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Abstract. One might oL‘~in the impression, from the wavelet liter-
ature, that the class of orthogonal wavelets is divided into subclasses,
like compactly supported ones on one side, band-limited ones on the
other side. The main purpose of this work is to show that, in fact, the
class of low-pass filters associated with “reasonable” (in the localization
sense, not necessarily in the smooth sense) wavelets can be considered
to be an infinite dimensional manifold that is arcwise connected. In
particular, we show that any such wavelet can be connected in this way
to the Haar wavelet.

0. Introduction.

The aim of this paper is to show that, in some sense, any “local-
1zed”, or of “polynomial decrease” (see below) wavelet may be obtained
by a continuous deformation from the Haar function. The case of com-
pactly supported wavelets is due to P. G. Lemarié-Rieusset and G. Mal-
gouyres [6]. More precisely, we shall consider those wavelets which are
obtained from a multiresolution analysis (MRA). Let us recall that an
MRA is given by an increasing sequence {V;};ez of closed subspaces of
L?*(R), whose union is dense in L?(R). The space V4, is obtained from
V; by a dilation by 2; that is, f € Vj4; if and only if f(27'z) € V;. One
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2 A. BonaMi, S. DURAND AND G. WEISS

also assumes that there exists a function ¢ such that {¢(z—k): k € Z}
is an orthonormal basis of V5. This function ¢ is generaly called a
scaling function or a father wavelet.

From V4 C Vi, we have

(1) p(z) =2 crp(2r — k).

kez

That is to say, in terms of the Fourier transform,

) a(6) = mo($) 8(5)

with

(3) mg(€) = Z ci e~ kE
keZ

This 27-periodic function my is called the low-pass filter associated with
this MRA and satisfies vi:~ basic properties mg(0) = 1 and

(4) Imo (&)1 + [mo(€ + ) =1.

It is then easy to see that one can construct a 2w-periodic function m,
such that

_{ me(€) my(§)
(5) u(€) = (mo(f +7) my(€+ 7"))

is an unitary matrix. The choice of m, is closely related to the construc-
tion of an orthonormal (or mother) wavelet: one can define 3 € L%(R)
by letting

o lvn

©) 3o =m o),

in such a way that ¢jz(z) = 27/2¢5(27z + k) is an orthonormal basis of
L*(R).

Let us remark that the choice of m; is not unique. The fact
that U(&) is unitary implies that any other /; is given by m,(§) =
a(é)m, (), where a is w-periodic with values of modulus 1. For exam-
ple, we can take m(€) = e*€ ma(€ + 7).
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The construction of an MRA, and the associated orthonormal wa-
velet basis, can also be done in terms of mg (if it satisfies appropriate
properties). We define o from mq by

(7) () = [ mo(277¢).

i=1

1. Daubechies used this equality to construct her compactly supported
wavelets. A characterization of the filters mo which generate an MRA
has been obtained by A. Cohen in [1] (see Theorem 1.2 below). The
basic question is: what property, in addition to (4), must mg satisfy to
give us an MRA.

In order to understand such characterizations, we make the follow-
ing remarks. Perhaps the “simplest” low-pass filter is the one associated
with the Haar system: mg(€) = (1 + €'¢)/2. Clearly, m(0) = 1 and
(4) is satisfied. Another simple function satisfying these properties is
mo(€) = (1 + €'3€)/2; but a simple calculation shows that (7), in this
X(=3.0] for which {¢(z — k) : k € Z} is not an
orthonormal system. It is n..~wn, for example that if mg({) is never 0
in [-m/3,7/3], then (3) does give us a scaling function that generates
a localized MRA. A. Cohen, in his thesis, shows that this is included
in a characterization of these low-pass filter that we announce in con-
dition 2.b) in Theorem 1.2 below. One of our aims is to show that if
we rephrase this condition, then the set of functions mgy may be seen
as consisting of a “manifold”.

More precisely, in this paper, we show that the set £ of the C*
filters my, is a “connected manifold” in the Frechet space C°°(T) of 27-
periodic functions, defined by the family of semi-norms ||D® f]|oo (o =
0,1,...). In particular, we construct a continuous path in £, connecting
any element of £ to the Haar filter (1+¢%¢)/2. This gives us a continuous
“deformation” between any mother wavelet 1 with polynomial decay,
and the Haar wavelet h = Xfoa/2 ~ X/2.1)° That is to say, we obtain

case, gives us, @ = (1/3)

a continuous function t ~ ¢, from [0, 1] to L*((1 + |z|)™dz) for any n,
such that ¥, is a wavelet, ¢y = h and 1 = .

1. Characterization of the low-pass filter.

We start with the following definitions:
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Definition 1.1. We say that ¢ has polynomial decay in L*(R) if
|z|No € L*(R) for all N € N, and that ¢ has ezponential decay of
order X in L*(R) if there exists A > 0 so that e**l; € L2(R).

Our main intercst is to study the existence of a scaling function
0, associated with a given low-pass filter mg, that generates a multi-
resolution analysis (MRA). We quote a result in [1]:

Theorem 1.2. Suppose p € L*(R) and mq, 27-periodic, are related as
wn equalities (2) and (7). Then the following properties are equivalent:

1) The function ¢ is the scaling function of an MRA and has poly-
nomial decay in L*(R).

2) The function mg belongs to C*°(T) and satisfies
a) mg(0) =1 and |mo(£)2 + |mo(E+ )2 =1,
b) There ezists a finite union of closed bounded intervals K such
that 0 € IV°, 3 ez X (€ + 2km) = 1 almost everywhere and, for all
7 EN, £ € ,we have .~~(277E) #0.

Using (7), mo(0) = 1 and mo € C*°(T), we observe that this last
inequality is equivalent to ¢(£) # 0 for all £ € K. Thus we can restate
this theorem by changing condition b) to

b’) There exists a finite union of closed bounded intervals I such
that 0 € K°, 3 1z X (€ + 2km) = 1 almost everywhere and, for all

EEK, o) #0.

Moreover, we add two further conclusions:

Theorem 1.3. With ¢ and mg related as above and satisfying one of
the equivalent properties of Theorem 1.2, we have:

1) The support of o is in [0, N] of and only if mg i3 ¢ trigonometric
polynomial of degree < N .

ii) The function v has ezponential decay in L*(R) if and only if
myg, regarded as a function of € (on the unit circle), eztends to a

holomorphic function on an annulus (i.e. a region lying between two
concentric circles centered at 0, including the unit circle).

Property 1) was proved by I. Daubechies in [2].
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Property ii) is implicit in the theory of wavelets. We shall present
an argument for completeness. Let us first assume that mg extends
to a holomorphic function on an annulus. By the Cauchy formula, we

have ”7770)Hoo < 1! M! for some constant M dependmg on the size of
the annulus (see [8]). From this we can deduce ||3(™ |, < n! M™. To

see this, we write
n) __ o—J
ot = Z 27"hy,
Jenn

where J = (j1,...,7n), 277 =271 ...27Jn and the h ; are obtained by
differenting the identity ¢(§) = H 2, mo(€£/27) (and replacmg mo(€/27)

by mé )(5/21) when j occurs ! times in the sequence ji,...,7,). Then,
for 0 <t < 1/VM, we have

c / 3 ",,':'zn)lso ) da= [ (w,(t NERIGIE;
n=1

')2 2n]\4n
2(27 t < 0.

From this it is then easy to check that

We thus obtain an exponential decay of order A in L?(R), for ¢, when-
ever 0 < A< 1/VM.

On the other hand, when ¢ has such an exponential decay, we have
(from the definition of mg), for k > 0

o) = | 5 [ 0(F) pla =) ds

1 —xz /T = _
-;7—/6 A cp(—?:)e)‘( +k) (:v-}-L)dz’

<

as well as a similar equality, for £ < 0. Thus, the sequence 7o(k) has
exponential decay |e**l7o(k)| < A < oo since [ el |p(z)|2dz < 0.
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This implies that mg is the restriction to the unit circle of a holomorphic
function on an annulus about the origin.

2. A geometric interpretation.

We shall consider the Frechet space C*°(T) of 27-periodic functions
endowed with the topology generated by the semi-norms || F (")Hoo. We
also consider the space C°°(T/2) of all m-periodic functions endowed
with the same semi-norms. Let us define £ by

E={F € C®(T): F satisfies a) and b)}.
We shall show the following,.
Theorem 2.1. The set € 13 a Frechet manifold in the sense that each

mo € £ has a neighborhood that is homeomorphic to a neighborhood of
0 wn C°°(T), where here 0 is the constant zero function.

To prove the theorc™ we define the set
F ={F € C™(T): F satisfies a)}.

We shall show that F is a manifold in this sense and that £ is an open
set in F.
Let mg € £, and let m; € C*°(T) be such that

o mole)  ma®)
U“)‘(mo@m ml(e+w>>

is a unitary matrix. We shall use the elementary lemma:

Lemma 2.2. Any C% and 2w-periodic function F' may be written
uniquely

F= Gmo + Hml 3
where G and H are C™ and w-periodic. Moreover F — (G H) is an
wsomorphism between C°°(T) and C°(T/2) x C*(T/2).

To prove the lemma, it is sufficient to remark that G and H are
given by

o (8)-ue (%)
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since U~! has C* coefficients.

Moreover, U being unitary,
[E(O + |F(E+m)* = |GOP + [H(E)I?,

so that condition a) for F' becomes
a’) G(0)=1,H(0)=0,|G]+|H]’=1.

From (4), we see that

H() -0 Fl+n)y—mo(f+m) )"~

Hence, if F' is close to mg in C*°(T), then G is close to 1 and H
1s close to 0 in the topology we introduced. Then, to show that F
is a manifold, it is sufficient to show that a neighborhood of (1,0)
in F' = {(G,H) € C®(T/2) x C=(T/2) : (G,H) satisfies a’)} is
homeomorphic to a neighborhood of (0,0) in C*°(T/2) x C*=(T/2) (that
is homeomorphic to a neighborhood of 0 in C*°(T), by Lemma 2.2. We
can take the neighborhood given by ||H||eo < 1/2 and ||1 — Gl|eo < 1/2.
Then, clearly, G = €'4,/1 — |H|2, where 4 is C®, m-periodic with
values in [—-7/2,7/2], A(0) = 0, and the application (F,G) — (A, H)
is a continuous bijection. This shows that F is a manifold in the sense
we described above.

Let us prove that £ is an open set in . We have to prove that if
mg € & then for F close to mg, the scaling function @r which corre-
sponds to F satisfies a condition equivalent to b).

We shall use the following lemma that will be proved later.

Lemma 2.3. If F tends to mqy in F, then op tends to 4 uniformly on
compacts.

From b’), we have |3(£)] > C > 0 when { € K, since the latter is
compact and > is continuous. The fact that ¢ tends to ¢ uniformly
on I permits us to conclude that [or(€)] > C/2 on the same compact
set, for F' close enough to mg. This shows that £ is open in F.

Let us prove the last lemma now. In fact, we are going to prove a
more powerful property that we shall use later.
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Proposition 2.4. If F tends to mg in F, then op and its derivatives
tend uniformly to ¢ and its derivatives on compacts. Morcover if mg €
&, the convergence of F towards mg in € is equivalent to the convergence
of z%pF toward ™y in L*(R) for each n.

A version of this proposition has been obtained, by a different
method, by P.G. Lemarié-Rieusset.

First, to prove the uniformn convergence on compacts, it is sufficient
to prove it on an interval [—a,a] on which |mg(€) — 1] < 1/2. We
see this since it gives us the convergence on [—2Na,2Nd] for cach N,
by using ¢r(§) = H]NL__I F(£/27) pr(€/2N). We can also assume that
[|F' —mglleo < 1/4, so that the logarithms in the sequel are well defined
and belong to C'*°.

Let us first prove that o tends to ¢ uniformly on [—a, a]. We prove
this by showing @r/@ — 1 or log(éF/@) — 0 uniformly on [—a, a]; that
is, using (7), we show

W‘(E) F(e/2)
S(F) Zl & mo(€/20)

as FF — mg when € € [—a, a]. But, by mean value theorem,

F(e/2) ) Il F' mg
llog 7”0(5/‘”) T2 ZIZ] mg |’
Hence, we have
- (£/2) Fom
l;log 7ng(€/‘71)| ¢ [EEIZ] F  mgl’

which tends to zero as |F — my||co and ||F’ — mgl|e tend to zero.

Let us now prove that (,5(1,:') — 3" uniformly on [—a, a], for n > 0.
It is equivalent to show that (d/d€)"(¢r/p) tends uniformly to 0 on
[—a, a] since ¢ is bounded away from zero on [—a, a]. Thus, we consider

oo

J=1

(lo F (")(f]) (logmo)(")(ég—j));

and, it is elementary to deduce that (log F){(™ —(log m()™ is uniformly
small on [—a, a] when ||[F(*) — 771&“[[00 is small for each k > 0, since our
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assumptions imply that the values assumed by F' and mg, and their
derivatives, are appropriately restricted.

Let us show that if mg € £ then the convergence of ¢ to ¢ is in
L*(R) (remember that [ |5r|*> = [|5]* = 27). Let K be a compact
such that [, |¢|*/27 > (1 — ). Then, if F is close enough to mg, so
that [, |[pr—3)* < 2722, then [ |¢F|* > 27(1-2¢)%, and [, |4r|* <
2m(2¢)?. Finally, [|pr — ¢ < 2m(4€)?.

Let us now prove the convergence in L% of the derivatives. We
claim that if my € F, then c,B(;) — 4™ weakly (in L%(R)) for any n.
Observe that it follows from the proof of Theorem 1.3.ii) that ”(,5(;)”2
is bounded uniformly when F' lies in a neighborhood of my. Hence,
there exists a subsequence that converges weakly. Clearly the only
possible limit is "), Since any sequence of F’s converging to mg has a
subsequence such that L,B(Ftl) converge weakly to ¢(") our claim follows.

As @(IE"’) — 302" weakly and $p —  in L?(R), we have

~(2 = - =
/so%")cp —*/so(zn’so-

/3:2" lor(z)|? dz — /:::2" lo(2)|? dz

/ B2 - / Rl

Then let J be a compact set such that

| / B > (1—e)? g™
J

Thus,

and

If F is close enough to mg so that
RO .
168 = 6 < 21,

(since 35(;) converges uniformly to $(® on the compact set .J) and

ST = 13112 < eXlle™]2,

then

[10rza-2epiemE, [ PR <eer g,
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and
~(n) A (7 n
/ 65 — 32 < (5e)? 5P

Conversely, we now show that mg € £ and 2™0p — 2% in L*(R
) @ 1 s
for each n, implies F' — mg in C*°. We have

9) mvo(k):—‘%/cp(g)@(x-i-k)d:c.

Since g p tends to ¢ uniformly on compacts, we can assume that o
also satisfies condition b’). Thus, by Theorem 1.2, equality (9) is also
true for F', and we have

L

|k|" (o (k) — F(k)) = /( ( Do +k) - pr (= )<PF(1?+]C))
I [o 1) (o3) - 0r()) o

©
—_'— / ) (B(z + k) = r(z + k) dz.

Let us majorize

lk_‘n /saF(

For any = € R,

) (¢l + k) = gp(z + k)) dz

(VI

[k|™ <27 (Jz|™ + |k + z|™).

But
2n z
/[a:|‘ {@p(;)lzdn: <C<o
and
/ lo(x + k) — @p(z + k)P dz — 0.
Thus,
/l:rl”w l (3(z+k)—@r(z +k))dz — 0.

Morcover,

/m ) dz < C < oo
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and
JIERE
Thus,

[+l or (3) 6z + ) = (e + k) dz — 0.
We majorize
E;l— /95(17 +k) (W(%) - Q(%)) dz
in the same way and we obtain
I[1E|" 1020 (k) = [E]" F(k)||oo — 0.

In particular, if n > 2, we obtain

[k 20 (k) — [k 2 E(k) | < k|72 0(1).
Therefore,

Im§" ™ = P < (1K) o(1).

k€L

EXAMPLE. let Fy be the ~=t of polynomials with real coefficients of
degree N that belong to F; that is, m € Fy if and only if m(§) =
ag + a1 + -+ + aneMé, the a;’s are real and m satisfles a). Let
En=ENFn.

Let us examine the example given in the end of the introduction
in these terms. For N = 3, F consists of those m satisfying

m(€) = 1+

2
with b =1 —a — ¢, and a®> + ¢? = a + c. &; corresponds to the circle
{(a,¢): a®> +cF =a+c}\{(1,1)}.
If (1,1) were a point of this circle, the corresponding filter would be
m(€) = (1 + ¢*¢)/2 and the corresponding scaling function would be
e = (1/3) X[_a0)" but the latter has L?-norm 1/4/3 (# 1), thus, as
observed before, we would not obtain an MRA.

(a +be't 4 ce?),

3. The deformation of wavelets associated with the class £.

Let us introduce a dense subset in F that will be useful to us:
let Fexp (vespectively Eexpp) be the set for which (k) has exponential
decay. Then we have the following:
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Proposition 3.1. Fexp 3 dense in F.

To prove the proposition, we take mgy in F and sclect a sequence
of trigonometric polynomials P, which tends to mg in C°(T).

We can assume that, for all integer n, P,(0) = 1 and P,(7) = 0.
Indeed, let m(€) = ((1 4 €%¢)/2) " Img(€). Since mg(n) = 0, g is well
defined and C*. Build a sequence of trigonometric polynomials P,
which tends to 7g. The sequence Po(€) = (1+€)(Po(€)+1—P,(0))/2
tends to mg and satisfies the required properties.

Now |Pr(€)i2 + |Pu(€ + 7)|% tends to 1 in C(T). So (|Pa(€)|® +
|P.(€ 4+ 7)]2)~1/2 is well defined for n big enough, and tends to 1 in
C™>(T). Finally we take

Pa(§)
[P (6)2 + |Pa(€ +m)[2)1/2

which belongs to F, and tends to my.

The only thing to prove is that F}, € F..,. By the argument that
establishes Theorem 1.3, part ii), it suffices to show that (|P.(¢)|® +
| P (€4 7)|?)~Y/? extends to < holomorphic function on an annulus. But
| Pn(€)]? + | Pn(€ + )% is a trigonometric polynomial. There exists an
integer m such that e!™(|P,(€)|? + |Pn(& + 7)|?) is a polynomial in e
which extends to a holomorphic function on C. We can then extend
|Pn(€)|? + |Pn(€ + 7)|? to a holomorphic function f, on C\ {0}. And,
since there exists a neighborhood of the unit circle on which Re fa(z) >
1/2 for n big enough, fn !/% is also holomorphic on that neighborhood.

Finally, let us prove the following:
Theorem 3.2. F and £ are connected.

We shall prove that any mg in F can be joined to (1 +€'€)/2 by a
continuous path, and that this path can be chosen within £ if mg is in
E.

Let us first remark that, if we go back to the example discussed
in Section 2, we can clearly see that there exists such a continuous
path between e*(1 + €%€)/2 and (1 + €%¢)/2 (just follow the circle in-
dicated). Then, for any integer k, there exists a continuous path be-
tween e!(F+1€(1 4 ¢¥€)/2 and e'*¢(1 + €%)/2, and consequently, be-
tween e*¢(1 + €%€)/2 and (1 + €'¢)/2. Thus, it suffices to join mq to
et*€(1 4 €%€)/2 for an appropriate integer k.
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We begin by constructing a path made up of trigonometric poly-
nomials (not necessarily in F).

Lemma 3.3. Let F' be a trigonometric polynomial of degree less than or
equal to N such that F(0) =1 and F(7) = 0. There ezists a continuous
map t — Fy from [0,1] to the space of trigonomeiric polynomials of
degree < N such that

1) Fl(O) = 1, Ft(Tr) :0, ZfO S t S 1,
2) 1(6) = F(¢),

) (o = (-0 (E5) (D) v emore.

Moreover, Fy(&) = e*¢ (1 + €%)/2 for an integer k.

We postpone the proof of this lemma and, using it, pass to the proof
of Theorem 3.2. In the general case, since F is a manifold, one can join
mg to a neighboring m belonging to the dense subset Fex, C F; thus,
we can assume that m € F., . If we examine the proof of Proposition
3.1, in fact, we observe that we can assume

F(§)
(F(OF + |F(E +m)2)r/2

m(€) =

where F'is a trigonometric polynomial which satisfies F'(0) = 1, F(7) =
0 and |1 —|F(&)|?—|F(£+7)|?| < 1/2. We can then apply Lemma 3.3 to
F. We obtain a continuous function t ~— Fy with Fy(£) = e*¢(1+€'¢)/2
and Fj (&) = mo(€).
So let
Gi(€) = |F(&)* + |F(E +m)|*

We also have G(£) = 1—t+1 G(£), where G(£) = |[F(E)? +|F(E+m)|?.
The path will join e**¢(1 + €%)/2 to mg, via

t e F(6)(Ge(€)71? = @4(6).

It remains for us to show that ¢t — &, is continuous from [0, 1] to C*°(T),
and that, for all ¢, &, belongs to F, or to £ if mg € £.

It is clear that @, is well defined and satisfies a) (by the arguments
in the proof of Proposition 3.1, we see that ®; is the restriction to the

.. . . . -1/2
unit circle of a holomorphic function on an annulus). Since t — G, /
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is continuous from [0,1] to the space of holomorphic functions on the
annulus (in the L° norm), it is continuous from [0, 1] to C*°(T). So
t — &, is continuous from [0, 1] to C*°(T) (and even maps into the class
of functions which extend to a holomorphic function on an annulus).

Finally, ®; belongs to &xp for all 0 <t < 1 as ®; has no other
zero on the unit disc than the one at —1. So the path is in £, except,
perhaps, for its endpoint ®; which is my .

We have also proved

Proposition 3.4. Let i a wavelet that arises from an MRA with o
scaling function that has polynomaial decay. Then there ezists a con-
tinuous family of such wavelets, t — 1, t € [0,1], such that 1y = h,
Wy = 1, where h is the Haar wavelet.

Proposition 3.5. (P.G. Lemarié-Ricusset and G. Malgouyres [6]). Let
¥ a compactly supported wavelet that arises from an MRA. Then there
ezists a continuous family of such wavelets, t — y, t € [0,1], such that
Yo = N, ¥y =, where h i; the Haar wavelet.

Observe that if the scaling function has polynomial decay, so does
the wavelet ®. “Continuous” means that ¢ — %, is continuous from
[0,1] to L*((1 + |z])™ dz) for any n.

Finally, let us prove Lemma 3.3. In fact, we are going to show
a version of the lemma, where trigonometric polynomials have been
replaced by polynomials in z. It will be clear that Lemma 3.3 follows
from Lemma 3.6 using F;(£) = e é(1+¢)P,(e*¢)/2 for an appropriate
positive integer /.

Lemma 3.6. Let P be a polynomial in z € C of degree less than or
equal to N, such that P(2) = 1. There ezists a continuous map t — Py,
from [0,1] to the space of polynomials of degree < N such that

1) P(2)=1,4#0<t<1,
2) Pi(z)=P(z),
3) [Pi(z)P =(1—t)+t|P(z)P, if || =1.

Moreover, there ezists an integer k such that Po(z) = 2F.
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_ We can assuine that P(0) # 0, otherwise P(z) = 21 P(z) with
P(0) # 0, and we can take P,(z) = 27 Py(z). Let

Q=) =" P(3) P(3),

and

Qiz)=(1-1t)zN +tQ(z).
The map t — @, is obviously continuous, Q,(2) = 1, @; = @ and
Qu(z) = 2zV. We shall introduce polynomials P, such that Q.(z) =
N P/(z) P,(1/z). These polynomials are constructed with the aid of
the zeros of the polynomials Q((z) by an argument very similar to that
used to establish the Lemma of Fejér-Riesz (see (3, p. 117]).

Lemma 3.7. Let z1,z22,...,2N be the zeros of P (possibly repeated with
their multiplicity) chosen so that zy,...,zx are the only zeros inside
the unit disc. Let zj = 1/Zj_n for j = N +1,...,2N. Then there
ezist 2N continuous functions on (0,1] such that z1(t), z2(t), ..., zan(t)
are the 2N zeros of Q,, zj(t) = 1/z;_n(t) for j = N +1,...,2N,
and z1(t),. .., zk(t) are insiac *he unit disc while zg41(t),...,zn(t) are
outside the unit disc.

Let us remark that, since Q;(2) = 1 we must have z;() # 1.
Assuming that Lemma 3.7 is proved, we can then define

P(z)—ﬁz_zj(t) 0<t<1
t u 1-2(2) ) s

It is clear that Q.(z) = =N P,,(z)]st(l/z) and t — Py is continuous.
In order to obtain Lemma 3.6, it suffices to prove that P, — z* when
t — 0. But Q; — z" ast — 0; then, for t < 5, N of the z;(¢)’s are inside
a small disc {|z| < €},and the other NV (which are their reciprocals) are
outside the disc {|z| < 1/e}. That is to say, z1(¢),...,zk(t) tend to
0 while |zx41(t)],..., |z~ ()] tend to co. Thus the polynomials P;(z)
(each of degree < N) tend uniformly with the unit circle to z*. This
shows Lemma 3.6.

Hence, we just have to prove Lemma 3.7. Let us start by defining
z;(t) for t close to 1. Let zg be a zero of P with multiplicity ko .

First case: |z9| < 1. We can assume that z; = .-+ = zp, = zp.
1/7Zp may or may not be a zero of P. In the first case, let kj > 1 be its
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multiplicity, and let zx41 = -+ = 2p44; = 1/Z9. We shall define z;(¢)
forje Jo={1,...,ke. N+k+1,...,N+k+kj}. We know that z, is
a zero of () with multiplicity ko + kj. In a neighborhood of zg, Q(z)/2"V
can also be written (z — z9)*t*o F(z), with F(z0) # 0, and Q;(z) has
ko + k{ distinct zeros which are solutions of

(10) 9;(73—) - ”‘l“t_l = (2 — z0) e F(2).

From this, we obtain

e27il(7)/(kotko) o (z —z0) a(2)7Y,
where a(z)Fotke = (—F(z))71, s = ((1 — t)/t)1/*otk) and j — I(j) is
a bijection between Jy and {1,...,ko + kg}. It is then easy to see that
we can define z;(t) so that ¢ — z;(t) is tangent at zo to the half-lines
s = 29 + a 2™/ (kotko) s where a = a(z).

When 1/z; is not a zero of P, we obtain the same result with kg
instead of kg + kg .

Second case: |zp| > 1. The previous reasoning applies and allows
us to define z;(t) for ¢ close to 1 and j such that |z;| # 1.

Thard case: |z9] = 1. This time, zg is a zero of @ with maltiplicity
Qko, and we can assume that 29 = zp4; = -+ = Zktko = ZN+k+1 =
S+ = ZN4k4ko- Once again, the question is to define z;(t) for j € Jyp =
{k+1,...,k+ko,N+k+1,...,N+k+ ko} so that |2;(t)] > 1 for
7 < N and |zj(t)] < 1for j > N. Again, the z;’s can be chosen tangent
to the half-lines s - 2o 4 o €2™1(9)/2kos where a?f = —1/F(2) and !
is a bijection between Jy and {1,...,2ke}.

But the positivity of Q(z)/z" on the unit circle implies that (—1)*°
25'2"° F(zp) is positive; hence, we can take a = z¢ #, where # > 0, if kg
is odd, and o = zp e!™/?%0 3 where § > 0, if ko is even. In both cases
half of the half-lines are outside the unit circle, the rest are inside. We
choose {(7) so that the half-line lies outside the unit circle if 7 < N,
while, for j > N, the half-line crosses the circle.

We can now finish the proof of Lemma 3.7. By continuity, z;(t) is
well defined as long as it is distinct from z(t) for [ # j. Otherwise let
€ be such that zj, (t) — =z, zj,(t) = 20, ..., z;(t) = z0 when t — ¢,
€ > 0, while the other zeros stay outside a neighborhood of 2. That is
to say, Q. has at zg a zero with multiplicity {. Moreover zy, # 0 since
Q:(0) = £Q(0) of zg, we have, once again, Q.(z)/zN = (z — ) F(z),
F(zy) # 0; thus, for t < g, Q«(2) = 0 if and only if (z — 2V F(z) =
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—(e—1t)/t. As before we obtain continuous functions zj, (¢)(2),..., z;(t)
defined for t < e, t close to ¢, and equal to zg at €.

REMARK. In the third case, we could just as well have chosen to
reverse the property of the half-lines. That is to say that, among
z1(t),...,zn(t), we can choose | of them in the unit circle, with k <
[ < k', where k is the number of zeros of P in the open unit circle, and
k' the number of zeros of P in the closed unit circle. This is a way of
interchanging 2* and z'.

REMARK. In this paper, we considered only the case of 0-regular MRA’s
as they have been defined by Y. Meyer in [7]. The question whether
r-regular MRA’s have the same property remains open.
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