REVISTA MATEMATICA IBEROAMERICANA
Vor. 11, N.° 3, 1995

Bilipschitz extensions

from smooth manitolds
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Abstract. We prove that every compact C!-submanifold of R™, with
or without boundary, has the bilipschitz extension property in R™.

1. Introduction.

Let X C R™ and let f : X — R™ be a map. We say that f is
L-bilipschitz (abbreviated L-BL) if L > 1 and if

223 < \f(@) - S < Tl -l

for all z,y € X. Thus 1-BL maps preserve distances, and we call
them isometries. Every isometry f : X — R”" is the restriction of a
unique affine isometry g : aff(X) — R"; we let aff(X) denote the affine
subspace of R™ generated by a nonempty subset X of R". Hence every
isometry f has an extension to an isometry of R™.

In general, an L-BL map f: X — R" need not have an extension
to a bilipschitz map of R", even if X is a very simple set. For example,
X may be the unit circle and f : X — R?® a homeomorphism onto a
knotted curve. The situation changes, however, if L is required to be
close to 1. The following concept was introduced in [V, p. 239]:

. A set X C R" is said to have the bilipschitz eztension property
(abbreviated BLEP) in R" if there is Lo > 1 such that if 1 < L < Lo,
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then every L-BL map f : X — R™ hasan L;-BL extension ¢ : R® — R",
where Ly = Ly(L,X,n) > las L — 1.

In [V, 5.17] it was proved that every compact (n — 1)-dimensional
C'-submanifold X of R™ has the BLEP in R". In the present paper
we are going to prove the same result for all compact p-dimensional
C'-submanifolds X of R™, 1 < p < n, with or without boundary. The
result is given as Theorem 3.14. For p = 1, a proof was recently given
in [HP]. We shall modify the method of [HP] to cover the technically
more challenging remaining dimensions as well. Qur proof is based on
the BLEP of compact polyhedra, which was established in [PV].

1.1. NOTATIONS. We let R, Z, and N denote the sets of real numbers,
integers, and positive integers, respectively. If 1 < p < n — 1, we
identify R? with the subset {z : z,41 = -+ = z, = 0} of R®. The
distance between two sets A, B C R" is written as dist (A4, B) with the
convention that dist (A, B) = co if A or B is empty. The diameter of
A is diam (A) with diam (@) = 0. For r > 0 we set

B"(A,r)={z € R": dist(z,A) <r},
B™"(A,r)={z e R": dist(z,A) <r},

where we have simplified the notation by writing z for {z}.
If f and g are two functions defined in a set A and with values in
R", we set

|f —gla = sup |fz — gz].
T€EA

We often omit parentheses writing fz instead of f(z). Amap f: A —
R"™ (A C R") is called a similarity if there is A > 0 such that

[fz — fyl=Alz —y|

for all z,y € A. The similarity class of a set A C R™ consists of all the
images fA of A under similarities f: A — R™.

We use the notation P(X) for the set of subsets of a set X. The
cardinality of X will be denoted by # X. The symbol id is used to
denote various inclusion maps.

Let @ C R™ be a closed (or open) p-cube, 1 <p < n,and let t > 0.
We use the notation Q(%) to denote the closed (or open) p-cube of R™
with the same center as @), with side length ¢ times that of @, and with
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edges parallel to those of ). The interior of Q is written as Cj; it is the
topological interior of @ in aff(Q).

2. Preparations.

We begin with a purely set-theoretic lemma. Perhaps surprisingly,
it has an important role in the sequel.

2.1. Lemma. Let ; :]1,a;] — ]1,00[ (j € N,a; > 1) be a sequence of
functions satisfying lim,_, ¢;(t) =1 for all } € N. Then there exists a
function m :]|1,a1] — N with the following properties

1) amy =t, forallt€]l,a],
2) m(t) > o0 ast—1,

3) mp(t)>1 ast—1.

PROOF. Set b; = a; and construct inductively a sequence b; > by >
b3 > --- of numbers b; > 1 such that for ;7 > 2 we have b; < aj,
b; <1+ 1/5, and ;]1,b;] C ]1,14+1/5]. Define m : ]1,a;] — N by
setting

m(t) = max{j € N: b; >t}

for t € ]1,a1]. Since @m(y) > bm(y) > tfor all t € |1,a4], (1) holds. Since
m(t) = j for t € |bj41,b;], (2) holds. Since @,1)(t) < 14 1/m(t) for
t €]1,b2], (3) follows now from (2).

We now introduce the relative BLEP, which can be considered
a generalization of the ordinary BLEP. In Theorem 2.4 we derive a
useful property of the relative BLEP. Our notation in Definition 2.2
and remarks 2.3 is chosen to suit the application in Theorem 2.4.

2.2. Definition. Let X C R", let Ko > 1, end let A :]1, K] — P(X)
be a function. We say that X has the bilipschitz extension property rel-
ative to A in R" (abbreviated BLEP rel A) if there is K' € |1, Ko| such
that if 1 < L < K', then every L-BL map f : X — R™ with f|4) =id
has o K;-BL eztension g : R® — R", where K; = K;(L,X,A,n) — 1
as L— 1.

2.3. REMARKS 1). Let A, B : |1,K,] — P(X) be two functions as
in Definition 2.2. If there is Lo € ]1, K] such that A(L) C B(L) for
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L €11, Ly}, we write A C B. f A C B and if X has the BLEP rel A,
then X has the BLEP rel B.

2). f C C X, we write BLEP rel C for BLEP rel A, where A :
]1,Kp] — P(X) is the constant function with value A(L) = C. The
ordinary BLEP defined in the introduction is then the same concept as
BLEP rel @.

3). Trivially, X always has the BLEP rel X.

4). To simplify the notation, we usually write Ky = K; (L) without
explicitly mentioning the data X, A, n, on which K, also depends.

2.4. Theorem. Let X C R", let Ko > 1, and let A,B : |1, K¢] —
P(X) be two functions. Suppose also that X has the BLEP rel A. Then
X has the BLEP rel B if and only if the following condition holds

(*) There ezists Ly € |1,Ko] such that if 1 < L < Ly and +f f :
X — R" is an L-BL mapping satisfying f|py = id, then the map
flacy + A(L) — R™ has an L;-BL extension g4 : R® — R", where
Ly =Ly(L)=Ly(L,X,A,B,n) > 1las L —1.

PROOF. It is obvious that if X has the BLEP rel B, then (x) is true.
To prove the converse, assume (%) and let K’ € ]1, K] be the number
and K :]1,K'] — ]1,00[ the function given by Definition 2.2 for the
BLEP of X rel A. We must find the corresponding objects K" = K
and K> = K2 for the BLEP of X rel B. By choosing K’ small enough,
we may assume that K' < L.

Choose K" > 1 such that L L,(L) < K' for all L € ]1,K"]. Let
1 <L < K"andlet f: X — R” be an L-BL mapping satisfying
flB(Ly = id. Then (x) implies that the map f|4(z) : A(L) — R™ has an
L,(L)-BL extension g4 : R* — R". The map f4 = glzl of: X - R"
is L L1(L)-BL and satisfies fa|4(r) =id. Since L L,(L) < K', we may
apply the BLEP of X rel A to find an L,-BL extension ¢g; : R®* — R"
of fa with L, = Ky(L Ly(L)). Now, the map g = g409; : R®* - R"
satisfies g|x = f and is K»-BL with K, = L, L, satisfying K, — 1 as
L — 1. It follows that X has the BLEP rel B.

2.5. Flatness.

Let A = vp---v, C R" be a p-simplex with vertices vo,...,v,,
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p > 1. Asin [V, 2.6], we define the flatness p(A) of A by

oy = Bm(®).

where b(A) is the smallest height of A. Explicitly, we have

b(A) = orsnigp dist (v;, aff(A;)),
where A; is the (p — 1)-face of A opposite to v;. The simplex A =
vg - - - Up is called a corner if there is 7 € {0,...,p} such that the vectors
vj —v; (0 <5 <p, j#1) are mutually orthogonal and of equal length
|v; — vi| = t. The number ¢ > 0 is called the size of the corner A. The

flatness of a corner A is

1, p=1,
A) =
= g, 7o
Since p(A) is a continuous function of (vo,...,v,), we can choose an
integer m,, > 2 with the following property: ¥ 1 < p < n -1, if
Ao = ug---u, C R" is a p-corner with size t, and if vy, ..., v, are points

in R® with |u; —v;| <t/m, forall j € {0,...,p}, then A =vy-- v, is
a p-simplex with p(A) < 2p.

3. The main result.
3.1. Basic assumptions.

Let 1 < p < n and let X be a compact p-dimensional C!-submani-
fold of R™. The purpose of this paper is to prove that X has the BLEP
in R®. In Section 3 we give a detailed exposition of the case where
X has no boundary. The modifications needed to cover the case of
manifolds with boundary will be briefly discussed in Section 4.

We begin by giving our assumptions on X more explicitly. Thus,
in Section 3,1 < p < n -1 and X is a compact subset of R™ such that
for every point y of X there is an open set U of R? and an embedding
f : U — R" satisfying the following conditions 1)-3):

1) y€ fU C X and fU is open in X,

2) f is continuously differentiable in U,
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3) for z € U, the linear map f'(z) : R? — R" is injective.
As usual, such amap f:U — R"” is called a chart of X at y.

3.2. The cube family X.

Let 6§ > 0 and let J = J(6) be the family of all closed n-cubes
Q@ C R™ with side length 6 and with vertices in 6Z". Let m, € N be as
in 2.5, and define

Ny = No(n)=2n(m, +1), N=N(n)=(No+1)",
W ={0,1,...,No}".
For w € W we set
Jw =[0,6]" + 6w + (No + 1) 6Z™ .
Then the N subfamilies J,,, w € W, of J are disjoint, and

j'——UJw

weW

Moreover, we have

dist (Q,R) > Ny 6
whenever @Q, R € Jy, @ # R, w € W. Choose an arbitrary enumeration

W= {w(l),...,w(N)}
of W, set J; = Jw(iy for i € {1,..., N}, and note that
J=NU---UJN.
Set
K=K(6)={QeJ: QNX # o}, Ki=K(8)=K(&)nT;i,
and observe that K is the disjoint union

K=KiU---UKn .
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3.3. The numbers (L) and the sets D(L).

Let j € N and choose § = 1/j in Paragraph 3.2. For every Q € K,
choose a point zg € @ N X. Since X is compact, the set

Dj={zq: Q€K}

is finite. By e.g. [P, 2.4], D; has the BLEP in R". Hence there are
L} > 1 and a function L} 1, L] —]1,00[ such that LI(L) — 1 as
L —+1andsuchthatifl <L < Lg, then every L-BL map f : D; — R"
has an LJ(L)-BL extension g : R* — R".

We set Ko = Lj. Applying Lemma 2.1 with a; = L, Y = L{,
we get a function m : ]1, K] — N with the following properties: '

1) LM® > L, forall L €]1,K,],
2) m(L) > o0 as L — 1,

3) LML) 51 as L —1.

If 1 < L <K, we define

1
o) = s
Then §(L) —» 0 and Ly(L) - 1las L —» 1,and D:]1,Kp] - P(X)isa
function. Moreover, if 1 < L < Ky, then every L-BL map f : D(L) —
R™ has an Ly(L)-BL extension g : R® — R". This fact, together with
Theorem 2.4 (with A = D, B = &) and Remark 2.3.2, immediately
implies the next lemma, which reduces our task to that of proving the
BLEP of X rel D.

Ly(L) = L7™(L),  D(L)= Dy -

3.4. Lemma. If X has the BLEP rel D in R", then X has the BLEP
in R™.

Since X and n are fixed, we mostly do not indicate the dependence
of various quantities on them in our notation. In many considerations
we may also think of L € |1, K] as being fixed, at least temporarily.
Then we simplify the notation by dropping the parameter L out of it.
For example, from now on we write

(3.5) 6=681I), D=D(L), K=K(@6L)=K U---UKn,

whenever 1 < L < K .



586 T. HUUSKONEN, J. PARTANEN, AND J. VAISALA

3.6. Constructions.

Let L € ]1,Ko], and let 6, D, and X be as in (3.5). Then D =
{zq: Q € K}, where g € Q N X is the point chosen in Paragraph 3.3
with § = 1/m(L).

If Q € K, we let Tg be the tangent plane of X at z¢. Explicitly, if
f:U — R"is a chart of X at z¢ as in Paragraph 3.1 and if z¢ = f(z),
then

To =zq+im f'(z) =20+ T,
where Tg = im f'(z) is a p-dimensional linear subspace of R", which
can be shown to be independent of the chart f.

For each @ € K we choose a closed n-cube Q* of R™ with center

zg, with side length

A= ML) =2(mn +1)Va §(L),

and such that Q* has a p-face parallel to Tg. Figure 1 illustrates the
situation with » = 2, p = 1. The maps mg and 3¢g will be defined
below.

> >

Q*

W\w

=Y

8

Figure 1

For @ € K we let mg: R — Tg be the orthogonal projection. We
omit the elementary but long proof of the following lemma. The result
is geometrically obvious, because X is a compact C'!-manifold without
boundary and because § - 0as L — 1.
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3.7. Lemma. There ezists a number K, € |1,Ko] such that if 1 <
L < K,, then for every Q € K the map

15: XNQ* —ToNnQ*
defined by 7 i3 a homeomorphism with inverse
QﬁQ =(7r5)‘1 :TQﬂQ* -—)XﬂQ*

satisfying the following conditions

1) If z,y € To N Q*, then we have
|z —y| < [oz — Yoyl < Mz —y],

where M = M(L) € [1,2] and M(L) — 1 as L — 1. In particular, 1g
is M-BL.

2) |Yq—id|ryngr < €16, whereey =€1(L) € [0,1/2]) and ey (L) —
0Qas L —1.

3.8. The maps ¢q .

Let 1 < L < K;. Next we extend the maps 9g : To N Q* —
X N Q* obtained from Lemma 3.7 to homeomorphisms ¢q : Q* — Q*

as follows:
Let Q € K, let y € To N Q*, and set

R, = 7r51(y) nQ*, B,=B"(y,§)NR, .

Then R, is an (n — p)-cube, and By is an (n — p)-ball with center y.
Let S, be the boundary (n — p — 1)-sphere of B,. Since |y — ¥qy| <
€16 < 6/2 by Lemma 3.7.2), we can represent B, as a cone in two ways:
By, = ySy = ¥o(y)Sy. Let 9 : By — By be the ¢q(y)-cone of the
identity map of S, with vertex y, 1.e., <p’é maps each segment [y, z],
z € Sy, affinely onto the segment [1gy, z]. By the proof of [P, 2.3] we
deduce that ¢ is M;-BL with

1

M] = M](L) = 1——_61?5
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satisfying M; — 1 as L — 1. We extend g to a map 9§ : Ry — R,
by letting v = id in Ry \ By. The desired map pq : Q* — @* can
now be defined by letting pq agree with og in R, for all y € To N Q™.
Then ¢q is a homeomorphism and ¢g|r,nq+ = ¥q. Moreover, by the
construction of ¢gq the following assertions are clearly true with M,
and £; as above:

1) ¢g is M;-BL,

2) lpq —id|g: < |$g —id|1gner < €1 6.

The choice of Ny = 2n(m, + 1) in Paragraph 3.2 was made to
guarantee that the interiors Q* of the cubes Q*, @ € K,;, are disjoint.
In the next lemma we verify this. We also derive an estlmate for the
cardinality of the set d*n D,Qek.

3.9. Lemma. Let:i € {1,...,N}, let1 < L < Ky, and let Q,R € K;,
Q@ # R. Then we have

1) *NR* =2,
2) #(Q*ND)<N.

PRroOF. To prove 1), observe that Q" C B™(zg,N¢é/2) and R C
B™(z R, Nob/2), because diam (Q*) = A \/n = Ny § = diam (R*). Since
|zg —zr| > dist (Q, R) > N, 6 by Paragraph 3.2, we get Q*NR* = @.

For 2), note that Q* C B"(zg, No§/2) C Q(No+1), where Q( Ny +
1) is the interior of Q(No +1) (¢f. 1.1). Tz =25 € Q*ND, S € K,
then obviously S C Q(Np + 1). Since

#{S€T: SCQNo+1)} = (No+1)" =

and since K C J, we get 2).

3.10. The basic polyhedra Z.

In [PV] it was proved that every compact polyhedron Z C R™
has the BLEP in R". We are going to apply this result to some basic
polyhedra, which belong to a finite number of similarity classes. Here
we choose a set of representatives Z for these classes.
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If k€ Nand t > 0, we set I¥(¢) = [~,%]*. We let N; = Ni(n) be
the unique integer satisfying

—g—(mn+1)N\/ﬁ_$N1<§(mn+1)N\/'r_z+1,

where N = (Np + 1)" is as above. We divide I7(3) into (6N1)? closed
p-cubes R with side length 1/N;. Let R be the family of these p-cubes
R, and let Y be the family of all polyhedra Y satisfying the conditions

1) Y =R, for some R; CR,
2) IP(2)CY.

Since I?(3) C I"(3) by the identification of 1.1, we can now define
a finite family F of compact polyhedra Z C I"™(3) by setting

F={Z: Z=YUodI*(3),Y €)}.

3.11. The sets E;.
Let 1 < L < K;. For Q € K we set
Po=(Q"NTe)(2/3),

i.e., Pq is the closed p-cube with center zg, side length 2, and edges
parallel to those of Q*NTg. If 1 <¢ < N, we define a subset E; = E;(L)
of X by setting

Ei=|J{¢oPo: Q €Ki},
where g : To N Q* — X N Q* is the homeomorphism of Lemma 3.7.

We also set (L \/_
n
SAR Y]

The next lemma is the decisive tool in our proof of the BLEP of
X.

3.12. Lemma. Let A, B :]1,K;] — P(X) be two functions satisfying
the following conditions:

1) A(L)c B(L), forall L €]1,K,],
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2) dist(A(L), X \ B(L)) > g(L), for all L € ]1,K,].

Let 1 <: < N, and suppose that X has the BLEP rel AUDU E;
in R". Then X has the BLEP rel BU D in R™.

PrOOF. To begin with, the reader should be informed that we allow
the case where A(L) = @ or B(L) = @. In fact, we shall apply Lemma
3.12 with A = B = @ in the proof of Theorem 3.14.

Applying Theorem 2.4 with the substitution Ky — K;, A(L) —
A(L)u D(L) U E;(L), B(L) — B(L)U D(L), we first observe that it
suffices to prove the following statement:

(3.13) There ezists Ly € |1,K,] such that if 1 < L < Ly and if
f: X — R" is an L-BL mapping satisfying f|pryupry = id, then
flacyopryue;L) has an Ly-BL eztension F : R®™ — R", where L; =
Ly(L)y—1asL—1.

Let 1 < L < Ky, and let f: X — R" be an L-BL map satisfying
flB(ryup(z) = id. To be able to construct the desired L;-BL extension
F of f|aryup(ryuE:(r) We shall introduce new restrictions on L of the
type L < K; = Kj(X,n) > 1 (5 > 2) whenever need arises. The proof
below will imply (3.13) with Lo = min; K;. In it we use the notation
ej = ¢€j(L), 7 > 2, for positive functions depending only on (X,n) and
satisfying €;(L) - 0as L — 1.

Fix Q € Ky, and let ¢pg = (75)™' : To N Q" — X N Q* be as in
Lemma 3.7. Define a map fq : Tg N Q* — R™ by setting

foz = fiqz = feqr

for all 2 € To N Q*. We prove that fg has the following properties:
a) fois LM-BL with M = M(L) as in Lemma 3.7.1),
b) fo(z) =vo(zx) for all z € mg(D N Q~),
c) |fq —id[rgng- < e2(L)8.

Since a) and b) are obvious, we only need to verify c¢). We first
construct a not too flat p-simplex A such that the set A of vertices of
A is contained in (D N Q*).

Choose an orthonormal basis (vi,...,v,) of Tg, (see Paragraph
3.6), and set

t=mn\/ﬁ6, z; =z9 +1tv;
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for 1 < j < p. Since |zj — zg| = ma/né < A/2, we have z; € Tg N Q*,
1gz; € X NQ*. Hence we can choose cubes R; € X so that ¥gz; € R;,
1< <p. Wesety; =mqzR;, Ao =TQ21""" 2. Then A is a p-corner
with size ¢, see Paragraph 2.5. Since mg decreases distances, we have

lvi — 2l < lzr; — $qz,| < diam (R;) = Vnb =t/ma,

for all j € {1,...,p}. By the definition of m, in Paragraph 2.5, this
implies that A = zqy; - - -y, is a p-simplex with p(A) < 2p. Moreover,
we have A° C Q*, because

lyi —zal < lyj — 2| + 12 — 2| S VR +mnvn § = A/2

for all j. Since |zr; — ¥qz;| < v/n6 and since ;(L) < 1/2 in Lemma
3.7.2), it easily follows that zp; € Q* for all j. Hence A® C mg(DNQ*),
and A is the desired p-simplex.

Next we observe that fg|ao = ¥g|ao by (b). Applying this and
Lemma 3.7.2) we get

|fo —id|a0 < |pq —id|ryne+ < €1(L) 6.

By the approximation theorem [V, 3.1] there exists an isometry A :
Tg — R™ such that we have

|fo — hlTgng+ < e3(L)diam(Tg N Q™) < e4(L)6,
where ¢,(L) = 2n (1 4+ m,)e3(L). Then h satisfies
|h —id|a0 < |h — folae + |fo —id|a0 < es(L) 6

with e5(L) = e4(L)+€1(L). From [V, 2.11] it follows that for all z € Tg

we have
|hz — x| < e5(L)é (14 diam (A)™! My |z — zq]) ,
where
My =4+6p(A)p(14p(A)P~ < M
with M' =4 +12p? (1 +2p)?~!. Since m, > 2, we have

diam (A) > |y1 — zq| 2 |21 — zg| — |21 — 1]
syt st _mnynb

m, 2 2
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Applying this estimate and the fact that Q* C B"(zq, \\/n/2) we get

m, +1
m

|k —id|rynge < es(L)6 (1+2M’\/E ) <es(L)6,

where e6(L) = (1 + 3 M’ \/n) e5(L). We now get the desired estimate
|fo —id|Tyne < 1fQ — hlrgne- + |k —id|1gng- < e2(L)é
with e3(L) = €4(L) + €6(L). Hence c) is true.
Writing A = A(L), B = B(L) we set
Ag=m(Q"NA), Bqe=me(Q"'NB), Dq=rq(Q"ND).

Since mg, is M-BL with M < 2 as in Lemma 3.7, the assumption 2) in
Lemma 3.12 implies that we have

d) dist (Ag,To N Q* \ Bg) > q/2.

Let N; be the integer defined in Paragraph 3.10. We divide the
p-cube T N Q* into (6N, )P closed p-cubes R with side length A/6N;.
Let £ be the family of all these p-cubes R. If R € L, then by paragraphs
3.6, 3.10 and the definition of q before Lemma 3.12 we get the estimate

AP < (mn,+1)né
6 N, 3N,

diam (R) = < g .

Applying this together with d) we see that the implication
e) RNAg #@ implies R C Bq
is true for all R € £. We set
La={ReL: RNAg # 2}, Lp={ReL: RNDqg # 3}.
We divide the set Cj* NTo \ };Q into N; disjoint sets

. i : j—1 .
L _J_ - <j<
H, PQ<1+2N1)\PQ(1+2N1), 1<j <M,

as illustrated in Figure 2. For notation, see 1.1.
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Figure 2

By Lemma 3.9.2) and Paragraph 3.10 we have
#(Q*ND)< N<N; .

Since the sets H; C Q* N Tq = 7rQ(Q°* NX), 1< 5 < Ny, are disjoint,
we can choose jo € {1,..., N1} such that

H,NDg=0.
We define
Ly={ReLlp: RCPQUHU---UHj,_},
Ly={ReLlp: RCHj4,U---UHy,}.

Then L, consists of the cubes R € Lp inside Hj, and L, of those
outside H;, in Figure 2. We set

Ya=JLs, Y=L, T"a=|JL.
Then Y; and Y5 satisfy the conditions

, A
1

A A
i 1> — i > — .
dist (Y1,0Q") > oN, dist (Y2, Pg) > 6N,

We define two polyhedra Y and Zg by setting
Y=Y,UY1UY,UPg, Zo=YUuoQ*.
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Obviously Zg is similar to some member Z;, of F, ¢f. Paragraph 3.10.
Since F is finite and since every Z € F has the BLEP in R" by [PV,
1.1], there exists Ly > 1 and a function L} : ]1, L§] — ]1, oo satisfying
L{(K) - 1as K — 1 and such that if Z € F and 1 < K < L, then
every K-BL map ¢ : Z — R" has an L}(K)-BL extension G : R* —
R". Since Zg and Zp are similar, the same is true for all K-BL maps
9:29 —-R", 1<K < Lj.

We next show that after restricting L we can define a function
9q : Zg — R™ by setting

g x_{(pélf'(/)qm‘:gpalle', if.’I)EPQUYAUYI,
Q =

f
) z, 1f:1:€Y2U0Q*

If R € L4, then R C Bg by e). Hence ¢ygR C Q* N B, and we get
((pal o fg)lr = id, becausc f|p = id by the assumption of (3.13). It
follows that (pal o fg = id in the set Y4, which contains the intersection
of PoUY4UY; and Y, UOQ*. Since goal is defined in Q* only, we must
yet verify that if L is chosen small enough, then fo(Pg UY7) C Q™.

Let z € Po UY;. Since dist (z,0Q*) > A/6 Ny, the desired condi-
tion for € Q* would follow if we had |foz — x| < A/6N;. To arrange
this we let L < K, where K, € |1, K] is such that the function ¢, of
c) satisfies for all K € |1, K3] the estimate

) ) <, = pmy = IOV

By c¢) and Paragraph 3.6 we then indeed have

A

\for — 2| S ex(L)8 < ub = g5

Hence we get fo(PoUY;) CQ*,if L<LK,.

From now on we always assume L < K. Then gqg is well defined
by f). Next we show that after restricting L once more, gq is M2-BL,
where M, = My(L) — 1 as L — 1. For this, let z,y € Zg. We must
derive suitable estimates for the number

o = 1907 — 9yl
|z -yl

If {z,y} C PUY,UY,, then 1/M; LM < o < M; LM by f),
3.8.1) and a). If {z,y} C Y4 UY, UJQ", then o = 1 by f) and the
above observation that ggly, =id.
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It remains to consider the case z € P UY;, y € Y, U0Q*. Then
we have

lz -yl 2 =pd

M
with p as in g). Hence by 3.8.2) and c) we get

l9ez — 9@yl = lpg' foz — |
< lpg' foz — foz| + |fez — 2| + |z -yl
< ei(L)8 +ea(L) 6+ 1z — ]
<A +er(L)) |z —yl,

where €7(L) = (e1(L) + €2(L))/p. Similarly we get

9oz — 9Qyl 2 (1 —e7(L)) |z -yl

Hence 1 — e7(L) < a < 1+ e7(L).

Let K3 € ]1, K] be such that e7(K) < 1 for all K € ]1, K3)]. From
now on we assume that L < K3. By the above estimates, gg is then
M,-BL, where

M; = My(L) = max {LMNL)M @, 1_—51(5)}

satisfies Mo — 1 as L — 1.
Choose K4 € |1, K3] so that My(K) < Lg for all K € ]1, K4). From
now on we assume that I < Ky. Then gg has an L3-BL extension

Gg:R" = R",

where L3 = L3(L) = Lj(M3(L)) - 1 as L — 1. Obviously, we have
Gglags =1id and GoQ* = Q*.

We define a homeomorphism Fg : Q* — Q* by letting Fo =
wgoGgo cpal. We prove that F has the following properties:

h) Fgis Ly-BL with Ly = Ly(L) = Ly(L) M, (L)?,

i) Folog- =1d,

i) Fgz = fz, forallz € Q*N(AUDUE;).

By 3.8.1), h) is obvious. Since pdQ* = 0Q* and since Gglag+ =
id, we get i). To prove j), let z € Q*N (AU DU E;) and set y =



596 T. HUUSKONEN, J. PARTANEN, AND J. VAISALA

(pal(:z:) = mqz. Then we have Gqy = goy. If z € A, then ggy = vy,
because Ag C Y, and because ggly, = id. Since f|4 = id by (3.13)
and Lemma 3.12.1), we get

For =poy =z = fz

as desired. If z € D, then fz = z, and by f) we have goy = y. Hence
we get Foz = x = fz. If 2 € E;, then y € Pg by Paragraph 3.11 and
Lemma, 3.9.1). Hence f) implies that

9QY = vg' fbqy = g fx,

and we obtain j) in this last case as well:

Foz = pqgqy = fz.

Letting Q € K; vary, we get a family of maps Fg : Q* — Q*,
Q € K;, as above. By Lemma 3.9.1) and by i) these maps can be glued
together into a homeomorphism F : R® — R" defined by

7 {FQz, if z € @* with Q € K;
T =
T, ifzeR*\[J{Q":Q€K,}.
By h) and j) it is easy to see that F' is L,-BL and satisfies Fz = fzr

for all z € AUDUE;. Hence (3.13) is true with L; = L4, and Lemma
3.12 is proved.

We are now ready to prove our main theorem.

3.14. Theorem. Let1 < p < n and let X be a compact p-dimensional
C?-submanifold of R™ with or without boundary. Then X has the BLEP
i R™.

PROOF. As before in Section 3, we assume that 1 < p < n — 1 and
that X has no boundary. Manifolds with boundary will be considered
in Section 4.

Let 1 < L < K, where K; € ]1, K,] is as in Lemma 3.7. We shall
freely use the definitions and results of 3.3-3.11. The parameter L will
often be dropped out of the notation as e.g. in (3.5).

Letting N be as in Paragraph 3.2, we set

ri=vné+jqg=(1+j/N)Vns, 1<j<N,
Bij = J{¥o(B"(zq,r)NTo): Q€Ki}, 1<ij<N.
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Note that we have B;; C E;, because B"(zq,r;) N Tg C Pg by the
definitions of Py and Q* in paragraphs 3.11 and 3.6 and by the fact
that

2

%z\:g(mn+1)\/ﬁ622\/-ﬁ52rj.
We define N sets B; = B;(L) C X,1 < ¢ < N, by setting

Bl = BlN )
By = By,Nn-1UByy

B; =By N_iy1UBy N_iy2U---UB;n

By =B;1UBy U---UBpypy -

Let @ € K. Since @ C B™(zq, /n §), since T decreases distances,
and since TQzqQ = zq, we have

To(X N Q) C To N B™(zq,vné) C ToNQ*.
Applying the map g we get the inclusion
XNnQc 1/)Q(Bn(IQ, \/7_15) NTg).

Since this holds for all @ € K =K, U--- UKy and since rj > /n é for
all y € {1,...,N}, it follows that X C By. Hence X trivially has the
BLEP rel By U D, see Remark 2.3.3.

We continue by induction. Suppose that 1 <: < N — 1 and that
X has the BLEP rel (B;4+; U D). With the aid of Lemma 3.12 we want
to prove that X has the BLEP rel (B; U D).

We define a set A; = A;(L) C X by

Ai=B N-iUBy N_iy1U---UB;nN_1 .
Obviously, we have A; C B;. Moreover, we get
dist (Ai, X \ Bi) > ¢,
because g increases distances by Lemma 3.7.1). Observe that the set

Biyi=ByN-iUByNy_i1U---UBiNn-1UBi1 N
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satisfies Biy1 C Ai U Ej41, because Biy1 v C Ejyq, as noted above.
Hence B;1;UD C A;UDUE;,,, and X has the BLEP rel (4;UDUE; ;)
by the inductive hypothesis and Remark 2.3.1). Applying Lemma 3.12
with the substitution A — A;, B — B;, i — 7 + 1, we deduce that X
indeed has the BLEP rel (B; U D).

By induction, we see that X has the BLEP rel (B; U D). Since
B, = By~ C E;, X also has the BLEP rel (E; U D). Applying Lemma
3.12 again, now with the substitution A — @, B — &, i — 1, we see
that X has the BLEP rel D in R". By Lemma 3.4, this implies that X
has the BLEP in R".

3.15. REMARK. An analysis of our method in the proof of Theorem
3.14 reveals that the actual extension of an L-BL map f : X — R™ with
L —1 small enough can be done in N +1 steps. The first step -begins by
extending f|p to an Ly(L)-BL map g : R® — R" as in Paragraph 3.3.
Replacing f by ¢~!of a normalization f|p = id is then obtained. In the
second step, the restriction f|p,up (or even f|g,up) of this normalized
map f is then extended and the stronger normalization f|p,up = id
is seen to be possible. The remaining N — 1 steps correspond to the
inductive steps above in reverse order. We proved that the BLEP of
X rel B;y; UD implies the BLEP of X rel B; UD,1<:< N —1.
This corresponds to extending f|p,,,up (or even f|4,upuE,,), Where
f : X — R™is normalized by f|p,up = id, and using the extended map
for a new normalization f|p,,,up =id. Since By U D = X, we finally
see that f can be normalized by f|x = id. This implies that f indeed
has an extension.

3.16. The case p=1.

If X is one-dimensional, the proof of Theorem 3.14 can be essen-
tially simplified. By [P, 2.5] X can be assumed to be connected. Then
X isa C! arc or a C! Jordan curve. Assuming that it is a Jordan curve,
we present an outline of the method used in [HP] for the extension of
an L-BL map f: X — R" with L — 1 small enough.

The sets D; of Paragraph 3.3 with j odd are not needed. For
J even we simply let D; consist of 7 points, which divide X into j
subarcs of equal length. Then the number m = m(L) € 2N and the
set D = D(L) = D,,(y) are obtained as in Paragraph 3.3; for this we
have to replace N by 2N in Lemma 2.1. The set D so defined consists
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of m points a1, ...,8m,@m41 = a1, which divide X into m equally long
subarcs C; joining a; to aj41, 1 < 7 < m. Asin Remark 3.15 we obtain
the normalization f|p = id by making use of an extension of f|p.
However, in the rest of the proof only the two steps described below are
necessary. Moreover, only two rather simple similarity types of compact
polyhedra are needed. The following constructions are possible if L —1
is small enough.

Let J; denote the line segment joining a; to a;4;, 1 < j < m.
Choose closed n-cubes @;, 1 < j < m, of R" in such a way that q;
and a4 are the centers of two opposite (n — 1)-faces of Q;. Define the
polyhedra

XJ=3Q](5/4)UJ15 }/j=anU']j,
and let #; : J; = C; be the inverse of the orthogonal projection C; —
J;. Consider the maps F; : X; = R"and ¥; : X; - R" (1 <3< m,J
odd) defined by letting F} coincide with (f|c;) o %; and ¥; with 1; in
J; and letting F; = id = ¥; in 0Q; (5/4). Extending these maps with
the aid of the BLEP of X; and using the extensions glued together we
are able to complete the first step by obtaining the normalization

(*) floge;: 5 oddy =14 -
In the second step we then apply the same argument for the subarcs
C; of X with j € {1,...,m} even. From the normalization (*) it here

follows that we can use the polyhedra Y; (j even) in the same role as
the polyhedra X; had above for j odd. Hence this step actually leads
to the normalization f|x = id, showing that f can be extended.

4. Manifolds with boundary.

In this section we give an outline of the proof of Theorem 3.14 in
the case where the compact p-dimensional C'-manifold X C R™ has
boundary. The case p = n follows easily from the BLEP of dX, which
was proved in Section 3 and in [V, 5.17]. Suppose that p < n —1.

As in Section 3 we consider a number § > 0 and the cube families
J and K. However, the numbers Ny and N are larger. We now let N,
and N be the integers satisfying the conditions

6(mn +3)n*2 < Ng <6(m.+3)n*2+1, N =(No+1)".

In Paragraph 3.3 the points zg € QNX, Q € K, are chosen so that zg €
Q N 8X whenever Q meets the boundary X of X. As in Paragraph
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3.3, we apply Lemma 2.1 to find the number Ko > 1 and for L € |1, K]
the numbers 6(L) > 0, Lo(L) > 1, and the finite set D(L) C X. Then

Lemma 3.4 holds verbatim.
Let @* be as in Paragraph 3.6. We define the new cube families

K!'={QeKk: @*ndX =g},
K2={QeK: QnoX # 2},
K®=K'uk?.
In the sequel, only the cubes of K° will be used.
If Q € K?, we let T and Tg denote the tangent planes of X and
0X at zq, respectively. Let Hg be the closed half plane of Ty with

O0Hq = Ty such that Hq and m@X are in a natural sense on the same
side of T, near zq.

We set

a=(m,+3)nd.

If Q € K?, we replace Q* by the larger cube Q with center rq, side
6a, and having p-dimensional and (p — 1)-dimensional faces parallel to
Tq and Ty, respectively.

For Q € K', the homeomorphism ¢q : @* — Q* and the p-cube Pg
are defined as in paragraphs 3.8 and 3.11. For Q € K?, the correspond-
ing homeomorphism ¢q : Q — Q is defined in two steps. First, we de-
fine a homeomorphism ch Q — Q such that LpQ(QﬂHQ) = rq(QﬂX)
Next, we extend the map ¢ : WQ(Q nx)— — QN X to a homeomor-
phism ¢g : Q — Q. These maps are chosen in such a way that the

homeomorphism pq = pg 0 ¢g : Q — Q has the properties 1) and 2)
of Paragraph 3.8. The sets Pg, @ € K2, are defined by setting

9 .
Po=3(HoNQ~12q)+zq.

The number N; of 3.10 is replaced by the larger number Ny =
2N (mq + 3)n. We divide K into disjoint subfamilies Ky,...,Ky asin
(3.5), and we set

)C?=}C00K:,', E,'=U{(pQPQ! QEK:?}

Then Lemma 3.12 holds verbatim with ¢ = §,/n/N. Its proof requires
some modifications when considering the cubes Q of K2. For example,
we define the maps

fo:QNHg - R", QeK?,
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by for = fpgz. To prove that fg is close to the identity mapping in
QN Hg we again need a basis (vy,...,v,) of Tg —zg. This basis is now
chosen so that vy + -+ - + v, is a normal vector of T, in Tq, pointing to
Hy.

In the final proof of the BLEP of X, we define the sets B;;, 1 <
i,j < N, as follows: If Q € K1, we set

If Q € K2, we write
sj=a+2jq, U(Q,j)=Bn($Q,Sj)ﬂHQ.
Then we define
By = {vU(@.7): Q€ K2}

The rest of the proof remains essentially unchanged.
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