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Two problems on

doubling measures
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Doubling measures appear in relation to quasiconformal mappings
of the unit disk of the complex plane onto itself. Each such map deter-
mines a homeomorphism of the unit circle on itself, and the problem
arises, which mappings f can occur as boundary mappings ? A famous
theorem of Beurling and Ahlfors [2] states a necessary and sufficient
condition: the Lebesgue measures |f(I)| and |f(J)| are comparable,
|f(D)] ~ |f(J)|, whenever I and J are adjacent arcs of equal length.
Denoting by u the measure on the unit circle such that p(I) = |f(1)],
this can be expressed by the inequality u(2I) < cu(I), where 21 de-
notes an arc on the circle, concentric with I, of twice the length. The
measure g in the Beurling-Ahlfors theorem is the harmonic measure for
a certain elliptic operator in divergence form, whence the problem of
null-sets for doubling measures is closely related to that of null-sets for
harmonic measure [3].

Certain estimations, such as those for singular integrals and maxi-
mal functions, which are classical in the case of Lebesgue measure, can
be obtained for doubling measure in Euclidean space ([4], [5] and [6]).
Doubling measures also appear in relation to inner functions in several
complex variables [1].

The definition of doubling measure has meaning for any metric
space (X, p), t.e. p(B(z,2r)) < cu(B(z,r)), and it is natural to ask
which compact metric spaces (X,p) carry non-trivial doubling mea-
sures. A necessary and sufficient condition was found by Volberg and
Konyagin [8], and called finite uniform metric dimension: in each ball
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B(x,2r) at most N points can be found with mutual distances at least
T

In view of the original interest in singular mappings and singu-
lar measures, mutually singular doubling measures on the same metric
space are of interest. We prove that such measures exist provided (X, p)
carries a doubling measure and is perfect. This answers a question
stated in (8, p. 637].

A measure p on R!, is called dyadic-doubling if p(I) < cpu(J)
whenever I and J are adjacent dyadic intervals of the same length,
whose union is also dyadic. These measures occur in the theory of
weights and are completely characterized [7]. It is hardly surprising
that the class of doubling measures and the class of dyadic doubling
measures are different, but less trivial that the corresponding classes of
null-sets (which we abbreviate as A and Ay) are different. The class
N is bilipschitz invariant. The class My lacks an invariance property of
N: we find a closed set E, not in Ny, and a set T of full measure in
R!, |R"\T| = 0, such that t + E is in Ny for each ¢t in T. A previous
example [9] accomplished this with a set T of dimension 1. The class
Ny is not invariant under multiplication by positive numbers t, but our
example is not as strong as the one for addition.

1. Singular doubling measures on compact metric space.

Vol'berg and Konyagin proved [8] that a compact metric space
(X, p) carries a nontrivial doubling measure p on X:

(1.1)  u(B(z,2R)) < Au(B(z,R)), forallzeX, R>0,

where A > 1 and B(z,R) = {y € X : p(z,y) < R}, if and only if it
has finite uniform metric dimension. In particular any compact set X
in R™ carries a nontrivial doubling measure.

They also raised the question: on which compact metric spaces
(X,p) are all doubling measures mutually absolutely continuous ? It
follows from a well-known example of Beurling and Ahlfors [2] that this
is not the case even for the unit circle. We prove the following.

Theorem 1. Let (X, p) be a compact metric space and p be a doubling
measure on X having no atoms. Then there ezists a doubling measure
on X singular with respect to p.
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We emphasize that a doubling measure on X satisfies the doubling
condition on X only; that is, only balls with centers in X figure in the
definition.

We say that (X, p) has finite uniform metric dimension if there
exists a finite N = N(X, p) such that for any z € X and R > 0, there
are at most N points in B(z,2R) separated from one another by a
distance at least R.

PROOF OF THEOREM 1. Let (X, p) satisfy all conditions in Theorem
1, and u be a doubling measure on X with p(X) = 1. To construct a
doubling measure on X singular with respect to p, we invoke the idea
of Riesz product on the measure space (X, ). The functions wy in the
next lemma play the role of 1 4 ay cos kz in the usual Riesz product.

Lemma 1. There ezist measurable functions wy on X taking values
1/2 and 3/2 only, so that

p(we = 1/2) = p(wg = 3/2) = 1/2,

(1.2) wy — 1 weakly in L*(dp),

and

(1.3) w,lc/2 — —;—(\/1/‘2 ++/3/2) weakly in L*(dpy).

PROOF. We observe that every measurable set E of measure y(E) > 0,
can be divided into two subsets, each of measure y(E)/2. This is a
general property of measure spaces with no atoms. Hence there is a
measurable function w such that p(w < t) =t 0 <t < 1. Let g(¢)
have period 1 on [0, 4+00) with ¢ =1/2 on [0,1/2), g = 3/2 on [1/2,1].
We set wy, = g(2kw).

To see that wy — 1 weakly in L?(du), we observe that the functions
wy are independent. Therefore w; tends weakly to its mean, as does
ey

For z € X and r > 0, define

1’ lf P(:E,y) S T,
hz,r(y) = 0 ’ if p($3 y) 2 3T/2=
3—2p(z,y)r7t, if r<p(z,y)<3r/2.
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By the doubling property of u, there exists A > 1 independent of
z and r, so that

(14) /X e 2e(y) dis(y) < A /X he () du(y),

forall z € X and r > 0.

Let o = (/1/24+1/3/2)/2, B = 21 a/20 and {w;} be the functions
in Lemma 1. Note that 8 < 1.

We shall construct continuous functions {u,}{° and {v,}$° on X,
so that the following inequalities are true:

1 3 1
T Sun S5+

1
(1.5) 27 100(n+1) =27 100(n+1)°

(1.6) /Xlg[u,- dp=1,
_ i N1/ .
(1.() /X(l;[u‘) dﬂS,B ’
(1.8) /hz2rﬁu; du < (7——-1—)/1/ h,rqu.,- du
x % B n+l1 x % ’

forallz € X and r > 0;
(19) 0<v, <1,

(1.10) / v, dp < B2
X
and for all 0 < 5 < n,

(1.11) /X(l - vj)ﬁu,- dp < (3 - %T) Bi

Let ug =1 and vo =0 on X.
Assume that ug,...,u, and vg,...,v, have been chosen so that
(1.5) to (1.11) are satisfied; we shall construct 4,41 and v,41 .
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Because of (1.2), (1.3), (1.7) and (1.11), for sufficiently large k& >

k(u07ul,' -y Un, Vo, Vg, . .,’b‘n),

(1.12) ];{ (fIUg)lﬂw;/z dp < (1+-1—0()—(—}l+—1)>a,5n,
0

and

(1.13) / 1—vﬁ(l§[u)wk dp < ( (n+11)(n+2))ﬂj’

foral0<j <n.
Because u;,0 < ¢ < n, are uniformly continuous on X with values
in [1/4,2], it follows from (1.4) that for all z € X

n
/hz,2rHuidl-lS A 1+_ / rrHUzd,U,
X 5

provided that 0 < r < r(ug,u1,...,un). Since 1/2 < wy < 3/2,

(1.14) /x hazr [ uiwn dp <34 (14 n—i—l) /X hz,rl;lui wy dp

0

forall z € X and 0 < 7 < r(uo, u1,...,un).
Now we can see by (1.2), the compactness of X and the continuity
of h, -(y) with respect to the variables z,y and r that

n

lim h,ry)Hu(y Jr(s) du(w) = [ ) [ ato) duo)

k—oo
0

uniformly for z € X, r > r(uo,...,un). Moreover the integrals on the
right have a positive lower bound for all z and r > r(ug,...,u,). We
deduce from (1.8) and (1.14) that for sufficiently large &,

n

/ hyor H u; wy dy
%
(1.15) °

) n
< (7— W)A/:‘( hz,rl;[u,'wk du ,
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forall z € X and r > 0.

Now choose and fix one wg(y,), so that (1.12), (1.13) and (1.15) are
satisfied.

Denote by dv, = [[; uidpu. It follows from Lusin’s theorem that
there exists a continuous Wi,y on X taking values in [1/2,3/2] that
agrees with wg(,) on X outside a set E, of small v, measure. And let

-1
Unt1 = (/ d)k(n) an) d’k(n) .
X

Clearly
n+1

/Hu,dp /u,,.H dv, =1,

and
1 1 3 1

- < <S4y -
2 10m+2) = =2 T 0(mr2)

if v,(Ey) is sufficiently small. Moreover, 1,(E,) can be chosen small
enough, so that (1.12), (1.13) and (1.15) remain true for slightly bigger
constants when wy is replaced by u,4; :

n+1

(1.16) L(H

0

1/2
ui) d‘ﬂ < ﬁn+l ,

n+1

/X(l—vj):[;[“id#S(3~;%_—§)ﬁj, 0<j<n,

(the case j = n + 1 shall be provided later) and

n+1 n+1
/ hz,ZrH“idll< 7—-— A/ herU du.
X 0
Finally, choose v,41 continuous on X,0 < v,4; <1, and
n+1
0, on the set where H w; < 7
0
Unt1 = n+l
1, on the set where H u; > 28"

0
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It follows from (1.16) that

n+1

[ omes s < T[wi 2 071) < porense,
X 0

and

n+1

n+1
1—v, u; dy < / idy <2p8mt1,
_/X( +1)H 7 1;[11 p<2p

0
ptlui<2pn+t

Hence up4; and v,y satisfy all properties (1.5) to (1.11).

Finally let v be a w* limit of [[§ ui dy, or of some subsequence.

In view of (1.10) and (1.11), fv;du < f#/% and [(1—v;)dv < 347
for all j. Thus v; — 0 almost everywhere with respect to dy and v; — 1
almost everywhere with respect to dv. Therefore u and v are mutually
singular.

From (1.8), it follows that for all z € X and r > 0,

v(B(z,2r)) < /hz’gr dv < 7A/hz,,. dv < 7A V(B(:L‘, -2—7‘)) .

Therefore v is a doubling measure on X. This completes the proof of
Theorem 1.

Let (X, p) be a compact metric space of finite uniform metric di-
mension. Let Ex be the set of accumulation points in X and Fx be
the set of isolated points in X. Then X = Ex U Fix .

Lemma 2. Let u be any doubling measure on X. Then every point in
Fx has positive u-measure, and every point in Ex has zero p-measure.

ProoF. It is clear that every isolated point has positive pu-measure
by the doubling condition. Let z € Ex, and pick {zn,} C X so that

0 < p(z,z,) < p(T,zn-1)/10. Then {B(zn,2p(z,z,)/3)} are mutually
disjoint, and = € B(z,,4 p(z,,)/3). Therefore

p(X) 2 Z#(B(xm-z—p(w,zn)))
> CZP‘(B(:’:mi;'P(xaxn))) >cy u({z}).
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Since p(X) < oo, p({z}) must be zero.

Therefore, for a doubling measure on (X, p) we may call u|g, the
continuous part of p and p|py the atomic part of p.

Corollary 1. If X i3 a perfect set, then with respect to each doubling
measure on X there ezists a singular one.

The following statement, which follows easily from the proof of
Theorem 1, answers the question of Vol’berg and Konyagin.

Corollary 2. All doubling measures on (X, p) are mutually absolutely
continuous if and only if every doubling measure on X 1is purely atomic.
A necessary topological condition 13 that Fx = X .

Although Fx = X is a necessary condition, it is far from being a
sufficient condition for the mutual absolute continuity of all doubling
measures on X ; see the example below.

EXAMPLE. There are compact subsets X, ¥ and Z of R!, so that
the sets of accumulation points Ex, Ey and Ez are all perfect sets,
and the closures of isolated points Fy, Fy and Fz equal to X, Y
and Z respectively. However, all doubling measures on X are purely
atomic; every doubling measure on Y contains a nontrivial continuous
part; some doubling measures on Z are purely atomic and others have
a nontrivial continuous part.

CONSTRUCTION OF X. Let E be the Cantor ternary set on [0,1], F
be the centers of all maximal intervals in [0,1]\E, and X = E U F.

Let {an'j}gzl be all points in F of distance 37" /2 to E and I, ; =
[an,; —37™*1/2,a, j+ 3711 /2], thus {Iﬂ,j}ﬁ;1 forms a covering of E.
Let 1 be a doubling measure on X. Then there exists ¢ > 0, so that

Z p{an,;}) 2 CZ#(-’n,j NX)2cp(E),

for each n > 1. Since pu(X) < oo, p(E) must be zero.

CONSTRUCTION OF Y. Let E be the Cantor ternary set on [0, 1], and
[0,1\E = Jse, U?:ll I, j, where {I,w-}irl1 are the maximal intervals
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in [0,1]\F of length exactly 37", arranged in ascending order with
respect to j. Given 0 < B, < 1/4, let a, j and b, ; (an ; > by ;) be the
two points in I, ; of distance $,37" to E,

oo 2™

F=J U {en;bns)

n=1 j=1

andY =EUF.
Suppose that

(1.17) 3 (logi)—] < oo.

Then every doubling measure p on Y has a nontrivial continuous part.
k—

n . . 1 .
Denote by {En ;}3_; the intervals in [0, 1]\ Ui, U§=1 It ; in as-
cending order with respect to j. Note that |E, ;| = 37", and that

2" oo 2F-1
(1.18) UEBwinF= |J U{aribri}-
j=1 k=n+1 j=1

Moreover for each (n,j),
dist (an,;, E) = dist (an j, Fn 2;)
= dist (b j, E)
= dist (bn‘j,En,QJ’_]) = ,Bn 3—n .

Suppose that u is a doubling measure on Y which is purely atomic,
i.e. p(E) = 0. Then there exists ¢ > 0 depending only on p, so that

(1.19) H(Eng; N F) 2 ¢ (log =) u({an, ),
and
(1.20) W(Bnzys 0 F) 2 ¢ (log 5-) (b, ).

In fact, fix (n,7) and write E, 5; as [p/3",(p + 1)/3"] for some
integer p and a, ; as p/3" — B,/3". Let z, = p/3" +1/3"*%7 € E, and
B, = B(z,,2-37""2971). Note that {B,}{° are mutually disjoint and
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B, C Ey3;; moreover if ,37" < 3 ""2¢~1 then an,j € 2B, and 2B, N
F = {a, j}U(2B,NE, 1;), where 2B, is the interval B(z,,4-37"72471),
Therefore there exist ¢ > 1, so that for 1 < ¢ < (1/3) log1/3,,

p({an,;}) S u(2B,) < ' u(By) =c' p(ByNF).

Summing over ¢, 1 < ¢ <(1/3)log1/8,, we obtain
1 '
#({an,;}) log 7= < 3¢ #(Enz2; NF).

The proof of (1.20) is similar.

Denote by m, = [L(U?:l__ll{an’j,bn,j}) and recall that Y ;°m, =
w(Y) < oo. Summing over j's in (1.19) and (1.20), we deduce from
(1.18) that %, mk > c(log1/B,) my, for each n > 1. Denote 3" my
by r, and logl/fB, by Nn, we have rn41 > o (cNy)/(1 4+ ¢ Ny,) for
n > 1. Thus

As n — oo, the left hand side approaches 0, and the right hand side
has a positive limit under the hypothesis (1.17), which is impossible.

Therefore every doubling measure on Y must have a nontrivial
continuous part.

The construction of Z uses Whitney modification of measures. Let
E be a closed set on R! and px be a measure on R!. We call ;¥ a
measure on R, a Whitney modification of u if u¥ = p on E, and for
some Whitney decomposition W = {I} of R\E, u®({z,}) = pB(I) =
p(I) for every I € W and z; the center of I.

Recall that intervals in W have mutually disjoint interiors, Uyl =
R\ E and dist (I, E)/4 < |I| < 4dist (I, E) for each I € W. A measure
4 is said to have the doubling property on a closed set .S, if (1.1) is
satisfied for all z € S and R > 0.

Lemma 3. If y is a doubling measure on R!, then any Whitney mod-
ification u¥ of i has the doubling property on EU F, where F consists
of the centers of intervals in W, and W 13 the Whitney decomposition
associated with p .
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PROOF. For z € E| let I, = {z}, and for z € F, let I, be the interval
in W centered at z. For any € EU F and R > 0, we claim that

(1.21) 1Z(B(z, R)) = u(B(z,dist (z, E)),
if B(z, R)N(EUF)={z}, and
(1.22) #P(B(z, R)) = p(B(z, R)),

if B(z,R) N (E U F) has at least two points.

By ¢ = d we mean c/d is bounded above and below by positive
numbers depending only on the constant A in the doubling property of
7y

Let a=inf{y€e EUF: y>z—R}andb=sup{y€e EUF: y <
z + R}. Note that a =z — Rif ¢ — R € E, and a € F otherwise; and
that b=z + Rif z + R € E, and b € F otherwise.

If a = b, then @ = b = z. In this case,

4P (B(z, R) = u({z}) = p(I.) = p( B(z, dist (z, E))..

If a # b, then b — a > max{dist (a, E),dist (b, E)}/64. Note that = +
R —b < 64dist (b, E) and a — (z — R) < 64 dist (a, E). Therefore 2 R >
b—a> 2" 12R. In this case

pF(B(z,R)) = n®([a,b]) = p(la — |L|/2,b+|1:]/2)) = p(B(z, R)).

Doubling property of u¥ on EU F follows immediately from (1.21) and
(1.22).

This property of the Whitney modification has a natural general-
ization to R™. For the converse, we raise the following question.

QUESTION. For which (X, 1), X perfect in R™ and y doubling on X, is
4 the restriction of a doubling measure in R™?

CONSTRUCTION OF Z. It follows from Lusin’s theorem and an exam-
ple of Beurling and Ahlfors [1] that there exist a nontrivial doubling
measure y on R! and a perfect set E C [0,1] of positive length so that
p(E) = 0. Let W be any Whitney decomposition of R'\E, F' be the
centers of intervals in W and Z = E U (F N [-100,100]). Then the
Whitney modification x¥ has the doubling property on Z (a modifica-
tion of Lemma 3) and is purely atomic.
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Let o be the Lebesgue measure on R! and o€ be a Whitney mod-
ification. Then ¢®(E) = 0(E) > 0, and oF has the doubling property
on Z.

QUESTION. Do there exist X compact in R!, a doubling measure g
on X, such that Fx = X and that pu|g, is also a nontrivial doubling
measure on Ex? (Recall that Ex is the set of accumulation points and
Fx is the set of isolated points.)

QUESTION. Given a compact set X on R", and a > 0, does there exist
a measure p doubling on X such that g has full measure on a Borel set
of Hausdorff dimensions less or equal than a?

We believe that the answer is positive when n = 1.

2. Null sets for dyadic doubling measures.

A measure i on R! is called a doubling measure if (1.1) holds for all
z € R! and R > 0, equivalently, there exists A > 1so that u(I) < A u(J)
for all neighboring intervals I and J of the same length. A measure u
on R! is called a dyadic doubling measure if there exists A > 1 so that
w(I) < Ap(J) whenever I and J are two dyadic neighboring intervals
of same length and JU J is also a dyadic interval. We shall refer to the
constant A above as A(p).

Denote by D the collection of all doubling measures on R! and by
D, the collection of all dyadic doubling measures on R!. Denote by &
the collection of null sets for D, 1.e., N = {E C R! : pu(E) = 0 for
all 4 € D}, and Ny its dyadic counterpart {E C R! : p(E) = 0 for
all 4 € Dy}. Clearly Ny C N, and N is invariant under any bilipschitz
mapping on R!. However N; is not invariant under translation, or
under multiplication.

Theorem 2. There ezist a perfect set S C [0,1] which is in N\Ny,
and a set T C R! of full measure (i.e., R!\T has zero length) such that
t+S €N, foreachteT.

A weaker version of Theorem 2 was proved in [9] with dim7T =
1. The present proof has the same structure, but uses more refined
estimations.
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The analogue of Theorem 2 under multiplication is more difficult.
We are only able to find perfect sets S and T with dimT = 0, so that
S € N\WN, but tS € N, for each t € T. We shall report this elsewhere.
The following lemmas from [9] are needed in our proof.

Lemma 4. Let p be a dyadic doubling measure on R'. Then there
ezists ¢ > 1 depending on A(u) only, so that for any dyadic interval S
and any subinterval T of S,

7 (%—:)cy(s) < u(T)< 4 (%)l/cu(S)-

Lemma 5. Let S be any dyadic interval and p and v be two dyadic
doubling measures on R satisfying u(S) = v(S). Then the new measure
w=vonS,w=puonRN\S is a dyadic doubling measure on R with
Mw) < max{A(p), A(v)}-

Lemma 6. Given a, ¢, § € (0,1) with € + §° < 1/16, then there ezists
a measure T € Dy, with A\(t) < 10V, which satisfies 7([0,1]) = 1,
7([0,¢]) = € and T([1 - 6,1]) = é*.

We shall use 7,5 to denote the restriction of this 7 measure to
the interval [0, 1].

PROOF OF THEOREM 2. Let ¢ > 1 and choose 8 > «a, 0 < a <
min{1/5,a 7'}, 0 < ¢y, < 1/4 and positive integers L, (m > 1) so
that the following are true:

(2.1) i lme P =0(1), as m— oo,
(2.2) > o mf < oo,

(2.3) Y (1—mPim < oo,

and

(2.4) Y (1 —dem)m = o0.

For example, choose # = 4a, a = (a — 1)/5a, cm = (4m?*)~! and
L,, = [m??], with [-] the greatest integer function.
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Let K; =0, and K41 = K + Ly, for m > 1. Define n; induc-
tively by letting ny = 10 and

(2.5) nk+1 = ng + 10+ [3 log, m — log, cm]
when K, <k < Kpy1.

Givenm > 1, 14+ K., <k < Kp41 and integer 7, denote by L's, I's
and J's the dyadic intervals:

J j+1]

Les = |5

and

g il 1 41
k= [ onk QmitSpf’ on }

where m® = 2llogaml iy f — 9[logaml and [.] is the greatest integer
function. Note that for 1 + K, <k < Ky,

(2.6) Tk 1/ Ik 51| = O(m*~#) =0, as m — oo

and
IJk,j|/]Lk+l,j'| — 9nkp1—ni—[Blog, m] -5 > m?e

To construct S, first we permanently remove from S; = [0,1] a
group of mutually disjoint intervals Iy ; of different sizes, with k ranging
from 1+ K to K3, and collect some of the J intervals from the remaining
part of Sp; call the union S;. Next we permanently remove from S, a
group of intervals I; ; with k ranging from 1+ K, to K3, and collect
some of the J intervals from the remaining part of S; call the union
S3, etc. Finally let S =NS,,.

Let S] = [O, 1],

Cl={nL;: h;-1UL;C S},
¢l ={n;: h;UL ;11 CS}.

For1=14 K; <k < Ky, let
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C£+l = C,{ U {Ik+1’j : Jk+1,]‘_1 U Ik+1‘j is contained n S] ,
but neither Jx4q j—1 nor Ix4y j

is contained in any interval in Cf UC{ },

C,‘CI_H ZC: U {Jk+1,j : Jk+1,j U Ik+],j+1 is contained in Sl ,
but neither Jxy1 ; nor Ixyy j41

is contained in any interval in CJ UC/}.

Note that all intervals in CJ ,U CI{’, have mutually disjoint interiors, and
that intervals in Cf., and those in Cj., appear in pairs sharing common
end points.
Let
ST = union of all intervals in C ;I‘»z ,

and
S = union of all intervals in C ,{-2 .

We keep the interior of S{ in the complement of S permanently, and
construct S:{ and S3 as subsets of Sa. Let

Clit, = {htkrit Nakrjm1 UTigx, i C Sa},
and
J
Civk, = {4k Sk, UlLipr, j+1 C S2} .

And definefor 1 + Ky <k < K3,

CI£+1 = C,{ U{Zk+1,5 : Je+1,j—1 U Ik41,j is contained in Sy,
but neither Ji4q ;1 nor Iz, ;

is contained in any interval in Cf UC]},

C,;’+1 = C,CJ U{Jk+1,5 : Jk+1,j U Lg41,j41 is contained in Sy,
but neither Ji41,; nor Txg1 j+1
is contained in any interval in C} UC{};

and let
ST = union of all intervals in C{‘—a ,

and
S3 = union of all intervals in C’,{»3 .
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We keep the interior of S in the complement of S permanently, and
construct S/ and S, from S; as above. Continue this process to obtain
Ck..,Ck. . SL and S, for all m > 5. Let

S=ﬁsm.
1

The rest of the proof is based on the simple fact that Ji ; and Iy j4,
are two adjacent intervals of very uneven sizes (2.6), whose common
boundary point (3 + 1)/2"* is a dyadic number.

To prove S € N, we note from (2.6) that for any v € D, and
1+ Ky <kL< Kpya,

v(Jk,;) Sm P y(Ji ;UL j1a),

for some ¢ > 0 depending only on the doubling constant of v. Summing
over all Jij in Cf, ., we have v(S) < v(Sm41) < m*=Ay([0,1)).
Thus v(S) = 0. Alternatively, S is a porous set with large holes, there-
fore it is in NV, see [9)].

To show S ¢ Ny, we apply scaled versions of Lemmas 5 and 6
repeatedly, to obtain a measure u € Dy on R!, periodic with period 1,
such that for 1 + K, < k < Ky and all integers 7

(2.7) p(Ix ;) = (32m®) ™ p(Ly ;)
and
(2.8) p(Jx ;) = (327°) 7% u(Ly ;).

More precisely, p is the weak limit of a subsequence of measures {ur_ }
to be constructed as follows. Let po be the Lebesgue measure on R?.
Assume that p,, € Dgq, has been constructed with period 1. Then
inductively for 1 + K, < k < Kpny1, let fx; be the linear map that
maps L; ; onto [0,1], and define for E C Ly ;,

Phmys (E) = pkp (Lkj) Ta,(32me)-1 (32m8) -1 (fr i (E)),

where 7 is the measure in Lemma 6. In view of Lemma 5, the measure
Pkmyr 18 in Dy and satisfies (2.7) and (2.8) with p replaced by px,,,, -
We note from the construction that

1, ([0,1\(5] U Sp)) < (1 _ % (3271 + 32_a)) K-
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The occurrence of 1/2 above is due to the fact that each J € Cj and
its companion I interval are not contained in the same L interval, but
rather in two adjacent L intervals. Therefore

pry(S2) 2 pry (S2 U S2) (1-32°71)
1 -1 —a Ka—Ki a—1
> (1-(1-5 @7 +327)) ) (1-827)
1

> (1-(1 —532‘“)K’—K’) (1-32°71).

From the construction of S,
i Kmi1—Km
u$) >[I (1 - (1 - -;:32—“ m-f’ﬂ) " ) (1 — 3201 pPa—ey)
m=1

which is positive in view of (2.2) and (2.3). Therefore S ¢ N,.

For z € R!, denote by ||z|| the distance from z to the nearest
integer. Let T be the set of t's such that there are infinitely many m’s
so that

(2.9) || t2° ™ m® ||> cm forevery k, 14+ K, <k < Kpyr -

Denote points ¢ in [0,1] by their binary expansion Y .2 t,2~" with
tn, = lor 0. Then || ¢ 2°*™m* ||> ¢, provided that not all t,, equal 0 for
those n in the interval (54 ni + [alog, m), 7+ ni + [a log, m] —log, cm),

and not all t, equal 1 for the same range of n's. In view of (2.5),
ngy1 > ng + [alog, m] — log, ¢, + 7; thus for m > 1,

I{t €[0,1]: (2.9) holds}| > (1 — 4¢yp)Km+r=Km

Since [0, 1\T = fj (2.9) fails for every m > M,
M>10

0,1\ < i [ (1--4cn)mr=K=) =0,
M=10 m>M

because of (2.4). Similar argument show that |[R!\T| = 0.
Given t € T, assume that for a certain m,

| £2™ 3 ||> ¢ forevery k, 1+ K <k < Kpyi
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then for each integer j,

P Cm <t+]+1< p+1 Cm

OnE+5 0 + onetsma = onr = gnetbgma  9nptspo

(2.10)

for some integer p. Note that ¢ + (5 4+ 1)/2"* is the common boundary
point for intervals ¢ + Ji ; and t + I j41, and that in view of (2.10),

p J+1
grrtsma’ T om ]

j+1 p+1 7_
ong ’2nk+57~ha] = Tkj+1 -

t+Jk,j§[

t+ Ixj41 2 [t +

Suppose v is in Dy. Because

[t i)

2ne+5 e’ gnatsma

is a dyadic interval, it follows from Lemma 4 that

¢ c
v(t+Jes) [ kil ) o (fn""’)
v(t+ Iej+1) ~ \Mijp1l ) T\ em
for some ¢ > 0 depending on v only. Summing over all Ji ; in C IJ(,,,= we
have

v(t+S) < (m*P ) u([0,1]).

Because t is in T, m can be made arbitrarily large. Therefore v(t+.5) =
0 by (2.1). This proves that t + S € N, for every t € T.
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