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The spin of the

ground state of an atom

Charles L. Fefferman and Luis A. Seco

In this paper we address a question posed by M. and T. Hoffmann-
Ostenhof, which concerns the total spin of the ground state of an atom
or molecule. Each electrc.: is given a value for spin, +1/2. The total
spin is the sumn of the individual spins.

For a neutral atom, say, of nuclear charge Z, if all Z electrons
have the same spin, then the total spin would be £Z/2. There is a
result of Lieb and Mattis [LM] where they show that in one dimension,
ground states have lowest possible total spin. Their result also holds for
a class of 3-dimensional systems which does not include the quantum
atom. A related result [AL] extends this result to positive temperature,
and also shows that for systems with certain parity constraints, spin
alignment is in fact favored at all temperatures. It is expected that,
for the atom. this is not the case, and there is a lot of spin-cancellation
among the different electrons. In rigorous mathematical terms, this can
be expressed in the form

total spin < CZ7, ~<1.

The goal of this paper is to prove such a bound. Unfortunately, we
do not have control over the constant C, which we only know to be
independent of Z.

For a solid, or a molecule with many nuclei, it is expected that the
total spin may get as large as the order of magnitude of the number of
particles (or perhaps nuclei), which would account for ferro-magnetism.
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It is also conjectured that for an atom, the order of magnitude of the
spin can be as large as Z /3 For non-interacting radial systems, with
degeneracy of the order of Z!/3, this is certainly possible. Inu fact,
Hund’s rule, well known in chemistry, states that this degeneracy is
resolved, after turning on the interaction, into making the spin as large
as possible, which agrees with the Z!/% size of spin if one believes in
atomic shells. The study of spin is also of interest because it determines
qualitative properties of the wave functions (see [HHS]).

Throughout the paper, C will be used to denote any irrelevant large
constant, ¢ any irrelevant small constant, and Cy,Cq,...,c1,c¢2,..., will
denote carefuly chosen large and small constants respectively.

1. Definitions, background and theorem.

Consider the atomic hamiltonian

N

Z ~ 1
pan =3 (o i)+ S

i<j

=

and F(Z, N) its lowest eigenvalue when acting on the Hilbert Space

N
H= L’ (R® xZ,) .

i=1
The atomic ground-state energy is defined as

(Z) = i Z,N).
E(Z) = jnf B(Z,N)

It is a result of {Ru] and [Si] that E(Z, N), which is decreasing in N,
achieves the infimum at a finite V., which physically corresponds to
the largest number of electrons an atom can bind; by the HVZ theorem
(sec [CFHS]), the ground state of the atom, which we denote by ¥, is
then defined as the eigenfunction of H(Z, N.) with eigenvalue E(Z). It
was proved in [Zh], [Lil] and [Li2] that

i’

Throughout this paper we will consider any N between Z and N, (the
interesting cases corresponding, of course, to either N = Z or N = N,)
and ¥ will denote any ground state of Hz y with energy E(Z,N).
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As a consequence of Lieb’s bound for N, the trivial upper bound
for the total spin is Z.
Here, we will use
r=(r, o)

to denote the variable in R3 x Z,, with » € R3 the space variable and
o = o(z) = %1/2 the spin variable. The total spin operator is now
given by

N
5= Z(IT(:E,') — O'I'(.’IJ,‘),
=1
where

ol(z) = { 10/2’ if o(z) = +1/2,

otherwise,

2, ifo(z)=—
ol = { 2 ) =172

Basic to our strategy is the theory of atomic (spectral) asymptotics,
and some version of atomic electric neutrality, all well known, which we
now briefly review.

Associated to the atomic hamiltonian there is the Thomas-Fermi
energy ([Fe], [Th]), which equals ¢ . Z"/3 for an explicit negative con-

stant ¢ p and satisfies

otherwise.

Y

(1) E(Z)=cqy 27+ 0(2777%) | e>00,
which was proved in [LS]. We also have the Thomas-Fermi density p;?F ,

and the Thomas-Fermi potential VTZF , which satisfy the perfect scaling
conditions

VEM =20V (270) . A =25(2"r),

for universal functions p(r) and V'(r), which satisfy the Thomas-Fermi
equations

pr) = 5 V), AV() = 47 plr).
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Note that our definition of the Thomas-Fermi potential is the negative
of the usual one. We refer the reader to [Li] for a great exposition of
Thomas-Fermi theory. We also have the bound [Hi]

¢ S(z) < VZ (2) < CS(a), S(:t):min{% I_ll—}

}VVTZF(:E) < CS(z) 2|t

The expansion (1) can be continued into what is called the Scott asymp-
totics, namely

(3) E(Z)=c¢ AL ZZ+0(ZZ-) e>0.

Crr

The Z? term is not semiclassical; its nature comes from the coulomb
singularities and is thercfore a genuine quantum effect. This was first
realized in [Sc], and proved rigorously (in the atomic case only) in [Hu],
[SW1], [SW2] and [SW? Its proof for molecules is in [IS].

A refincment of (3) is also known for atoms, and it has the form

- 1
@) B(Z)=cqp 277+ B+ ey 2P+ 0(2°°%) | e>0,

obtained in [Di] and [Sch], and proved rigorously in [FS1], [FS2], [FS3],
[FS4], [FS5], [FS6], [FST] and [FS8]. The corresponding molecular prob-
lem remains open, but the techniques in [IS] come very close to proving
a similar expression. The expansion in powers of Z almost surely ends
here (see [En], [CFS1] and [CFS2]).

Concerning the electronic neutrality problem, we only need the
following two facts, which can be found in [FS9] and [SSS]; they depend
on a number & > 0 which, after the accurate asymptotics in (4), or even
(3) with ¢ = 1/3, can be taken to be b = 2/3. They are expressed in
terms of the ground state density, which is defined as

pw(r) = py () + py(r),
py(r)=3N / (O, 305 s2n)|* daa o day,
- [EJXZ’;;](N'” -

2
/)\11,(7') =1iN / |\I/(r.~%;:c2;--- ;1‘N)l dzg --- dz .
- 4X,0](N 1) =
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1. The main result in [FS9] and [SSS] is
(5.2) Vo= [ puirydr=z40(227).
R3

2. The following is the content of estimate (A) or Lemma 2.1 in
[FS9], or Lemma 6 in [SSS]:

(5.b) < zZUB=0219x], ,

/ms pw(r)x(r)dr — /1;3 pZ(r) x(r) dr

where y 1s a positive function equal to 1 in a ball of radius at least
C Z72/3 0 outside of its double, and bounded by 1

A common feature in both the asymptotic analysis and the neu-
trality problem is Lieb’s inequality which also plays a crucial role in our
analysis, and is by now part of the mathematical physics folkore ([Li];
see also [SW2], and for improvements [FS7], [Ba] and [GS]). We will
use 1t in the following precise form,

Theorem (Lieb). Assume ¢'(z1,...,2n), (Z < N <27Z) 18 such that
VI3 < C 2775

Then, we have that

T
(Hz nih,b) > (H?NU ) — —// pTFl( )pTr ) zdy —C' 253,
T~y

where
[\7

Hiz“,?\' = Z (_A”"' N VTZF(I")) ’

=1

The proof of this result can be found in Lemma 2 in [SW2], which is
stated in a special case, but its proof shows exactly this. The role of this
inequality is that it reduces the analysis of systems with interaction to
a system without it. Technically, the problem reduces to an asymptotic
estimate for the sum of the negative eigenvalues of a fixed Schrédinger
operator in R? (see below). For convenience, given an operator H, we
denote the sum of its negatives eigenvalues bv sneg H. We denote by
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HS} the corresponding operator with Neumann boundary conditions on
Q.

The asymptotic estimates we need began with the work of Lieb and
Simon. Those estimates, more refined ones even, are now also part of
the folkore. We reproduce here a variant which suffices for our theorem.
This is essentially contained in [LS] and explicitly proven in [FS7]; we
include a version of the proof here for the convenience of the reader,
and to make this paper as self-contained as possible.

Lemma 1. If Q is a cube of sitde L, and I i3 a number larger than
100 L~2, we have that

sneg (—A — Ig’)‘% > ﬁ_l_gi_ﬂ'_z K5/213 _CK?L? )

for a universal constant C. If K < M L™? we have trivially

sneg (—A — K)3 > -M'L72.

Proor. If K L? > 100,

2 2 2 2
sneg (=4 — I\’)I?/ = Z (71' (Tll 2:2 + n3) _ ]‘»>
1r2(nf+n§+n§)sl\'L2
1'1,'20
1 x|? .
= / (!”—; —K) dx + O(K*L?) .

|z|<VEKL/x
Lemma 2. Let W be any potential satisfying
W(2)~S(x),  [VW(x)| < CS(a)lal™,
. [ Z —4
S() = min {T”L_[ NEd } .

1 , —
sneg (—=A = W) 2 —z— / W(z)*/? dz — C 2%%/°,

where C' only depends on the constants in (6).



THE SPIN OF THE GROUND STATE OF AN ATOM 25

PRrROOF. We break up R? into cubes Qo, @, and Q!, with the properties:
1. Qo is centered at the origin and has diameter dy = C; Z71.

2. The @, are centered at z,, with C; Z71/10 < |z,| < ¢, and
have diameters d, which satisfy

(7) d, ~ STV (z,) |z, /2.

3. The Q, are centered at z,/, with |z,/| > ¢/, and have diameter
d,» which satisfy

- 1
(S) 10 S I.’l‘,,ll S d,,l S 1—(% |:'L‘,,l| .

Let us check that R? can be broken into such cubes. We begin with
a simple geometric observation: if Q(r) denotes the cube of diameter
r centered at 0, then Q(3r) — Q(r) may be decomposed into cubes
of diameter r. It follows that Q(3r) — Q(r) may be decomposed into
subcubes of diameter between s/3 and s, for any given s < r.

Now let rp = C; Z71 3¥ for k > 0, and break up R? into Q(ro) =
Qo, and Q(7r4+1) — Q(ri) for k > 0. For k > 0 such that ri < ¢ we
break up Q(rr+1) — Q(rx) into cubes Q, of diameter

—1/4
d o . Z —4 ! 1/2
~ 8 = | min ;,rk e

which is possible since s < 7.

For k > 0 such that r; > ¢, we break up Q(7+1)— Q(rx) into cubes
Q.+ of diameter between r1/3 - 10 and 10~% r. One checks easily that
the resulting decomposition into cubes satisfies 1, 2 and 3 above.

Note that, by (8), the number of @, with centers in a spherical
shell of radii R and 2R, is not more than a fixed large constant and
therefore,

(9) number {Q, : Ry < |z,| < Ry} £ C log(R2/R1),
when R; > R;. In preparation to use Lemma 1, we denote

w,, = 1) LV N
wy = max (2),
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and we note that, when z € Q,,
W3/2(z) —w,%?| < Cw,%?* |W(z) = W(z,)]
< Cw,?d, max |V (z)]
s oy OS@ ST @) e Sz 27
sing (7

< CS8Y4(z,) |z, |72,

This implies that

< OS82, a2 &3

w,*? d8 -/ W5/2(z) dz

(10)
<C S¥4(z)|z|"V? dx .
= /, ( )‘ I

For Qg, we have that

Qo
sneg (=4 — W(a))§* 2 sneg (‘A - gﬁz)
N
Qo
=Z? sneg <—A — |_f—|) ,
N

where Qg is the cube Qq dilated by Z, which is therefore of diameter
C; and makes the sneg term above independent of Z.
After this, we turn to sneg’s by writing

sneg (A=W (x)) > sneg (~A—W(2))F° + ) sneg (AW (z))F"
+ ) sneg (—A—W(m))?\:"'
(11) > —;Z2+aneg (—A—wu)%"
+ 3 sneg <V—A~W(:c>>f%"'
>-c22+ Y (v d - Cculd)

+ 3 sneg (~A-W ()" .
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For the @,/, we use the trivial part of Lemma 1 to obtain

aneg (-A - I'V(m))]?,”' >-C Zdw"z

(12) S D S

n=~l  gnglr,|<2nH

>-C.

For the @,, we have
w?d* <8z, 2,7 Q,| < c/ S (z) 2|V dz .
QI’
Putting this, with (10) and (12) into (11), we obtain

sneg (-A —W(z)) > —

W/2(z)dz
1571'2 [JI/QV ( )

- c/ S¥4(z) |z|7 % dx - C
R3

S 1
- 1572

/ W3/%(z)dz — C Z¥%/5,
R3

as we claimed.
We are now ready to state and prove our main result:

Theorem 3. If ¥ is the ground state for Hz n for Z < N < N, then
we have

(ST, W) <CZ7, ~y<1.
PRrROOF. Let 6 > 0 be a small number to be chosen later, and consider

a positive function y, bounded by 1 and as smooth as possible, such

that
1, if || < Z7V/34E
A(T) - 0’ if Irl > 2z—]/3+6.

For a real number p in the range

(13) | < 1 27,
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consider the hamiltonian given by
H,=Hzn+2p2'°S,

where
N

Sy = >_x(ri) (0" (z:) = ol(z1))

=1
and denote by E,(Z) the corresponding ground state energy. Note that
S= SX + SI‘X .
We will study S, first using H,; later, S,_, will be casily dominated
using (5.).
We define the Thomas-Fermi approximation to F,,

7/3
£2) = 15 [ (Vo) +uxz*m)Y?

+ (V(r) = px(2" )3 ) dr

__// pTF|(1)—prg§(F(y) e dy.

which plays the following role:

Proposition 4. There i3 a constant C such that
1
EW2)2&(2)-CZP™, g =5’
uniformly for all || < ¢; Z74°.

REMARK. Although the corresponding upper bound is most probably
also true, we will have no need for it here, and we ignore the issue.

PRrROOF. Note first that our assumption (13) on p implies that

(14) |ul 247 x(2) <

l\'llH

(.1:) for all .

Indeed, this is clear for |x| < Z~!/3, and is also obvious for |z| >
2 Z-1/3+8 For the other x, we have that |u| Z*/3 y(z) < ¢; Z4/374¢,
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whereas i"fl‘f‘;__(w) > elz|™* > ¢ 243~ and (14) then follows by taking
c; small cnough. Estimate (14) in turn implies that

VZ(z) < VE

5 Vir Z(2) 1 p Z*3 x(z) <

V2 (2).

O]
ol w

(15)

In preparation to use Lieb’s inequality, we compute the kinetic energy
of a ground state ¥, for E,, (or elements of a sequence with energy
converging to E,) with a virial argument as follows: define

I\:E("/J) = ”vd)”g ’ PE("/)) = <VCoulomb¢a¢) 3
with

] Nz 1
‘/Conlomb(l'l, cees 1N) = - E _, I + E "‘“—“ e
= i o I 75|

and denote the approximate ground-state sequence by ¥, . We denote
their densities by p, -
For A > 0, denote

VA (21, nen) = A28, (A a,. ., Aaw),

and note that

f(’\) = (Hu\ll;},kv ‘P:l,\.)
= A2KE(T,4) + APE(¥,.4)

+u Z4/3/,\/(z\"l;z:) (P}l,k(:‘;) - ptk('z:)) dz ,
1s a smooth function which satisfies
lim f(A)=0,  lim f(})=oo.

Also, using ¥ as trial function for H, and taking k large enough, we
sce that
F) S 2 E(Z)+¢, 27378,

(SR

By (1), the right hand side is negative for all Z larger than a certain
constant depending on ¢;. Therefore f attains its minimum at some
0 < A < oo and, maybe by changing our sequence ¥, . to another whose
energy converges faster to the ground state energy, we can rescale the
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U,k so that the minimum of f is attained at A = 1 and thus f'(1) = 0.
This means that

2KE (¥,0) + PE(Wp) < 20l 27 [ V(2] fal pu, 4 (2) do
<cz'3.
Using ¥, as trial function for Hz n, we see that
KE (¥, )+ PE(¥, ) > -CZ"/3.
Altogether, we conclude that
KE(¥,,)<CZ/3.
In view of Lieb’s inequality, it is then quite obvious that
E, > sneg (-—A - './Z + p 243 X) + sneg (—A — V’I‘ZF —p 243 x)

__//pTF )PTF(y) o5t

|z -yl

Set
V(2) = VE () - u 2% x(a),

and recall (2) and (15) which, with the equally trivial bound
pZi P Iy(2)| < Clel73,
show that W satisfies (6). Lemma 2 then proves our result.

Now, we consider the following lemma:

Lemma 5. &,, as a function of u, 1s concave, and there is a constant
C such that

CZP<IE(2)<C 2T, <cz'lPe,

9%*E,(2)
ou?

uniformly for all || < ¢; Z74°.
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PROOF. After checking that (15) settles the first bounds in the state-
ment of the lemma, a calculation gives

2 .
2B <z [ ((V(z)+ux<z-*’:c>>”2
w B2

+ (V(z) —px(Z‘éx))l/2> x?(Z7%z) dz

<Ccz'? / V() dz
1<z 28
<cz? / |z| "% dz
|z|<2 26
S Cz7/3+5 .
After this, we simply observe that £(Z) = cpp Z7/3 (again, see

[Li]), and note that £,(Z) is an even function of y to conclude that, for
p in our range, we must have

%€,
ou?
2 Crp Z'3 —C Pz

2

<

2
E(Z) 2 cqpp Z'? - E sup
n

which implies
(16) Eu(2) 2 cpp 2710 —Cp2 z73¥ — ¢ 273

On the other hand, if we denote by ¥ any ground state of the atom,
we use it as a trial function to conclude that

E Z)< E(Z)+2uZ%%(S,¥,0).

If we now use as trial function the same ¥, but with spins reversed, we
obtain

E 2)< E(Z)-2p2'3(S,0,0).
Altogether, we obtain
Bu(2) < E(Z) =21 2*/° (S, ¥, )] .

Since
E(Z)=cy 2" +0(2%),
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we conclude that
E(Z)<cpp 2" = 2\u| Z2° (S, T, 0)| + O(Z2?) .

Putting this together with (16), we obtain

S, 9, ¥
WS cezsppioz, gz,
If we choose now
%:”l =0 VA )
we obtain
(17) |(S\\I/,\Il>| < 6-2—36 +CZ—51+46.
7 S

Finally, we have
(18) (S T < N = [ pulr)x(r)dr.

Since

IZ—/-/)%F(T)X(T)(IT <C 2z,

we use (5.b) with b = 2/3 to conclude that

’N - /pq;(r)x(r)dr <|Z ~ N+ CzZ'73% 4 ¢ zW/3+8)/2

<CZ% 4 Cz\ 3 4 o zUR2
By (18), we conclude that
[(S1-, 0, )| < C 27 + C 2" 738 4 ¢ ZB/3+/2

With €1 = 1/6, we choose 6 = 1/42 here and in (17) to conclude
Theorem 3 with v = 13/14.

Our proof of theorem 3 with v = 13/14 was kept simple because
we used a form of spectral asymptotics in Lemma 2 which is not very
involved. If we used the sharper version given by Theorem 6 below, and
the sharper atomic energy asymptotics in (4), then we would obtain,
with the same arguments, a bound with v = 5/7. But we would also



THE 3PiN OF THE GROUND STATE OF AN ATOM 33

drive the careful reader into the pain and suffering involved in reading
the contents of [F'S 2-8], which contains the proof of Theorem 6 below
and (4). It is interesting to point out that the bound such analysis would
vield, v = 5/7, is the same as the bound we know for electric neutrality.
And this is not because spin neutrality used electric neutrality: if we
imposed elcctric neutrality to our atoms, by studying Hz z instead, we
would obtain the same exponent.

We end by stating the theorem, proved in [FS5], which we men-
tioned above. Our potential W is easily checked to satisfy hypothesis

(1), (2) and (3) below.

Theorem 6. Suppose W(r) 1s defined on (0,00) and satisfies the

following conditions:

d [s4

— Wir
(1) () we

forallT € (0,00), a >0,

o &) o] <asr

"
forallr € (0,00), a =0,1,2, with cg > 0 determined by the Co in (1),

o @) (a-Zem) s

for all 7 € (0,2Z73/5%2¢) o > 0, with cZ*/* < Ey < CZ*/3 ond
0<e<10712.
Set Q equal to the positive root of Q(Q + 1) = max,so 2 W(r),

<CoS(r)r™7,

-1/2

m=l/ OWM—“tD) a
T Jo r +
1 [ 11+ 1)\ heist
@=—/ W(r) - dr
T Jo r? +

Then,
sneg (~A + W) = ———y [ WS (ol do + 2

) ! 157r2 R3 8

1 ,
‘“4snzj£3””’7hﬂ)avvuwndm

20+1
+ 3 1 (1) + Error,
m
Z8/254+10e £l
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with |Error| < C' Z8/5+2:107° 4n4 u(t) denotes the fractional part of t.
The constant C' depends only on Cq, co, C and € in (1), (2) and (3).
Furthermore, the last sum is easily seen to be bounded by C Z3/3.
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