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1. Introduction.

Let T' be a simple closed C! curve lying in the unit sphere bB”,
B™ being the unit ball in C". By Stolzenberg’s theorem [12], either T’
is polynomially convex or T \ T is a 1-dimensional analytic subvariety
of B*. Cirka [6] and Forstneric [7] showed that if T is C? and not
polynomially convex, then T \ T is smooth near I (i.e., singularities do
not accumulate at I') and I is transverse at each of its points-in the sense
that the tangents to I' never lie in the complex tangent space to bB".
In particular, if " is C? and has at least one complex tangent, then T is
polynomially convex. This is no longer true when I is only C!: Rosay
[9] constructed a C! Jordan curve in bB?, bounding an analytic disk in
B2, and having a complex tangent at a single point. Motivated by this,
the first author proved in [1] that a rectifiable curve I' is polynomially
convex if the set of points of I' where its tangent (these exist almost
everywhere) is complex-tangential has positive linear measure.

On the other hand, Berndtsson and Bruna [4] showed that, when
T is of class C? (in fact, C*** was enough), the functions in C(T") which
can be interpolated by functions pluriharmonic on B™ and continuous
on B form a closed subspace of C(T) of finite codimension. When
I' is polynomially convex, this codimension is zero. When T is not
polynomially convex, then by Forstneric’s result, I' \ T is smooth near
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I" and the Berndtsson-Bruna theorem is related with the solvability of
the Dirichlet problem in T'\ I. In fact, Shcherbina [11] later used this
approach to characterize the codimension, for n = 2 and for C* curves,
in terms of the topology of T'.

Here we shall study the C? case of both types of problems-hulls
and pluriharmonic interpolation. Our first result (Theorem 2.1) states
that if I is not polynomially convex, then T \ I is still nice near I'. In
fact, close to @ € T, T \ T is the graph, over its projection on a suitable
complex line, of a holomorphic function -the complex line being the
normal to the sphere in the case when the tangent to I' is transverse and
being a complex tangent line to the sphere at @ otherwise. From this
local parametrization we deduce in Section 3 our second result: If T is
not polynomially convex and T'(s) is the so-called index of transversality
of T (1.e., ¢ T(s) is the complex normal component of the unit tangent
to I') then T'(s) is greater or equal than 0 (after a possible change of

orientation of I') and
/’ ds < 0o
T(s)r ’

for all p > 0. This captures both Forstneric’s result (because, in the C?
case, T(s) = O(|s — so|) close to a complex-tangential point v(sg)) and
the C'! version of the Theorem in [1] for rectifiable curves.

Finally, in Section 4, we prove, under the hypotheses that T has
constant sign and that [T~'ds converges, that the Berndtsson-Bruna
result on pluriharmonic interpolation carries over to C* curves; in par-
ticular, this holds for all non-polynomially convex C? curves.

To simplify the exposition, we assume in the rest of the paper that
n = 2. It is routinely checked that all proofs generalize to n > 2 with
straightforward modifications.

2. The local structure of the hull.

Let T be a simple closed curve of class C! lying on the unit sphere
S = bB?, with arc-length parametrization y(s). We assume that T is
not polynomially convex. By Stolzenberg’s theorem (see [12] or (13,
Theorem 30.1], [15, Chapter 13]), V = I'\ T is a one-dimensional ana-
Iytic variety. We will prove here:

Theorem 2.1. For each point Q € T' there is a neighbourhood N and
a complez line L through @ such that if 7 is the projection on L one
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has:

a) 7 is one-to-one from VNN onto a domain U C L of class C?,
and m maps T NN onto an arc 7 C bU.

b) There 1s an holomorphic function f in U of class CY(U) such
that V.0 N is the graph of f over U.

Thus V is locally a graph in the neighbourhood of I'. In the proof
of Theorem 2.1 we need the following “general principle” (see [12], [2],
[3], [5] for the original argument; see also [15, Theorem 10.7], and [13,
Lemmas 30.7 and 30.9)):

Lemma 2.2. Let X C C? be compact and p a polynomial. Let Qo be
the unbounded component of C\ p(X). Suppose that there is an open
Jordan arc o, open in p(X), such that

a) 0 ChbQeoNbQ, where Q 13 a bounded component of C\ p(X).
b) p~Y(A)N X contains ezactly one point for all X\ € o .

Then, either p~1() NX is empty or p~1(Q) NX is single sheeted.
In the later case, there ezists ¢ € H(Q,C?) such that

pHNX = {4()): AeQ}.

Moreover, there are no points of X \ X over o, and ¢ has a continuous
extension to o.

In case p is a coordinate function, say p(z) = z;, then ¢(A) =

(A, f(N)), so over , X \ X is the graph of f € H(().

PROOF OF THEOREM 2.1. We shall distinguish two cases:

Case A:T 1is transverse at ), i.e. the tangent to I' at Q has a non-zero
complez normal component. We can assume without loss of generality
that @ = (1,0) = v(0) and transversality means that 4} (0) is a non-zero
(pure imaginary) number.

Then ~;(s) determines s for |s| small enough, say |s| < . Since
I’ is simple, v;(s) # 1 for |s| > ¢. Hence, shrinking ¢ if needed we see
that the points of

o € mn(s): |s| <e)
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are covered only once by z; on I'. We also assume that ¢ is small enough
so that ¢ is a C!-curve (because v;(0) # 0). We apply Lemma 2.2 with
X =T (note that o C by, because 1 € b)), p(z) = 2; and therefore
over (2, the bounded component of z;(I") having ¢ in the boundary, V
is the graph of some holomorphic function f. On ¢

fn@s) =m(s), |s|<e.

Thus f is of class C* on 0. Now we take as U a C! domain in the

z1-plane contained in Q and such that U NbQ e o

At this point we need:

Lemma 2.3. Let U be a C’l-dorzL_izin in the complez plane, let f be
holomorphic in U, continuous on U. Let 7 C bU be an arc on which
flou s of class C'. Then f' eztends continuously to the points of 7.

PROOF. Let ¢ : A — U be the Riemann mapping function from the
unit disk A to U. Let I C T = bA the arc mapped onto 7. Let 7/ C 7
be a closed subarc of 7 and I' C I its corresponding arc in T. It is
well-known ([8, Theorem 10.1]) that argg’ has a continuous extension
to A, hence logg € VMOA, and so ¢' and 1/¢' are in LP(T) for all
p > 0. Let h = f og, which is in the disc algebra. The hypothesis
implies that & is absolutely continuous in I with derivative

h'=(fog)g

at almost all points of I, and h' is in Lf (I) because f' is continuous
on 7. Assume without loss of generality that I = T N D(1,r), I' =
TN D(1,r'). Let x be a C* function supported in D(1,7) equal to 1
on D(1,r"). We consider

_ 1 [x(QRrQ)
H(z)—zm,/]r {2 d¢, z€A.

Note that

H) = x() o) - 5 [ M= heyag

and that this last integral defines a smooth function on A. Therefore H
is in the disk algebra and on T it is an absolutely continuous function
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with derivative in LP(T). This implies that H' is in the Hardy class
H?, p > 0, or which is the same, the non-tangential maximal function
over the Stolz angle S(6)

(H')*(6) = sup{|H'(2)| : = € 5(8)}
belongs to L?(T), p > 0. From this it follows that
(h')*(8) = sup{|h'(2)] : z € S(8)}

is in L?(I") for all p > 0 and hence is in LI (I) for all p > 0.

Since also (¢') ! has non-tangential maximal function in L?(T) for
all p > 0, we conclude that (f' o g)* € L} (I). We will show now that
f'og extends continuously to all points of I, which obviously implies the
lemma. Fix a closed subarc J C I and let D be a C*°-domain in A such
that J C 6DNT C I. Then f'og has non-tangential maximal function
(with respect to D) in L'(b D) and therefore belongs to H!(D). Now,
f' 0 g is continuous in bD N'T and so f' o g|p extends continuously to
the closure of D (here we use the fact that D being a C* domain the
holomorphic function theory of D is analogous to the one of A). By
the choice of D, it then follows that f’' o ¢ extends continuously to all

points of J.

Shrinking the domain U a bit we conclude the proof of Theorem 2.1
in the case A.

Case B. T is complez-tangential at Q, i.e. the tangent to I at Q points
in the complez-tangential direction. We can assume, without loss of
generality, that @ = (1,0) = «4(0) and that v4(0) = 1, 41(0) = 0. It
follows immediately that there is € > 0 such that

s a(s)]

is strictly increasing in (0, ¢) and strictly decreasing in (—¢, 0).
Since |y1(s)|* + [v2(s)* = 1,

s - n(s)]

is strictly decreasing in (0,¢) and strictly increasing in (—¢,0). Let us

define

o ={mn(s): 0<s<e},
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o-={m(s): —e<s<0},
o={n(s): —e<s<e}.

As before, since I' is simple, and shrinking ¢ if needed we may assume
that v;(s) € o for |s| > e.

We know that both ¢, o_ meet each circle |A\| = p at most once.
We claim that o4, o_ do not intersect. This is seen as in [9]: suppose
that o4 and o_ meet at Ag = y1(a) = 11(b), with 0 < a < g, —€ <
b < 0. Let v = v1(b,a). Let R be a smooth simply connected domain
in the z; plane separating v from z(T') \ v and containing z;(T) \ v.
The domain R admits a peaking function H(A) for the point Ag. The
function equal to H on R and to 1 in the domain bounded by v can
be uniformly approximated, by Mergelyan’s theorem, by a sequence
of polynomials p,(A). This shows that the arc I'y = 4([b,a]) C T is
a peak set for the algebra P(I'). Analogously, I'; = '\ T'; is also a
peak set for P(I'). But I';,I'; are smooth arcs and so P(T'y) = C(T'1),
P(T'y) = C(T';). By general theory of uniform algebras (in fact an easy
duality argument works), it follows that P(I") = C(T") and T" would be
polynomially convex.

Therefore, o4 and o_ do not meet, which means that v; is one
to one in (—e¢,e) and Lemma 2.2 applies again as before. The main
difference here with respect the situation in case A is that here the
curve o is in general not smooth at 1. This is why the z; projection
does not work in this case and we shall look now to the z; projection.

Let g be the holomorphic function on 2 given by Lemma 2.2 so
that A +— (A, g())) parametrizes V over Q. Note that on o

gm(s) =r(s), Is|<e,
defines a curve 7 in the z;-plane which we can assume smooth because
72(0) = 1.
We denote, for small 6,
s ={Ae€Q: A >1-6}.
The function g extends continuously to Qs, and
Vs ={(X, g(N): X e Q)
is a neighbourhood of @ = (1,0) in T. The boundary b5 consists of
Cs={AeN: |N=1-6}
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and two arcs ai, o? included respectively in o4, o_. We denote ¢® =
o8 Uol U{1} = 11(I5) and 7° = 4,(I5) = g(o?®), a smooth subarc of .

We claim that for small enough 8, z; does not vanish at Vs except at
Q, 1.e. g does not have zeros in Q5. To see this, choose first § such that g
does not vanish on Cs. Qs is a simply-connected rectifiable domain and
g(bQs) is a closed piecewise smooth curve containing the arc 78 = g(o?).
Since g(Cs) does not pass through 0 in the neighbourhood of 0 there are
two components of C \ g(b82s), which we call R§ and R®. Let my, m_
be the number of preimages (counting multiplicities) in Q5 of points of
Ri, R? | respectively. Let N = max{m4,m_}.

If X is a zero of ¢ in {25, as g is an open mapping, the image of a
neighbourhood of A is a neighbourhood of 0 and hence meets both Rf
and R’ . Therefore there are at most N zeros of ¢ in Qs, and ¢ has no
zeros in {25 for small enough 6.

We will show next that m — m_ is either +1 or —1. We have

1

o D, arg(9() —a),  a€ R,

my =

1
m- = o— Dsg, arg(g9(A) —b), b€ R,
or

2rmy = Aya,) arg(¢ — a)
= Ag(cy) arg(( —a) + By arg(C —a),

2rm_ = Dgya,) arg(C —b)
= Dg(cy) arg(( = b) + Oye arg(( - b).

Recall that 7° is a smooth curve. Now substract both equations and
make a,b — 0 to get

2n(my —m_) = lin%J Apsarg(¢ —a) — gin}) Agsarg(( —b) = £27.
If instead we add the equations we get
2r(my+m-) = 20yc,)arg (+ lin}) Ars arg((—a)-{—gir% A,sarg((—b).

§

Since 7° is smooth the limits

lim lim A sarg(( —a),  lim lim A arg(¢ - b),
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are m, —w or —m, respectively. Hence we obtain
%in}) Ac, argg(A) = }irré Agcsyarg( =m(my +m_).

Let m = m4 + m_, an odd integer; m is positive, because ¢ is not
constant. Since g does not vanish in Qs we can consider h = ¢1/™,

Then
gin(l) Ac,argh(A) =7.

As the argument shows, this holds for all arcs in £ joining oi and of .

Next we will see that for small enough 6, h is a one-to-one map
from 25 to a domain Rs, which is smooth in the neighbourhood of
0 € bRs. Recall that g(71(s)) = 72(s), 0° = 71(Is) and 42(0) = 1.
Without loss of generality we can assume that h(y1(s)), s > 0, is the
principal determination of 72(s)!/™, so that h(c%) is a C? arc having
limiting tangent (1,0) at 0, as it easily seen using polar coordinates. In
the same way, h(o%) is a C? arc having as tangent at 0 the opposite of
some m-root of (—1). Since 7 is the variation of the argument, and m
is odd, this root must be of course —1 and hence A(a®) is a smooth arc.
The fact that A is one-to-one follows then from the argument principle.

Let f: Rs — 5 be the inverse map of h, h(A) = (, g(A) = (™.
We thus get the parametrization

Ry — Vs
¢ (f(€), (™),

f(0) = 1, and R; is smooth near 0. Also, f € C(Rs).

The final step is to show that m must, in fact, be 1. Suppose that
m > 3. Let F': A — R; be the Riemann mapping function, F(1) = 0
from the unit disk to Rs. Then we have a parametrization

A —V
z = (f(F(2)), F(2)™) = (G(2), F(2)™).

Shrinking Rs we may suppose that Rs is a C'-domain so the mapping
F satisfies, as said in the proof of Lemma 2.3, that F' € H? for all p.
In particular, F satisfies a Lipschitz condition of order 3 for all § < 1
and G is then in the disk algebra. Let o C b A be the arc parametrizing
VsnT, 1€ a.
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We will show that G(e'') has a non-zero derivative p at ¢ = 0.
Once this is seen, since

[F(e)] = O(t")

for all B < 1, taking # > 1/m we see that F™(e'*) has zero-derivative
and then (y,0) is tangent to I' at @ = (1,0), in contradiction with the
assumption that I' is complex-tangential at Q).

Let G = IK be the inner-outer factorization of G,

+m it .
K(2) = exp (-1—/ - +zlog|G(c”)|dt).

2r J_, et —z

Since G(1) = 1, the inner part I has an analytic continuation near 1;
using that |I(re'")|? < 1 and |I(e')|> = 1 it is immediate to obtain that
I'(1) I(1) > 0. We want to show now that the formal rule

+m )
K'(1) = —Ix’(1)4—17r-/ ! 7 log |G(e™)| dt
-7 gin? 3

(which makes sense because log |G(c')| ~ 1 — |G(e't)| =~ |F(e'*)]*™ =
O(#?) near t = 0) obtained by differentiating K’ under the integral sign
is fully justified. This will give

K'(1)=kK(1)
with k& > 0, because log |G| < 0 and then

p=G'1)=I'(1)KQ)+ I(1)K'(1)

=I'(1)I(1)+ K'(1)(K(1))=k+I'(1) I(1) > 0.
It remains thus to show that the formal rule above holds true. For

this it is enough to show that the part of the integral over a satisfies
the rule. Now on a, |G(e')> =1 — |F(e™)|?™. Writing

log(1 — |F(e™)|*™)

N | =

u(t) =

and

it
Hu(z) = i/ c +Zu(t)dt

2r J, et —z
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we shall show that Hu(z) has an unrestricted derivative at 1, i.e.

Hu(z)— Hu(l) 1 2¢'t
— -5 a———-—(e“_l)zu(t)dt:lo.

The last expression can be written

l/ﬂ u(t) ( it _Eitei—tl)dt:C(u)(z)_C(v)(l)’

T Jq et —1\eit —z
where v(t) = u(t)/(e" — 1) and C(v) denotes the Cauchy integral of v

over the arc . Now

, u!(t et u(t
vi(t) = oil (_)1 - (:t _(1))2 :

But u' = m |[F2m=D|(ReFF')(1 - |F|*™)™?, so that v' € L? for all p.
Thus v satisfies a Lipschitz condition of order f for all A, hence so does
C(v) and we are done.

In conclusion we have proved that m = 1. This means, with the
notations used before, that for small §, ¢ is a one-to-one map from Q5
to Rs = g(Q2s) with inverse f. We now take as U a C' domain included
in Rs so that 5 UNbRs = 7%. On ¢

f(ra(s)) = m(s)

and hence f is C' on 7°. With Lemma 2.3 we conclude as before.
This completes the proof of Theorem 2.1.

3. Analytical properties of the curve I.

Theorem 2.1 has several consequences regarding the curve T itself.
Here we will draw one of them, to be used in the next section. If 4(s) is
the arc-length parametrization of ', as mentioned in the introduction

7(s)7(s) = i T(s)

with T a real-valued continuous function (we use the notation ab for
Zj ajbjifa=(ay,...,a,), b=(b1,...,b,)). T can be said to measure
the transversality of I'. We prove:
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Theorem 3.1. If T is a C' simple closed curve which is not polyno-
mially convez, then T has constant sign and

ds
—_— < 400, for allp.
/ T(s)I?

Corollary 3.2. If/ = 400, I' 13 polynomially convez.

ds
T(s)
The Corollary implies Forstneric’ result [7] according to which a C?
curve which is complex-tangential at one point is polynomially convex
and should be compared as well with Alexander’s in [1], stating that a
rectifiable curve whose set of complex tangencies has positive length is
also polynomially convex. :

PrOOF OF THEOREM 3.1. Of course it is enough to prove the re-
sult locally around a complex-tangent point @) € I'. Let’s consider the
parametrization described in Theorem 2.1. Without loss of general-
ity we assume = (1,0), that U is a C'-domain in the z;-plane, f is
holomorphic in U, of class C! up to U and

U—VNN
A (f(A),A)

is the parametrization. Let 7 C bU be the arc parametrizing ' V.
As before, let F': A — U be the Riemann mapping function from
the unit disk to U, F(1) = 0, and the parametrization

ALVAN

2 s (G(2), F(2)).

Let o C T be the arc mapped onto 7 by F. We know that F' € H? for
all p. In particular F(e') is absolutely continuous and G is in the disk
algebra. If e'® € a is a point where F(e') is differentiable, since f is
C? on 7, G(e*) is also differentiable at to. Hence G(e') is differentiable
almost everywhere on a and moreover d(G(e''))/dt is in L?(a). By [14,
Theorem IV.5], the non-tangential limit at such point

lim G'(z) % G'(eit)
z_’exto
n.t.
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exists and equals —i e d(G(e'!))/dt |1=¢, . It obviously follows that
this limit also equals the non-tangential limit

_ ito
iy G =GE)
z—se'to z — etlo

n.t.

Therefore at almost all points of a the tangential and radial derivatives
of F' and G exist and belong to L?(a) for all p. In particular,

ds = ([GI|2 + |FI|2)1/2 dt

and T is given almost everywhere on ¢(a) by

) 1 — —
T =Ger e e Ghiet PG E)
ie”" Yell ]
=7w%+wvwﬂGG+FF)

We claim that there is a constant ¢ > 0 such that
e'(G'G+F'F)>c, almost everywhere on «.
Lemma 3.3. Let ¢: A — B2, ¢ = (G, F) be an analytic disk such that

the tangential and radial derivatives of F, G czist almost everywhere
on an arc a C T, with ¢(a) C S. Let a = ¢(0) € B?. Then

' (G'G+F'F)>

, almost everywhere on «.

PROOF. Since |F|? + |G| =1 on a and |F(re')|? + |G(re')|? < 1, at
one point where everything makes sense, one has

0= SR +16()
= 2Re ie" (F/(c*) F(e™) + G'(e) T(e)) |

0<2

dr \r:] (|F(re)® + |G(re')*) =2Re ¢ (F'F+ G'G).
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Therefore ei* (F' F + G' G) is real and non-negative.

Assume now that a = 0. Then we can write F(z) = z Fy(z), G(2) =
z Gy(z) and apply the above to (G, Fy) because |Go|? + |Fp|2 = 1 on
a. Then

e (G'G+FF)=1+e"(GyGo+ FFo) > 1

and the result is proved when a = 0.

Assume now a # 0. We can choose complex orthonormal coordi-
nates such that a = (A,0). Let ¢, = {¢1,p2) be the automorphism of
B with

_(s=1Dz+r-s2z _ 529
1—X21 ’ 2 1—7\‘2’1

#1

where s2 = 1 — |2, so that p.(a) =0, ;! = @, (see [10, Chapter 2]).
If Ya O ¢ = ¢0 = (Go,Fo), then G = 51 (Go,F()), F = VY2 <G0,F0>.
Therefore, with D; = 0/0z;

G' = (Di¢p1) Gy + (Da2p1) Fy
F' = (Dyp2) Gy + (Dayp2) Fy

and

G'G+ F'F = ((D1p1)%1 + (D1yp2)92) Gy
+ ((D21) #1 + (D2p2) B2) Fy -
A computation shows that the brackets at (z;, z2) equal
s*5 sz
|1—-XZ]|2 ’ |1——X2112 ’

respectively. Hence,

2

s N —_
Il‘—Tolz elt(Go Gy +Fé Fg).

eit (G’F—f—F’F) -

Since ¢o(0) = 0, €* (G, Gy + F} Fy) > 1 almost everywhere on o and
the lemma is proved.
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Note that the lemma also gives a proof of the fact that an analytic
disk ¢ : A — B? with ¢(T) C S passing through a € B? must have a
boundary of length > 27(1 — |a})/(1 + |a|).

This already shows that T has constant sign. Finally

ds (IG']? + |F'|») #1072 it
/z»(a) 1T (s)l? —/a G'G+F FPp

< c/(|G'|2 + |F'|HeD/2 gt < 400,

which ends the proof of Theorem 3.1.

4. Pluriharmonic interpolation from T.

In this section we assume that I' is a simple closed C!-curve on
S = bB?, with arc-length parametrization v(s), such that its index of
transversality defined by

1T(s) =7'(s)7(s)

satisfies
ds

T(s)>0 and / () < +o00.

We may say that T' is close to transverse. As seen in the previous
section, this is the case if T’ is not polynomially convex, but we don’t
assume this here. Qur purpose is to prove

Theorem 4.1. With the assumptions above, the space PHC of pluri-
harmonic functions in B2, continuous up to bB? has a closed trace of
finite codimension in C(T'). In particular, if T’ i3 polynomially convez,
any continuous function on ' can be interpolated by a plurtharmonic

function i PHC.
This was proved in [4] for C? curves without any other assumption.
PROOF. The scheme of the proof is the same as that in [4], but each

of the steps needs substantial modifications due to the lack of extra
smoothness. Let E C I' be the set of complex-tangential points of T’
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and let Co(T") be the space of continuous functions in I' vanishing on
E. The first step is to construct an operator

K : Cy(T') — PHC
such that

(Ke)a(s) = [ Lit,)olt) dt + (o),

where the integral operator of the right-hand side is compact. The
second step consists in showing that E is an interpolation set for the
ball algebra, so that by a general result in {13, Theorem. 22.2], there is
a linear continuous operator

I:C(E)— A(B)
such that I|g = %. Then the operator
P:C(T')— C(T)

defined by
Po=K(p - Ip)+ Iy

satisfies
(PO = os) + [ L(t,3) (o(t) = Tio(t) .

Now, Range P consists of boundary values of pluriharmonic functions
in PHC. Moreover, by Fredholm theory, Range P is closed and of finite
codimension. Then, a functional analysis argument ends the proof of
the theorem (see [4, Section 6]).

To start with, let

sy Lo A1) oo = | K
K(t,z)= - Iml__zm7 Ky(z) /I\(t,z)np(t)dt,
. 1 1

Note that K(t,z) is positive and that

Re (1= 9(2) 7(0) = 5 () = 2O = |t — ol?,

Im(l—'y(z)?(_t—))=1m/ 7'(3)%&3:/ T(s)ds + O(|z —t|*).
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Hence

1—~y(z)y(t)| ~ (t —2)* +

/t " T(s)ds|

Lemma 4.2. With the assumption of Theorem 4.1,

a) L(t,z) satisfies

sup / L(t,z)dt -0, as 6§ — 0.
: |z—1|<8
b) /K(t,z) dt <C, forall zeB?.
Proor.
|t —z|?

(1=l +| [ ey ae

|t —=|”

/ 76 e

|L(t, )| = T(¢) 7 < T()

7 -

)

Let ¢(t) = fot T(£)d¢, ¢ is stricty increasing; let 1 = ¢~!, we make the
change of variables v = ¢(t). If v = ¢(z), since T(t) dt = du.

1 L= —*——W(TJ - :,b,(zv)lz du
|t—z|<6 / T(&)dé¢ |lu—v|<e(6)
t

with €(8) — 0 as 6 — 0. Now we apply Hardy’s inequality, or rather
its proof:

2

() — () =

/"z/)'(odé

" 2
< (/ W(ON1E =o€ — v dﬁ)
< 2u— o] / ['(€)[2 |6 — v]*/2 de
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by Holder’s inequality with the measure |£ — v|~!/2 d¢. Then,

[p(w) ~ ¥

u—op?
lu—v|<e(8)

<2 ol | [T € - o1 de|
lu—v|<e(8) ’

<2 [ |¢'(¢)|2|s—v|1/2( / tu—vr“ﬂdu)da
[€—v]<e(6) |u—v]|>|€—v]|

<k [ werds

[€—v|<Le(6)

Hence for a) it is enough to have [ |1'(£)|? d€ < +oo. But changing
variables again, u = ¥(§), du = ¢'(€) d€, ¥'(€) = 1/T(u) this is

du < 4oo
T(u) )
This proves part a) of Lemma 4.2. For b), let for fixed z, s = s(z)
be such that

1 —7(s)z| = min{|1 —y(¢) 2| : all ¢}.

Then . - .
1 —y(t)z| =1 —7(s) 2| + |1 —y(2)v(s)]-

The inequality < is immediate because |1 — @b|!/? satisfies a triangle
inequality. On the other hand,

1 =) 7(s) + 11 =7(s) 2| S 11 —7(t) 2| +2]1 = 1(s) 2|

S 31— (1) 2|

by the choice of s. Hence

L= y() 2l |1 = y(s) 2 + ]t — s +

/ t T(e)del ,

1

I\'(t, Z) = ';r]; T(t) Re -l—lﬁ:
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_ 1y Reoa®2)
™ 11 —~(t) 2|2 L
~ T(t) Re (1 — (1) z) .

)

[

(|1 Y@l -+

Next,

2Re(1—~(t)z)=1—~(t)z+1—7(t)Z
= py(t) — 2’ + 1= |2
SO = AP + 1z —7(s)* +1— |
Slt=sP+lz=v()F +1- 2.

Write r = r(z) = |z — y(s)|? + 1 — |z|?, R=|1 — 4(s) z|. Then

It — 3|2 - T(t) 1‘(2)

(1o + | tT(E)dé) (R+ / ’ T(6)dt )

= K;(t,s) + IKy(t,z).

K(t,2) ST(?) 3

In proving a) we have already seen that [ K(t,s)dt = O(1).
Next, with [ equal to the length of v, assuming s = 0, and with
the change of variables u = fot T(¢)d¢E,

/' T(t)dt _/M du </+°° du 1
0 27 Jo (R+uw)?~Jy (R+uw? R’

(R-!— /0 t T(g)dg)

But 7 < R. Hence [ K,(t,z)dt < C, for all z € B?, and part b) is also
proved.

Lemma 4.3. If p vaenishes whenever T vanishes, then

lim Ko(z) = o(z) + / o(t) L(t,z) dt .

z—=y(z)
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PROOF.
}/Kmawnm—wm—/¢mmeﬁ[

< [ KeakO-e@ldrl@l| [ Koza-i]
|z—t]<6 |z—t]<6

+ /IMMW@H—L@Mﬂ+ /ummwmww

|z—1]>6 |lz—t|<6
Nt D+ T+ T,

Let w(4) be the modulus of continuity of . Then,
T, < w(6)/K(t,z)dt < Cuw(f),

T <ol [ty
|lz—t|<é

We break the integral in T3, accordingly to
't —

Kt 2) = L 1m 2@ Oz =)

T l-za(t)  [1-zy()

= —% % Im log(1 — z4(2)) + O(|1 — z(t)|7*/?).

Note that .
u—ﬁmm/Tm%.

If z is close to (z), with T(x) # 0, and ¢ is small, so that T is bounded
below by some constant C(z) between s and ¢, one has |1 — zv(¢)| >
C(z)|s — t|. Hence

11— 29(B)7* < C(2) 62,
lz—t|<8

for 6 small and z close to y(z). All these gives, taking into account
that lim, ;) T3 = 0 by dominated convergence (K (¢, 2) is singular at
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z = v(t) only), and Lemma 4.2,

z—

Kole) = (oa) + [ ol0) L1, ) )

liilz)sup
< Cuw()+C6'/% + lc,o(a:ﬂG (a"g (1= v(=z)v(z - 9))
—arg (1 - y(z)7(z + 5))) - 1)

+ llpllo / L(t,z)dt.
e =11<8

Since

1—y(z)¥(z +6)=—1:T(z) 6 + o(6),
1= 5(2)7(c — ) = i T(2)8 + o(6)

we obtain Lemma 4.3 by making § — 0. When T'(z) = 0 this argument
does not control the term T5, but it vanishes because ¢(z) = 0.

Lemmas 4.2 and 4.3 complete the first step of the proof. Indeed,
obviously K¢ is pluriharmonic and K¢ has a continuous extension to
B2\ T. Lemma 4.3 shows that K € PHC if ¢ € Cy(T). Finally, the
operator ¢ + ¢ where

#(a) = [ olt) Lt

is compact in C(T'). For this, we must show, to prove equicontinuity,
that

/ |L(t,z) — L(t,y)| dt

is small for |z — y| small, and this follows from part a) of Lemma 4.2
and the continuity of L off the diagonal.

It only remains to prove that E is an interpolation set for the ball
algebra. This is a well-known result that can be proved for instance ap-
plying the Davie-@ksendal theorem ([10, Theorem. 10.4.3]): it is enough
to sec that for each ¢ there are Koranyi balls V(&;,61),...,V(ém,6m)
where

V(&) ={z€S: |1—-€3| <6}
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such that 3" §; <ec and EC V(£,61)U--- UV (€m,bm).
Given ¢, let 4(s1),...,7(sm) € E be such that

EC 7(0(3,— —£,8; +e))

i=1
with m = O(1/e). By the mean value theorem
v(si =€, si +€) TV(y(si), &)

with
5,‘ ~E w(s) ,

where w is the modulus of continuity of 4’. Hence
Y 6 <mew(e) = O(w(e))
=1

can be made arbitrarily small.

This ends the proof of Theorem 4.1.
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