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Fglner Sequences

in Polycyclic Groups
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Abstract. The isoperimetric inequality
|02| _ constant
€] ~ log|Q

for finite subsets {2 in a finitely generated group I' with exponential
growth is optimal if T" is polycyclic.

1. Introduction and statements.

Let T be an infinitc group generated by a finite set § = S~1. If
v € T we denote by ||v||s the smallest number & € N such that there
exist $1,...,5¢ € S with v = 51 ---s¢. The distance between v,7' € T
is defined as

ds(v,7") = Il lls -

This distance on I', called the word metric associated to S, is left-
invariant. We denote by B(n) = {y € T': ||v||s < n} the ball of radius
n in I’ with center the identity. If @ C T is a finite subset we denote by
|2] its cardinal. Its boundary (relative to S) is defined by

02 = {y €': there exists s € S such that ys ¢ }.
Let @ : Ry — N be the “inverse growth function of I'”

®(A\) =min{n € N: |B(n)| > A}.
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A fundamental relation between the isoperimetric properties of the
group and its growth is expressed in the following result (see [CSC93]
and [Var91]).

Theorem 1.1 (Coulhon, Saloff-Coste). Any finite non-empty subset
Q C T satisfies

|09 > 1

Q] = 4lS|e()

If T has polynomial growth of degree d this implies the existence
of a constant ¢ > 0, such that
|02 c

(1) |Q| ZW’ forall QCT.

This result is due to Varopoulos [Var86]. Up to the changing of the
value of ¢ (which depends anyway on the choice of a generating set for
I') this inequality is optimal (see [Gro93, 5. Eb]).

If T has exponential growth, Theorem 1.1 implies the existence of
a constant ¢ > 0, such that
Q
@) LIPS
2] ~ log |9
A finitely generated group I' is non-amenable if and only if there
is a constant ¢ > 0 such that
ooy
€2

Hence the inequality of Theorem 1.1 is not optimal in this case.

forall QcT.

forallQcT.

The aim of this paper is to show that the inequality of Theorem 1.1
is optimal for polycyclic groups. A polycyclic group is solvable hence
according to Milnor and Wolf (see [Mil68] and [Wol68]) its growth is
either polynomial or exponential. Therefore, in view of (1) and (2) it
is sufficient to prove the following statement.

Theorem 1.2. Let T’ be an infinite polycyclic group. Let S = S~ be
a finite generating set for I'. There i3 a constant C > 1 and a family
Q,, n €N, of finite subsets of T' such that |Q,| < |py1]| and
C > |02, ] .
log [2n] = ||
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An inequality of the type
|09 > c
2] ~ log |Q|

for some € > 0 was known to be impossible (see [CSC93, 2.2]). This is
an immediate consequence of Theorem 1.2.

(log |22, forall QCT,

2. Preliminaries to the proof.

Definition 2.1. Two metric spaces X,Y are quasi-isometric if there
erist a constant A > 1 and applications f: X — Y and g:Y — X
such that

a) d(f(z), f(z')) < Ad(z,z')+ A, forallz,z' € X .
b) d(9(y),9(y")) < Ad(y,y")+ A, forally,y’ €Y.
c) d(go f(z),z) <A, forallz e X.

d) d(fog(y),y) <A, foralyeY.

f 1is a quasi-isometry, g (which is also a quasi-isometry) is a quasi-
inverse of f and X\ 13 a quasi-isometry constant for f.

EXAMPLE 2.1. Let T be a group generated by a finite set S = S~1. Let
H C T be a finite index subgroup. Let T = T~! be a finite generating
set for H. Then H and I" with the word metrics associated to T and S
are quasi-isometric.

Let X be a metric space and let R > 0. Let & C X. Let
Vr(R2) = {z € X : there exists ' € Q such that d(z,z') < R}
be the R-neighborhood of . If £ € X we denote by
—_ 3 !
d(z,Q) = I%réfn d(z,z’)
the distance between z and {2.

Proposition 2.1. Let X and Y be two finitely generated groups with
word metrics. Let f : X — Y be a quasi-isometry. Then they are
constants C > 1 and R > 0 such that, for all finite subsets 2 C X,

10VR(f(2))] < C 69

and

IF <19 < CIAD)]-
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PROOF. We prove the first inequality. Let g be a quasi-inverse of f
and let A be a constant of quasi-isometry. We can assume A € N. We
choose R = A + 1. We want to define an application

h: OVR(f(R)) — 09

which is “almost injective”. First, we notice that if y € OVr(f(£2)) then
g(y) ¢ Q. This is because if g(y) € © then

d(y, f(R)) < d(y,fog(y)) SA<R

and this contradicts y € OVr(f(2)). We choose = € Q such that

d(9(y), z) = d(g(y), ).

As g(y) € Q it follows that z € 0. We put h(y) = z. Now we check
that there is a constant C' > 1 such that, if z € 99 then |h™1(z)| < C.
Let y € h~1(z). Then

d(g(y),z) = d(g(y),2) < Ad(f o g(y), F(2)) + A
<A +Hdy, N +A<S N+ AR+ A=M.

Hence

d(y, f(z)) < d(f o g(y), f(x)) + A S AM +22.

We choose

C=|BOAM+2)).

This proves the first inequality of the proposition. The others are ob-
vious.

Lemma 2.1. Let N be a group generated by a finite set B = B™1,
Assume that a group G with finite generating set A = A™! acts on N
by automorphisms. Then there is an integer ¢ > 1, such that, for all
w € G,

lw(z)|lp < ¢4 |lz|lg,  forallz € N.

ROOF. Let ¢ =sup,cy4, sep lla(d)|[s- f z € N and a € A, then

la()llz < qll=l5 -

‘onclude by induction on ||[w]|4.
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Lemma 2.2. Let F(a,b) be the free group on two letters. Let k € N.
Using the notation [b,a] = bab~'a~! we have in F(a,b) that

(3) b a= (f[b"‘j [b, a]bj"") abk.

i=1

PROOF. Let z; = b*~7 [b,a] b ~*. We obtain the equality
(4) prH1-ig = T; b¥=Iab

by induction on j (where 1 < j < k). We deduce the equality of the
lemma by successively applying (4).

REMARK 2.1. If k£ € Z* the equality (3) generalizes to

k]
(5) bk o = (H pe(BURI=1) [pe(k) g bc(k)(j-—lkl)) abk
7=1

where €(k) = %1 is the sign of k.

Lemma 2.3. Let0 - N - T' — Z" — 0 be an ezact sequence of groups
where N is finitely generated. Let B = B™! be a finite generating set
for N. Let ay,...,a, be elements of T’ which project respectively on the
canonical basis vectors ey,...,e, of Z". Then there i3 an integer g > 1,
such that for each r-uple K = (ky,...,k,) € Z" and for each integer v
where 1 < v <r, there exists a corresponding x € N with the following
properties:

k, ..

b) llzlls < ¢!l
(Where |K| = Yi, [kil.)

kr %1 ky
a,

_ SR N5 -5 SR
- ay =za a,’ a,’

a) afl...a v . o

PROOF. We assume the exponent of a, is positive (the other case is
analogous). We assume that K # 0 (if K = 0 we choose z = e and
there is nothing to show). If v = r then z = e. If v < r we define for
each1<:<r

ky ki

Ai=ay' - a;
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and, if k; # 0,
[kil
Xi=[] =i
i=1
where
zij = a:(k-’)“kil—.)) [af(k‘),a,,] a:(k-‘)(J-lkiD )

If k; = 0 we put X; =e. For 2 < i < r the equality
(6) Aja, =A;1 X;a, af‘
follows from (5). We obtain the equality
r—v
akr.. gk g, = (H A, X; Ar_-li) aft... gkt gk
i=1
by 1succcssively applying (6) and by putting in terms of the form
A:_,-A,._,' )

= ﬁ A X; Ar—_l,-
i=1

belongs to N because it belongs to the derived group of I'. Now we
want an upper bound for ||z||p. According to Lemma 2.1 there is a
constant ¢ > 1 such that

- k'.
i1l < ¢'%1 sup ||[ai*”,a,]|l5 -
1<ilr

Hence, up to increasing g we obtain
lzi il < ¢
Using this last inequality and Lemma 2.1 again we have

lellg <r sup [|A—i X:i AN |B < rd ™| Xi)lp < r g™ K| 5T
3 1

1<ilr—

By increasing ¢ again we obtain the wanted inequality.
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3. Proof of Theorem 1.2.

Let T' be an infinite polycyclic group. According to Example 2.1
and Proposition 2.1 it is sufficient to prove the theorem for a finite
index subgroup of I'. According to a theorem of Mal’cev (see for ex-
ample [Rob82, 15.1.6]) a polycyclic group has a finite index subgroup
with nilpotent derived group. In order to avoid torsion elements in the
abelianisation we again consider a finite index subgroup. Therefore it
is sufficient to prove the theorem for polycyclic groups I' of the form

0—N—DT—7Z"—0

where the sequence is exact and where N is nilpotent. As N is a
subgroup in a polycyclic group it is polycyclic and hence finitely gener-
ated. Let B = B™! be a finite generating set for N. Choose elements
ai,...,ar € I' which project respectively on the canonical basis vectors
e1,...,er of Z". The set

S=BuU{af',... ¥
generates I'. Any 4 € I' can be written in a unique way
ky

y=edhab,

where z € N and (ky,...,k;) € Z". Let ¢q; be the constant of Lemma
2.1 (with G = Z") and let g; be the constant of Lemma 2.3. Let
¢ = max{q,qz2}. For each n € N we define

Q= {zak - a : Jollp < ", K| <n},
wn={zaj'---af": ||z|lp < " - q", |K| <n—1}.
We want to show that
(7) M Nw, =0.

That is, if ¥ € w, and s € S then ys € Q,,.
a) Assume s € B. If

k k
zay'---a.” €Ewy
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then

kl kl

.o k" — kr_
T a, a," 8 = ay

k - —ky _ky
...ar’sar ..al al s qa

and according to Lemma 2.1

lzayt -+ afr saz® - 7™ || < Jlellp + ¢! ¥

San _qn +qn—1 < q2n.

b) If s € {af!,...,a¥'}, we can assume s = a, where 1 < v <.

Let

k k
Ta'...a,” €Ew,.

According to Lemma 2.3 there exists £’ € N, such that

lvafl...aﬁ”...af'au=x$'af1...a5"+l...ar

and such that .
'z < ¢'*1.

We have

lza'|lp < |lzllp +|l2'ls < ¢ — " +¢*1 < ¢®* — " +¢"7F < .

Let B(n) C N be the ball of radius n with respect to B. Let d be
the degree of the growth of N. According to Grunewald (see [Gri90,
7.2]) we have

|B(n)| = an +0(n'"1/2),

where a > 0 is a constant. We define

oy = 1B — ")
T =g
Hence o
a -+ -—E(-;-z

n

Let P(n) be the number of elements in Z" of word norm less or equal
than n with respect to the canonical generating set. The function P(n)
is polynomial of degree r. According to (7) we have

|0€2, | < Q] — Jwal _
Q] T Q]
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This last term is equal to

— P(n —
1 ) D5 = (1= )+ ) TG
- ody=0d).
Hence there is a constant C; > 0 such that
02|
TN _n, for all n € N.

On the other hand, there exists a constant C; > 0 such that
log|Q.| < Con, foralln € N.

Eventually, C = C,C3 is the constant we were looking for.

4. Remarks and questions.

a) Theorem 1.1 generalizes a result of Varopoulos (see [VCSC82,
V1.3.1]) which shows that a group with superpolynomial growth has
infinite isoperimetric dimension. As a solvable group is amenable, a
solvable Lie group (with any left-invariant metric) containing a lattice
with exponential growth (the group Sol for example [Thu82]) has in-
finite isoperimetric dimension but is not open at infinity (see [GLP81,
Chapter 6]).

b) Theorem 1.1 combined with the Milnor-Wolf theorem on the
growth of solvable groups [Mil68], [Wol68], shows that a finitely gener-
ated solvable group with finite isoperimetric dimension contains a finite
index nilpotent subgroup (see [GLP81, 6.29]).

c¢) The isoperimetric profile of a finitely generated group (with a
given generating set) is defined as (the asymptotic behaviour of) the
function

In(n) = inf |00

(see [Gro93, 5.E]). If T’ has exponential growth, Theorem 1.1 implies
the existence of a constant ¢ > 0 such that

Ir(n)>c——, forall neN.
logn
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If moreover, the group I' is polycyclic, it follows from the proof of
Theorem 1.2 that there exist constants p,¢ > 1 and C > 1 such that
for all n € N, there exists m € N such that

p" n m
—<m< <(C——.
C <m<Cq", Ip(m)_Clogm

Can we replace p™ and ¢" by n?
y

c¢) Theorem 1.2 is true for the solvable non-polycyclic group
(a,b | aba™ = b?).

Is Theorem 1.2 true for finitely generated solvable groups?
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