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On fractional differentiation
and integration

on spaces of homogeneous type

A. Eduardo Gatto, Carlos Segovia and Stephen Viagi

Abstract. In this paper we define derivatives of fractional order on
spaces of homogeneous type by generalizing a classical formula for the
fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suit-
able quasidistances related to an approximation of the identity. We de-
fine integration of fractional order as in [GV] but using quasidistances
related to the approximation of the identity mentioned before.

We show that these operators act on Lipschitz spaces as in the
classical cases. We prove that the composition T, of a fractional integral
I, and a fractional derivative D, of the same order and its transpose
(a fractional derivative composed with a fractional integral of the same
order) are Calderén-Zygmund operators. We also prove that for small
order a, Ty is an invertible operator in L?. In order to prove that T, is
invertible we obtain Nahmod type representations for I, and D, and
then we follow the method of her thesis [N1], [N2].

1. Definitions and statement of the main results.

In this paper (X, 6, 1) will be a space of homogeneous type which
is normal and of order v, 0 < v < 1, and such that u({z}) = 0 for all
z in X, and p(X) = co.

We recall that a space of homogeneous type consists of a set X, a
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quasidistance §, t.e. a function 6 : X x X — [0, c0) that satisfies

(1.1) é(z,y)=0 if and only if T =y,
(1.2) 6(z,y) = 6(y,2), for every z and y in X,

there is a positive constant « such that
(1.3) 6(z,y) < k(8(x,2) + 6(2,y))

for every z,y and z in X, and a measure p defined on a o-algebra of
subsets of X which contains the open sets of X and the balls B,(z) =
{y : 8(z,y) < r} and satisfies the doubling condition: there exists
a positive constant A such that for every z in X and every r > 0,
0 < p(B2r(z)) £ Ap(Br(z)). f X has more than one element, as in
this paper, the constant « in (1.3) cannot be less than 1.

A space of homogeneous type is normal if there are positive con-
stants A; and Ay such that for all z in X

(1.4) Arr < p(B(z)) L 4y, forall r > 0.

Two quasidistances é and p are said to be equivalent, p = §, if there
exist positive constants ¢; and ¢; such that for all z, y in X

(15) a 6(2:3 y) < p(ma y) <c 6(‘7:7 y) :

It is easy to see that if (X, 6, p) satisfies (1.4) then so does (X, p, ).
A space of homogeneous type is of order v, 0 < v < 1if thereis a
positive constant M such that for all z,z',y in X

(1.6) 16(z,y) — 8(z",y)] < M 67(z,2") (8(x,y) + 6(z",y))' 7.

It is shown in [MS] that in any space of homogeneous type there is
a topologically equivalent quasidistance é that satisfies (1.4) and (1.6).

For 0 < 3 < «, Lip(f) will denote the space of complex valued
functions f such that for all z and y in X

(1.7) 1f(2) = f(¥)| < C6%(z,y)

holds with a constant C independent of z and y. The norm of an
element f of Lip (B) is the infimum of the constants C in (1.7). Given
a ball B, CP(B) will denote the space of functions f in Lip(8) with
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compact support in B. We shall say that f belongs to C'g if f belongs
to Céi(B) for some B. The space 6'65 is the inductive limit of the Banach
spaces C?(B) with the inductive limit topology and (C?)' will denote
the space of all continuous linear functionals on Cf .

Let s(z,y,t) be a symmetric approximation to the identity of the

type introduced by Coifman, see Section 2. Let —oco < o < 1 ,we define
8o 1 X x X — [0,00) by

T 1/(a=1)
18 balew) = ([t s@und) T, foraty,
0
and
ba(z,y) =0, forz=y.

We shall see in Section 2, Lemma 2.2, that for each «, é, is a quasidis-
tance equivalent to §, and it satisfies (1.6). Note that (X,d4,4) is a
normal space of order 7.

For 0 < a < v the fractional derivative of order a of f in Lip (8)N
L>®, a < B < v is defined by

ORIOF

1.9 D = .
The above definition extends the classical formula for functions on R™,
Dof(z) = lim / fety) - (z) 4,
e—0 |y|
lyl>e

For f sufficiently restricted and 0 < « < 2, one has Do f =cq (—A)%/2f,
where A is the Laplacean [S1], [S2], [S3].

For 0 < a < 1, the fractional integral of order « of f in Lip (3)NL!
is defined by

f(y)

J 8o~ %(z,y)

The definitions of D, and I, can be extended to Lip (/) for the
same f as above. This requires the following modification similar to
the one needed to define singular integrals on L*°:

(1.11) Eﬂf(m:i:/(f(y)"f(r) ,,,,, f(y)—f(mo)\d’u(.y%

§E Mz, wy  8LE(za, )

(1.10) Inf(z) = du(y) .
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and

)d#(i/),

(1.12) Iaf(r)—k/f(y) (6}1""‘(1,1/)  617%(z0,)

where z is a fixed but arbitrary point of X. It will be shown in Theorem
1.1 and Theorem 1.2 that Daf(:c) and I, f(z) converge absolutely for
all 2 and therefore changing z, in the definitions above results in adding

a constant. We show in Section 2, Lemma 2.4, that §4 , for 0 < a < 7,
has the cancellation property:

/X (627 (2, ) — 6272 (z', ) du(y) = 0.

In [GV] it was shown that for fractional integrals defined with a qua-
sidistance which has the above properties the classical theorems on
boundedness on LP, BMO, Lip (3) and H? hold. For the sake of com-
pleteness we prove the result for Lipschitz spaces in Theorem 1.1. See
[GGW], [GV].

We recall the definition of a singular integral operator as given in
[DJS] and [S3]. Let 2 = X x X \ A where A is the diagonal of X x X.
A continuous function K : & — C is a standard kernel if there exist a
number 7, 0 < n < 1, and constants v > 1 and ¢ > 0 such that

(1.13) | K(z,y)] < for (z,y) in 2,

c
o(z,y)

and for v é(z,y) < é(z,z) we have

, . §"(z,y)
(1.14) |K(z,z) - K(y,2)] < c 1z, 2)
and

- . 6"(z,y)
(115) ,I\(Z,I)—-I\(Z,y)l Scm .

A singular integral operator is a continuous linear operator T : C(f -
(CEY associated with a standard kernel K in the following sense:

(TF,3) / / K(z,y) o(z) f(v) du(z) du(y),
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for all f,g € C'é’ with disjoint supports, and where (T'f, g) denotes the
evaluation of Tf on g¢.

A singular integral operator is called a Calderén-Zygmund operator
if it can be extended to a continuous operator from L? to L2.

The transpose 'T of a singular integral operator T is defined by

('Tf,9) = (Tg,f),

forall f,ge C? 0< B <.
The function s(z,y,t) introduced before, is continuously differen-
tiable in ¢. Let

(1.16) o(z,y,t) =t %S(m,y,t)

and set‘

(1.17) —Quf(z) = / a(z,u,t) F(u) du(y)
X

In this paper the letter ¢ will denote a constant, not necessarily
the same in different occurrences.
We can now state our main results.

Theorem 1.1. Let0 < a < B < 4.

a) If f € Lip(B) N L! then I, f(z) converges absolutely for all =
and there 1s a constant ¢ independent of f such that

Mo fllLip(a+s) < cllfllLipes) -

b) If f € Lip(B), then To,f(z) converges absolutely for all z, and
there 18 a constant ¢ independent of f such that

”Taf“Lip(cx+ﬂ) < cllfllLipes) -

c) If f € Lip(B)N L! then Taf defines the same class as I, f in
Lip (a + B).

Theorem 1.2. Let0 < a < < 7.

a) If f € Lip(B)N L™ then D, f(z) converges absolutely for all x
and there 1s a constant ¢ independent of f such that

“Daf”Lip(B—a) <c ”f”Llp(ﬂ) :
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b) If f € Lip(f) then ﬁaf(a:) converges absolutely for all x and
there 18 a constant ¢ independent of f such that

E “ <c i .
” af Lip(f~a) = ”f“Llp(ﬁ)

c) If f € Lip(B)NL> then 13nf defines the same class as D, f in
Lip(8 — a).

For similar classical results see [Z, Chapter XII].

Theorem 1.3. Let 0 < a < v, then Ty = Do, 13 a singular integral
operator with associated kernel

o 1 1 3 1
(1.18) A(l’y)_[(élj&“(z,t) (5‘11_,,(%“ 6;_a($’y)) du(t).

Theorem 1.4. Let0 < a < v, then T, = DI, 1s a Calderén-Zygmund
operator.

Theorem 1.5. Let Sq = IoDq, then Sof = 'Tof for every f in C8,
with 0 < a < B <7, and S, 13 a Calderén-Zygmund operator.

Theorem 1.6. If Q.(f) is the operator defined by (1.17) then the

following representation formulas hold pointwise everywhere and in the
weak sense:

(1.19) alf= [ QU
for finLip(B)NL!, 0<a, a+ B <7, and

o0 d
(1.20) —chaf-—-/ﬂ t=° Qe(f)Tt,

for finLip(f)NL®, 0<a< f <.

The following theorem extends a result obtained by A. R. Nahmod
in her Thesis [N2].

Theorem 1.7 There ezists ag, 0 < ag < 7, such that for 0 < a < aq
the operator T, as defined in Theorem 1.3 has a bounded inverse in L2.
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2. Lemmas needed for the proofs of Theorems 1.1
through 1.5.

The first lemma states the properties of a Coifman type approxi-
mation to the identity. These properties are well known, see [DJS], and
therefore the proofs will be omitted.

Let h > 0 be a C function on [0,00) such that A(r) = 1 for
0<r<1/2, and h(r) =0 for r > 2. For f € L} (X) and t > 0 set

7.5e) = 1 [ (25 ) dutw),
M (x) = gy F2) = (@0 £(2),

Vif(2) = — 1 (z) = $(=,1) f(z).

T,(ﬁ)(z)

St'—'—'M:TtVtTtA’It,

Now define S; by

then
S.f(z) = /Y s, t) F(¥) duly),

where

(z,v,1) = H2ULHY Joa( (22dy 4 (281 1) duu)

Lemma 2.1. There ezist positive constants by, by, ¢, cp, and c3 inde-
pendent of z, y, and t such that

i) s(z,y,t) = s(y,x,t) forall x,y in X andt > 0,

i) |s(z,y,t)] < e1/t for all z,y in X and t > 0, s(z,y,t) =0 of
é(z,y) > b t, and ca/t < s(z,y,t) of 6(z,y) < ba t,

i) |s(z,y,t) —s(z',y,t)| < c387(z,2')/t1FY for allz, 2’ and y in
X,andt >0,

iv) /s(x,y,t) du(y) =1 forallz in X, and t > 0,
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v) s(z,y,t) is continuously differentiable with respect to t.

Lemma 2.2. For each o, —o0 < a < 1, the function é,, defined in
(1.8) s a quasidistance equivalent to 6 and it satisfies (1.6).

Proor. We shall prove first that there are positive constants ¢/, and
¢l such that for all z,y in X

c 6(z,y) < balz,y) <l b(z,v).

Using the properties of s(z,y,t) stated in Lemma 2.1, we have that
s(z,y,t) =01if é(z,y) > by t. Then

[e ]

68 Nz,y) = / t*1s(z,y,t)dt.
6(z,y)/b

On the other hand ||s(-,,t)||cc < c1/t, and therefore

to=2 4t = Ic-_la' e sel(z y).

55 (z,y) < &1 /

6(z,y) /b

Raising this inequality to the power 1/(a — 1) we obtain the first in-
equality of (2.1).

To obtain the second inequality of (2.1) note that s(z,y,t) > c2/t
if 6(z,y) < by t, hence by (2.2)

5~ (z,y) 2/ 071 2 dt = 2 5767 (2,).
8(z,y) /b2 t l-a

Raising this inequality to the power 1/(a — 1) we conclude the proof of
(2.1).

The fact that §,(x,v) is a quasidistance follows from the definition,
property i) of s(z,y,t) and (2.1). We will denote by k. the constant in
the inequality (1.3) for 6, .

We will show now that 8, satisfies (1.6). If 6o(z,y) =0thenz =y
and 6,(z',y) = 6o(z,z') and

l6a(2,y) = ba(2", )| = bal(z,2") = 61(,2") (6a(z,y) + ba(z’,y))' 7.

Similarly when é,(z',y) = 0 we get the estimate above.
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Assume now that é4(z,y) # 0 and é64(z',y) # 0. Let

a= -bl— min{éa(l‘,y),éa(l‘,,y)},
1

then by property ii) of Lemma 2.1

|8a(z,y) — ba(z',y)]
= (ax—1) oo .
=I(f et pdt) = ([ et ) l)l

a
o0 (2—a)/(a—1)
< (/ 7 |s(a', y, 1) + 0(s(z,y, 1) — s(z',y, 1)) dt)

([ e st - st vl at),

with 0 < 6 < 1. Using ii) and iii) of Lemma 2.1 we can majorize the
last estimate by

(c /°° fo=2 dt)(Z—a)/(a—l)(/w pa—7—2 ¢81(z,z") dt)

a a .
< cé6X(z,z')a' "7

< c83(z,z") (ba(z,y) + 8a(z',y))' 7.
This concludes the proof of the lemma.

Lemma 2.3. Let a < 1 and ko > ko . There ezists a positive constant
Cy, such that

1627 (2,y) - 6271 (a',9)| < Ci, 83(z,2') 6572 (=, ),
for all z,z',y in X such that
ko 8a(z,2") < balz,y).
The ezponent v is the order of the space.

This result follows from property (1.6 ), it was proved in [GV] for
ko = 2 Kq, the proof for k, > k4 is similar.
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Lemma 2.4. (Cancellation property of order a — 1). Let 0 < a < 7,
then

/X (627 (2,y) - 65 (a", ) du(y) = 0,

for any z, z' in X.

PROOF. We show first that
[ [ st = s Bl dutw) de < .
X Jo
We have
1 1
/ / t* 1 |s(z,y,t) — s(a'y,t)| du(y) dt < 2/ t*1dt < co.
xJo 0

To estimate [y [t |s(z,y,t) — s(a’,y,t)|du(y) dt , observe that
the functions s(z,,t) are supported in balls of radius b, ¢, also by iii)
of Lemma 2.1 we have
§(z, '
s ,) = 3(&, 3, 0)] < 0 )

Therefore using normality the double integral is majorized by

e 6 (z,z')ct *®  dt
a—1 ) '
/; t ———_t1+7 dt§c5“’(:t,.1:)/l‘ t—l:':-_—(;(OO

Since
/X (8273 (2,y) - 8271 (2", 1)) du(y)

= [ [ ) - (e 0) dedut),
X Jo

by changing the order of integration and using v) of Lemma 2.1 we
obtain that the integral is zero.

Lemma 2.5. Letz € X and r > 0. Then

1 —A+1
/ md#(y)ﬁcr , for A< 1,
5(z, )<
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and )
—_—d < er~AH A>1
/ 6’\(1:,:1]) I‘L(y) —_ cr ] fOT' > k)
6(z,y)>r

where ¢ 13 a constant independent of z.

Note that this lemma is valid for any quasidistance equivalent to
6. This lemma is well known. See for instance [GV].

3. Proofs of Theorems 1.1 through 1.5.

In the next proofs we will use without notice Lemma 2.2, Lemma
2.5 and normality.

PROOF OF THEOREM 1.1. To prove part a) observe that, since f €
Lip (8) N L?, the integral

fy)

chf(m): 51_0,(2 v)

du(y)

converges absolutely for any .

Now consider z; # z, and let r = 84(z1,22), B = Ba«,r(z2) and
B¢ the complement of B. Since é, has the cancellation property stated
in Lemma 2.4, we have

Iof(z2) — Ia f(z1)

= [ 0w~ $6) (g ~ eiayy) )
Then
[Laf(22) = Lo (1)
o A G Y Sy ) e O

B 62(—&(‘12»?/) éé—a(‘rlay)

+ [ 170) = fe) duy).

1 1
& %(22,y) 68 %(z1,Y)

Since |f(y) — f(z2)| < c||filLip(s) r? for y € B, the first integral is less

than or equal to c||f||Lip(s) T°T* -



122 A. E. GaTTO, C. SEGOVIA AND S. VAGI

To estimate the second integral observe that B C By _(2x,+1)-(Z1)
then using the previous argument and integrating over this ball we
obtain that this integral is less than or equal to c||fl|Lip(s) rBte

To estimate the third integral observe that for y € B¢ we can apply
Lemma 2.3, and using that f € Lip (/) this integral is majorized by

C||f||Lip(p)T7/ 65+ Y(zy,y) du(y) < || fllLipiay T
BC

Since r = 84(z;,z7) the proof of part a) is complete.

To prove part b) we show first that I, f(z) converges absolutely
for every z. Since 8, has the cancellation property stated in Lemma
2.4 we can write

Ff(@) = [0 - 1) (qrmagy ~ Fvimrsy) 40

Now it is clear that the function inside this integral is integrable over the
ball By s, (z,z,)(Z)- To see that it is also integrable in the complement
of this ball we apply Lemma 2.3 and use the fact that f € Lip (5). The
proof that ||fo,f||Lip(o.+,3) < c|| fllLip(s) proceeds exactly as in part a).

Finally the fact that for f € Lip (8)NL!, I f coincides with I, f as
an element of Lip (a + f), follows from the fact that for such a function

Lo f(z) = Iaf(z) = Lo f(z0).

PROOF OF THEOREM 1.2. Since f € Lip(f)N L™ with a < f < 4,

the integral
fy) - fz)

Pl S )

1(y)

converges absolutely for every z.
Now consider z; # z, and let r = §_4(z1,22), B = Bay__-(22)
and B® the complement of B. We have

W) = f)l
6.1:};0(-7:2a y)
|f(y) — f(=z1)

B 61_—{;&(:1:1,,!}/)

|Da f(z2) = Daf(21)] < 1(y)

+ dp(y)
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y) = f(z2) _ fw) = f(z1)
+f

61_-1;0(132,?;) 51:20@1711)
Since f € Lip(8) the first integral is majorized by c|| f||Lip(s) 7? ™. To
estimate the second integral observe that B C B,__(2x_,+1)-(Z1) then
integrating over this ball and arguing as before this integral is majorized
by ¢ || fllLipa) ™7 -
To estimate the last integral we first rewrite the integrand as follows

f(z1) — f(z2) . 1 1 _
6”“( T2, ) U= 1) (7~ 7))

du(y)-

then this integral is less than or equal to

/ |f(z1) = f(z2)]

T (209) du(y)

1
0= 160 [z = Gy | 0

The first term is majorized by ¢||f||Lip(sy 7°~*. Using Lemma 2.3 we
can majorize the second term by

—a—1— -
6€aa Y ,3 [ 4
Be

1 Fllipes) 6Lalz1,22) (z2,y) du(y) < c|lfllLipsy T
Since r = 6_q(z1,z2) the proof of part a) is complete.

To prove part b), we show first that Dof (z) converges absolutely
for every z. For z fixed, since f € Lip(f), the integral converges abso-
lutely over the ball Byx__s_,(z,z0)(%). To prove that it also converges
absolutely in the complement of this ball rewrite the integrand as fol-
lows

fo) = f(x) oo oo L .
Tt T (s~ e )

The first term is clearly integrable. The fact that the second term is in-
tegrable is a consequence of Lemma 2.3. The proof that ”Daf”pr(ﬁ o)
< c||fllLip(sy Proceeds exactly as in part a).

Finally, part c) follows from the fact that for f € Lip(8) N L*°,

Do f(z) = Daf(z) — Daf(0).
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PROOF OF THEOREM 1.3. Let

1 1 1
Y(z,y) = — ~ | dp(t
(=) /x e o ey

for z # y. Observe that |K(z,y)| < ¥(z,y). We will show now that

(3.1) YY) S o

For fixed z # y we break up X into three regions:
Di = {t:2k460(z,y) < bal(z,t)},

1
D, = {t e ba(2,y) L ba(z,t) < 2K4 50,(:1:,3/)} ,

2Kqo
and

Dy = {t  8u(z,t) < ?zi—a 5,,(::,;,)} .

In D; we have that 6,(y,t) > k5! 6a(z,t) — ba(z,y) = ba(z,y), and
therefore the integral over D, is less than or equal to

c 1 65%(z,y) c
du(t) < c=2——""- < .
@) Jo, 5@ M2 Gy S Ty

The integral over D, is majorized by

c du(t) 1
51-"2"(96,y).</131 é'g(y,t) " 53"’(3«‘,1/)1@“))'

For t in D, we have that

0a(y,t) < Ka (5a(t=-’") +6O(Isy) < Ko (2 Ko + 1)50(5’7,1/),

Enlarging D, to the ball of center y and radius x4(2 k4 + 1) ba(z,y)
and integrating we have that the expression above is less than or equal
to ¢/é6(z,y).

Since in D3, 2 ko 6a(x,t) < bo(z,y), Lemma 2.3 can be applied,
and the integral over D3 is majorized by

1
— 6 (a, 1) 62717 du(t
CA3 5(1’(+a($’t) ar('l’ )601 (I, y) l‘( )
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< 62717z, y) / 577 (2, 1) dp(t)
D3

< ey (2, y) 627 (2,y)
< 4

= §(z,y)

We are now going to show that T, is assocxated with the kernel K,
as defined in Section 1. Let f and g be in CO, 0<a+p <y, mth
disjoint supports.

Tof(z) = Dolaf(z)

_/ Lo f(t) = Lo f(®) ,
- X 61+u( t)

'_/ 5’*“1(7 t) (/X (5},—01@,9,) - ;-atx,y)) f(y)d#(y)) du(t).

For = ¢ supp f using the estimate obtained above for ¥(z,y) the last
integral converges absolutely. Then changing the order of integration
we have

du(t)

Taf(:v)=Aff(x,y)f(y)du(y),

where I{(z,y) is the kernel defined in (1.18). Furthermore for z €
supp g, [y [K(z,v)||f(y)|du(y) is bounded, and therefore

(Tuf,q) = / To f(2) g() du(z) = / K(z,y) f(y) 9(2) dyu(z) dp(y)

We will now prove condition (1.14). Note that §_, ~ é and there-
fore is suffices to prove (1.14) with é_4; ¢.e. we will show that there are
positive constants v, M,7, 1 < v,0 < M and 0 < n <1 such that if

(3.2) vé_a(z,y) < 6-a(z,2)
then 5 )
K (2,2) = E(y,2)] < M 5—+—(—y—)

Let ¢, > 1 be a constant such that

cxl ba(z,y) € 6—a(z,y) < cabal(z,y).
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Denote by ko and k_, the constants in the triangle inequalities for 64
and é6_,, respectively. Now we choose constants v and & so that

9 v

3.3 A rorl, <k < —ms——0o .
( ) o ta a K:_acg’ca

Let z,y, z be fixed points satisfying (3.2). To estimate |K(z, z)-K(y, z)|
observe first that

|K(z,z) — K(y,z)|

1 1 1
O J s s az;% )
1 1
- 5550 (e~ e) | 4O

To estimate the integral in (3.4) we divide X into two regions:

L Sz, 2) < 5_,,(3:,15)}

A={t: i

and its complement A°.
To estimate the integral on A we rewrite the integrand as follows:

1 1 1
|(51_t,“(x,t) - 51:;"(y,t)) S *(t,2)

n 1 ( 1 _ 1 )
1y, t) \ 68" (y,2) b4 %(z,2)

1 1 1
— < I I I5].
* s T ey | S I

We first estimate [, |I3| dp. Observe that for ¢ in A

v

T b_o(z,y) < 0_a(z,t).

On the other hand, by (3.3), v/k > k_o and therefore we can apply
Lemma 2.3 to obtain

[ mlaut < 5;“:,(61)) [ 877 ey dutt

§24(2,9)

< 66l “(y.2) 625 1(a,2).
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Note that
K—qo

” ) S Keqa 6—0(3/’2)

§—o(z,2) (1 -
and hence
67, (z,y)
88 (z,2)

/ I3l du(t) < c
A

Since )
Z’Z 60,(93,3/) S é'a(x,z)

and since, by (3.3), v/c% > k, we can apply Lemma 2.3 to I; to obtain
—1— 1
[ mlau) < cexteny 6577,z [ sy O

The last expression is majorized by

62 (z,y)
655 (z,2)

To estimate |, |I;|dy we will further subdivide A into
Dy ={t: 6_qa(z,t) > kcab_o(z,2)}
and

D, = {t L (7)< 6a(z,t) < Rea 5_0(1,2)} .
k
For t in D; we have_
d—a(z,t) > cakbo(z,2) > cakvi_o(z,y)

and, by (3.3), cok v > k_o and therefore we can apply Lemma 2.3 to
obtain

[ mildut < s (e [ 6727 @087 0 dutt).
D, D,

Now note that for ¢t in D,

(3.5) (1 - :0‘2') §_a(2,t) < ca fivabalt, 2).
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By (3.3), 1 — v_q4/cak > 0, and hence by (3.5) we obtain

/ Ll du(t) < ¢ _—L(_x__y_)_
Dy

§17(z,2)
To estimate [, |I1] du(t) observe that for ¢ in Dy, by (3.2),
vé_o(z,y) < b_a(z,z) < kb_o(z,t).

By (3.3) -4 < v/k, and therefore we can apply Lemma 2.3 to the
integral to get

111] < O’(x y) 1 < 6za(z7y) 1 .
- 5‘+°+7(7; t) 612%(t,2) ~ o”;’ﬂ(x,z) §12%(t, 2)

a

Since D2 is contained in the ball
B={t: é_4(t,z) < (keaCak + Kk_o)b_o(z,2)}

we get

[ miaun < [ midu < e Loley)
D, B

1+7( , )

Now we estimate integral in (3.4) on A°={t: k™! 6_q(z, 2)>6_a(z,1)}.
We divide this region into two subregions:

By ={t: é_q(z,t) < ké_s(z,y)},
By = A°\B, = {t Dk 6-—0(1'»3/) < 6—a(xvt) < %6—0($’Z)} :

We estimate first on B; :

1 1 1
/151 ’51_‘:“(.7:,75) <6é‘°’(t,z) B 5é—a(x,z))
3 1 ( 1 B 1 )’d,u(t)
8 (y,t) N6 (t,2) 64 (y,2)

1 1
S/ 5l+or(T t) ) 61 cv( ..,)

GO
1 1
~ du(t).
+/ (5”"(?1,0'5l ot 2) 53«"“(3/,2)' .

| du(t)
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Now observe that for ¢ in A° by (3.3) there are constants ¢,c¢’ > kq ,

1+1
kv
a V—a R

=z
Ca 1-—==

14

such that céa(z,t) < da(z,2) and ¢’ ba(y,t) < ba(y, z); therefore we
can apply Lemma 2.3 to the integrands of both terms to obtain, for the
first term:

1 cdl(t,z)
/. dut)

L 62ty 6é‘°+"($,z)

c 1
< du(t
— 6(1,_a+7(1,2) /Bl 61_;7+01(x’t) Fl( )
615°(z,y)

and for the second term:
1 cbl(t,y)
. a ) d t
/Bl 5T (v, 1) 0 " (y,2) ®)

. 1 1
T 6T (y,2) JB; 8178, y)

du(t),

where Bf = {t:6_4(y,t) < k_a(k+1)0_a(z,y)}.
Integrating and using the fact that

! (1 - ”“’) §_a(z,2) < b_a(y, 2),

Ko v

the last integral is majorized by

627 (z,y)
Tz, z)

Now we éstimate

)

1 ( 1 1 )
8te(z, ) \637°(t,2) 64 °(z,2)
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1 1 1
"0 s )| Y

1
- 61+u(17 t) 61+a(y,t)l
1
. du(t
§17°(t,z) 64~ °’(z )| u(t)
1 1

du(t)

+ / :
51+a(y’

=J1+4+J,.

%y, 2) 63,—"‘(.7:, z)

To estimate J; observe that ké_(z,y) < 6—q(z,t) and that

k

— ba(z,t) < ba(z, 2),
CQ’

therefore we apply Lemma 2.3 to both brackets in absolute value to

obtain
c8l4(z,y) _ 62(z,1)
B, 857 (,t) 62" (2, 2)

cély(z,y) 1
ar du(t).
S (2, 2) Js, 7o (1) PO

J; <

du(t)

Note that B, C {t: ké_q(z,y) < 6_oa(z,t)} then integrating over this
set we have that the last expression is majorized by

67 (z,y)
s (2, 2)

This concludes the proof of (1.14) with exponent n = v — a.

We will now prove the condition (1.15). Since § ~ §, it suffices
to prove condition (1.15) for é,, we will show that there are positive
constants ', M',n', 1 <v', 0 < M' and 0 < ' <1, such that if

(3.6) V' ba(z,y) < balz,2)

then ,
og (z,Y)

|K(z,2) - K(z,y)| < M’ S (2, 2)
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We choose ko < v' and k4 < k' such that

FJ2 K
3.7 - g [P
(37) > <1-

Let z,y,z be fixed points satisfying (3.6). To estimate |K(z,z) —
K(z,y)| observe first that

1 1

o (tx)  b6a(z,x)

1 1
_ du(t).
6a"%(t,y) * 53:,“’(2,11)’ #t)

K (2,2) — K(2,y)| < / L

X 51_-1;&(2, t)

(3.8)

To estimate we divide X into three regions:

A= {t: bo(z,t) < % min{&a(y,z),cSa(:r,z)}} ,

B= {t : —kl—, min{6a4(y, 2),8a(z,2)} < 8a(z,t) < k' 60(:1:,2)} ,

C={t: Kéa(z,2) < ba(z,1)}.

To estimate the integral on A we further subdivide A into two subre-
gions:

Ay = {t:ba(2,t) <K' balz,y)}, and A; = A\A, .
The integral over A, is less than or equal to

/ 1 1
A 51_—201 z,1)

Yo(tx)

1
n / :
Ay bl—-tya(z’t)

Note that for ¢t in A, k' 8,(z,t) < 8a(x,2) and k' 64(2,t) < ba(y, z) by
(3.7), ka < k'. Therefore we can apply Lemma 2.3 in both integrands.
The first term is majorized by

1 _ 1
8 %(z,y) 8 %(t,y)

dp(t).

c 1 01 %(z,y)
8X(t,2)du(t) € ¢ 2.
6z, ) [ mm w0 s 650 (z,)
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The second term is majorized by

¢ a “(z,9)
5é—a+7(zay) -//-h 51_-}(;0(2,0 57(2 t) dﬂ(t) <c 6];7:—-(-::—_;

since by (3.6) .
Ko ,
i —_— : < 4
(1 ~ ) ba(z,2) < baly, 2),

Ko

the last expression is less than or equal to

51-2(,9).
61+’V—c¥( )

C

The integral over A, is less than or equal to

1 1 1 ] "
/ 61t (z,t) 'cé “(t,z) é‘“(t,y)’d”(”
1 1

+ : — S—
_/:42 5}_10’(2,1) 5% “(z,y) ph (z,z)

and for ¢ in A,, by (3.7) there is a > &4,

du(t)

s Koy 1
yil— —_— =
\ .r’c") Ko ’

such that aé,(z,y) < éa(z,t) also by (3.6) v'éa(z,y) < 6a(z,2) and
by (3.7), ko < /' therefore we can apply Lemma 2.3 in both terms.
The first term is less than or equal to

1
6,y — duft
( } /2 (51_0,0 =z t) 51 CY-““/{,E t\ /‘L( )
63(s,9) ‘
<c¢ 2 du(t)
D ) T
because for ¢t in 4o,
dalz, 2) (J — —;—,— ) < Ko baft, ).
Now integrating over {t : §,(z,t) > &' 6,(z,y)} we get that the last
expression 1s majorized by
ba” (2, y)

c— .
5”7 Mz, z)
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The second term is less than or equal to

63(z,y) 1
6é+7—a(.’1},3) Az 62y+a(2,t)

dp(t).

Integrating as before over {t: é4(2,t) > k' 6o(z,y)} the last expression
is majorized by
ba"%(z,y)
6;"'7_0’(:1:,2) ’

The integral over B is less than or equal to

/ 1 1 1
B 61—201(27 t)

»(z,y) 6 %(z,z)

dp(t)

1 1 1
- du(t).
* /1; §1te(z,t) ;6é'°(t,x) &6 %(t,y) u(t)

To estimate the first integral observe that by (3.6) and (3.7) we can
apply Lemma 2.3 to the integrand, and majorize this integral by

og(z,y) [ _du(t)
52, 2) Jp 635 (2,1)

Now integrating over

{t: Sa(z,t) > L—l- min{éa(y,z),éa(m,z)}

and using
1

Fo

I
(1 - -l-j%) ba(z,2) < baly, 2)
we get that the last expression is majorized by

b3(z,y)
6 (z,2)

To estimate the second term we consider two regions
Dy =Bn{t: §4(t,z) < k' bo(z,y)} ,

and
Dy = BN {t: bat,x) >k balz,y)} .
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By (3.6) and (3.7) there are constants a; and az such that
a1 6a(2,y) < ba(z,7) < a2 6a(2,y),

therefore the integral over D is less than or equal to

c / du(t) + c / du(t)
§ate(z,2) Jp, &7 %(t,z)  65F%(z,z) Jp, 647 (t,y)

Since Dy C {t:6q(t,2) < k' 6o(z,y)} integrating over this ball we get
that the first term is majorized by c¢é8%(z,y)/657*(z,2). On the other
hand

Dy C{t: ba(t,y) < ko (k' +1)ba(z,y)} .

Therefore integrating over this ball the second integral is majorized by
cé%(z,y) /8Lt (z,z). For t in Dy, 6,(t,z) > k' é4(z,y), and therefore

we can apply Lemma 2.3 to the integrand, and majorize the integral by

du(t)
e .
U [,
On the other hand there is a3 > 0 such that a3 6,(z,2) < é4(z,1), and
therefore the last expression is less than or equal to
63(z,y) du(t)
bat%(z,z) Jp, 667 (z,t)

Now integrating over {t : 6,(t,2) > k' 6(z,y)} the last expression is ma-
jorized by
ez y)
6(1,+°(3:,z) )

Finally, we will estimate the integral over C. This integral is less than
or equal to

- t,y) l ()

1

/ 61_*;;‘(~, 151 “(t ) 6

/ é'[+a

For t in C by (3.6) and (3.7) there are constants a4, as

1
- du(t).
~’y) 6;——0 Z,CE)’ lu’()
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such that a4 64(z,y) < 8a(z,t) and 64(z,2) < a5 6q(z,t). Therefore we
can apply Lemma 2.3 to the integrand of the first term, and majorize
the integral by

du(t) 81(z,y) dp(t)
83(z, S ¢ irr—s,
coa( y)/c 6LFe (1, 2) 61T % (2,8) a1 (2, 2) Jo 65TO(2, 2)
62(z,y)
T8t (z,2)

By (3.6), v’ 6a(z,y) < balz, z), and by (3.7), ko < V', therefore we can
apply Lemma 2.3 to the integrand of the second term and majorize the
integral by

51(2,9) du(t) . _83z.y)
I+y—o I+a It ’
50 (.’13, z) C 60 (t,Z) 60’ (:E,Z)

To conclude the proof choose n’ to be a.

PRrRoOF OF THEOREM 1.4. To prove Theorem 1.4 we will use the "T'1
theorem” (see [Ch]), i.e. " A singular integral operator T is a Calderdn-
Zygmund operator if and only if

1) T is weakly bounded,
2) T1 € BMO,
3) 'T1 € BMO.”

We recall that an operator T : C] — (Cf)' is weakly bounded if
there exists a constant ¢ such that

(3.9) (T f,9)l < cu(BY 27 (| £llq llgll

for every f, g in C{(B) and for every ball B.

We will show that

1) T, is weakly bounded,
i) Te1=0,

i) 'T,1 =0,
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To prove i) we will show first the following estimate for f € Cj(B),
O0<n+a<y,
(3.10) 1Taflloo < cu(B)|| Iy -
Consider f € CJ(B), B = B,(z¢). Observe that

£ ()l o
1A < [ grle s dutw) < elllle (u(B)

Now

LA)(t) - (T f
y< [10ah) 5(}30 (,t) @) g

'Iaf(t) - Iaf(z)l
< / ey )

[T f(z

6(z,t)<r

[faf(t) ~ Lo f(2)]
61+a($ t)

+ du(t).

§(z,t)>r

To estimate the first integral we use the fact proved in Theorem 1.1
that [Iof(t) — Inf(2)| < c||f]ly 67+ (¢, ) then integrating this integral
we see that it is less than or equal to c||f||,(x(B))". For the second
integral we use the estimate for I, f obtained above and integrating we
obtain that this integral is less than or equal ¢ || f]|oo -

Note that for f € CJ(B), ||fllec < c||flly #(B)7; this concludes the

proof of (3.10). Let f and g be in C{'(B), then

(Taf, g)| < /B ITo £(2)] l9(2)] du(z)

S 1 Teflloo gl #(B)
<cu(B)T* 11, llgl,

The last inequality follows from (3.10) and the fact that g € CJ(B).
To prove ii) we observe that the extension of To to L N Lip(n)

coincides with the operator To = Dol,. Since, by Lemma 2.4, I,1=0

we have Tol = Tal = 0.
To prove iii) we use the following fact

(3.11) ‘To = InDa

which will be proved in Theorem 1.5. Now, since D,1 = 0 we have
'T.1 = 0. This concludes the proof of the Theorem.
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ProoF oF THEOREM 1.5. Let So = I, D, and consider f and g in
CP 0 < a+ <~ We want to show that

(3.12) (Taf,9) = (f,5a9) -

We will show first that for f € L* NLip(n),a<n<yandg€ C'(,H,
(3.13) (Daf,9) = (f, Dag) -

For every f € L® N Lip (n), note that

|f(t) = f(=)|
—FF—OT—)— d (t)

is bounded as a function of z and therefore

(Do) = [[ B2 @) dut) du)

Bt

because the double integral converges absolutely. Now rewrite this in-
tegral as follows

/ f(t)g(z) - f(=)9() du(t) du(z)

§L(z, t)
f(z)g(t) — f(z) 9(=)
/ e du(t)du(z).

The second integral converges absolutely since for g € C2(B,(zo))

lg(t) — g(=)I ¢
) =9 gy —— &
oty MY S T ()

and it is equal to (f, Dog). Since the second integral is absolutely con-
vergent so is the first one, and it is equal to zero because its integrand,
h(z,t), satisfies h(z,t) = —h(t, ).

Now consider f and g in C8. It was shown before (see Theorem
1.1 and (3.10)) that I, f € L*= N Lip (n), therefore

(Daluf,0) = 1ef,Des) = [ Daste) 6—% du(t) du(z)
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Since I,|f| € L™ and

c

|Dag(z)] < T 65 20)

the double integral converges absolutely and by Fubini’s theorem is
equal to (f,IoDqyg).

The fact that So = T, is a Calderén-Zygmund operator follows
from the fact that T, is a Calderén-Zygmund operator.

4. Lemmas needed for the proofs of Theorem 1.6
and Theorem 1.7

Lemma 4.1. The kernel q(z,y,t) defined in (1.16) has the following
properties

1) q(z,y,t) =q(y,z,t) for all z,y in X, and t > 0,

i) g(z,y,t) =0 1f 6(x,y) > b t,

iii) |¢(z,y,t)| < ca/t for allz,y in X and t >0,

. , 87(z,z") ;.
iv) lg(z,y,t) — g(z',y,t)| < cs T for all z,2',y in X and
t>0),

v) /q(x,z ) du(y) =0 forallz in X andt > 0.
Lemma 4.1 is the continuous version of known results [N2], [DJS].

Lemma 4.2. The integral operator Qy introduced in (1.17) satisfy the
following estimates

s\ '

1Q:Qsll < ¢ (;{)7 if 0<s<t,
=), if 0<t<s,
()

where the norm is the operator norm in L%, and c is a constant inde-
pendent of s and t.

From this result one obtains the next lemma.
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Lemma 4.3. For positive r,s,t define a function hy(s,r) as follows

min {0, (), 2
min{tV,(§>—7/2}, if §>1 and 0<t<1,
. / .

he(s,r) = i {t K (é)-7 2} ’ if
wnfen ()7 g

Then the operators @, introduced in (1.17 ) satisfy

<1 and 0<t<1,
he(s,r) =

<1 and t>1,

>1 andt>1.

Slw 3l

“Qtha(Qerr)* ” S h?(s, 7")

and

1(QsQ1s) QrQurll < hE(s,7).

Moreover, setting
e d
o(t) = sup / ha(s,r) &
] 0 r

one has the estimates

1
T 4 7 log = <
(4.1) (1) <c Y+t 1ogt, for 0<t<1,

1774+t Vlogt, for t > 1.

Lemmas 4.2 and 4.3 are continuous versions of known results, see e.g.

[DJS] and [N2].
Lemma 4.4. Let Q; be the operators defined by (1.17), and let f €

L?*(X), then for every set E of finite measure of the measure space

([0,00),dt/t) one has

| [a.ur S, <o

where ¢(t) is the quantity introduced in Lemma 4.3. Furthermore

ds

Wi = [ @QufS
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exists in the weak L? sense and satisfies

(4.2) IWefllz < e(@) 11 fll2 -

This result follows from Lemma 4.3 and the continuous version of
the Cotlar-Iinapp-Stein Lemma, see [CV] and [F].
5. Proofs of Theorems 1.6 and 1.7.
PrROOF OF THEOREM 1.6. To prove (1.19) observe that for f €

Lip (B)N L! the integral (1.10) converges absolutely for every z, there-
fore using (1.8) we have

alfz)=a [ | e s(eyt)dt () duly)
X Jo

and the double integral converges absolutely for every z. Then by
changing the order of integration we obtain

(5.1) al,f(z) = a/:ota-l w(z,t) dt,
where
(5.2) w(at)= [ s@u.t) f(u) duty).
Since

o

d
5 5(2,0,8) =

and ¢(x,y,t) has the properties ii) and iii) of Lemma 4.1, we can dif-
ferentiate with respect to ¢ under the integral sign of (5.2) to get
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Now integrating the integral in (5.1) by parts, using (5.3) and the fact
that f € Lip (8) N L' we obtain

b
alyf(z)= Iir.r%) a/ t*~u(z,t) dt
ba:oo a

il

. - _ b dt
h_n})(t“ u(z,t)]s) — hn%) t v(r,t)—t—

b—roo b-—00
o d
- [ Ten@ T

To prove (1.20) observe that for f € Lip(f8) N L™ the integral (1.9)
converges absolutely for every z, therefore using (1.8) we have

—aDof(z)==a | [ s(en ) (S0) - fl2))duty)

and the double integral converges absolutely. Then by changing the
order of integration we have

(8.5) - aDyf(z) = —a /00 t7 (u{z, t) — f(x))dt.
0

Now integrating the integral in (5.5) by parts, using (5.3), and the fact
that f € Lip(f)N L™, a < 8 < ~, we obtain

)

b
—a D, f{z)= lim —a/ t7o (u(z,t) — f(z))dt

he=cO a

o Y LS dt
= lim (7% (u(z,t) — f(&))]e) - Bm [ t7%v(z,t)—

lﬁ 0 ’ a-—-—vﬁdf ) t

—_—
00 b—+00

(o #]
= [ e U

dt
Jo t

The fact that representation formulas hold in the weak sense, i.e. that

& £

b
dt
fim | (O f, o) — = (alf
&1—1—0 /a ' (Qtf’(ro> A (Q IAf,(PO)

b-—co

and

b 1t
lim / 1A (OF) ) it— = —{aDqyf, )
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for all ¢ € Cf, 0 < u < 7, follows from observing that the double

integrals
oo d
/o /\ t* Quf(z) o() du(z) tt

[ [rees@e@ e,

are absolutely convergent.
This concludes the proof of Theorem 1.6.

and

PROOF OF THEOREM 1.7. The proof of Theorem 1.7 is a continuous
version of the method of Nahmod [N2].
We first show that for 0 < & < « the integral

(5.6) [ er@enn S

converges absolutely for f and g in L?(X). We make the following
change of variables in (5.6)

and obtain

(5.7) [ @auig 2.

v

By Cotlar’s lemma (Lemma 4.3) it can be seen that

| 1@u@uut. ) 5 < 4 51 Nl

where ¢(v) is the constant of Lemma 8. Using the estimates (4.1) for
c(v) one sees that (5.7), and therefore (5.6) are absolutely convergent.

We will show next that for f € Cg, geCl where0 < a+ <7,
and 0 < p < 7, (5.6) is equal to —a? (To f,g) for 0 < a < v, and equal
to (f,g) fora=0.

In other words

(5.8) f=/0°°/0°°Q,stis-ilf
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and
ot [ [T e aoi
(5.9) ch,,f-/O/0 £ Q.Quf

where the integrals are in the weak L? sense. The equality (5.8) is a well
known formula of Coifman, see [C]. Let, then, f € Cg", O<a+pf<¥y
and g € C§, 0 < pu < 7. Since (5.6) is absolutely convergent it can be
written as an iterated integral

®»
|
)

o~ N~ ®
c\.
°5 ’5
Q
=
O
]
«Q
S~
v
O’I%"’I%‘

Il
Q
O\é

(@l ) E

—a( [TsaumnT)

= —a? (Dolaf,9g)

= -0’2 (To'fag) .
The above chain of equalities is easily justified by using the properties
of the kernel ¢(z,y,t) and Theorem 1.6. For @ = 0 the calculation is
quite similar except for the fact that instead of Theorem 1.6 one uses
the known identity

* dt
QfS =1
0

Letnow0<a, f € Cf, a + f < 5. Using that (5.6) and (5.7) are the
same we can write

(I+a’Ty)f =/°°(1 Y
0 v
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where 1V, is the operator defined in Lemma 4.4. Applying the cstimate
(4.2) we obtain

1T+ 6 To)fll < / 11— 0% c(w) 2 £l
0 v

To estimate the last integral we write it as the sum

1/N
|- 2

N
d
+/ |1—v°]c(v)7v

1/N

o d
+/ ‘I_Ualc(v)'_v=11+12+13-
N v

Using the estimate (4.1) for ¢(v) we can find N = Nj sufficiently large
so that I; and I3 are less than 1/4 uniformly with respect to a with «
in (0,'] for a fixed 4’ less than . Having chosen Ny we can find an aq
such that for 0 < a < ag, I is less than 1/2. Therefore ||I+a? Ty|| < 1,
and hence —a? T, is invertible and therefore so is T .
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