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A criterion of
Petrowsky’s kind

for a degenerate quasilinear

parabolic equation

Peter Lindqvist

Abstract. The celebrated criterion of Petrowsky for the regularity of
the latest boundary point, originally formulated for the heat equation, is
extended to the so-called p-parabolic equation. A barrier is constructed
by the aid of the Barenblatt solution.

Little is known about the “Dirichlet boundary value problem” of
genuinely nonlinear parabolic partial differential equations in arbitrary
domains in space-time. Equations akin to the p-parabolic equation

uy = div (|Vul[P~2 Vu)

are notoriously difficult to study in domains that are not space-time
cylinders, that is, not of the form G x (0,T), G C R™. The aim of this
note is to exhibit some interesting domains in R® x (—o0,0) for which
the origin (0, 0) is a regular boundary point with the normal parallel to
the time axis. This is the result of my efforts to extend the celebrated
criterion of Petrowsky to a nonlinear situation.
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In 1933 Petrowsky obtained a sharp criterion for the regularity of
“the latest moment” in connexion with the heat equation, ¢f. [P]. For
example, for the “one-dimensional” equation u; = u,, the origin is a
regular boundary point of the domain defined by

2

(1) 17 < log |log(—1)|, -T<t<0,

while the origin is not a regular boundary point of any domain defined
by

2
(2) _% <(L+¢)log|log(—t)], -T<t<0,

if e > 0. If continuous boundary values are prescribed on the Euclidean
boundary of the domain (1) in the (z,t)-plane, then there is a solution
to the heat equation taking these boundary values, in particular, at the
origin. Notice that the boundary values are prescribed, as it were, for
an elliptic problem, no special attention being paid to the parabolic
boundary.

The boundary behaviour is a delicate question, indeed. A bound-
ary point can be regular for the equation u, = Au and, at the same
time, irregular for the equation 2u; = Au. Such a domain can be
constructed with Petrowsky’s criterion. A necessary and sufficient geo-
metric condition for the regularity of an arbitrary boundary point, the
so-called parabolic Wiener criterion, was proved in 1980 by Evans and
Gariepy, ¢f. [EG]. The generalizations of the Wiener criterion to non-
linear parabolic equations have not been completely successful, ¢f. [G]
and [Z]. They do not include equations like the p-parabolic and the
porous medium equation.

The objective of our study is the p-parabolic equation
(3) %1:- = div (|Vulf~? Vu), 2<p<oo.

The singular case 1 < p < 2 would require modifications in the calcu-
lations to come and, for simplicity, we take p > 2. This is a prototype
for a vast class of equations of the type u, = div A(z,t, Vu). The p-
parabolic equation is also of interest for non-Newtonian fluids, ¢f. [B]!.

! NOTE ADDED IN NOVEMBER 1994. It has come to my attention that the p-
parabolic equation has a strong application. Its solution represents the temperature in the
atmosphere after the explosion of a hydrogen bomb, and the finite speed of propagation

is essential.



A CRITERION OF PETROWSKY’S KIND 571

In general, the equation ought to be interpreted in the weak sense. We
refer the reader to the book [D]. The gradient Vu of a solution is known
to be Holder continuous, but, in general, the time derivative u, is merely
a distribution. See [C], [Y], and [KV], for example.

Our result is the following.

Theorem. Letp > 2. For the p-parabolic equation the origin is a
reqular boundary point of the domain

zlp/(p—1)
(4) (ltt'l)p/)\(p-u < K(=t)"r=D/X | In(—t)|*P=D | _T <t <0,
K and o denotzng arbitrarily large constants, A = n(p — 2) + p, and
|z}] = (z% + +:c2)1/2

REMARKS: 1°) The origin is a fortiori a regular boundary point of any
subdomain of (4), if it is a boundary point at all.

2°) By the ezterior sphere condition all the other boundary points
of (4) are regular. It is the origin that is crucial.

3°) The geometric situation is interesting, because the tangent
plane at (0,0) is perpendicular to the time axis.

To understand the strange quantity in (4) we mention the Baren-
blatt solution

—1)\ (P—1)/(p—2)

_ =i (o _P=2 \c1j-n (del\P/eTD
By(z,t) =t (c = (tw) )

defined when t > 0 and = € R™. Here p > 2 and A = n(p —2) +p. The
positive constant C is usually determined so that [ B,(z,t)dz = 1,
when t > 0, i.e., B,(r,0+) = é(z), the Dirac measure. See [B], [D,
Section V.4, Equation (4.7), p. 125], or [KV]. When p — 2+, the
normalized Barenblatt solution approaches the ordinary heat kernel

(47rt)—n/2 e—[z|2/4t ,

obtained by Weierstrass. The key point in deriving our theorem is to
construct a barrier (a supersolution of a specific kind) by the aid of
the Barenblatt solution. This approach counts for our difficulties in
obtaining the asymptotically right formulas, as p — 2+. There are too
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many quantities in the calculations blowing up, as p — 2+, to lead to
Petrowsky’s inequality (1).

Condition (4) is rather good, when p > 2. We conjecture that the
origin 13 an irregular boundary point of the domain

|z|p/(P—1)

ENEEI K(-t)"e~DPA= T <t<o0,

if € > 0. It would be interesting to know the truth in this matter.?

It seems to be well-known that a boundary point is regular if and
only if there exists a barrier at this point. Especially, a boundary
point satisfying the exterior sphere condition (the earliest moment of
the sphere being excluded as a tangent point) has a barrier and hence
it is regular. Thus our theorem means that, given continuous boundary
values on the boundary of the domain defined by (4), there exists a
unique p-parabolic function taking the prescribed values in the classical
sense. For all this we refer the reader to [KL].

Let 2 be a domain in R™ x R having the Euclidean boundary dQ
and (0,0) € 0Q2. To be on the safe side, we remind the reader that a
function u : & — R satisfying the conditions

1) w, > div(|Vu[P~2Vu) in Q,

ii) u > 0in Q and liminf,_¢u(¢) > 0 for all £ € 0Q, ¢ # (0,0),
and

111) limc_,(()’o) U(C) = 0,
will do as a barrier at the origin (with respect to the domain ), see

[KL]. Our barrier will be so smooth that (i) is satisfied in the classical
sense. It will be constructed as a function of the form

-9 . J(p—1)\ (P—1)/(p=2)
+ &(1)

when r € R™ and ¢ < 0. As in the Barenblatt solution A = n(p —2)+p
and C is any positive constant. We will later choose

(6) f(t)=—¢elln(=t)|*,  ¢(t)=-CPV/C=D f(t) 4+ p(t),

2

It is not too difficult to show that, if the right-hand member of the inequality is
replaced by K(—t)? where f=n(p—2)/A(p—1), then the origin is irregular, indeed. Here
p>2.
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where ¢ > 0 and p(t) > 0.

We shall select p(t) so that u is a supersolution in the domain where
u > 0 and this domain is to contain the domain (4). We do not care
about what happens when v < 0. Notice that u is positive precisely
when

(C Lp=2 ,\—1/(p—1)( |z| ),,,(,,_,))(p—n/(p—z)

(7) p (—t)I/A
t)

< co-D/6-) , P
—f(?)

This inequality is at our disposal in the proof of i).
Observe that

u(z,t) < F(t) c(P=1/(r=2) _ c(p-1)/(p—2) F@) + p(t) = p(t).

Thus iii) is valid, if p(t) — 0 as t — 0—. This requirement restricts the
choice of p(t) in a decisive way.

Our aim is to show that u i3 a supersolution in the domain defined
by (7), as required in i). Using the abbreviation

_ pP— 1 -1/(p—-1) |.'EI p/(p-1)
(8) Q=C+1 (—(_t)m)
we have
vQ = p—2 A~/ (-1 w
p—1 (=t)p/Ap-1) 2

99 _p=2 oy (L yrlo= 1
ot p-1 (—t)1/2 —t’

since V|z|? = ¢|z|?72 z. Recall that
9) u(z, t) = f(t) QP N/P=D 1 g(t).
Thus

|z|(2=P)/(p=1) g

— 1/(p—2) y—1/(p-1) =
Vu - f(t) Q ’\ (—t)p/)‘(p_l) >

[VuP = Vu = |f()]P~2 f(1) A7 Q=D (r=2) W :
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We obtain
div (|VulP~2 Vi)

(10) If()P~2 f(t) A~ QP=1/(=2) ﬁ
/(p—1)
+ |f(t)'p—2 f(t)/\—”/(l’—l) QI/(P—2) (%)p » (TtlﬁpT

after some arithmetic. The last term in (10) can be written as

plIfOP? £(1) _
=2 Ql/(l’ 2)(Q -C).

Further we have

O i Ap=1)/(p=2)
(11) |z| )p/(p—l) 1

+¢'(t)+f(t) /\—P/(P—l) Ql/(P—2)((_t)]/A el

where the last term can be written as

pf(t) 1/(p-2) () _
- @9

Combining equations (10) and (11) we finally arrive at the expression

uy — div (|Vu|P~2 V)

: pC 1 lf@r? -
1z =¢O- 55— (5 ) [0Q0
) pf(t) IfFOP2f(2) ~1)/(p-
IO+ G oa m ~ poaymem) €,
where we have used the identity
1 n p
=2 X 3p-2)
For f(t) = —¢|In(—t)|* we have
pft)  If®P? @)

O+ -2 " -2ty

_ —ealn(-t)|]*! _ep|ln(-t)|* | 7! | In(—¢)[*(>—1)
= —t Ap=2)(-t) = (p—2)(—t)/*
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when —1 < t < 0. This expression is certainly negative, if

ep|In(—1)|" _ &~ [In(~1)|r=D
Alp=2)(=t) = (p—2)(—t)p/*
when —1 < t < 0. This yields the condition

(13) 2= (ﬂ)a(ﬁ) er?

ne

for the largest possible €. Let us fix ¢ this way. Then

pC (1 _fe)P?
Xa-p( ) 070

in (12). Thus we have, using (7),
u; — div (|Vu|P~2 Vu)

, C 1 f(HpP—2 1/(p—2
2 8~ 3 gy (5~ o) fo o
, pft)  LFOP ()
PO+ 35 ~ w2

(ce-D/e-2 . PR
(C(p 1)/(p—2) + —f(t))
nCO-D/62) | f(a)l~2 f(1)

— p’(t) — 5 (——t)P/'\
f'(t) p |f@)P~2
+elt) (—f(t) S A(p-2)(-t) * (p— 2)(—t)"/*) ’

where we have used that
#(t) = ~COOD (1) + /(1)
Substituting the expression for f(¢) we obtain
uy — div (|Vu|P~2 Vu)
nCP—1)/(p—2) cp-1 |ln(—t)|"(P"1)

> o'(t) + YR

(14) — £
+ p(1) ((—t) [In(—=t)]  X(p —2)(—t)
2 (o

(p—2)(—t)p/*

+

875
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when —1 <t < 0and u > 0.
Let us choose
plt) = A(=t)! 77 In(1)|0.
Notice that
p_n(p—=2)

1-5=—5—">>0

so that p(t) — 0, as t — 0—. Inserting p(¢) into (14) we obtain
uy — div (|VuP~2 Vu)

Ap ) lin(=t)1)

2 (n C(P—l)/(l"z) Ep_l — An (p - 2) — /\( t)p/,\

p—2
+ Aa(p—2) |In(—t) "1 (=) P/
Aep—2 lln(_t)'a(Zp—S) (__t)l—Zp/z\
+ .
p—2
It is plain that u; > div (|Vu[P~2 Vu), if A does not exceed the value
- (p—1)/(p—2) cp-1
(15) P (r-2)C _ €
n(p—2)2+p
and (7) holds. Using (13) and (15), we can now write (7) in the form

—1)/(p—2
1+————p_1,\-1/(p—1>( || )”/"’“” P=0/G=2)
pC (=)

(16) np(p—2) (2_8_) o(p—2)
A(n(p—2)2+p)\al)

(=)D In(—p) 2D

<1l+4

Here the constant C is at our disposal.

In order to conclude the proof we have only to observe that (4)
implies (16). Indeed, suppose that (4) holds for —T < t < 0, where
T < 1. The right-hand member of (4) is less than K(a/ne)*®=2),
Hence

-1\ (P—1)/(p—-2)
1+p_—_2_ A—l/(p-—l)(‘ |z] >P/(P 1\ 7 P
pC (—t)1/x
p—1 —1/( _1)( |:1:| )(p—l)/(p—z)
14+ =) P
< pC (—t)1/2

—2)\ 1/(p=2)
: P=2 1/t (@A) PP
(1+ = A Ix( )

p ne
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_ B |z] p/(p—1)
=ltg ((-t)l/A)

<1+ g K(=t)"P=2/A | In(—¢)|*(P~2)

where B denotes a constant. It is plain that this estimate implies (16),
if C is large enough.
Enlarging C further, if necessary, we have ii) valid. This concludes

our proof.

REMARK. Forgetting the logarithm we can write (4) as
|z] = O((-1)"),

where k = k(n,p). Now k = 1/2 as p — 2+ and «k = n/(n+1) as
p — oo. Moreover k < 1/2in therange2 < p < 2n/(n—1). fn=1,
then k < 1/2 for all p > 2. The smaller « is, the better the condition
(4). The smallest value of k occurs, when

o 2n(V2-1)+2
T on242n-1

For this rather strange value of p the exponent & is slightly less than
1/2(k =+/2—1,whenn =1 and £ = 1/2— (3 —2v/2)/4, when n = 2).

The result has a natural extension to domains in the (z,t)-plane
bounded by two Hélder continuous curves and two characteristic lines:

Sl(t)<-71<82(t), 1 <t<iy.

Suppose that the curves ¢ = s;(t) and & = s3(t) are Holder continuous
with the aforementioned exponent k, when t; < ¢ < t,. That is

Isi(t+1)—s;(H)| < K|r|*, j=1,2.
Then the boundary points lying on the curves are reqular. Some aux-

iliary constructions are needed to deduce this from the Theorem. We
will not pursue the matter any further.
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