_{\Gamma_{r/40}(Q)} u^2 dX,$$

where C depends on the Lipschitz character of D, and M.

From standard estimates for subharmonic functions vanishing at the boundary [GT, Theorem 8.25] we can bound the L^2 averages of u by L^1 averages, obtaining

$$\left(\int_{\Delta_r(Q)} \left| \frac{\partial u}{\partial N} \right|^2 d\sigma \right)^{1/2} \le C \, r^{-(3+d)/2} \int_{\Gamma_{r/30}(Q)} |u| \, dX \, .$$

We claim that for some constant C as above

$$\int_{\Gamma_{\tau/30}(Q)} |u| \ dX \le C r^2 \int_{\Delta_{\tau}(Q)} \left| \frac{\partial u}{\partial N} \right| \ d\sigma \ ,$$

and assuming the claim, the theorem follows from the last two inequalities.

To prove the last claim, we may assume without loss of generality that Q = 0 and that near 0, ∂D coincides with $\{(x, y) : x \in \mathbb{R}^{d-1}, y = \varphi(x)\}$ for some Lipschitz function φ with $\varphi(0) = 0$.

Let Z denote the point whose coordinates with respect to this coordinate system are x=0 and y=-r/2. From the Lipschitz character of D we can find $0 < \beta < 1/8$ such that $B_{2\beta r}(Z)$ is contained in the complement of D. We extend u to be zero outside D and define $u_{\varepsilon} = u * \theta_{\varepsilon}$, where θ_{ε} is a regularization of the identity. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ with $\varphi = 1$ on $B_{2r}(Z)$ and whose support is contained in $B_{4r}(Z)$.

Setting $f_{\varepsilon} = \varphi u_{\varepsilon}$, we have that $f_{\varepsilon} \in C_0^{\infty}(B_{4r} \setminus B_{\beta r}(Z))$ for $\varepsilon > 0$ sufficiently small, and for X in $B_{4r}(Z)$

$$|\Delta f_{\varepsilon}(X)| \leq 2 |\Delta \varphi| |(\nabla u) * \theta_{\varepsilon}| + |u_{\varepsilon}| |\Delta \varphi|$$

$$+ \int_{\partial D} \left| \frac{\partial u}{\partial N}(Q) \right| \varphi(X) \theta_{\varepsilon}(X - Q) d\sigma(Q).$$

Applying to f_{ε} the translation to Z of the inequality in Lemma 1, and letting ε tend to zero, we obtain from the support properties of φ and standard estimates for harmonic functions the following estimate

$$\int_{\Gamma_{r/2}(Q)} |u| dX \le C(d, \beta, n) r^2 \int_{\Delta_{5r}(Q)} \left| \frac{\partial u}{\partial N} \right| d\sigma$$
$$+ C(d) 2^{-n} \int_{\Gamma_{5r}(Q)} |u| dX.$$

Using the doubling property of u, the second term above can be hidden on the left hand side of the inequality after choosing n large enough, getting

$$\int_{\Gamma_{r/2}(Q)} |u| \ dX \le C \, r^2 \int_{\Delta_{5r}(Q)} \left| \frac{\partial u}{\partial N} \right| \ d\sigma \ ,$$

where C depends on d, the Lipschitz character of D and M; and this proves the claim.

PROOF OF THE DOUBLING PROPERTY. Assume now that D is convex and let u be as in the statement of Theorem 2. For $Q \in \Delta_3(Q_0)$ we define

$$H(r,Q) = \int_{\partial B_r(Q) \cap D} u^2 \, d\sigma \qquad \text{and} \qquad D(r,Q) = \int_{\Gamma_r(Q)} |\nabla u|^2 \, dX \, .$$

As Almgren, [A], we consider the frequency function

$$N(r,Q) = \frac{2 r D(r,Q)}{H(r,Q)} \ .$$

We will prove that

$$r \frac{d}{dr} (\log(H(r,Q)r^{1-d})) = \frac{2r D(r,Q)}{H(r,Q)} = N(r,Q),$$

and that the frequency function $N(\cdot, Q)$ is non-decreasing for $Q \in \Delta_3(Q_0)$. Therefore, if 0 < r < 2, we have

$$r \frac{d}{dr} \left(\log(H(r, Q) r^{1-d}) \right) \le N(2, Q).$$

Standard arguments imply that the doubling constant M is bounded by $2^{d+\beta}$, where β is an upper bound of N(2,Q) on $\Delta_3(Q_0)$.

To prove our claim, we may assume that Q = 0, H(r, 0) = H(r), $B_r = B_r(0)$, and D(r, 0) = D(r). Then,

(2.1)
$$\frac{d}{dr}H(r) = \frac{d-1}{r}H(r) + 2D(r).$$

From the Rellich-Necas identity with vector field X, i.e.,

$$\operatorname{div}(X |\nabla u|^2) = 2 \operatorname{div}((X \cdot \nabla u) \nabla u) + (d-2) |\nabla u|^2,$$

and the fact that the tangential derivative of u is zero on $\Delta_3(Q_0)$ we get

$$\frac{d}{dr} D(r) = 2 \int_{\partial B_r \cap D} \left(\frac{\partial u}{\partial N} \right)^2 d\sigma + \frac{d-2}{r} D(r) + \frac{1}{r} \int_{\Delta_r} (Q \cdot N) \left(\frac{\partial u}{\partial N} \right)^2 d\sigma.$$

But in a convex domain with $0 \in \partial D$, $Q \cdot N$ is non-negative on ∂D . Hence,

$$\frac{d}{dr} D(r) \ge 2 \int_{\partial B_r \cap D} \left(\frac{\partial u}{\partial N} \right)^2 d\sigma + \frac{d-2}{r} D(r).$$

From the above inequality (2.1), and the quotient rule we obtain

$$\frac{d}{dr} \left(\frac{r D(r)}{H(r)} \right) \ge 2 r H(r)^{-2} \left(\int_{\partial B_r \cap D} \left(\frac{\partial u}{\partial N} \right)^2 d\sigma \int_{\partial B_r \cap D} u^2 d\sigma \right) - \left(\int_{\partial B_r \cap D} u \frac{\partial u}{\partial N} d\sigma \right)^2,$$

and from Hölder's inequality we get

$$\frac{d}{dr}\left(\frac{r\,D(r)}{H(r)}\right)\geq 0\,,$$

as we wanted.

3. The parabolic case.

Here we show that a similar result holds for caloric functions vanishing continuously on the lateral boundary of a convex cylinder $D \times (0,\infty)$. The reader will observe in the next proof, that in general, the same result can be obtained when D is just a Lipschitz domain and the

corresponding "unique continuation property" holds at points (Q,0) with $Q \in \partial D$, for harmonic functions defined on $W \cap D \times (0,\infty)$ and vanishing continuously on $W \cap \partial(D \times (0,\infty))$, where W is an open set in \mathbb{R}^{d+1} containing the boundary point (Q,0).

Theorem 4. Let D be a convex connected domain in \mathbb{R}^d , $d \geq 2$ and u(X,t) satisfy

$$\left\{ \begin{array}{ll} \Delta u - \partial_t u = 0 \,, & \text{on } D \times (0, \infty) \,, \\ \\ u(X,0) = f(X) \,, & \\ u(Q,t) = 0 \,, & \text{for } Q \in \partial D \ \text{and } t > 0 \,, \end{array} \right.$$

for some f in a suitable class. Assume that the set

$$E = \left\{ (Q, t) \in \partial D \times (0, \infty) : \frac{\partial u}{\partial N}(Q, t) = 0 \right\}$$

has positive surface measure on $\partial D \times (0, \infty)$. Then, u must be identically zero.

PROOF. Without loss of generality we may assume that (Q_0, τ) , where $Q_0 \in \partial D$ and $\tau > 0$, is a density point of E, *i.e.*,

(3.1)
$$\lim_{r \to 0} \frac{m(E \cap (\Delta_r(Q_0) \times [\tau - r^2, \tau]))}{\sigma(\Delta_r(Q_0))r^2} = 1,$$

where $dm = d\sigma dt$ on $\partial D \times (0, \infty)$.

We claim that this implies that $u(\cdot,\tau)$ vanishes to infinity order at Q_0 :

$$\int_{\Gamma_r(Q_0)} |u(X,\tau)| \, dX = O(r^k) \,, \qquad \text{for all} \ \ k \geq 1 \ \ \text{as} \ r \to 0 \,.$$

Assuming this claim, we have

$$u(X,t) = \sum_{k>1} a_k \varphi_k(X) e^{-\lambda_k t},$$

where

$$f(X) = \sum_{k \ge 1} a_k \, \varphi_k(X)$$

and $\{\varphi_1, \varphi_2, \dots, \varphi_k, \dots\}$, $0 < \lambda_1 < \lambda_2 < \dots < \lambda_k \dots$ denote respectively the eigenfunctions and eigenvalues for the Laplace operator on D.

Defining v(X, y) for $X \in D$ and y > 0 as

$$v(X,y) = \sum_{k\geq 1} a_k \varphi_k(X) e^{-\lambda_k \tau} \frac{\sinh(\lambda_k^{1/2} y)}{\lambda_k^{1/2}}$$

we have that v is a harmonic function on $\Omega = D \times (0, \infty)$ with v = 0 on the bottom and sides of Ω . From the convexity of D, Ω is a convex domain in \mathbb{R}^{d+1} , and from our previous estimates for harmonic functions in convex domains vanishing on a boundary portion we have for 0 < r < 1

$$\int_{\Gamma_r(Q_0,0)} |v(X,y)| \ dX \ dy \le C r^2 \int_{\Delta_r(Q_0,0)} \left| \frac{\partial v}{\partial N} \right| \ d\gamma \ ,$$

where $\Gamma_r(Q_0,0) = B_r(Q_0,0) \cap \Omega$, $\Delta_r(Q_0,0) = B_r(Q_0,0) \cap \partial\Omega$, $d\gamma$ denotes surface measure on $\partial\Omega$ and C > 0 is a constant depending on d, the Lipschitz character of D and v. From the doubling property of the absolute value of the normal derivative of v on $\partial\Omega$ and the fact that $\partial v(X,0)/\partial N = -\partial_v v(X,0) = -u(X,\tau)$ on the bottom of Ω , we obtain

$$\int_{\Delta_{\tau}(Q_0,0)} \left| \frac{\partial v}{\partial N} \right| d\gamma \le C \int_{\Gamma_{\tau}(Q_0)} |u(X,\tau)| dX = O(r^k), \quad \text{for all } k \ge 1.$$

From the above inequalities we conclude that v vanishes to infinity order at $(Q_0, 0)$ and since v is doubling with respect to balls centered at $(Q_0, 0)$, it can only happen when v is identically zero, which implies that v must be equal to zero.

Therefore, to finish our proof we must prove the above claim. It will follow from the analogue of the Lemma 1 in the parabolic case.

Lemma 2. There exists a constant C depending on $d \geq 2$, such that if r > 0, $0 < \beta < 1$, $f \in C_0^{\infty}((B_{4r} \setminus B_{\beta r}) \times (-(4r)^2, 0])$, and n is an integer greater than 1, the following holds

$$\int_{-r^2}^{0} \int_{B_{\tau}} |f| \, dX \, dt \le C \, n \, \beta^{-(d+2(n-1))} \, r^2 \int_{-(2\tau)^2}^{0} \int_{B_{2\tau}} |(\Delta - \partial_t) f| \, dX \, dt + C \, 2^{-n} \, r^2 \int \int_{H_{\tau}} |(\Delta - \partial_t) f| \, dX \, dt \,,$$

where
$$H_r = B_{4r} \setminus B_{2r} \times (-(4r)^2, 0] \cup B_{2r} \times (-(4r)^2, -(2r)^2]$$
.

PROOF. As usual we may assume that r=1. Setting $\Gamma(X,t,Y,s)=(4\pi(t-s))^{-d/2}\exp(-|X-Y|^2/4(t-s))$ for t>s and $\Gamma(X,t,Y,s)=0$ for $t\leq s$ we obtain using the fact that $D^\alpha\partial_t^j f(0,0)=0$ for all d-tuples and $j\geq 0$, and a simple argument of integration by parts, that for $t\leq 0$ and X in \mathbb{R}^d

$$f(X,t) = \int_{-\infty}^{0} \int \Gamma_n(X,t,Y,s) (\Delta - \partial_s) f(Y,s) dY ds,$$

where

$$\Gamma_n(X,t,Y,s) = \Gamma(X,t,Y,s) - \sum_{k=0}^{n-1} \sum_{|\alpha|+j=k} \frac{1}{\alpha!j!} D_X^{\alpha} \partial_t^j \Gamma(0,0,Y,s) X^{\alpha} t^j.$$

Interior estimates for caloric functions imply that for s < 0 we have

$$|D_X^{\alpha} \partial_t^j \Gamma(0, 0, Y, s)| \le C(d)^{|\alpha| + 2j} |s|^{-(|\alpha| + 2j + d)/2}, \quad \text{for } |Y|^2 \le |s|,$$

$$|D_X^{\alpha} \partial_t^j \Gamma(0, 0, Y, s)| \le C(d)^{|\alpha| + 2j} |Y|^{-(|\alpha| + 2j + d)}, \quad \text{for } |Y|^2 \ge |s|.$$

These estimates imply that for |X| < 1, -1 < t < 0 we have

$$|\Gamma_n(X,t,Y,s)| \le C(d) \left(\Gamma(X,t,Y,s) + n \beta^{-(d+2(n-1))}\right),$$

for $\beta < |Y| < 2$ and -4 < s < 0, and for $(Y, s) \in H_1$ we can estimate Γ_n using the generalized mean value theorem, obtaining

$$|\Gamma_n(X, t, Y, s)| \le C(d) 2^{-n}$$
, for $(Y, s) \in H_1$.

The inequality follows from these estimates and the support properties of f.

Let now u be as in Theorem 4. Without loss of generality we may assume that $(Q_0, \tau) = (Q_0, 0)$, and that u is caloric for $X \in D$, -2 < t < 0. As before, for 0 < r < 1 we let Z denote a point outside of D such that $|Z - Q_0| = r/2$, and β be a number with $0 < \beta < 1/8$, and such that $B_{2\beta r}(Z)$ does not intersect D.

We extend u to be zero outside the cylinder with base D and define $f_{\varepsilon}(x,t) = u_{\varepsilon}(x,t) \varphi(x,t)$, where $u_{\varepsilon}(X,t) = u(\cdot,t) * \theta_{\varepsilon}(X)$, and

where $\varphi \in C_0^{\infty}(B_{4r}(Z) \times (-(4r)^2, 0])$ is such that $\varphi = 1$ on $B_{2r}(Z) \times (-(2r)^2, 0]$.

Applying to f_{ε} the translation of the inequality in Lemma 2 to (Z,0), observing that

$$\begin{aligned} |(\Delta - \partial_t) f_{\varepsilon}(X, t)| &\leq 2 |\nabla \varphi| |(\nabla u) * \theta_{\varepsilon}| + |u_{\varepsilon}| |(\Delta - \partial_t) \varphi| \\ &+ \int_{\partial D} \left| \frac{\partial u}{\partial N}(Q, t) \right| \varphi(X, t) \theta_{\varepsilon}(X - Q) d\sigma(Q) \,, \end{aligned}$$

for X in \mathbb{R}^d and -1 < t < 0, letting ε tend to zero, and using standard estimates for caloric functions we obtain

$$\begin{split} \int_{-r^2}^0 \int_{\Gamma_{r/2}(Q_0)} |u| \; dX \, dt &\leq C(d,n,\beta) \, r^2 \int_{-(5r)^2}^0 \int_{\Delta_{5r}(Q_0)} \left| \frac{\partial u}{\partial N} \right| \, d\sigma \, dt \\ &+ C(d) \, 2^{-n} \int_{-(5r)^2}^0 \int_{\Gamma_{5r}(Q_0)} |u| \, dX \, dt \, . \end{split}$$

On the other hand, the first term of the right hand side of the last inequality can be bounded by

$$r^2 m((\Delta_{5r}(Q_0) \times [-(5r)^2, 0]) \setminus E)^{1/2} \Big(\int_{-(5r)^2}^0 \int_{\Delta_{5r}(Q_0)} \Big| \frac{\partial u}{\partial N} \Big|^2 d\sigma dt \Big)^{1/2}$$

If v denotes the solution to $\Delta v - \partial_t v = 0$ on $\Gamma_{6r}(Q_0) \times (-(6r)^2, 0]$ satisfying v(Q,t) = 0 for $Q \in B_{6r}(Q_0) \cap \partial D$ and $t \in (-(6r)^2, 0]$, and v(Q,t) = 1 on the remaining part of the parabolic boundary of $\Gamma_{6r}(Q_0) \times (-(6r)^2, 0]$, we have from [FS] that for some constant C depending on d, and the Lipschitz character of D,

$$\left(\int_{-(5\tau)^2}^0 \int_{\Delta_{T_*}(O_0)} \left| \frac{\partial v}{\partial N} \right|^2 d\sigma dt \right)^{1/2} \le C r^{(d+1)/2}.$$

On the other hand, from the parabolic maximum principle and standard estimates for caloric functions vanishing on the lateral boundary of a Lipschitz cylinder we have

$$|u(X,t)| \le C v(X,t) r^{-(d+2)} \int_{-(8r)^2}^0 \int_{\Gamma_{8r}(Q_0)} |u| dX dt,$$

for all (X, t) in $\Gamma_{6r}(Q_0) \times (-(6r)^2, 0]$.

Thus,

$$\begin{split} \Big(\int_{-(5r)^2}^0 \int_{\Delta_{5r}(Q_0)} \left| \frac{\partial u}{\partial N} \right|^2 d\sigma \, dt \Big)^{1/2} \\ & \leq C \, r^{-(d+5)/2} \int_{-(8r)^2}^0 \int_{\Gamma_{8r}(Q_0)} |u| \, dX \, dt \, , \end{split}$$

where C depends only on the Lipschitz character of D, and d. From the above chain of inequalities we have that for 0 < r < 1

$$\begin{split} \int_{-r^2}^0 \int_{\Gamma_{r/2}(Q_0)} |u| \ dX \ dt \\ & \leq \left(C(d, n, \beta) \left(\frac{m((\Delta_{5r}(Q_0) \times [-(5r)^2, 0]) \setminus E)}{\sigma(\Delta_{5r}(Q_0))(5r)^2} \right)^{1/2} \\ & + C(d) \ 2^{-n} \right) \int_{-(8r)^2}^0 \int_{\Gamma_{8r}(Q_0)} |u| \ dX \ dt \ . \end{split}$$

Therefore, from (3.1) and choosing n large enough, we find that for all $\varepsilon > 0$ there exists $r(\varepsilon) > 0$, such that for $0 < r < r(\varepsilon)$

$$\int_{-r^2}^0 \int_{\Gamma_r(Q_0)} |u| \; dX \; dt \leq \varepsilon \int_{-(12r)^2}^0 \int_{\Gamma_{12r}(Q_0)} |u| \; dX \; dt \; .$$

This is well known to imply that

$$\int_{-r^2}^0 \int_{\Gamma_r(Q_0)} |u| \, dX \, dt = O(r^k), \quad \text{for all } k \ge 1.$$

On the other hand, estimates for caloric functions vanishing on the lateral boundary give

$$\int_{\Gamma_r(Q_0)} |u(X,0)| \ dX \le C \, r^{-2} \int_{-(2r)^2}^0 \int_{\Gamma_{2r}(Q_0)} |u| \ dX \ dt \,,$$

where C depends on d and the Lipschitz character of D, and this implies our claim.

References.

- [A] Almgren F. J., Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents. *Minimal submanifolds* and geodesics (ed. by M. Obata), North Holland (1979), 1-6.
- [BW] Bourgain J., Wolff T., A remark on gradients of harmonic functions in dimension ≥ 3. Colloquium Mathematicum 60/61 (1990), 253-260.
 - [D] Dahlberg, B. E. J., Estimates fo harmonic measure. Arch. Rational Mech. Anal. 65 (1977), 275-285.
- [F1] Fang Hua Lin, A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math. 43 (1990), 127-136.
- [F2] Fang Hua Lin, Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 45 (1991), 287-308.
- [FS] Fabes E. B., Salsa, S., Estimates of caloric measure and the initial Dirichlet problem for the heat equation in Lipschitz cylinders. Trans. Amer. Math. Soc. 279 (1983), 635-650.
- [GT] Gilbarg, D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.

Recibido: 19 de enero de 1.994 Revisado: 11 de noviembre de 1.994

Vilhelm Adolfsson Matematiska Institutionen CTH S-412 96 Göteborg SWEDEN vilhelm@math.chalmers.se Luis Escauriaza
Universidad del Pais Vasco
Departamento de Matematicas
Apartado 644, 48080 Bilbao, Leioa
SPAIN
mtpeszul@lg.ehu.es

Carlos Kenig
University of Chicago
Department of Mathematics
University Avenue 54037
Chicago, IL, 60637, U.S.A.
cek@math.uchicago.edu