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The purpose of this paper is to improve the known results (specifi-
cally [1]) concerning LP boundedness of maximal functions formed using
1 x§x---x 6 tubes. We briefly recall the problem: let f € LL _(R?),

loc
then for 0 < § < 1 one defines (we follow [1] in notation and in the

definition of f;)
* - « 1
PSR, i@ =swo 11,
T |T| T

where P4~! is projective space and T runs through all cylinders with
length 1, cross section radius § and axis in the e direction. Also

* ¥k k¥ 1
. R SR, 6(z>=sup—/|f|,
r T} Jr

where T runs through cylinders containing z with length 1 and cross
section radius §. A conjecture (some years old for f;*, formulated in
[1] for f7) is that for any € > 0

M5 flla < Ce 65| flla

where Mjs denotes either f§ or f;*. Interpolating this conjectured
bound with the trivial L! — L bound, one obtains the equivalent

conjecture

IMsflly < Ce 67PN £, 1<p<d, g=(d—1)p".
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In either case M; takes functions supported in a disc of radius 1 to
functions whose support has measure bounded by a fixed constant , so
for fixed p the range of ¢ must be an interval 1, go(p)] and the conjecture

(1) IMsflly S C 6P £, 1<p<d, g<(d—1)p

is again equivalent. Qur purpose is to extend the range of p and ¢ for
which (1) is known to hold. We assume throughout the paper that
d > 3. When d = 2, Theorem 1 below is well-known; see [6], and [1] for
the case of fy .

Results like (1) with p = ¢ = 2 go back to A. Cordoba’s work in
the mid-1970’s, e.g. [6]. When p = (d+1)/2,¢=(d-1)p' =d + 1,
(1) follows from S. Drury’s result [7] and a somewhat stronger result
is proved for f;* in Christ-Duoandikoctxea-Rubio de Francia [8]. The
exponent p = (d + 1)/2 plays a natural role, and getting beyond it
was accomplished only recently by Bourgain [1] who proved (1) with
p=p(d) € ((d+1)/2,(d+ 2)/2) given by the recursion

d —1)—
p(2)=2, p( )=( ;I?()dp(_dl)i)l d

for d > 3, and ¢ = p. Our result is the following further improvement.

Theorem 1. (1) holds for Msf = f5 or f5*, p = (d+2)/2, ¢ =
(d-1)p".

Thus we improve the LP exponent from e.g. 7/3 to 5/2 in three
dimensions; our argument also gives the correct value of ¢. An imme-
diate corollary (cf. [1]) is that any Besicovitch or Nikodym set in R¢
has Hausdorff dimension at least (d + 2)/2.

We wanted to avoid giving separate arguments for f; and f;* and
will therefore base the proof of Theorem 1 on certain axioms which are
satisfied by both of them. In order to do this we first have to make
a couple of (well-known) reductions in the problem. To begin with, it
clearly suffices to prove Theorem 1 for functions f which are supported
in a fixed compact set. Next, instead of f;* it is more convenient to
work with a certain variant. If f : R* — R then define

fg:** . Rd—-] —R
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via ]
fir@) =swp o [ 181,
é () T ITI T' I

where T runs through all cylinders with length 1 and cross section radius
6 whose axis makes an angle less than m/100 with the d-th coordinate
direction. We then have:

Any estimate of the form | fi**||, < A(8)||fll, with ¢ > p, valid
for all functions f with fized compact support, implies a correspond-
ing estimate || fi*|lq < C A(S) || fll, for functions f with fized compact
support.

This is proved as follows: the assumption means that if

1
Maf(w)—sgpl—ﬂ/Tlfl

with T running through 1 x § cylinders containing z whose axis makes
an angle less than 7/100 with eq, then

[, Oafte0))da 5 1113

Clearly 0 here could be replaced by t for any t. Integrating dt over a
suitable compact set we obtain |[Msf||pere) S ||fll,- It remains only
to remove the restriction that the axis of T make an angle less or equal
than 7/100 with eq. However this is easily done by using finitely many
different choices of coordinates, so the proof is complete. It follows that
in order to prove Theorem 1 it suffices to prove

Theorem 1b. (1) holds for Msf = f§ or fi**, p = (d+2)/2, ¢ =
(d—1)p', assuming f is supported in the unit disc.

Next, let M(d,1) be all lines in R?. We mean all lines here and
not all lines through the origin, i.e. M(d,1) is a (2d — 2)-dimensional
manifold. We can map M(d, 1) onto P?~! via ¢ — e, where e, is the line
through the origin parallel to £. It is convenient to fix a Riemannian
metric on M(d,1) and let dist(¢1,¢3), £1,£2 € M(d, 1) be the associated
distance function. Since we will work locally we do not care what
the metric is and just note the following. Let D be a disc in R%, D
the concentric disc with radius(D) = 100radius (D). If ¢; and £; are
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lines which intersect D then dist (¢;,£;) is comparable to the Hausdorff
distance between ¢, N D and ¢, N D and therefore also satisfies

(2) dist (£1,0;) =~ 0(41,¢3) + dmin(l1,42),
where 8(¢y,£2) € [0,7/2] is the angle between e, and e;, and
dmin(€1,82) =inf{lz —y|: z €N D, ye N D}

(constants depend on D).
Now let (A, d) be a metric space (necessarily bounded, by (4) be-
low) with a measure p satisfying

(3) w(D(e,8))~ 6™, a€A, 6<diamA,

for a certain m € R*. Here D(a, §) is the §-disc centered at «, and we
will also use the notation |E| for u(E). Suppose that for each « € A a
subset F, C M(d,1) is given, with U, F, compact and with

(4) d(a,p) < tlean dist (¢,m), forall o, € A.
mEFu"B

If f:R? — R then we define Msf : A— R by

(5) Msf(a) = sup sup 171,

teF. act |T7(a)| Jrp(a)
where T/ (a) is the cylinder with length 1, radius §, axis £ and center a.

REMARK. This setup arises as follows. Suppose m is an integer, U is an
open subset of M(d, 1) with compact closure, M is an m-dimensional
manifold (with a Riemannian metric) and F' a smooth map from U into
M which can be extended smoothly to a neighborhood of U. Assume
that the range F(U) contains a certain open subset A of M with smooth
boundary. For @ € A define F, = F~'(a). It is easy to see that (3)
and (4) will then hold.

In practice, m is always less or equal than d — 1. Examples with
m=d—1 are

I) U = all lines intersecting D(0,1), M = A = P71, F(£) = e,.
Then Msf = f5 .
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II) U = all lines intersecting D(0,1) and making an angle less
than 7/100 with the zg-axis, M = R*"!, F(¢) = £nR4!, A = F(U),
where of course we are identifying R?~! with the points in R? with last
coordinate zero. Then Msf = fi**.

The natural analogue of the conjecture (1) in the general case where
m is not necessarily d — 1 is that

(6) IIMsflly < Ce8 WP fll,, 1<p<m+1,1<g<mp'.

If p < (m+ 2)/2 then (6) is true in the general context (3), (4),
(5). This is implicit both in [1] and in [7], [8]; we will give an argument
based on [1] in Section 2 below. In many cases no improvement is
possible as we will explain in Section 5. However, in examples I), II)
the following additional property (*) is satisfied. Here if IT is a 2-plane in
R? we let M(I1,1) be the lines contained in II, and dist (¢, M(II,1)) =
inf enrqr,1) dist (6,m). A §-separated subsct of A means of course a
subset {a;} such that j # k implies d(a;,0x) > 6.

Property (). If ¢g € UaFo and II is ¢ 2-plane containing £y, and
if o 26, and of {aj}j-v:l 18 a §-separated subset of A and for each j
there is £; € Fy, with dist (€;, M(II,1)) < § and dist (£,4) < o, then
N <Co/é.

REMARK (intended as motivation): When Mj; arises from a foliation as
discussed in the preceding Remark, property () is roughly the state-
ment that there is no 2-plane II such that each line contained in II
belongs to a different fiber F,,. More precisely, one should require the
infinitesimal version of this condition -see Section 5.

To verify property (*) in examples I), II) it suffices to show that
the set {a;} in question is contained in the intersection of a Co-disc
with a Cé-neighborhood of a curve. It is clearly contained in a Co-
disc centered at F'({p), so it suffices to show that it is contained in a
Cé-neighborhood of a curve. This in turn will follow if the set

v a: Flan M(I,1) # @}
is a curve. However, in cases I) and II) v is respectively the great circle

on the sphere (mod +1) obtained by intersecting the sphere with the
translate of II to the origin, and the intersection of II with R?~!; note
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that in case II) IT and R¢~! intersect transversally since II contains £,
which makes an angle less or equal than 7/100 with the z; axis.

"Our proof of Theorem 1 works in the abstract context (3), (4), (5)
provided property (*) is satisfied. Namely, we will prove the following
result.

Theorem 1lc. Assume 2 < m < d—1, (3), (4) end property (*).
Then the estimate (6) is valid for the mazimal function defined by (5)
provided p < (m +3)/2.

As indicated above, this result includes Theorems 1 and 1b. We
had trouble deciding whether to use the axiomatic setup but eventually
decided to do so since it gives a simultaneous proof for f; and fi* and
complicates the arguments only in technical respects. We also hope it
may be of some interest. However, when m = d — 1 (which would seem
to be the main case) property (*) and also the conclusion of Theorem
1c hold essentially only in examples I) and II); see Proposition 5.1.1

We finish this introduction by making some standard remarks
about the definition (3), (4), (5). If E C A then a maximal §-separated
subset of E is of course a subset {ax} C E which is é-separated and is
maximal with respect to this property. If {a}} is a maximal §-separated
subset of E, then the discs D(ay, 6) cover E by the maximality property,
and furthermore the concentric §/2-discs are disjoint. It follows that
the cardinality of a maximal é-separated subset of E is greater or equal
than C~! |E|/§™ for a certain constant C, and also that if § < o then
any é-separated set {ax}M, has a o-separated subset {o; }]Ail with
M > C~'(6§/0)™ M. Finally, if {ax} is any §-separated subset (maximal
or not) and if A is any constant then there is a constant C4 such that
no point a € A belongs to more than C4 discs of the form D(ay, Aé).
This “bounded overlap” follows from the doubling property of p (a

consequence of (3)) in a standard way using disjointness of the discs
D(ag,6/2).

2. Preliminaries.

This section is expository. Its purpose is to give convenient forms
of some known results. We first introduce some more notation. If p >

1 We only consider straight lines in this paper.
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6>0andf € M(d1),ac’ then T;"s(a) will mean the cylinder with
length p, cross section radius 6, axis contained in £, and center a. Tl”a( a)
will mean the same as Tl(wop)(mos)(a)- We will usually take p = 1, and
we abbreviate T}®(a) and T}%(a) by T{(a) and T{(a) respectively. We
will also drop the a argument when no confusion will result. Thus 7}
means “T} (a) for some a € £”, etc. Finally if I is a 2-plane and § > 0

then
H6d=ef{z eR?: |z —y| < 6}.

The first result we want to recall is a simple geometrical fact and
was already used e.g. in [6].

(7) For any TZ and Tg‘i, Tg‘l n sz is contained in a TE(IC'J/GN’\.!:))'S

In particular,

6d
6
(8) For any Tl’s1 and sz , |T561 NT,| < m '

The second is a version of an argument of Bourgain [1, p. 153-154].
We formulate it as a lemma:

Lemma 2.1. Suppose {Tg fil are tubes and E a set. Assume that
€ > 3, that

9) T/ NT) #@ implies 6(¢;,0x)>C e

and that fora € R%, 1< j < M,

LN RSN

A
(10) T NEN(RA\D(a,2))] 2 5 |T7].

Then |E| > A 31 /M, where the constant depends on C.

ProOF. ([1]) We have 3. ]T;’j NE| 2 AB%1M, so there must be

a point @ € E which belongs to > (A A4 1 M/|E|) T[f ’s. The sets

T; d_—i{TZ N (R¥\D(a, B/¢)), where Tg runs over this set of tubes, have

bounded overlap (i.e. no point belongs to more than a fixed finite num-
ber of them) for the following reason. First, it is easy to see using the
hypothesis (9) that for any constant A and any given j there are at
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least C'4 tubes TZ containing a and with 6(¢;,€;) < Ae. Thus it suf-
fices to show that if 6(¢;,fx) > Ae for a large fixed constant A, then

7N = @, i.e. T, NT, C D(a,B/e). On the other hand by (7),
6(¢;,0x) > Ac implies diam (T, N T}, ) < B/ for large A. Since the

point a belongs to each Tg the bounded overlap follows. By assumption

)
7 NE|> 5 T/~ AB*",  foreach ;.

Hence

MBI M

AB1 < |E
B |E|

and the lemma follows.

REMARK. In [1}, this lemma is used together with additional combina-
torial arguments to obtain the result we mentioned in the introduction,
that the conjecture (1) is true for certain p > (d+1)/2 (and ¢ = p). If
one reads [1] carefully then one sees that the p = (d +1)/2 case follows
directly from Lemma 2.1. The argument proves the following?:

Proposition 2.1. Assume (3), (4). Then the estimate (6) is valid for
the mazimal function defined by (5) provided p < (m +2)/2.

PRrROOF. ([1]) It suffices to prove the following restricted weak type
estimate at the endpoint p = (m +2)/2, g =mp' =m + 2,

5] 2
1) Heed: Mif(e) 2 M S (smmmmrs o) -

where E denotes a set and f its characteristic function. To prove (11),
let ¢ = A6/ for a large fixed constant A, and choose a maximal e-
separated subset {aj}inl of the set {a« € A: Msf(a) > A} and,
for each j, a tube TZ with £; € Fy, and IT;J, nE|> )\|T(§[. Then
M 2 e ™ |{a: Msf(a) > A}|. The choice of ¢ implies that !Té, N
D(a,é/e)| < A ]Tlﬁj |/2, in particular (10) holds (with § replaced by §).

2 Actually the argument proves a slightly sharper result: the §~° factor is only needed
at the endpoint p=(m+2)/2. Proposition 2.1 also follows from the results in [7] or [4] (at
least if m=d—1), in fact the argument based on [4] gives a still sharper result where the

§° factor is not needed at all.
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Also (9) holds for a certain constant C' by (4) and (2). We therefore
obtain M < (|E|/A6%71)2, i.e.

_ |E| 2
Ha: Msf(a) 2 A} S (6d—(m+2)/2 ,\(m+2)/2) J
as claimed.

In order to prove Theorem 1lc we will combine this type of argument
with the L? argument of Cordoba and we now state a convenient form
of the latter.

Lemma 2.2. Assume E C R? is a set, IT is a 2-plane in R?, and

{Tf'i }%—4 are tubes which are contained in 11, Assume the following
conditions: '

i) |EﬂTfj|2;\|T£’§,[,farallj.
i) card({s: Tfj C T;‘I}) <Coo/é, for allo € (6,1) and all k.
Then

Cob
§41 <C |E_ﬂH__| log

1
(12) M 22 E 3

where C' depends on Cy .

PROOF. ([6]) We may assume that E C II°?°  and then we have

MA§T <N |ENTy|
J
=/EZXT;J,
<IBM2|| Y x|,
J
— iz (O imnmg)”
i

< IE]1/2 (CM(Sd_l + Z Z IT[; A ng l)1/2
T i

< IEI]/‘Z (CM&d—l
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log, /6 §i-1

+Z kZ oF card ({y : TgﬂT[j #O,
1 =0

1/2
2% 5 < 0(4;,£,) <2+ 5}))
log, w/é 1/2
SC|E|1/2 (Af&d_l+z Z 6(1-—1) :

k=0

where the last line follows from the assumption ii). So

1/2
MA§%1 < C|E[? (M log % 5d-1)

which is equivalent to (12).

3. Main argument.
This section will be the proof of the following Lemma 3.1.

Lemma 3.1. Assumed > 3,2 <m < d—1. Suppose that a set E C R?
and tubes {Tga}ﬁl, 6 < p/100 are given and that with a sufficiently
large constant Cy and some constant C,

D) [ENT| 2 AT, for all 5.
ii) Ifz € R then, for all j,

A
p

EﬂTz’;é N D(z, (logg)_"p)| <cy!
log-g

)
x 7201,

iii) For any k and any o € (6, p) the set
{i: T NI # 2, 6(¢;,6) < o/p)

has cardinabity less or equal than C(a/6)™ .

iv) For any k, any 2-plane II with £y C II and any o € (6, p), the
set
. mpb — Fpo Cob
{7: T;) Ty nII™°}

has cardinality less or equal than Co /6.
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Then for large v
P~ |E|

> Cy—l )\2 (p-16)d—(m+3)/2 (M(ép)m)(l"‘]/m)/z (logg

(13) )i

REMARKS. 1) Here Te”: is taken concentric with Tfp: , te. if T;f =
Tgs(a) then T} = TZ(:OOP)(]OO”)(a).

2) In the proof we may assume p = 1 since we can reduce to this
case by scaling. Wc will in fact assume p = 1 throughout this section
and will denote Tp by T,fs , etc, as mentioned at the begmmng of Section
2. We may then 'also assume that E is contained in a fixed compact
set, say, the unit disc. It then follows by iii) with 0 ~ 1 that M < 6™

3) This remark is intended as motivation. An immediate corollary
of Lemma 3.1 is that any Besicovitch set in R? has Minkowski dimension
greater or equal than (d+2)/2, i.e. the following statement: suppose E
i3 a compact subset of RY which contains a unit line segment in every
direction. Let Es = {z : dist (¢, E) < 6}. Then

1\ —dv
-1 ¢(d—2)/2 =
(14) |Es| > C' 6 (10g5)

for large v. To prove this statement set m =d —1, p = 1. Let {e]-}j]‘i1
be a maximal é-separated subset of P4~1. For each j there is a line in
the e; direction with a unit segment on it belonging to E, and therefore
a tube T[ with eg; = ¢; which is contained in Es. Thus i) of Lemma 3.1
holds with E replaced by Fs and A = 1, and then ii) holds tautologically
if v > 1 and 6 is small. Also iii) holds since the directions of the £; must
belong to a Co-disc in P4~!, and iv) holds since the directions of the ¢;
must also belong to a C'é-neighborhood of the great circle determined
by II. We conclude that (13) holds with E replaced by Es, and p =1,
A=1,m=d~1. Since M = §~(*1) we obtain (14). Theorem 1 is a
more refined result and requires an additional argument which we will
give in Section 4.

We start the proof by observing that we can make the following
additional assumption:-

(15) If T, NT}, # @ then 6(¢;,0x) > 6.

s Actually, for the statement about the dimension of Besicovitch sets we only needed

Lemma 3.1 in the case A=1. In this case the proof can be simplified.
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Namely, if we let {T‘&:‘; }M. be a subset of {Tt‘; } which satisfies (15)
and is maximal with respect to this property, then every tube Tfj must
satisfy T,‘Sj N Téi # @ and 6(¢;,£;,) < 6 for some i. It follows by iii)
with o = 6 that M > A~'M. We could replace {Tg_} by {T;’j. }, so we
may assume that {TZ,} satisfies (15). '

We now fix a number N and consider the following possibilities.

I. (low multiplicity) There are at least M /2 values of j such that

HeeT{ NE: card({i: c€Tp}) < N}| > % T, |.

II,. (high multiplicity at angle o) There are at least C| 'M
(log 1/6)~* values of j such that '

{.7,- €T, NE: card({i: z € T and o < §(¢;,¢;) < 20})
(16) > (c1 log %)—IN}I

> (C1 log %)'1 MTE).
Lemma 3.2. There i3 a number N for which we have both I, and also

II, for some o € [6,7].

PRrROOF. Take the smallest N € Z* for which I holds. Then there are
M /2 values of j for which

. A
(17) Hez €T, NE: card({i: z€T}) 2 N} > 3 Iy |-
For any j as in (17) and any = € Té with card({z : z € Tf;}) > N,
(15) implies there is some k € {1,...,log, 7/6} such that card({z: z €
Tfl,, 6(:,¢;) € [2¥716,2%68]}) > (log, 7/8)"IN. Thus for any j as in
(17) there is some k € {1,...,log, 7 /6} such that
'{x €T NE: card({i: z € TE, 8(¢;, ;) € [26716,2%6]})
ﬂ' —1
> Z
2 (log ) MY

> (1ossZ) "2 1221
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It follows that II, holds for some o = 2%§.

The logic will now be as follows: we make separate estimates in
the cases I and 11, and then apply them both with N given by Lemma
3.2 to obtain (13). The estimate in case I is very simple:

Lemma 3.3. Ifi) of Lemma 2.1 and I hold then |E| > AM §%~1 /N .

PROOF. Let E = {x € E: card({i : = € T{}) < N}. Then
|Tg N E| > X|T},|/2 for M/2 values of j, and

|E| > |E| > |En(U,Tg)

AMad -1
>N~ 1Z|EnT,|_2NZ|T,

and the lemma is proved.

The idea behind the estimate in case II, is as follows. We are
evidently in a situation where many tubes intersect some given tube 7T'.
Each one of these tubes is then contained in a Cyé-neighborhood of some
2-plane containing the axis of T. The latter sets have nice intersection
properties i.e. the same intersection properties as tubes through the
origin in R?~!. This allows us to use Lemma 2.2 separately for each
2-plane and then sum the resulting estimates.

We carry this out as follows:

Lemma 3.4. Assume i), ii) and iv) of Lemma 3.1, and suppose that
T,‘i, i3 a tube for which (16) holds. Then

—(d—2)r—-3

18 EnTf|> 206 2N (lo !
R g5

PROOF. Let F be the set of all tubes Tf', such that T,al, N Tfj NE #o
and 0 < 6(¢;,¢;) < 20 and let |F| be the cardinality of F. If Tfi € F
and = € R? then for a suitable constant C, the set

{x €T} : dist(z,£;)<C;lo (10g%)_u}



664 T. WOLFF

is contained in T{ N TZ(]OS /9™ and therefore by (7) is contained in a
disc of radius C (log1/6)™". Consequently by ii)

1\-v A
6 . M . > -1 - > — 6
(19) 1{1 €TENE: dist(z,45) > C; a(log(s) }| > ST,
provided Cp has been chosen large enough. We choose 2-planes I
containing £; so that

A) any tube Tf‘, € F is contained in Hf"& for some k,

B) any point z with dist (£;,2) > C; 'o(log1/6)™" belongs to at
most C (log 1/5)(d—2)unfoa,s_

For this, it suffices to choose a maximal §/0-separated set {a} in
the unit sphere (modulo £1) in the d — 1-dimensional space eJJ-' d——e-{{z €
R? : (z,e;) = 0}, where e; = ey, is the direction of e; and consider
the planes through ¢; spanned by the aj directions. It is easy to see
that A) and B) will then hold; we will now prove this. For A), we let
e, =eyp € P47 be the direction of #; and write e; = aej +be with e Le;.
Then |b] is clearly the sine of the angle between e; and e; and is therefore
< 0. Now choose k with |e + ax| < 6/0 (this is possible by maximality
of {ax}). We assume for notational purposes that |[e—a| < §/0. Since
Tf”., ﬂTé # @ there are r1 € {; and 2 € {; with |z; — 72| < 6. Given

z € T}, choose y € £; with |z — y| < 6. Then we have
=21+ (y—22)+(z—y)+ (22 — 21).
Here y — x5 = te; with ¢ < 1. So we may further write
r=(z1+taej+tbag)+tb(e—ap)+(r—y)+(z2 —z1).

The term z; +taej + thay belongs to IIx, and the remaining terms are
all <4 in absolute value, so we have proved A).

For B), we may clearly assume ¢; passes through the origin. We
fix  as in B) and let z; be the orthogonal projection of z on e7.
Thus z, = te with e € e, |e|] = 1, t > C;lo(logl/6)™. I z
IC°% then it follows that dist(zy,span{ax}) < Coé, so |e % ag]
t716 < é(log1/6)"/o. Since the ay are §/o- separated there are
(log 1/6)(4=2¥ such values of k, so B) is proved.

ok

£
S
S
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For each k, let Fi be those tubes Tz, € F which are contained in
%, and let || be the cardinality of F;. Note that by A) above,
F = UrFk. Also, since 8(¢;,¢;) < 20, TZ, is contained in ’f’g We
will apply Lemma 2.2 with E replaced by EN TZ N{z : dist(z,¢;) >
C;'o(log1/8)"}, and with the 2-plane II;. Assumption i) of Lemma
2.2 holds (with A/2 instead of A) because of (19), and assumption ii) of
Lemma 2.2 holds because of our current assumption iv). We conclude
that

|fk ' 5(1—1
|En:r, NOC°N{z : dist(z,€;)>C; o(log1/6)""} 1

A2 0g57

for suitable C. It follows on summing over & that

C 1
d— 1< -
|F|é 3z log6

(20) : |EnTg nngn{z : dist (z,6)> C; " o (log %)_"}

1\ (d=2)v 1
< 3z ]EOT, |(log-g) logg

by B). On the other hand, since (16) holds we know that
1\ -1
Z X s (:1: (Cl log — ) N,

for all z in a subset of Te with measure at least A(C;log1/6)~ |Te6’, |
Accordingly

(Cllogi) /\|T£|<N16'110g/ > Xy (2)de
T’e}' l'

_ 1
=N"'C log > IT T
T}',e}‘

5¢ 1
< N7 — |F| log =
S ~ |7 g7

where the last line follows from (8). Thus |F| > o(log1/6)~2N/é. This
inequality and (20) imply (18).
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Lemma 3.5. With the same assumptions as in Lemma 3.4 we also
have

Y - _ 1\ —(d—2)v—3
|E N (R\D(a, (log1/8) ™)) N T7 | 2 o 62N (log ;) :
for any a € R%.

PROOF. We need only to observe that the hypotheses of Lemma 3.4
still hold (with A replaced by A/2) if E is replaced by

En(R\D(a,(log1/6)™)),

provided Cy has been chosen large enough. The main point is that
(16) holds; this follows from the corresponding statement for E since
|Te‘; N E N D(a,(log1/6)~")| is small by assumption ii).

Lemma 3.6. Assume the hypotheses of Lemma 3.1, and also 11, for
some . Then

—2dv
(21) [B] 2 XN 6-2(0 57/ log %) .

PROOF. If ¢ > (M§™)/™(log1/6)™" this follows directly from Lemma,
3.4, so we assume o0 < (M&™)/™(log1/6)™* < (log1/6)™". By hy-
pothesis there are (C; log1/6)™'M ¢;’s for which (16) holds. Choose
a subset {£;, };M_:_l which is maximal with respect to the following prop-
erty:

o o : : 1y
Tg nTg #@ implies  6(¢;,,8;,) >0 (log 3) :

Then 1y~ 5 .

M > M ( log - —_—]

~ 1\ v ’
(=) ()
)

this follows from the maximality using assumption iii) with o replaced
by a(log1/6)”, as in the argument after formula (15). We claim that
Lemma 2.1 is applicable to the tubes Tgk with A, A, and ¢ there equal
to o,

532 1 ) —(d-2)vr-3

c~1)3 v N (logz and o (log -l-)u ,

6
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respectively. Namely, hypothesis (9) follows by construction, and (10)
follows from Lemma 3.5. We conclude that

|E| > Ao 692N (log %) Tl \/M (log 1/5) - (—a (lo:l/&)u)m

—2dv m
> /\30N6d‘2(10g%) ,/Mj—m ,

for large v. The lemma now follows since o (M §™/a™)!/? is a de-
creasing function of ¢ when m > 2, hence minorized by its value at

(M6m)1/m .

COMPLETION OF PROOF OF LEMMA 3.1. We need only choose N by
Lemma 3.2 and then take the geometric mean of (21) and the estimate
in Lemma 3.3.

4. Completion of the proof.
In order to prove Theorem 1lc it suffices of course to prove the

corresponding restricted weak type estimate at the endpoint, z.e. the
estimate

|E| )q/P ’

Ho: Moxp(e) 2 M S C. (67 5

where p = (m+3)/2 and ¢ = mp'. We may also assume E is contained
in the unit disc D. Furthermore (consider a maximal é-separated sub-
set) it suffices to prove the discrete analogue, i.e. that if {aj}jj‘il are

6-separated and if £; € Fy; and |[EN Tg. | > /\|Tfj | then

|E| )q/p.

(22) M§™<C. (57 ot

We will actually prove that if § < p <1 and {«a;} ;\il are 6/ p-separated
and ¢; € Fo; and if [ENT{’| > AT/’ then

(23) )4 E| > C (AI(%)m>P/9(%)d—P A (%)e

The case p = 1 gives (22).
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In order to prove (23) we note first that any T;; %’s as there will

automatically satisfy iii) and iv) of Lemma 3.1. Namely, to prove iii)
fix k and 0. Let

J={i: T NI # 2, 6(,6) < o/p}.

If y € J then dist (¢;,£x) < o/p by (2),s0 d(aj,ar) < o/p by (4). Thus
the {a;};ecs form a §/p-separated subset of a C o/p-disc, so card J <
(6/o)™, i.e. iii) holds.

The argument for iv) is similar. Fix k, a 2-plane I and ¢ and let

J={j: T{ cT{ nu®%.

If ; € J then by assumption there is a segment of length p on £; which
is contained in D and is at distance less or equal than Cj 6 from II.
Consequently by similar triangles, £; N D is at distance < §/p from II.
We conclude that if j € J then dist (¢;, M(II,1)) < é/p. We also know
that dist (€;,€x) < o/p. Since the {a;};es are §/p-separated, property
(*) implies that card J < 0 /4, i.e. iv) holds.

We now fix ¢, and will prove (23) for an appropriate constant
C¢ by induction on p. The choice of C, requires some care. We
first let B be a constant with the following property: if § < ¢ < 1,
then any 6-separated subset Y of A has an e-separated subset Z with
card (Z) > B71(§/e)™ card (Y') (see the remarks at the end of the in-
troduction). Next we fix v large enough that ve > p. (23) is trivial
when p < A6 for any fixed constant A, provided C. is large enough.*
We take A to satisfy A > 100, 3(log A)™ < 1 and (log A)**7P >
(2B)P/9C? 3¢ (Cy is the constant in Lemma 3.1), and determine C.
by the following requirements: (23) should hold when p < 346, and
C. > 20H1/m™/2C, sup,,, 4 t~*(logt)” where C, is the constant in (13).

In proving (23) we may suppose that p > Aé and (by the second
requirement on A) that (23) has already been proved for parameters
p < 3p(logé/p)~". We consider two cases: 1) There are at least M /2
values of j for which ii) of Lemma 3.1 holds; 2) There are at least M /2
values of j for which ii) fails.

In case 1) we simply apply (13) after deleting those £; for which

4 In fact, if p < A6 then the §/p-separation property implies an upper bound on M
so that (23) follows from the obvious inequality |E| > 59N
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i1) fails. Thus
- - 1end— M & m\(+1/m)/2 5\ —dv
pTUB| 2 G X (p gy N2 (S (;)m) (10 ;)

S C-132( =18y~ (m+3)/2 (3 E m (141/m) /2 _‘_5_ €
> €7 (p716) (M()") ()"
where the last inequality holds by the second requirement on C.. Note
that (14+1/m)/2 is identical with p/q. Also p > 2 and we may of course
assume that A < 1, so we may replace A% by A?. Thus we obtain (23).

In case 2) we define 5 = 3p(logé/p)™, X = A (logé/p)*~1/3C,.
We also drop the values of j for which ii) holds and choose a maximal
6/p-separated subset of the remaining {a;}; this sequence will still be
denoted {a;}, and has cardinality greater or equal than

<5 def -1 /= m
M'=(2B)""(p/p)"M .
We claim that for each j there is a tube Tgﬁ such that [EN Te—‘;6| >
) ]TZ‘5 |. Namely, by the assumption that ii) fails there is a disc D(z,5/3)
with |[EN Tl')’_aﬂD(z,ﬁ/3)| >Cy ' IT;;&I/ log(p/6). 1t is easy to see that
T;}’,ﬁ N D(z,p/3) is contained in a tube of the form TZG, and with this
Tza we have
A

F)
log —
&

6 - 6 3 pb
|Te’; nE| > Cy! |Tz’;|=’\|T£l,

proving the claim. By the inductive assumption

ﬁ—dlEl > Ce_l (M(%)m)l’/q (%)d—l’:\-p (%)e

A calculation shows this is equivalent with

§\ve-
p1B| 2 (2B) 7173 (log )"
& . m\P/1/6\d-P 6\ ¢
. = - p(2
M) G r G
Since p/é > A, the choice of A implies that the factor
(2B)"1C; "3 (log §/p)"* 7

appearing here is greater or equal than 1 and can be dropped. So we
obtain (23).
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5. Further remarks.
This section will consist of negative results, primarily the following.

Proposition 5.1. Assume d > 3, let U be an open subset of M(d,1),
A a d—1-manifold, F : U — A a submersion. Assume that there is
a € A such that the following hold: F~'a is connected, there is no
vector e € P41 such that e, = e for all £ € F~'a, and there is no point
p € R? such that p € £ for all¢ € F'a. Then property (*) fails, and
furthermore estimate (1) fails for the mazimal function defined by (5)
and the subsequent remark if (d —3)/g < (p—2)/p.

REMARKS. 1) The relationship (d — 3)/q < (p — 2)/p is satisfied if
p > (d+1)/2 and ¢ = (d — 1)p’, so this shows in particular that (1)
cannot hold for the full range of ¢ for any p > (d+1)/2. If d = 3, then
(1) cannot hold for any ¢ if p > 2.

2) Proposition 5.1 and its proof are related to the counterexamples
in Bourgain [2].

3) If A is an m-manifold with m > d — 1 then property (%) always
fails. This follows from an abbreviated version of the proof below.
When m < d — 1 there are various examples where (*) holds although
it still fails generically.

The proof is easy, but it is convenient to split it into several lemmas.
If (s,t) € P! then we define Y, C R" xR" by Y,; = {(sz,tz): = € R"},
and if z € R™ then we define E; C R® xR" by E; = span {(«,0), (0,z)}.

Lemma 5.1. Suppose Y is an n-dimensional subspace of R™® x R",
n > 2. Then either

1) Y =Y, for some (s,t) € P!, or else
ii) There is z € R*\{0} such that E;NY = {0}.

PROOF. Let P, and P, be the projections of Y C R™ x R™ on R" x {0}
and {0} xR™ respectively. If ii) fails then it is clear that every z € R™ is
in the range of either P; or P,. By linearity it follows that either P; or
P, is onto, and therefore also 1-1. We may assume then that P; is 1-1
and onto. Since ii) fails and P, is 1-1 it follows that for every z € R™
there is 7(z) € R such that (z,7(z)z) € Y. The map =z — (z,7(z) z)
is a right inverse for P;, hence linear, which implies 7 is constant, i.e.
Y =Y;, for some t.
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From Lemma 5.1 we obtain a similar statement for submanifolds
of R™ x R™ which we now formulate. If M is a submanifold of R" x R®
and y € M then T, M is the tangent space to M at y which we may of
course identify with a subspace of R™ x R".

Lemma 5.2. Suppose i3 an open set in R® x R®, n > 2, and M i3
a (connected) n-dimensional submanifold of Q. Then either

i) There are (a,b) € R™ x R™ and (s,t) € R x R, (s,t) # (0,0)
such that M 1s the affine space {(a + sz,b+tz): = € R"}, or else

ii) There are y € M and v € R™ such that T,M N E, = {0} .

PrROOF. We assume that ii) does not hold, and will show that then
i) holds. Since ii) fails we know by Lemma 5.1 that for each y €
M there is (s(y),t(y)) € P! such that TyM = Y,(,)y(y)- The map
y — (s(y),t(y)) is continuous from M into P' so since the question is
local and is symmetric with respect to R® x {0} and {0} x R" we may
assume it does not take the value (0,1). Then locally M is a graph over
R™ x {0}, M = {(z,F(z)): = € U}, where U C R", and furthermore
DF(z) = 7(z) - identity, where 7(z) = t(y)/s(y), vy = (=, F(z)). It is
well known (and easy to prove using equality of mixed second partials)
that this property of F' implies 7 is constant, iz.e. F has the form
F(z) = b+ 7z with 7 € R and b € R™. Thus i) holds, locally in a
neighborhood of every point of M. The set where i) holds for a given
a,b, s, t is then open-closed so a connectedness argument completes the
proof.

Lemma 5.3. Assume & C M(d,1) s open and M i3 a connected
(d — 1)-dimensional submanifold of Q2. Then either

i) there is e € P41 such that e, = e for all € M, or

ii) there is p € R? such thatp € £ for allL € M, or

il1) there are £ € M and o 2-plane II with ¢ C II such that
TeM(IL, 1) N T, M = {0} .

Proor. We let £y3 be the z4 axis, and may assume that £y € M. It
suffices to prove that either i), ii) or iii) holds in some neighborhood of
£y. Introduce local coordinates near £, on M(d,1) as follows: any line
close to ¢y is uniquely {(z,0) +¢(y,1): t € R}, with z € R¥71, y €
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R¢-1, and our coordinate system is defined by
£ — (z,y) € R x R,

We will apply Lemma 5.2 in these coordinates with n = d — 1. First we
note the following: if £ € M(d, 1) is a line close to £y, with coordinates
(z,y) and if v € R?1, then v determines a 2-plane II, containing £,
namely the 2-plane I, = {(z +tv+sy,s): s,t ERC R xR~
R¢. It is clear that M(II,,1) consists of all lines with coordinates
(z+tv,y+sv), where s,t are arbitrary real numbers, and therefore the
tangent space to M(II,,1) at £ coincides (in our local coordinates) with
the space E,. We therefore conclude by Lemma 5.2 that either iii) of
Lemma 5.3 holds, or else there are s,t € R, (s,t) # (0,0), and @ € R¢™!,
b € R*"! such that M is all lines with coordinates (a + sz,b + tz),
z € R?1. If the latter possibility and if ¢ = 0, then i) of Lemma 5.3
holds with e = (b,1) € P*~!. On the other hand if ¢ # 0 then ii) of
Lemma 5.3 holds with p = (a — sb/t,—s/t) e R x R~ R?.

PROOF OF PROPOSITION 5.1. We know by Lemma 5.3 that there are
¢ € F~'anU and a 2-plane II D £ with T,(F~'a) N T,M(IL,1) = {0}.
It follows that the restriction of F' to M(II,1) is an immersion in a
neighborhood of ¢, and therefore F' maps a é-neighborhood of M(II, 1)
onto a set Ss containing a C'~!é-neighborhood of a surface S. This
shows in the first place that property (*) fails, let {a;} be a maximal
§-separated subsct of S. Next let K C R? be a sufficiently large fixed
compact set and let x, be the characteristic function of the intersection

of K with a é-neighborhood of II. Then ||x,]|, ~ 6(4=2/r_ On the other
hand, Msx (@) > C™'a if a € S5. So || Msx,ll, 2 6=/, whence (1)
fails if (d —3)/g < (d—2)/p—(d/p—1),1e. if (d—3)/g<(p—2)/p.

FINAL REMARKS. 1) The results in this paper can of course be applied
to oscillatory integrals. We have nothing serious to say in this con-
nection and will just record what follows by plugging Theorem 1 into
the numerology in sections 4 and 5 of [3]. Namely, the Bochner-Riesz
means are bounded on L? for the optimal range of parameters provided
that
2(d® +3d+3) 2(d*+3d+3)
( F15d17  Erd-1 )

and furthermore the adjoint of the restriction operator maps L? to L?

if p>2(d* +3d+3)/(&* +d—1).
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2) Proposition 5.1 suggests (as does [2]) that it should not be possi-
ble to prove Theorem 1 via space-time estimates for the x-ray transform,
i.e. estimates for the x-ray transform from L?(R?) functions with fixed
compact support to W' (M(d, 1)) where W?* is the Sobolev space with
a derivatives in L9, since such estimates do not distinguish situations
where property () is satisfied. Compare [8], where such estimates are
used in the context of the circular maximal function, as well as [5]. We
now sketch a concrete proof of this fact when p = q.

Proposition. If the z-ray transform R maps

Limp(RY) to WEI(M(d,1))

loc
then a <1/q.

We are concerned with the case ¢ > 2 here. Conversely, if ¢ > 2 and
a < 1/q then it is known that R maps Lg,,,, to W{i%. This follows e.g.
from formula (4.36) of [1] (if ¢ = 2, which suffices since the ¢ = oo case
is trivial), or alternatively as pointed out in [10] from corresponding
results [9] for general Fourier integral operators. As indicated by the

proposition no improvement is possible.

We now sketch the proof of the proposition. Let E = {(Z,Z) €
R4!' xR: |7] <1, [F| < 8}, where 6 is small. Let X be the set of lines
in M(d,1) which make an angle less or equal than § with R¢~! x {0}
and intersect D(0,1/2) x {0} C R?™! x R, and let ¥ be the set of
lines obtained by translating the lines in X by 1006 in the direction
of the positive z4 axis. Then it is clear that Ry, > constant > 0
on X, whereas Ry, = 0 on Y. In suitable local coordinates Y is
a translate of X by an amount ~ §. This implies a lower bound:
const 6~ | X |/ for the W Sobolev norm of Rx,. Since |X| = 6

and |[xgll; = |E|'/9 ~ §'/9 we obtain the proposition.
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