REVISTA MATEMATICA IBEROAMERICANA
VoL. 12, N.° 1, 1996

The heat kernel on Lie groups

N. Th. Varopoulos

0. Introduction.
0.1. Background: Lie groups.

In this paper G will denote a real connected amenable Lie group;
N C @ C G will denote the radical and the nilradical. Amenability
on G is equivalent to the fact that the (semisimple) group G/Q = S
is compact. The group S can then be identified locally to some closed
subgroup of G (a Levi subgroup).

If G is simply connected then all the groups N,Q, S are simply
connected and G = QAS is a semidirect product. We shall suppose
throughout until the final section that G is simply connected. The
choice of S is not unique but G/N = Q/N x S where the product
is now direct (and not just semidirect ¢f. [1]) and Q/N = V(= R?)
furthermore S identified to a subgroup of G/N is then unique. Indeed
if r : G/IN — Q/N = R® is the projection that we obtain from
such an identification then 7(S;) = {0} for any other subgroup S;
that is either compact or semisimple. Let now A = — ZXJZ be some
subelliptic left invariant “Laplacian” on G ,i.e., Xi,..., X, are left
invariant vector fields (z.e., (X f), = X fy; fy(z) = f(gz)) that satisfy
the Hormander condition and generate together with all their brackets
the tangent space on G (¢f. [2]). Using the natural (uniquely defined!)
projections

(0.1) G—VxS§S—V
we can define A an elliptic operator V' by projecting A on V. There

exists therefore one and only one (up to orthogonal transformation)
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148 N. TH. VAROPOULOS
choice of coordinates V' = R* (in other words the corresponding scalar
product on V is uniquely defined!) for which

2

(0.2) A=-3%" o

i=1

I shall denote by (-,-)a = (-, ) the above well determined scalar
product on V.

If we make the additional assumption that the Lie algebra g of G
is algebraic (or equivalently that G coincides locally with an algebraic
group) then the structure of G simplifies further since we can then find
R®* =V C @ such that @ = NAV, and S an appropriate Levi subgroup,
such that V and S commute (¢f. [3]). We have thus a representation

(0.3) . G=NXVxS5).

This is the model that the reader should keep in mind in what follows.
We shall explain the correct substitute of (0.3) for the general (i.e. not
necessarily algebraic) groups.

0.2. Background: The heat diffusion semigroup and kernel.

The notations are as in Section 0.1. I shall denote by T; = e~ *4

the heat diffusion semigroup generated by A and I shall also denote by
dg=dg, dg=dg™", m(g)=d"g/dg

the left and right Haar measure on G and the modular function. I shall
also denote by

T, =m?T,m™'/? = exp(—t[l) = exp(—t ml/zAm—l/Z), t>0.

The semigroup T (respectively ’f’,) is symmetric with respect to d"g (re-
spectively dg). I shall denote by ¢,(g) (respectively 1:(g)) the convolu-
tion kernel of T} (respectively Tt) with respect to dg and by u: € P(G)
the corresponding convolution measures:

T f(z) = / bo(y™"7) f(y)dy = f * () = / Fay™) duey),

Tof(z) = /d’:(y‘lm)f(y)dy z€G, 150, feCP(G),
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where

polg) = m2(g) $(g) = Ye(g7?)

and

dui(g) = du(g™") = ¢u(g) d"g = m(g) ¢:(g) dg
=m!%(g)y(g)dg = m™/%(g) Yy(g)d"g .

The semigroup Ty defines a diffusion on G: 2 = {2(t) € G: t > 0}
and for the corresponding probabilities on the path space Q we denote
as usual

P.(z(t) € dy) = Pi(z,dy) = P(z2(t) e dy : 2(0) = z)

and we have

T.f(z) = / f(v) Pi(z, dy).

We therefore have

dpi(g) = du(g™") = Pi(e, dg) .

0.3. The disintegration of the Haar measure and the L?-norms.

If we use the projection G — G/N = A =V x § we can disinte-
grate the Haar measure

[r@as= [ ([ fnayn) da

this we shall summarise by saying

g=na, dg=dnda, n€N, a€A,

[rarag= [ ([ sean)an) da,

where g = an,dg =dnda,n € N,anda € A.
The notations in the above integrals are of course clear enough
but somewhat abusive. Indeed A cannot necessarily be identified to a

similarly
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subgroup of G but there is always some section A — G (of G — A)
(¢f. [4]) and this identifies A as a subset of G. (In fact the above
iterated integrals make obvious sense even without the existence of the
above section (cf. [5])). We shall now fix A C G such a section and
express the diffusion

Q={z(t)=n(t)a(t): t>0}, n(t)eN,a(t)e A, t>0.
Qg ={a(t)ec A: t>0}.

Q 4 corresponds to the path space of the diffusion on A =V x S gener-
ated by A4 the imageof Aby G — G/N = A.

Let us denote by G} (z) (z € A) the convolution kernel of e
on A. Here the notation G{# has been deliberately chosen to invoque
the Gaussian functions:

—tA 4

2
exp(——l—le), reR*, t>0.

GH(=) = tgmeyeT

because when S = {e} reduces to the identity we have G = G¢. The
case S = {e} is the model that the reader should keep in mind.
The reader should also keep in mind that we always have

/ G (z,s)ds = Gi(z), zeV =R?,
s

this by the standard local Harnack estimate gives

(0.4) CTIGy(2) £ G{(z,8) S C Gy (2),
for all t > 10, and (z,s) € V x S§. With the above notations we have
(0.5) éi(na)dn = P.(n(t) € dn: a(t) = a)G{(a).

The above disintegration allows us now to write the following for-
mulaes:

IElE_, = lbell? = / WP (g)dg = / W(g)d"g
- / ¥2(g)mig) dg = / W(g)m™ (g)d"g

=Ad:c/N¢{’(xn)dn=/Adm/;[d;”(nx)dn

=Ad.1- nz(x)A¢f(zn)dn=//4d:c m_l(z)/N?ﬁp(n:r)dn,
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nxr n=mc tlTn n = tAz,
[ #utnaydn = m(a) [ dam) dn = G1(2)
/#ﬂn@dn:nf“@ﬂGﬁ@), /d%x@dn:nn”ﬂ@ﬁGf@y

here and throughout we denote by || - ||, the norm in L?(G;dg) and
for any operator we denote by || - ||,—¢ the norm in LP(G;dg) —
L4(G; dg).

0.4. The roots and the modular function.

Let n C q C g be the Lie algebra of G, its radical and its nilradical.
We have of course g/n = (q/n) xs where s is the Lie algebra of S. The
ad action on g induces

p1(q) *
adncq = . , g€q.
0 pn(q)

linear endomorphisms on n¢ = n @ C the complexified of n which for
an appropriate basis of n¢ can be simultaneously triangulated for every
g € q (Lie’s theorem, cf. [1], [6], c¢f. also [7] where the above roots
are systematically examined from a point of view that is adapted to
our needs). We can identify p; € Homg(q;C) and we shall denote
L; =Repj € q* = Homg(q;R), ( =1,...,n). It is clear that pj|n =0
and therefore p; € Homg(q/n;C).

The space g/n can be canonically identified with V = Q/N and
therefore we can identify the p;’s with functions on V x S and therefore
also on G. (What is more natural is to identify the e? ’s with functions
on G).

The definition of ad that we have adopted above is the differential
at the identity of Ad: G — GL(g). And

Ad(g) = dyI,(M)|h=e, I,:G— G, I,(h)=h%=ghg™?,

in terms of the roots we have then

eP1() *

Ad(Q)]ne = . ,  9€Q.
0 ePn(q)
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Indeed this clearly holds when ¢ € Exp (q) and therefore also for all q.
An elementary verificati on that has to be carried out by the reader
shows therefore that with the above identifications we have:

exp (3 i) =exp (Y Lig)) =mlg), g€G.
We shall finally recall the following.

Definition. We shall say that the group G 1s NC-(respectively WNC)
if there exists z € V such that Lj(z) > 0 for all L; #0, 5 =1,...,n
(respectively, Li(z) 20,5 =1,...,n, 5 Lij(z) > 0). When G is semi-
simple or {0} and the roots are not defined we say that G is NC but not
WNC.

The C-condition was first introduced in [8] (C stands there for
“condition”. I guess I should have called it the V condition, now is too
late to do anything about it). NC-stands for Non-C, WNC stands for
weak NC which is slightly abusive. Observe that if we suppose that
the L;’s span V*, the negation of WNC is that for every 0 # z € V
there exist 1 < j, k < n such that Lj(z) < 0, Lg(z) > 0. A unimodular
group is NC if and only if L; =0 (j = 1,2,... ,n) and such a group is
not WNC.

0.5. The main estimate.

The upper estimate. All the notations are as before. We have for
the supremum on n € N over each fiber:

sup ¢,(nz) = sup ¢s(z2n)

neN n

(0.6)
< C. exp (“ ZLf(f)) Gé+s)t($)7

for all
t>t,, re€G/IN=A=V xS,

and where we denote as usual r* = sup{r,0}, r~ = inf{r, 0}, (» € R)
and where 0 < € < 1 is arbitrary and C,, t. > 0 depends on ¢.
Equivalently the above estimates can be formulated in terms of 1;:

sup ¢¢(nz) = sup Py (zn)

(0.7)
< oo (=3 L@ ) Claun(o).
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This estimate together with (0.5) implies at once

([ermayan)'”

(0.8) 1
<Ceowp((1-7) (= L5 ®))Chsan=)
and
09) /z/)f(n:c) dn < C, exp ((1; ‘-g-) ZL;’-@:)
+£ 3 1;@)) (Ghaanta)r,
P(azn)dn . exp (— e T(z
(0.10) /M‘ <ol 2 :2-’33*( )
+(2-1) XL @) Chrad@)y,
for all

t>t,, t€A=V xS, 1<p<+4co.

If we integrate the above on A (with respect to dz) we obtain at once
upper estimates of ||1)¢]|, . Observe also that because of (0.4) we can
replace G{!(-) by the standard Gaussian on V.

The lower estimate. The most convenient way to express the lower
estimate is through probabilistic language. We shall show that for all
z € V and all t > 10 there exists P C N some subset (that depends on
z and t) such that:

Vol. = Haar-mesy(P)

(0.11) |zl
< C exp (ctl/3 + C.—\/—Z + ZLT(::)) ,
(0.12) Pr. = P(z(t) € P x B;) 2 C exp(—ct'/*) Gi(x),

where B, = {y € V: |z —y|] £ 1} xS C A and where A has been
identified to some fixed section of G — G /N as in Section 0.3.
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The above estimate gives of course information about the rapidity
with which the mass goes to infinity under the diffusion {z(t) : t > 0}.
An obvious application of Holder’s estimate gives at once

1/
Pr. < (/ ¢?(nz)dn da;) P(Vol)1=P | 1< p < 4oo.
NxB,

This together with the local Harnack estimate gives

([ sremyan)™
> Ceexp (=t = (1= ) T L1}()) G (),

foralll <p<+400,t>10,0<e<l,andy=(z,0) €V x S.

It follows in particular that up to a factor ect!/? (which in view
of [4], [9] is perfectly natural) the upper and lower estimates that we
have given are sharp.

(0.13)

NC-lower estimates. If we make the additional assumption that the
group G is NC we can make a substantial improvement in the above
lower estimates! In that case we can replace the factors exp(£ct!/?) in
the right hand side of (0.11) and (0.12) by the polynomial factors t*¢
respectively. This allows us to improve the estimate (0.13) and obtain

1/p 1
(/ ¢"(ny) dn) > Cet™“exp ( - (1 - 5) ZL;—(:’:)> Gl(ll—e)t
N :
with the same notations as in (0.13).
An analogous refinement that rcfers to the upper estimate holds
for C-groups (cf. end of Section 1.2).
0.6. The Hardy-Littlewood theory.
The first thing to observe is that
1 N
litm inf 7 log || T]|p—q = 0, 1<p,g<+o0.

Let us consider the spectral decomposition of T, in L*(G;dg):

T, =/ e MdE, .
0
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By the amenability of G it follows that for all A > 0 there exists ¢ € C§°
such that (Exg, ) > ¢ > 0 and therefore (Typ, @) > ce™ (t > 0).
We have, on the other hand,

ITillp—g =0(1), 1<p<2<g< oo,

This is casy and was pointed out in [10] (¢f. (4.1) below). Let us
consider

. 1 ~ . 1
{(q) = limsup — log ||T¢||1—4 = limsup = log||¢:]|,
t—oo t t—o0o t

which is a convex function of 1/¢ € [0,1] and identically 0 for ¢ €
[2, +00]. It follows that ¢(q) is continuous for ¢ € (1, +o0] and in fact it
is also continuous for ¢ = 1. This last point is of course a consequence
of the explicit formulaes given below but can also be seen in a more
“abstract” way. Indeed by the “general” Gaussian estimates for ¢, we
see that ¢(¢g) = limsup(1/t)log ||1:||, can be defined and is finite and
convex in ¢ for all ¢ € (0, 4oc0]. The continuity follows. At any rate the
estimates of Section 0.5 allows us to obtain the following more precise
information.

Theorem 1. Let Ly,...,L, € V* = (q/n)* be the real parts of the
roots as in Section 0.4 and let (-, -) the scalar product on V = q/n
defined in Section 0.4. We have then

{(p)
(0.14) Jim % log/vexp ((1—1) - é) 3 Li(z)
1 _ |z|?
+§ZLj (:c)—-E)dr

In(0.14) |-|*> = (-, -) denotes of course the corresponding euclidean
norm on V. We choose to set V' = q/n rather than Q /N because formu-
lated like this the theorem makes sense even for non simply connected
groups. The point is that the above theorem holds as stated for general,
not necessarily simply connected, groups. An explicit formula for the
limit (0.14) can also be given by an elementary computation.

What is significant is the first point where ¢(q) vanishes:

1
Jim — log ||,

L=inf{qg>1: l(¢g)=0} <2.
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We have L = 1 if and only if G is unimodular. To see this we can either
use our theorem or we can use the value of ||T,||;—; (¢f. Theorem 2.iv)
and [10]) and the continuity of £(g).

An important consequence of the theorem is the following:

Theorem 2. Let G, T; and L be as above. Then

1) The constant 1 < L < 2 depends only on G and i3 in particular
independent of the particular choice of A.

11) We have L =1 if and only if G 1s unimodular. We have L =2
if and only if G 1s WNC.

i) If G is not WNC, for every 1 < p < 2 there ezists p < ¢ < 2
such that

1Tellp—q = O(1).

iv) For any group and any 1 < p < 400 we have

. 1 1y2,
I T¢llp—p = exp (t (5 - ;) P ) )
where p? 1s defined by Am = —p*m. If G is WNC we have

1. 1 142
hm-t-log”Tt”P_.q=(3—E) 2, 1<p<q<2.

v) Conversely if G is non unimodular and if
1 ~ 1 1,2
(0.15) lim sup — log | Tellp—g > (- - -) p?
t 2 gq
for some 1 <p < g <2 then G 1s a WNC group.

Once more the above theorem holds for general, not necessarily
simply connected groups.

The main problem of Hardy-Littlewood theory in the above context
is to find all the combinations @ € C, Re a > 0 for which the following
mapping

A-el?: [7(G;dg) — L9(G; dg),

(0.16) . oo .
A—el? = co,/ t2/2-1 7, dt
0
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is bounded. From our previous results on 7} we can obtain some partial
but significant information in that direction. First of all, the operator

(0.17) A=el? = ca/ #1214t >0, a>0,
0

is positive and therefore A"‘”/?f is defined (possibly +o0) for every
f > 0. We have then

Corollary 1. If G 15 a WNC-group then HA—"/ZHP_.(, = +o00 for every
1<p<q¢<2 a>0.

The notation || - ||,—q = +o0 is abusive but in view of (0.17) it
has an obvious meaning. This corollary says that the mapping (0.16)
cannot be bounded unless we cross the L?- level. What happens for
1 <p <2< q< +o0isin general an open question. Partial results
can be found in {10], [11], [12], [13].

The above corollary essentially characterises WNC groups. Recall
that quite generally there exists § = 1,2,... such that ¥,(e) ~ t~%/2
(t — 0). We have then

Corollary 2. Assume that G is neither a NC nor ¢ WNC group,
and let 1 < p < 2. Then there ezists p < L(p) < 2 such that for all

q €]L(p), +o0] we have

[T ellp—q = o(e™""*

), as t— o0,
for some ¢ > 0. Furthermore if 1 < p < L(p) < ¢ < +oo the mapping
(0.16) is bounded if -and only of 1/p —1/qg < Rea/é.

1. The upper estimate.
1.1. The general set up.

Let G be a simply connected Lie group, let N C @ C G be the
radical and nilradical, let H = Z(N) C N be the center of N, let also
a : G — G/H be the canonical projection. Let us also recall that
G/N 2V x S where V 2 R™ and S is semisimple (and compact if
G is amenable). In this section I shall rely very heavily on the ideas
the methods and even the notations introduced in [8] (e.g., I shall set
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V = R™ rather than R®) and there is no way at all that the reader can
read this section without constantly refering back to [8].

The crucial thing is that (cf. [8, Section 1] where the notations are
the same as above) G/H acts by inner automorphisms on H because H
is abelian. Furthermore the estimates of [8, Section 1] hold. The extra
“twist” for us refers to [8, Section 2]: H being central in N it follows
that the above action of G/H — GL(H) is trivial on N/H so that we
can factorise this action by

G/HSG/N =V x S — GL(H).

Furthermore the estimates on the determinants given in [8, Section 2]
apply. We then move on to [8, Section 3] to observe that everything
applies verbatim here except that G/H 2 V x S and therefore in the
last few lines [8, Section 3] we have to define

An(Li) = 15i1}£n exp (c|gj[§;/H — Li(b;)),
(bj,0;) =7(s;) €V xS, 1=1,2,...,p.

To simplify notations I have droped here and in what follows the cofac-
tor d; (the dimension of the corresponding root space). Ishall denote by
Ly,..., L, the real parts of the roots of the action of G/H and identify
them with a subset of the real parts of the roots of G.

With all the other notations being as in [8, Section 3] the estimate
(3.3) of [8] therefore holds in our setting and if we follow closely [8,
Section 3] we see that for every r € G/H we have

( sup @n(g)) dr < CE(An(L1)- - An(Lp); 26 u(n) € dr)
(11) s€at(r)
= CE(An(Ly) - An(Ly) I{zg u(n) € dr}),

where n > 1. Thisis an inequality between two measures on GG/H where
{zg/n(t) € G/H : t > 0} is the diffusion naturally induced on G/H
by our laplacian A. The next step is to project 7(r) = (z,0) € V x I
and to distinguish two cases:

Casei): The z € G/H (cf. (0.6)) is such that Li(z) < 0.

In the infimum that defines A,(L;) we then set j = 1 and obtain

An(Li) < C exp(clg1]* + clg1]) < C exp(2¢|g1|*).
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Case ii): Li(z) > 0.
In the infimum that defines A,(L;) we then set j = n and obtain

An(Li) < C exp(clgnl* = L} (2)), bp==c.

For b, = z we can therefore estimate the right hand side of (1.1)
by

exp | — Li(z)

(1.2) ( 2 ) ) i
~E(exp(2¢p(lg1lG/n + 9nleyn) 26/n(n) € dr),

for1=1,2,...,p.

In the case when H = N (which is the case considered in [8]) the
above estimate simplifies since, S being compact, we can replace

l9ile/u = | X;lv . (X;,6;)=m(g;) €V xS.

In general however this is not possible.

When H = N the above estimate allows us to conclude very easily.
Indeed we have then dr = dz do and if we use the local Harnack estimate
on the left hand side of (1.1) we see that since S is compact, by replacing
n by n —1, and with a(g) =r = (z,0) € V x S (g € GG), we have

bnr(9)dz < Cexp (= 3 LF(2))
-E(exp2cp (|X1[* + [Xa]?); b(n) € dz),
for n > 1. (The notations are of course as in [8, Section 4] and we use
interchangeably b; = b(j) (7 = 1,2,...) which is Brownian motion at

times t = 1,2,...). The coeflicient of dx in the above expectation is
equal to (m = dim V)

(13) = [[exp ((2pe=3) (el + i) - ’—g(—(j;,—j’—'—) de ds

A direct computation on the Gaussian shows that the double integral

1S (()“l[)a]al)]e .0
( I1‘4l (711 7al ))
Xp ,2
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Alternatively Peter-Paul gives:

|z —(E+ ) 2 |z + |€ +<|* — o 2> — 5" [€ +¢]?
=(1-eo)lzP+ (1 —ex ") € +]?, 0<e k1,

which means that we can estimate (1.3) by

cgn""‘/zexp(——l'—rl—z—). n2zn..
(44+¢)n/’ =

-Provided of course that the ¢ appearing in the exponential (1.2) can
be taken small enough. As explained in [8] this is always possible, but
highly non trivial to see. For that reason an alternative method towards
estimating expressions as above was given in [7] and no assumption as
to the smallness of ¢ > 0 was needed in that alternative method. The
same thing applies here, but to avoid diverting the argument, we shall
not give the details. With the help of [7] (or/and Section 1.4 further
down) the reader can work this out for himself if he so wishes.

1.2. The inductive step.
Let G, N be as before (simply connected) and let:
H=Z(N)=N:CNt1C---CNy=N

a central series of N so that H is the center of N. The upper estimates
will be proved by induction on k. The case ¥ = 0 was dealt with in
Section 1.1. What we shall do here is to prove the inductive step and
show that if the estimate (0.6) holds for the group G/H, where the k is
one unit lower, it also hold for G. The issue is clearly to estimate the
expectation E(---) that appears in (1.2). We shall change slightly the
notations and write this expectation in the form

(1.4) E(exp(c(lg1]® +1gnl*)) = 9192+~ gn € dr),

~.wherenow g1,...,g;, -+ € G/H are independent, equidistributed, G/H

valued, random variables with distribution ,ulG/ H(-) the heat diffu-
sion convolution measure on G/H at time = 1 (¢f. Section 0.2) (the
g192 - -+ gn in the expectation is of course a group product) using this
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formulation and the fact that u:(g) = p(¢7!) it is clear that (1.4) is
equal to

X ¢ 2 : o e
(1.5) /-A!£EG/H E(exp(c(l]* +1¢1*) s g2+~ gn—1 € €dr()
-P(g1 € d§) P(gn € d().

If we use the inductive hypothesis which ensures that the estimate (0.6)
holds for the group G/H we see that we can estimate the expectation
inside the integral as follows

E(--) < Ceexp (c(1€l5m + K15/m)

(1.6) . Im (£r Q)%
=Y LF(r¢) - =Y
2

O iy,

where 7 : G/H — V is the canonical projection (as in Section 1.1)
and l~}]~ are the real parts of the roots of G/H. What is important is
to note that each L; factors through 7 and is additive. We can thus
absorb the J:Jj'(f), ij(() with the ¢ (|€]2+]¢|?) and therefore, if we bear
in mind that |g|g;g > C |7(g)|v we can estimate the coefficient of d'r
in (1.6) by

2 —7(E) — 7 (C)I?
exp(—ZLj(l‘)+c(l€|2+|Cl2)_[I (i€l€)7z(f)|v),

where z = 7(r). Peter-Paul is used as in (1.3) and it yields the estimate

2‘ ~
exp ( - E4l—j§)—; - ZL;’(l‘)) exp (C(KIZG/H + lq?_}‘/H)) )

provided that n is large enough (depending on €). The ¢ in (1.6) can
again be chosen in advance and as small as we like. We shall insert this
estimate in (1.5) and use the Gaussian decay of P(g; € df) on G/H
(and not just on V'), ¢f. [11]. If we use the estimate in (1.2) and bear in
mind that the real parts of the roots Ly,..., L, of the action of G/H on
H (cf. Section 4.1) together with the root Li1,L,,... make up for all the
roots of G we see that the inductive step follows. A slightly more subtle
computation gives as before the estimate exp(—|z|?(1/n — ¢/n?)/4) for
the Gaussian contribution (instead of exp(—|z|?/(4 + ¢)n)).
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1.3. An alternative approach.

In this section I shall explain how we can simplify considerably the
proof of the upper estimate if we are prepared to loose a little at the
end result.

Let X C G be some compact subset and let

Y=oX)CG/H, Z=BX)CV,

where [ is the composed mapping §: G — G/N =V x K — V.
Then (¢f. (1.2)) there exists C'= Cx such that

(1.7) P(z(n)€ X)<C iggexp(-ZLj(x))T
(1.8) T =T(c)=E(exp(c l911% + clgal%); a(z(n)) € Y),

where the expectation in (1.8) refers to diffusion on G and where we
have replaced |a(g)|c/u by |g9|c which is larger. The c’s appearing in
the exponential of (1.8) can again be assumed as small as we like. We
can now use Holder to estimate T(c). Indeed for a given p > 1 if ¢
is sufficiently small we have E(exp(pc(|g1|% + |9a]%)) < +oo by the
Gaussian estimate (on G) of the g;’s (¢f. [7]). It follows that we can
replace T in (1.7) by

T* = (P(a(z(n) € Y))/1,

where 1/p 4+ 1/q = 1 are conjugate indices.

The estimate (1.7) becomes thus an inductive step that reduced the
estimate of Pg(z(n) € X) to the estimate of Pg/y(a(z(n)) € a(X))
with an arbitrary small loss at the exponent: 1/g. We shall then set
X = “dg” = “an appropiate small element”, as in Section 1.1 and
we shall examine the dependence of Cx on X. The details of this
computation are not trivial but they will not be given here; they can
be found in [17].

The end result of the above induction is our upper estimate in
Section 0.5 with the L;’s replaced by (1 —¢) L;’s for an arbitrary € > 0.
With this approach however we obtain the estimate for ¢t > 1 and not
only for t > ty(¢). For all practical purposes this estimate is as good as
the one we have in Section 0.5.
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1.4. A general overview of upper estimates.
First of all by the definition (¢f. Section 1.1) we have
(1.9) An(Li) £ B - D, - Co(Li), 1=1,2,...,p.
where

Cn(Li) = lsil}i;nexp(—lli(bj)),

B, =exp( sup ¢ inf .12
" : (lsrgn (kr5j<(k+1)r|g’|6))’

D, =exp(Cr sup |gjlc)-
1<5<n

A few comments are in order: the ¢ that appears in the definition of B,
is the same as the one in the definition of A,(L;) but in the estimates
that follow I shall not assume that it can be chosen as small as we like.
The r in the definition of B is a new parameter and will be chosen later.
To see (1.9) one simply samples the j in the infimum over 1 < j <non
the succesive blocks [kr,(k + 1)r) so as to pick up the inf |¢g;|% in that
block. Then one makes the appropriate correction bearing in mind that
6 = bj-1lv < Clgjlc -

Let X,Y, Z and the other notations be as in Section 1.3 and let us
condition with respect to the projected path on V

B={B(z(j))=bjeV:1<j<n}CV".

For the corresponding conditional expectations, going back to [8, Sec-
tion 3] and by the same reasoning as in sections 1.1 and 1.3, we obtain

P(z¢(n) € X |B) < Cx E(BYDS; zg/u(n) €Y | )
(1.10) T CalL) Ib(n) € 2),

where the product []; in the right hand side is taken as before over
the roots of the action of G/H on H (as in Section 1.1). This product
factors out since it only depends on B. I(---) is the indicator function.
Using Holder we can estimate the conditional expectation E( - | 8)
by
E(BSP | ) /P E(D? | B)Y/P (P(26/u(n) € Y | )7,
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where 2/p+1/q = 1 and where clearly the ¢ can be made as close to 1 as
we like provided that p is large enough. It follows that (1.10) can be used
as a recurrence formula that allows us to estimate P(zg(n) € X | ) in
terms of P(2g/n(n) € a(X)|pB) with a small error (1/¢g < 1,1/¢ ~ 1)
in the exponent.

If we repeat this procedure we finally see that we can estimate the
left hand side of (1.10) by

I(b(n) € Z) ch((l - si)Li)(HE(BS‘pQ lé)l/l’a E(DSPO Iﬁ)l/pa) ,

where the 0 < €; <€ 1 can be made arbitrarily small and the p,’s are
appropriately large and where all the roots of G are now involved in
the first product. We shall integrate the above estimate over the path
space and use Holder once more.

It follows that we can estimate

(1.11) P(ZG('7’L) € X) <Cyx HIEH (C’n((l — Uz)L;)I(b(n) € Z))1—6; ’

where 0 < 7;,6; < 1 can be made arbitrarily small and where the
cofactor § is some product of (E(BZ))? and (E(D}))? for various values
of a, B, v, 6§ > 0. The cofactor 8 admits a polynomial bound. Indeed
we have:

(1.12) E(BS), E(DS) = 0(n?).

This is clear for D, by the (non trivial ¢f. [11]) Gaussian estimate that
we have for the g;’s on G

(1.13) P(lgjlc > A) < Cexp(—co A?)
for some fixed but positive ¢y > 0. This implies

P( sup |gj| > A) < Cnexp(—Co A?).

1<j<n
The estimate (1.13) gives also

P inf 1% = (e > A) < CTexp(—cor A r=1,2,...
(kr5j1<n(k+])r|ngG CL )_ ekp( T )7 > )
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and therefore:

P( sup &> X)) <nCTexp(—corA).
1<k<n

If r is large enough we can clearly “absorb” any exponent M in E(BM)
and (1.12) follows for B,, .

The final “move” in this general approach is to examine the prin-
cipal term [[;(+--)I[---] in the right hand side of (1.11), which is a
Brownian functional and which can therefore be estimated by purely
probabilistic (Brownian or random-walks) methods. Two cases have
been examined in details

1) X is some neighbourhood of 0 in G and the linear functionals
satisfy the C-condition. This was done in [8] and the estimate obtained

there is O(e'c””3 )

2) Z is some neighbourhood of # € V', some point "far out” on V.
This is what was done in this paper.

It is of course possible to incorporate the C-condition in the case
2) and obtain an extra factor e=<t"" in front of the upper estimates of

Section 0. The details will be left to the interested reader.
2. Dilation structure on a Lie algebra.
2.1. Algebraic considerations.

Let A' € GL(V) (-=00 < t < +00) be a one parameter group of
automorphisms of the real vector space V(= R®, a > 1). Let V¢ =
V' ®@g C be the complexified space and let

Ve=Vta® oV
the corresponding root space decomposition of V¢ under A*. In other
words if Aj,...,Ar € C are the corresponding roots we have = € V;
(1 <y <k)if and only if
(At =l )YNz =0, teR,

for some N > 1 large enough (independently of 7).
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We shall combine together the subspaces Vf, 1 < s <r, for which
the corresponding roots have the same real part Re);, =+,1<s <,
and write

21) V=Vie---aV, ;VieC=Vle.--aVE.
The operator norms of A! restricted to V, satisfy

1A v, || = O(e™|t|?), ast — +oo.

This is simply because
Alv,ec = e T(2),

where T'(t) is an upper triangular complex matrix with unimodular
diagonal coefficients and thercfore satisfies (cf. [7])

T(t)=T7(-t), |T(t)]=0(t").
Let us now suppose that V = g is some real Lie algebra and that A? are

algebra automorphisms. We have then A' = exp(tD) where D € d(g)
is some derivation of g. Let

g=0-5D - Dg-p5 Pg0Dda, - Dga,,
b << -fF <0< ;<< ap,

be the corresponding decomposition as in (2.1) with
Y= RC/\," = —,61,...,0,&1,...

It is easy to see (cf. [6]) that we have [g.,,8+,] C @4~ f 71 + 7215 2
real part of a root and [g.,,@+,] = 0 if not. It follows in particular that

. 0 -
0+ =00, @ D ga, , gy =9+ @Ddo,
g-=g-4 @ - Bg-p, 9l=g-Og0,

are subalgebras. Let | - | be some norm on g, it is then clear from the

above that we have

A'z] = O(|t|?), ast — +oo = zeg?,
|IAtz] = O(Jt]?), ast— —co = z€gl.

(2.2)
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From this it follows in particular that if h C g is a subalgebra, or even
a subspace, stable by A (i.e., A C§) then

(2.3) gbnhchy, g2npchl.

We shall now describe a rather technical construction that will be es-
sential in what follows.

Proposition. Let us assume that g ts nilpotent and let h C g be a
subalgebra that satisfies

g+ Ch #g, (respectively, g4 Ch#g), A'hcCh.
Then we can find y,z € g% (respectively, g_) such that the subalgebra
bl = ‘Alg {b» Y, z}

is stable by the action of A* (i.e., A'h1 C b1) and furthermore

h# b1, (h,h]Ch.

PRrROOF. Let us denote

h=Bh®C)ACDCag=(g®C)ACD,
where the skew product is defined by the action of the derivation D €
9(g) on g. The algebra § is a complex soluble algebra and let V = g/h

which is a complex vector space on which § acts by adjoint action. By
Lie’s theorem there exists therefore

0£X=y+iz+heV, yzeg (y+iz¢h),
such that
(2.4) EX)=A&-X, €€h, A(-)€Home(h;C).

The fact that g is nilpotent implies that every ( € f gives rise to a
nilpotent transformation on V' and therefore that

(2:5) A =0, (€h.



168 N. TH. VAROPOULOS

The fact that § D g4 (respectively, D g% ) implies furthermore that we
can assume that y,z € g% (respectively, g_). Now (2.5) implies that

[X,h] = [y,b] +ilz,b] Ch.

From this it follows that

[v,b],[z,b] Ch.

What we have shown is that the subalgebra h; generated by {h,y, 2}
is strictly larger than h and normalises fj. By (2.4) it follows that

[D,y] +i[D,2] € XD)(y +iz) +5.
Let A(D) = a + 18 (a,B € R) we then have
[D.y]€ay—Bz+h, [D,z]€fyt+taz+h.
This shows that [D, ;] C h; and therefore that A'h; C ;. The above

algebra fh; satisfies therefore all the conditions of our proposition.

From the above proposition it follows that we can construct
(2.6) g =hoChiC---Chr =g,
a finite chain of subalgebras such that
hi+1 = Alg{bj,yj,2;}, 1=01,....k-1,

with y;,z; € g_ and so that h;4; normalises h; (j = 0,1,...,k—1)
and
Ah;Ch;, §=0,1,2,...,k.

We shall end up this section by recalling an important lemma due to
Hérmander (cf. (2], [11]).

Lemma (L. Hormander). Let g be a nilpotent Lie algebra and let G be
some Lie group that corresponds to g. Then there ezists N > 0, co € R
(0<a<N), key=0,1,... (1 <7< N) such that

N
Exp(m+y)=Exp(coy)HExp(caa:a)EG, z,y€g,

a=l1
where

v = (ady) s = [l -lp.al--],  1Sas<.



THE HEAT KERNEL ON LIE GrRours 169
2.2. Positive and negative roots.

All the notations of the previous section will be preserved. g will
be assumed throughout to be nilpotent and we shall denote by | - |
some norm on g (the exact value of |- | will be irrelevant here). We
shall denote by

A(a)={z €g: |z] <L a}.

We shall say that g is a positive (respectively, negative) algebra if g =
a3 (respectively, g = g%).

We shall also consider Exp : g — G the exponential mapping
where G is the simply connected nilpotent group associated to g. The
Haar measure of G will be denoted by m¢ (not to be confused with the
previous notation for the modular function that here is identically 1)
which is the image by Exp of Lebesgue measure on g. The Jacobian of
At:g—gis

Jacb (A*) = exp ((Zai - Zﬂj)t) )

where here and in what follows we count the aj’s and the f;’s with
multiplicity (i.e., they are tacitly multiplied by the dimensionality of
the corresponding root spaces gq;,8-g; )-

The group A' induces a one parameter group, also denoted by
Al : G — G, of group automorphisms and Exp interwines A'. The
norm | - | on g induces a left (or right) invariant distance on G (cf.
[11]), where for g € G we set

d(e,g) = inf { Z [tjl: g = Exp(t; 1) Exp(t2 z2)---,
zj €8, |zl Sl}
and clearly
d(Az,Ay) < |Ald(z,y), =2,y€G,

where [A| denotes the operator normof A:g — g.

Observe finally that when A = Ad(g), ¢ € G on g, then A =
I, : h — ghg™" = h9 on G. It follows therefore that for any normal
subgroup H C G we have

du(a?,y%) < |Ad(9)dn(z,y), 9€GC, zyeH,
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where dy (-, -) denotes the “intrinsic ” distance on H (and not the
distance induced by the ambient G).
Observe also that since the algebra g is nilpotent the operator norm
of Ad(g) satisfies
| 4d(g)] < C (lg] +1)°.

I shall denote

(2.8) B(a)={g9€G: d(e,g) < a}
- D(a) = Do(a) = Exp(A(a)), a>0.
We have then

(2.9) D(a) C B(a),  B(a)C D(a%), a>1,

for some C > 0 where the second inclusion followes from the Baker-
Campbell-Hausdorff formula (¢f. [1, Section 2.15]). I shall denote

(2.10) Dy(a) = Exp (A*A(a)) = A'Exp (A(a)) = A'Dg(a),

for t € R, a > 0. From the above we have

(2.11) mg(D¢(a)) = Cexp ((Zai ——Zﬂj)t) adimse,

Let us first suppose that g is a negative algebra. We have then

(212)  Dy(a)- Di(an) Do (C( o+ 3t + n)c) :

for aj > 0 and t; > 0 and where C > 0 only depends on Af (the left hand
side of (2.12) is, of course, a group product in G). Two special cases of
the inclusion (2.12) are easy to prove. The case t; =ty =---=1t, =0
is a consequence of the Baker-Campbell-Hausdorff formula. The case
n =1 is a consequence of (2.2). The inclusion (2.12) in general follows
immediately from the above two special cases.

Let us now suppose that g is a positive algebra, let t1,...,t, € R
and let ¢ = max;<j<nt;. Then

Dyy(as) -+~ Dy, (@n) = A (Dey—s(@) -+ Dy —e(an))

C Dt(C(Zaj+Z|tj|+n)c),

(2.13)
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where the second inclusion follows from (2.12) and the fact that t; —¢ <
0(1<j<n). Indeed AY~' = A'"% and g is a negative algebra for the
dilation A™"

Together with the above observations we shall need the following

Lemma. Let us assume that g is a positive algebra, then for each
t,s > 0 there ezist

z2,,2,€G, 1§u§M§C(s+t+1)Cexp(tZaj)
that satisfy

(2.14) Dy(s) C (Uz,, D0(1)) N (UDO(I)E,,) = R(M).

This lemma will be combined with (2.13) to yield

Diy(ar) - Deylan) € B(C( X0+ S lts1+n) )
- exp (tZaj>.

where we suppose that ¢ = max(¢;) > 0.

(2.15)

PROOF. Let us fix d( -, - ) some left invariant Riemannian distance on
G and let z,, 1 < v < M, be some maximal e-net in D,(s) (for e > 0
appropriately small but fixed), i.e., we choose

zy € Dy(s), (1 <v < M), d(z,,2,) 2 €, v#p,

and the set zj,..., 27 is maximal under the above two conditions. It
is clear that (2.14) is then verified. What remains is to give a bound of
M. To achieve this it suffices to observe that

(2.16) |Jzv Dole1) € Du(s) - Dofe1) C Di(C (s +t+1)€),

where the union in (2.16) is disjoined if €; > 0 is appropriately small.
The volume estimate (2.11) of the right hand side of (2.16) (we have
B; = 0 now) gives then the required bound for M .
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2.3. General nilpotent algebras.

All our previous notations will be preserved but here g will not be
assumed to be either a positive or a negative algebra. What will be
proved in this section is that for all s > 0, N =1,2,..., we can find

(217) z,€G, v=12. . M<C(s+N+1)C exp(N o;
P J

such that

(2.18) Dy(s)---Dn(s) € | Do(1) 2 -

The consequence that we shall draw from this is that
(219).  mq(Do(s)- - Dn(s)) < C (s + N + 1) e:rp(N >a)-

At this point the reader is strongly encouraged to give for himself a proof
of (2.19) when G = R®. A direct proof of (2.19) is highly not trivial
even for the Heisenberg group with the dilation structure X — AX,
Y — A7Y, Z — Z. (X,Y,Z = [X,Y] is here the standard basis of
the corresponding algebra).

We shall consider the chain of subalgebras (2.6) and we shall prove
(2.18) by induction on the k of (2.6). For k = 0 (2.18) is contained in
the Lemma of Section 2.2.

We shall use of the notations of sections 2.1 and 2.2. The norm in
g will be chosen so that

Aj(s)={z eb;: |z| <s}
satisfy

The above notation is abusive: the two 6’s are not identical. They are
6, and 6, and the right hand side of (2.20) is to be understood as the
union over all the |6;| <'s, 7 = 1,2. This kind of abusive but convenient
notation will be adopted throughout the rest of the proof. We shall
also denote by H; the subgroup that corresponds to h;. The inductive
hypothesis is that for some 7 > 1 in the algebra ; we have

(L;) Exp(4;(s))Exp(A4;(s))---Exp(ANA;(s)) C UDO(I)z,, .
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Dy(1) C Hj of course here corresponds to 4. Using (L;j) we shall
procede to prove (L) in the algebra b4, .

The first step is to apply Hormander’s lemma (¢f. Section 2.1) on
each factor

Exp(A™A4;41(s)) =Exp(A™A4(s) + 0 A™y; + §A™z;)
= Exp (em) HExp (A™Z4)

= Exp(em) M,, = E,, M, ,
where
em =CcOA™Y;+cOA™z;,  Zo = (cabad(y;)+ca 6ad(z;))" A;(s).

Here we make the same abuse of notation over the 6’s, and to sim-
plify notations we have droped the j’s. The left hand side of (L;4,) is
therefore

N
(2.21) I En M. .

m=1
The next step is to “commute backwards” all the Fy’s through the
M,,’s that precede it (i.e.,p < k) so as to put (2.21) in the form
E\Ey---EyM;-- My,

where

M, C Ad(EN)--+ Ad(E,+1) A?Bj(c(s + 1))
= AP(Ad(A"PEN A™PEn_; - A™PE,41)B;(c(s + 1)),

Bj(s)=1{h € Hj: dj(e,h) = |h|; <s},

and where d; is the distance on H; .
The fact that y;,z; € g_ implies (¢f. (2.2), (2.3)) that y;,z; €
(h;+1)% and that |en|j+1 < C (s + N)€ and, more generally, that

[A™Per]j41 < C(s+ N)C, k>p,
IA_pEN !\—’)Ep+1|j+1 S C(S +N)C , p _>_ 0.
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We obtain therefore that

Ey-E;---Ey C Exp(4;+1(C (s + N)%)),
(2.22) M, C APB;(C (s + N)°),
My -M,--- My C Exp(A4;(s")---Exp(ANA4;(s")),

with s’ = C (s + N)€. If we use (L;) on right hand side of (2.22) we
conclude therefore that the right hand side of of (L;j41) is contained in

(2.23) JExp (4j+1(C (s + N)©)) Do(1) 2, -

An obvious use of the Baker-Campbell-Hausdorff formula gives that
(2.23) is contained in

U Exp (4,41(C (s + N)9)) 2, .

v
To complete the inductive step it suffices therefore to observe that for
obvious reasons (¢f., proof of the Lemma in Section 2.2) we have

C(s+N)¢
Exp(4;+1(C(s+N))c |J Do(l)u,
p=1

for an appropiate choice of u, € Hj4, .
A simple use of the involution ¢ — ¢~! in G shows that from
(2.18) we have the symmetric result

(2.24) Dn(s) Dn-1(s)---Do(s) C | J 2" Do(1).

It is worth observing also that the left hand side of (2.24) is
AN (Do(s)---Dn(s)),

where Dy(s) = Exp (A*A(s)) with A* = A™*. The effect of replacing A
by A is to swap the positive roots with the negative ones. Using the
above observations one can obtain several variants of (2.18) that are
relevant in different contexts.
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3. The lower estimate.
3.1. Algebraic groups.

In this section I shall follow very closely [4], including the nota-
tions. The proof in [4] simplifies considerably if I make the additional
assumption that G (cf. Section 0) has the form

(3.1) G=QMM =NXV xM), Q=N\V,

where V' = R®. This assumption is in particular verified for all alge-
braic groups (or more generally when g the Lie algebra is algebraic).
Indeed in that case I shall take £ = V for the section constructed in [4]
and many of the geometric and algebraic difficulties disappear in one
stroke. For the convenience of the reader I shall here first give the proof
under the additional assumption (3.1) and then proceed to consider the
general case.
All the other notations of [4, Section 3] are preserved:

Z71=7172"")’n:Z'nAn, Znes,AnEN,

is the random walk on G controlled by du; = ¢; d’g (where however in
[4] the above product Z, = Z, A, was written in the other way round).
We shall now fix z € V, s = 1,2,... and we shall find A C 2 a subset
of the path space of this random walk on which the following conditions
are verified

(3.2) 1Z, -z <1

(3.3) Lk(Z'j—%:r) <D, j=1,2,..s, k=12....n,

]2\ 1/2
(3.4) |7j|55(c0+%) =6\, j=12,..,s.

S

The D ~ s1/3 and the § will be chosen later. I will show that we can

choose A so that
j2f?

(3.9) P(A) > cexp ( —cs'/? —Z;) .

Indeed let Qp C Q be the subset of the path space determined by
(3.2) and (3.3) then since M is compact, for D = cs'/3, we have (cf.
Appendix):

.2
P(Qlp) = exp ( —es'/? = %—) = exp(—A?).
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Let Q* C Q be the subset determined by (3.4) then
P(Q}) > 1—se~C8N

because the variables y; € G satisfy a Gaussian estimate on G (cf.
[11]). We shall fix D ~ s'/? and § large enough. We have then

P(Qp NQ*Y) > Cexp(—A?)
and our assertion follows.
Let us now go back to [4] where we shall assume that G = NA(V x
M) and that ¥ = V, § = V x M. For any subset E C N we shall
denote E9 = gEg~! (g € G), we shall further denote B, the ball in
N of radius exp(Ca) centered at the identity. Analysing closely the

argument in [4] it follows that on our subset A C Q (that satisfies (3.2),
(3.3), (3.4) and (3.5)) we have

(3.6) Z,e (BLBS ---BE)Z, .
On the other hand, from (3.3) it is clear that
BY C (Bsasp) /.
It follows therefore that
(3.7) Z, € (Bi{ip- "Bgf\-/:o ) Zs,
where because of (2.19) the my-measure of (---) is bounded above by
sexp (C(&A + D)+ Z L;"(ar)) .
The estimates (0.11), (0.12) follow.
The only modification needed to obtain the improvement under

the (NC)-condition is that we set D ~ clogs instead (c¢f. Appendix).
The rest of the proof is identical.



THE HEAT KERNEL ON LIE Grours 177
3.2. The general case.

A thorough understanding of the geometric construction in [4, Sec-
tion 1) is essential for this section. The notations here are those of the
previous section and of [4] and we shall start the proof exactly as in the
previous section. The point where we run into trouble is (3.6), (3.7).
Indeed the section ¥ is in general not a group and the elements of X
do not commute between themselves.

The first step towards resolving these difficulties is to choose the
generators e;, ez, ..., €, of the nilpotent algebra a (¢f. proof [4, Lemma
1.2]) so that our preasigned point z € V' (on which we want to prove
the lower estimates) is * = 7m(exp(|z|e1)), t.e., T lies in the image by
w : @ — V of the first one parameter subgroup z;(¢) of . With
the obvious identification of £ and V' and with the basis dn(ej), 7 =
1,2,...,m, on V we have then z = (|2|,0,0,...,0).

Let us assume for simplicity that G = @ is soluble, z.e., that M =
{e}. We have then as in [4, (3.5)]

. . 1
Yi=7%ini, =0t = x](t§~ ))--'wm(tﬁm)) €%,
=00, ™ eV,  i=12,..s,
and because of (3.2), (3.3), (3.4) we have
[ty +t2+---+t,—2| <1,
Lk(t1+t2+"'+tj-—j1'/s)_<_D,
) |=|?
T <5(D —):5,\,
IJ = + 4s
j=1,2....s, k=12....n, i=12...,m.
The critical step is to prove that

Zs = ‘}’1 711’3’2712 T ':fsns
38)  en(t{")Ba(t)B---
e () By (8 4+ + D)o (8 4+ 1),

where B C N is the ball of radius

2\ cC
(3.9) exp(C6A+cD)s® Iarlcgsc(l+-|;z-lq—) exp(CéX+C D).
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To see this we must shift each $2(t§-2)) . 'xm(tg.m)) (2.e., the co-factors

of :z:l(tg“) in 7;) through to product. Every time we cross a ball [ng|y <
exp(C 6 ) by

(3.10) 22 (8P + o+ D) 2y (¢ 4 Py =g

We multiply the radius of the ball by exp(C D) hence the exponential
term in the left hand side of (3.9). The extra factor s |z| in (3.9) is
the bound of the number of commutators of terms of the form z;(t) (¢ €
R, |t| £1, j =1,2,...,n) (cf, Nil-Gp Lemma in [4]). Each of these
commutators lie in some fixed ball in N (for the | - |y distance). The
above commutators are placed between the :cl(tg-l))’s (7 =1,2,...,s8)

and the B’s and they arise because we have to put the factors :z:.-(ty))
in the “right order” to make a term (; as in (3.10).

We are now in a position to finish the proof. Indeed one more set
of commutations, with the ml(tg-l))’s this time, brings the right hand
side of (3.8) in the form

(B;/{j_D---Bgf\fD'--)a(tl+---+t,).

This expression is essentially the same as (3.7) and the proof finishes
as before.

Finally since the elements of ¥ commute with M if we do not
assume that M = {e} nothing changes in the above argument (cf. [4,
Section 1]).

4. The Hardy-Littlewood theory.

Theorem 1 is an obvious integration of the estimates (0.9), (0.13)
on V which also proves the first estimate (4.1) below. The reader should
observe that the change of variable z — 27! in G shifts left to the right
measure and therefore the “left” and “right” || - ||-normes of 1, are the
same. What is important in Theorem 1 is to understand the exact role
played by A on G and by the induced scalar product (-, -)a on V (cf.
Section 0.1). .

The expression of {(q) given by theorem does of course depend
on that scalar product and therefore on the particular choice of the
Laplacian A on G. One of the consequences of Theorem 2 is that L is
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a linear wnvariant, i.e., that it is independent of the particular scalar
product used in (0.2). This is very easy to see. Indeed let

1 1 1 - ’
Lip;z) = (]-)—5) S Li@+5>.Lj(z), 1<p<+,ceV.
We clearly have

1 1 -
L(1iz) =3 Y Li(z),  L(22) = 3 Y Lj(z).
We also have
L=mf{l<p<+4+o0: L(p;z)<0forallz eV}.

Indeed assume that there exists zg € V such that Ag = L(p,z0) > 0;
by the homogeneity of degree 1 of L(p, - ) it follows that

Lp,z) 2 Clzldo; €V, |z—|z[zo| <1,

provided that |z| is large enough. And if we integrate the “shifted”
Gaussian inside the tube {z : |z — |2|zo] < 1} we see that ¢(p) > 0.
Conversely of course £(p) = 0 if L(p;z) <0 (z € V).

Parts i) and ii) of Theorem 2 follow at once from this, we also have

(41) ITelli=p = [¥ell, = O(1), ast— 400, L <p< 4oo.
' |Telmz = O(1), ast— +oo, 1<T <2,

For r = 2 the second estimate is the definition of amenability; for r =1
it is very easy and has been verified in [10]; we interpolate to obtain
the other values of r.

If we assume that L < 2 and interpolate between || - |lr—2 and
II - |li—z we obtain iii).

Part iv) of theorem is a trifle more subtle and it relies on the a
priori knowledge of

(4.2) ”Ti”p—’p = exl’(/’2 (1/2 - 1/p)2 t), 1<p<+4o0,

where p? is defined by Am = —p?m. (4.2) is an immediate consequence
of amenability and of the formula (¢f. [10])

Tof = (Fm~YP x yym!/2-1py i/,
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On the other hand we clearly have by the semigroup property:
(43) [Ter2liep € Col[Testllr—p S Cr [ Tiellp—p , 1 <7 < p < 4oo.

The only thing that has to be done to complete the proof of iv) is
to show that under the WNC-condition, up to negligible error, we have

exp(p® (1/2=1/p)* ) < |9y -
To see this let us choose g € V so that
Li(z)>0; j=1,2...,n, (z,20) >0,

which is possible by the WNC-condition. We clearly have

o) = (5-5) D), (em) 20,

L(p,z) = % Y Li(z), (z,30) <0.

It follows therefore that up to negligible error

2
/exp (L(p,:c) - l—le) dz
2
(4.4) — /exp ((]3) - %) Y Li(z) - %) dz
+ negligible error.

A moment reflexion gives on the other hand

P2

for the dual norm in V*. The right hand side of (4.4) can therefore
be explicitely computed, this together with our theorem proves our
assertion and it gives iv).

To prove-v) observe that for every fixed ¢ the function

=p

Ve

) 1 ~
{(p,q) = limsup ~ log || Tl ,—q
t—+oo t
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is, as a function of p, non decreasing (cf. (4.3)) and convex in 1/p (by
Riesz-Thorin). Under the condition (0.15) of v) it follows therefore that

lq)=1£(1,9) = (% 3 é)z"z

for some 1 < ¢ < 2. To finish the proof of v) we shall insert in (0.14)
the above value of {(¢) and prove that this implies the WNC-condition
on the L;'s. Towards that observe that we can assume that the L;’s
span the space V* for otherwise we can quotient out NIerL; and this

reduces the integral in (0.14) to a lower dimensional Gaussian. Then
(cf. the remark that follows the definition of Section 0.4) since

po) = (5-3) L L@+ (1-3) L @),
if G is not WNC, we must have
L(p,z) < (11) - %) S Liw)-¢e, |zl =1,

for some € > 0. This will immediatly give us a contradiction and will
complete the proof of v).

The corollaries 1 and 2 are easy to prove. Indeed

t+1
“/ Fotby ds“ >Cllnll,, t>1,
t P

by the local Harnack principle. Corollary 1 follows.
If G is as in Corollary 2 we have (cf. [8], [10])

~ ~ _41/3 ~
ITtli=toos [Tellime =0(e™" "), |[Till2=2 = O(1),
as t — +oo for some ¢ > 0. By interpolation it follows that
Tillp—g = O(e™""), 1<p<2<g< 400, p<y.

If we interpolate this estimate with (4.1) we see that for all 1 <p < 2
there exists L(p) < 2 such that

||f1-"z||p..»q = O(e'”‘”s), ast — +oo, L(p) < g < +o0.
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This estimate takes care of the convergence of
+oo .
/ t*/2=1 T, dt
1

the convergence of fol is taken care off by standard methods (¢f. [11]).
Corollary 2 follows.

5. Non simply connected groups.

The key to the analysis of non simply connected groups is the
following observation. Let G be some connected Lie group and let
K C G be some compact normal subgroup. We can then use the
projected sublaplacian dr(A) = A by the projection 7 : G — G/K to
define Ty, Tt, ¢¢, s bothon G andon G/K. Let ¢, be the corresponding
kernel on G/N. It is then clear (cf. [8]) that

ho(z) = /wt(xk dk—/ (k) dk .

By an easy application of the local Harnack estimates it follows there-
fore that

H¢tl!L»(G/A) WtllLe (o) » t>1,1<p< +oo.

This means that, at least the Hardy-Littlewood estimates and the re-
sults of Section 0.6 pass through a quotient by some compact subgroup.

To go further we shall have to introduce some notations. We shall
say that some soluble connected Lie group Q is admissible soluble if
there exists some simply connected group Q and some covering map
g : Q — @ such that Ker6N N = {e} where N c Q is the nilradical
of Q. The fact that 6( N) N C @Q is the nilradical of @ (z.e., a closed
subgroup) implies that

dist (N, Ker 6\ {e}) >0,
Q/N=V xT=Q/N-Kerf,
V ~ R®, T =~ T® = (R mod 27)°.

We shall say that G some connected Lie group is admissible if G =~ QAM
where () is admissible soluble and M is compact.
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Let G now be some amenable connected Lie group. By standard
global structure theorems (cf. [1], [7], [14]) we see that we can “cover”
G by 6 : QAM — G with Ker 8 finite (i.e., an “isogeny”). Inside
the center of the nilradical of @) on the other hand we can find some
compact subgroup K(~ T?) such that G/K is admissible.

The conscquence of the above structure theorems and of our previ-
ous considerations is that if we can extend our Hardy-Littlewood theory
of Section 0.6 from simply connected groups to admissible groups then
we automatically have it for all amenable groups. For these theorems
it should be observed that the non zero real parts of the roots of G and
of the corresponding admissible group (as constructed above) are up to
obvious identification the same.

When G is an admissible group then its nilradical N C G is simply
connected and G/N =2 V x I{ where K = T x M so that the only
difference with the simply connected case is the presence of the torus
T as a cofactor of M.

By going through the proofs of both the upper and the lower esti-
mates of Section 0 we see therefore that strictly nothing changes neither
in the proofs nor in the statements of the results.

The conclusion is in particular that theorems 1 and 2 and their
corollaries are valid as stated, for general, not necessarily simply con-
nected, groups.

APPENDIX: The brownian bridge.

Let us recall here some facts on the Brownian bridge (¢f. [15], [16])
i.e., brownian motion b(t) € R* = V conditioned by

We shall denote this process by bi,,y(.s), 0 < s < t, and recall the
following well known facts (=~ denotes equidistributed processes)

1) by (s)a+s(y—x)/t+b5,(s),
i) bgo(s) = b(s) —sb(t)/t,

b e vy (A8) VA BL (),

iv) Dfo(s) = (1—s/t)b(st/(t—s)),
v) B, (s) = b L(t—s).

iii)
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(cf. [15], [16] together with the scalling properties of standard brownian
motion).

vi) The standard Markov property implies that with respect to the
conditional probability P[-]b;  (t/2)] the two “halfs” of the brownian
bridge:

{b (s): 0<s<t/2], {b: ,(s): t/2 < s < t},
are independents.

We shall now denote by
P(D)=P(Lj(bjo(s))<D: 0<s<t,j=12,...,n),

where Ly, ..., L, € V* are linear functionals of V. We shall say that the
L;’s satisfy the NC-condition if there exists z € V such that L;(z) > 0,
7 =1,2,...,n (cf. Section 0.4). In fact in what follows the L;s will be
the real parts of the roots as defined in Section 0. We shall prove the
following

Lemma 1. There ezist constants C,c > 0 independent of t and D such
that:

(A.1) P(D)>Ce~t/P* ¢ D>o0.

If we suppose in addition that the Lj € V*, j = 1,2,..., satisfy the
NC-condition then

(A.2) P(D)>C (bt?)"c.

The estimate (A.1) is a consequence of the following

(A.3) P([bbo(s)| < D; 0 <s<t)>Ce /D"

but (A.3) immediately reduces because of ii) or iv) to the corresponding
estimate for brownian motion which is well known (see e.g. [7]).

The estimate (A.2) is more subtle to prove. We use v) and vi) to
see that

P(D)=/(P(Lj(bé,o(s))SD; 1<j<n, 0<s<t/2| b o(t/2)=2))"
-P(b(‘,’o(t/Q) € dz)
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2 (/("')P(bé,o(t/g) € dz))2
= (P(L;(bho(s)) S D3 1< <n; 0< s </2))°.

But because of iv) the right hand sideof the above can be replaced
by the coresponding expression with bg o(-) replaced by &(-). The
corresponding lower estimate is easy to obtain (cf. [7]).
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