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Good metric spaces

without
good parameterizations

Stephen Semmes

Abstract. A classical problem in geometric topology is to recognize
when a topological space is a topological manifold. This paper ad-
dresses the question of when a metric space admits a quasisymmetric
parameterization by providing counterexamples to the obvious opti-
mistic conjectures, or, in other words, by providing examples of spaces
with many Euclidean-like properties which are nonetheless substantially
different from Euclidean geometry. These examples are geometrically
self-similar versions of classical topologically self-similar examples from
geometric topology, and they can be realized as codimension 1 subsets
of Euclidean spaces. Unlike earlier examples going back to Rickman,
these sets enjoy good bounds on their geodesic distance functions and
good mass bounds (Ahlfors regularity). They are also smooth except
for reasonably tame degencrations near small sets, they are uniformly
rectifiable, and they have good properties in terms of analysis (like
Sobolev and Poincaré inequalities). The construction also produces
uniform domains which have many nice properties but which are not
quasiconformally equivalent to balls.
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1. Introduction.

How can one recognize when a metric space admits a quasisym-
metric, bilipschitz, or homeomorphic parameterization by a Euclidean
space?

For the purposes of this paper it will be sufficient to consider only
subsets of Euclidean spaces instead of abstract metric spaces, and so we
restrict the generality of our definitions accordingly. (Note however the
results of Assouad [A1], [A2], [A3] on embedding metric spaces nicely
into Euclidean spaces, and quasisymmetrically in particular.) A map-
ping f : R? — R" is said to be quasisymmetric (or a quasisymmetric
embedding) if it is not constant and if there exists a homeomorphism
n:[0,00) — [0, 0) such that

(L1) o =al Stle - b implies  |f(2) = f(@)] < n(t) f(z) = )

for all t > 0 and z,a,b € R?. This condition means that f distorts
relative distances in a bounded way, e.g., if a is much closer to z than b
is, then the analogous statement is true for f(a), f(z), and f(b). How-
ever, it does not prevent |f(z) — f(a)| from being wildly different from
|z — a|. The bilipschitz condition requires the stronger property that f
distort absolute distances by only a bounded amount, i.e.,

(1.2) C7l e -yl < |f(2) = f(y)| S Clz —y|
for some C and all z,y € R9.

SIMPLE EXAMPLES. The map z — z|z|*”! on R? is quasisymmetric
whenever a > 0, but it is bilipschitz only when a = 1. The mapping
z ~ z exp(|z|) is a homeomorphism on R? but is not quasisymmetric,
because quasisymmetric maps cannot grow faster than polynomially
at infinity. The mapping on R given by z +~ |z|* when z > 0 and
z +— —|z|® when z < 0 is a homeomorphism for all a,b > 0, but it is
quasisymmetric only when a = b.

One can make more amusing examples by introducing some spi-
ralling. Let {6,}, t € R, be a one-parameter family of rotations on R?
which is Lipschitz continuous in ¢. Then z = 8)og|7|(z |z|*7") is a qua-
sisymmetric map on R? when a > 0, and it is bilipschitz when a = 1.
For embeddings of R? into R" one can also introduce plenty of corners.

To put the above question about the existence of parameterizations
into perspective let us recall a wonderful theorem of Edwards ([E], see
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also [C1], [C2], [C3], [D]) to the effect that there exist finite polyhedra
of dimension 5 (say) which are homeomorphic to the standard 5-sphere
but not bilipschitz equivalent to it. (This formulation of the “double
suspension theorem” uses also the observation made in [SS, p. 504, Re-
mark (b)].) As this result indicates, there is some serious technology in
topology for showing that a space admits a homeomorphic parameter-
ization by a Euclidean space even when one might not expect that to
be true. (See Section 2 for a little more information.)

Because of the existence of these strange polyhedral spheres and
other examples in [Se5] I have come to the conclusion that bilipschitz
parameterizations are too limited for understanding the structure of
sets with little smoothness but reasonable behavior. In other words,
the strange polyhedral spheres are just finite polyhedra, and the exam-
ples constructed in [Se5] are also very reasonable in their behavior, and
so they should not receive all the blame if the bilipschitz condition is
too stingy to include them in its parameterizations. This does not mean
that there is no meaningful characterization of sets which admit bilip-
schitz parameterizations, nor that there are not plenty of interesting
criteria for the existence of bilipschitz parameterizations, but simply
that these criteria cannot include some otherwise very reasonable sets.
So far the only general criteria known seem to be the ones in [SS] (for
polyhedra) and [Tol], [To2]. (See [Se5] for some open problems.)

What about quasisymmetric parameterizations? All of the exam-
ples in [Se5] were quasisymmetrically equivalent to a Euclidean space,
and it is not known whether the strange polyhedral spheres of Edwards
and Cannon are quasisymmetrically equivalent to standard spheres.
The bottom line of this paper (Theorem 1.12) is that there exist spaces
with many good properties but which do not admit quasisymmetric
parameterizations. 'The most compelling of these is a variant of an
example in [FS] of a discrete group of homeomorphisms which is not
topologically conjugate to a uniformly quasiconformal group. Before
getting to that let us start from scratch and consider the question of
quasisymmetric parameterizations more thoroughly.

Suppose first that d = 1. A set E C R" admits a quasisymmetric
parameterization by R if and only if it is a Jordan curve and it satisfies
the Ahlfors “3-point condition”, i.e., there is a constant C so that if
z,y € E and A is the arc which connects them then diam A < C [z —y].
(See [TV, Section 4].)

For the d = 2 case there is a result [Tu2, Lemma 4] to the effect
that the product of a nonrectifiable arc with a line segment cannot be

~
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embedded quasisymmetrically into R?. Assertions of this nature were
established first for snowflake curves by Rickman, and then general
results were obtained by Vaisild and Tukia. (See [Tu2], [V1].) Keep in
mind that there are plenty of nonrectifiable Jordan curves which satisfy
the Ahlfors 3-point condition, like snowflake curves. This result allows
one to build counterexamples to many reasonable conjectures about
the existence of quasisyinmetric (and quasiconformal) mappings (see
[Tu2]), and thereby makes it difficult if not impossible to find reasonable
criteria for the existence of a quasisymmetric parameterization when
d = 2 without imposing some conditions on the mass. However, it
turns out that if we do impose such a condition, then there is a nice
positive result (Theorem 1.6 below). Before stating it we need a couple
of definitions.

Definition 1.3. A subset E of R™ is said to satisfy Condition (*) (with
dimension d) if it is closed and if there there is a constant C such that
for each z € E and r > 0 there s a (relatively) open set U C E such
that EN B(z,r) CU C EN B(z,Cr) and U is homeomorphic to a
d-ball.

Condition (*) is necessary for E to be quasisymmetrically equiva-
lent to R%. (A quasisymmetric map takes a ball to a set with approxi-
mately the same shape as a ball.) It is not sufficient, however, even when
d = 2, because of the examples described above. (Note that [Tu2] also
covers products of unrectifiable curves with higher-dimensional (stan-
dard) cells. See [AV] for related results for products of topological cells
when both are permitted to have dimension larger than 1.)

When d = 1 Condition () implies that E is a Jordan curve which
satisfies the Ahlfors 3-point condition, and so it does actually imply
quasisymmetric equivalence with R. In general Condition (*) tries to
capture some of the geometry implied by the existence of a quasisym-
metric parameterization. For instance, Condition (*) forbids cusps and
long thin tubes, not to mention crossings.

The next condition requires that the given set be well behaved in
terms of Hausdorff measure, and it will be used to avoid the above
counterexamples.

Definition 1.4. A subset E of R™ 1s said to be (Ahlfors) regular of
dimension d if it 1s closed and if there is a constant C > 0 so that

(1.5) Clrt < HYENB(z,r)) < Cr?
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for allz € E and r > 0. Here H® denotes d-dimensional Hausdorff
measure (and not cohomology).

A d-plane in R" is regular with dimension d, and the same is true of
any set which is bilipschitz equivalent to a d-plane. In general (Ahlfors)
regularity means that E behaves measure-theoretically like a d-plane,
but it can still be very different from a d-plane geometrically. For in-
stance, for each 0 < d < n there are Cantor sets in R” which are regular
with dimension d. There are also snowflake curves and tree-like sets
which are regular (with dimension larger than 1). Note that regular-
ity is not necessary for quasisymmetric equivalence with R?. However,
when d = 2 regularity and Condition (*) together imply the existence of
a quasisymmetric parameterization, modulo some a priori smoothness
assumptions.

Theorem 1.6. Suppose that E C R" 1s regular and satisfies Condi-
tion (*), both with dimension 2. Suppose also that E is smooth and
well behaved at infinity. (We need to assume enough to ensure that E
18 conformally equivalent to the plane.) Then E i3 quasisymmetrically
equivalent to R?, with a choice of n as in (1.1) whick depends on the
constants from Definitions 1.3 and 1.4 but which does not depend on
our a priori smoothness assumptions in a quantitative way.

Theorem 1.6 was proved in [Se2, Section 5]. (See [DS3, Section
6] for a related result.) The argument in [Se2] went in two steps, as
follows: the a priori assumptions on E together with the uniformization
theorem were used to obtain the existence of a conformal parameter-
ization of E, and then classical methods were used to show that the
geometric assumptions imply that the conformal parameterization is
quasisymmetric with uniform bounds. It turns out that the second
step can be made to work in great generality; it is proved in [HK] that
a quasiconformal parameterization of a metric space which satisfies cer-
tain simple geometric properties is actually quasisymmetric. (See [HK]
for the precise statement.) The first step -the uniformization theorem-
is of course very special to dimension 2, and in fact Theorem 1.6 fails
in dimension 3, as we shall see.

Note that if a set E admits a quasisymmetric parameterization f
by R? and is regular with dimension d then f satisfies the same kind
of estimates as in [Ge]. (That is. the pull-back of H?|p to R? via f is
an Ao weight, by the same argument as in [Ge]. See [DS1] and [Se3].
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This result implies strong restrictions on the way that f can distort
distances, and it implies local Sobolev space conditions on f and its
inverse.) Such a set E has many of the same properties as it would if
it admitted a bilipschitz parameterization. (This would not be true if
E were regular but with a different dimension than d.) When d = 2 it
is not known whether E might actually be bilipschitz equivalent to R2
under these conditions, but there are counterexamples when d = 3, by
[Se5].

Let us consider a couple of other geometric conditions on sets of
roughly the same spirit as (x). The first is a more uniform version of
(*), while the second is weaker and is given in terms of contractability
properties.

Definition 1.7. A subset E of R" is said to satisfy Condition (%x*)
(with dimension d) if it is closed and if there there is a constant C and
a locally bounded function w : [0,00) — [0, 00) with lim, .o w(t) =0
such that for each x € E and v > 0 there 13 a (relatively) open set
UCE, EnB(z,r) CU C EN B(xz,Cr), and a homeomorphism g
from the unit ball By in R onto U such that

(1.8) lg(y) —9(z)l <rw(ly—=2]),  forally,z € Ba,
and
(1.9) g7 (v) — g7 Hw)] L w(r o —w|), for allv,w e U.

Roughly speaking, Condition (#x) does for sets what quasisymme-
try does for mappings.

The difference between this and Condition (*) is that we require
here a uniform bound on the moduli of continuity of the homeomorphic
parameterizations of the topological d-balls U (and also on the moduli
of continuity of their inverses). We do not require that this modulus
of continuity be anything in particular -e.g., we do not require Holder
continuity- and we have been careful in (1.8) and (1.9) to make the
estimates scale-invariant.

Finite polyhedra which are also topological manifolds (without
boundary) provide an amusing class of sets which satisfy (##), or rather
the obvious counterpart of (*#) for compact sets, in which we consider
only small radii. (See Section 11.) The results of Edwards and Cannon
imply that there are many strange examples of such polyhedra.
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Notice that Condition (**) is satisfied if E admits a quasisymmetric
parameterization by R%. The difference between the two properties is
basically that the homeomorphisms ¢ in Definition 1.7 are allowed to
depend on z,r in a completely arbitrary fashion, while the existence
of a quasisymmetric parameterization means that all the ¢g’s can be
obtained from a global parameterization of E in a certain way.

One can also look at the uniformity required in Condition (*#) in
terms of compactness. To understand this point it is helpful to recall
the following compactness property of quasisymmetric mappings.

Lemma 1.10. Suppose that f; : R® — R* is a sequence of quasisym-
metric embeddings which satisfy (1.1) with a fized choice of n. Suppose
also that there are two points ag,a; € R® and a positive constant C
such that [fj(a;)| < C and |fj(ao) — fi(a1)] = C~! for alli,j. Then
there is a subsequence of {f;} which converges uniformly on compact
subsets of R® to an n-quasisymmetric embedding f : R® — R*.

This is a well-known and simple consequence of the Arzela-Ascoli
theorem. It implies compactness properties for the set of subsets of
R* which are quasisymmetrically equivalent to R® with respect to the
Hausdorff topology. Condition (*#) has a similar compactness property
built in to the definition, but without the benefit of a single parameter-
ization which incorporates all the estimates. By contrast, we shall see
that Condition (*) fails to enjoy such compactness.

We shall also consider a condition weaker than ().

Definition 1.11. A subset E of R satisfies Condition (1) of it is a
topolagical manifold and if there 1s a C > 0 such thatx € E and r > 0
imply that ENB(x,7) can be contracted to a point inside ENB(z,Cr).

This kind of uniform contractability condition has gained in promi-
nence in recent years. (See [F1], [F2], [GP], [GPW], [P].) Condition (*)
implies (1), and the two have similar features, e.g., they both prevent
cusps and long thin tubes. It turns out that (f) implies (*) stably, in
the sense that (1) for E implies (*) for E x R, by a theorem of Ferry
[F2], at least when E has topological dimension greater or equal than
4. (Basically this comes from [F2, Theorem 4.1], but I am cheating
slightly here, because Ferry works only with compact sets and the cor-
responding versions of (1) and (x*).)
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The following is the main result of this paper.

Theorem 1.12. a) There ezists a set in R* which satisfies (1) (with
dimension 3) but not (*).

b) There ezists a set in R* which satisfies (*) (with dimension 3)
but not (**).

c) There exzists a set in R* which satisfies (*x) (with dimension 3)
but which does not admit a quasisymmetric parameterization.

All of these sets can be chosen to be Ahlfors reqular with dimension
3 and to have the property that there is a constant Ly so that every pair
of points p,q in the set is contained in a closed subset W of the set
such that W 1s Lg-bilipschitz equivalent to a closed Euclidean 3-ball.
(In particular, p and ¢ can be connected by a curve inside the set with
length less or equal than L% |p — q|. Thus the Euclidean distance on
these sets are comparable in size to the internal geodesic distances on
them.) These sets can also be taken to agree with a 3-plane outside a
large ball, and to be homeomorphic to R3.

For the record, the statement that two sets are C-bilipschitz equiv-
alent means that there is a bijection between them which satisfies (1.2)
for all pairs of points in the domain of the mapping.

The sets in Theorem 1.12 are smooth away from small singular
sets, and the degeneracies near the singularities are well controlled (and
have a natural self similarity to them). The statement about bilipschitz
balls implies also that these sets are uniformly rectifiable in the sense
of [DS4]. Thus there is nothing fractal happening, not even asymptot-
ically. These sets are also well behaved in terms of analysis, and in
particular there are Sobolev and Poincaré inequalities for them. (See
Sections 9 and 10.)

Note that examples as in c) existed before, because of [Tu2], but
without Ahlfors regularity (of the correct dimension), or the property
about pairs of points being contained in bilipschitz balls, or the good
bounds on the geodesic distances.

Part a) of Theorem 1.12 answers a question of Ferry and shows
that the stabilization in his theorem is necessary. (He gave a slightly
different version of this necessity in [F2, Theorem 4].)

What does Theorem 1.12 mean? The glib answer is that it means
that one should assume more than Ahlfors regularity and (#*) if one
wants to have geometric criteria for the existence of a quasisymmetric
parameterization. I am inclined more to the view that the examples
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of Theorem 1.12 mean that quasisymmetric mappings are too rigid to
accommodate some reasonable geometric phenomena, and that there is
an interesting middle zone where geometry is approximately Euclidean
and good enough for a lot of analysis but still substantially different
from Euclidean geometry.

Note that quasiconformal parameterizations of the sets promised
in Theorem 1.12 must be quasisymmetric and hence cannot exist. See
the comments after Corollary 3.104.

The examples promised in Theorem 1.12 are basically geometric
reformulations of classical examples from geometric topology and were
inspired by the pictures in [D, Section 9]. Geometric topology is un-
usual in mathematics for its wealth of concrete examples, including
some very interesting (topological) quotients of Euclidean spaces with
a lot of topological self-similarity. The main point of Theorem 1.12 is
that one can construct sets which contain the same topological informa-
tion as in these examples but for which the topological self-similarity is
converted into actual geometric self-similarity. Specifically, the exam-
ples for a), b), and ¢) of Theorem 1.12 correspond to the construction of
the Whitehead continuum, Bing’s dogbone space, and Bing doubling,
respectively. It is easy to construct similar sets corresponding to other
examples of the same type, but the main points of this general pro-
cedure are illustrated well by these three examples. The topological
features of these classical examples imply interesting properties of the
sets constructed here, from which the requirements of a) and b) will
follow irnmediately. In the case of ¢) there is an additional point which
was covered in [F'S], and in fact Theorem 1.12.c) turns out to be almost
just a reformulation of an example in [F'S).

Juha Heinonen pointed out to me that the complementary compo-
nents of the sets used to prove Theorem 1.12 are “uniform domains” (see
(7.13) and (7.14)), and hence cannot be quasiconformally equivalent to
a ball. (If they were, then there would have to be a quasisymmetric ex-
tension to the boundary, which is impossible.) In particular, if these do-
mains are equipped with their quasihyperbolic metrics, then they can-
not be bilipschitzly equivalent to the standard hyperbolic space. This is
amusing, because these complementary domains are otherwise so nice.
They are topological balls, with topologically tame boundaries, and we
can even build them so that there are bilipschitz reflections across their
boundaries (i.e., across the sets promised in Theorem 1.12). The com-
plementary components of the set in c¢) are particularly nice, because
they satisfy a version of (**) adapted to domains. (See Theorem 8.1
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below.) One could also build examples with the same properties using
[Tu2, Lemma 4] (as discussed on [Tu2, p. 518]), but not with the control
on the mass, uniform rectifiability, etc., which is available here.

Note that there are general results in [V2] which permit one to con-
clude that the complementary components of a set are uniform domains
under natural uniform conditions on the topology of the set itself. One
can also derive higher-order versions of the uniform domain condition
in this way. In our case we shall be able to check easily and directly
that the domains are uniform, but one should keep the general results
in mind.

To understand the details of this paper it could be very helpful to
have a copy of [D] handy. In particular [D] has excellent pictures. I
shall provide references which permit one to do without [D], but the
wonderfully clear book [D] provides the advantages of one-stop shop-
ping. Good general references for aspects of geometric topology related
to the topics of this paper include [C1], [C2], [D], [E], [K], and many
papers of R. H. Bing.

The paper [Se5] addresses similar questions about bilipschitz in-
stead of quasisymmetric mappings and relies on different examples from
geometric topology (like Antoine’s necklaces).

Some background information about geometric topology will be
given in the next section, and a general construction will begin after
that. Specific examples corresponding to Theorem 1.12 are described in
Sections 4, 5, and 6, and the complements of these sets are discussed in
Sections 7 and 8. Section 9 deals with analysis on these sets, with suit-
able versions of Sobolev and Poincaré inequalities established in Section
10. The simple fact that finite polyhedra which are topological man-
ifolds satisfy the analogue of (*+) for compact sets is given in Section
11, and the last section is devoted to miscellaneous remarks.

2. Some geometric topology.

The examples for Theorem 1.12 come from classical geometric
topology, but before getting to that let us review briefly some of the
more modern activity concerning the problem of finding homeomorphic
parameterizations of a space. A good reference is the expository paper
[C1], which begins with the following:

Recognition Problem 2.1. Find a short list of topological properties,
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reasonably easy to check, that characterize topological manifolds among
topological spaces.

In dimensions § and higher there is now a reasonable characteriza-
tion of topological manifolds coming from work of Edwards and Quinn
[E], [Q1], [Q2], modulo a locally defined integer obstruction whose non-
triviality was only recently established by Bryant, Ferry, Mio, and Wein-
berger [B*°]. That is, they construct spaces which are “almost” mani-
folds but which have the wrong value of the aforementioned obstruction.
Their construction is quite complicated, and the spaces they produced
are not well understood. These spaces should be very interesting, be-
cause they are so well behaved but still distinct from Euclidean topol-
ogy, and one can hope that they have interesting geometric realizations
on which one can do some analysis.

To put the recognition problem into perspective it is helpful to
consider the special case of finite polyhedra. It turns out that a fi-
nite polyhedron K is a topological manifold (without boundary) if and
only if the link of every simplex in I{ is a homology sphere of the cor-
rect dimension, and if the links of vertices are simply connected when
dim ' > 2. This result follows from the theorem of Edwards and Can-
non [C2], [C3], [E] to the effect that double suspensions of homology
spheres are topological spheres. When the dimension is 4 one must also
use the Freedman theory [Fr]. As indicated in the introduction, it is
known that the local homeomorphic parameterizations promised in this
theorem cannot be bilipschitz in certain cases (see [SS] for details), and
the existence of quasisymmetric homeomorphisms is an open problem.

The bottom line is that topologists have some serious technol-
ogy for establishing - the existence of homeomorphic parameterizations.
They tend not to provide any estimates on the extent to which their
parameterizations distort distances, but there are also examples which
show that the homeomorphisms which they produce have to be com-
plicated.

Of course the preceding discussion about the existence of home-
omorphic parameterizations ignores local-to-global issues of the type
addressed by the Schonflies theorem, the annulus and Poincaré con-
jectures, the H and S cobordism theorems, and surgery theory. The
local and global questions are not truly separate -e.g., the properties
of a space at infinity can be reformulated in terms of local properties
of the one-point compactification near the new point- and the distinc-
tion is particularly dubious in the context of parameterizations with
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scale-invariant bounds, as in bilipschitz and quasisymmetric conditions,
where an obstruction to doing something globally can give rise to ob-
struction to doing it locally with a uniform bound.

Now let us consider a much more restricted version of the recog-
nition problem which will be more directly connected to the proof of
Theorem 1.12. There is an old result of R. L. Moore to the effect that
a Hausdorff topological space X is homeomorphic to S? if it can be
realized as the image of a continuous mapping f : S? — X with the
property that f~!(z) and S?\ f~!(z) are nonempty and connected for
each z € X. This is not to say that f is itself a homeomorphism; f
could collapse an arc or a disk to a point, for instance. Observe that
if we collapse a circle in S? to a point we get an X which consists of
two 2-spheres touching at a point. In this case both the hypothesis and
conclusion of Moore’s theorem fail to hold.

What happens in 3 dimensions? It turns out that there arc some
subtle negative results. To explain this it is helpful to introduce some
auxiliary notions. (Sce [D] for details.) A decomposition G of R® is
simply a partition of R3, i.e., a collection of disjoint subsets of R3
whose union is all of R®. (See [D, bottom of p. 7], or [K, p. 86].) Given
a decomposition G of R? we can form the usual quotient space R*/G (as
a topological space). Under reasonable hypotheses (which include the
requirement that each element of G be a closed subset of R?) one knows
that R*/G is a Hausdorff space, and every decomposition that we shall
consider will have a Hausdorff quotient. One would like to know when
R?/G is a topological manifold, which might even be homeomorphic to
R? itself. Moore’s theorem provides a nontrivial criterion for this in 2
dimensions, but this is a much harder problem in 3 dimensions.

If F is a closed subset of R?, then we can define a decomposition
associated to it by taking G to consist of F together with {z} for all
z € R3\F. Thus R*®/G is simply the space that one gets by shrinking
F to a point and leaving the rest of R® alone. For instance, if one
takes F to be a line segment, then R*/G is homeomorphic to R? again.
This is also true if one takes F' to be a (standard) closed 2-disk, or a
(standard) closed 3-ball. If F is taken to be the unit sphere, then R®*/G
is homeomorphic to R* with a 3-sphere attached to it at one point.

What happens if F is a (standard) circle? Set X = R3/G, and
let p denote the point in X which corresponds to F. Then X\{p} is
not simply connected, because it is homeomorphic to R3\F, and we
can take a circle which links F to get a homotopically nontrivial loop
in X\{p}. This implies that X is not homeomorphic to R?, and a
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local version of the same argument shows that X is not a topological
manifold at p.

This example shows that the most naive transcription of Moore’s
theorem does not work in 3-dimensions, since the complement of F
in R® is connected. There is a more interesting example based on the
Whitehead continuum W in R®. The main properties of this continuum
are the following: (i) it is cell-like, which means that it can be contracted
to a point inside of any open set which contains it; (ii) when viewed
as a subset of S®, its complement is contractable (unlike a circle, as in
the previous example); (iii) there is an open set U C R* which contains
W such that there are loops in arbitrarily small neighborhoods of W
which do not intersect W but which cannot be contracted to a point in
U \ W. Equivalently, although S3\W is contractable, it is not simply
connected at infinity. Notice that a standard line segment satisfies (i)
and (ii) above, but not (iii). If we let G be the decomposition associated
to F' = W as before, then X = R?®/G is again not homeomorphic to R®.
Indeed, if p € X corresponds to W, then X'\ {p} is simply connected in
this case, but there is an open set V (the image in X of U in (iii)) which
contains p and which has the property that there are loops in X'\{p}
which are as close as we want to p but which are not homotopically
trivial in V'\{p}. Thus X is not a topological manifold at p.

The Whitehead continuum can be constructed through an iterative
procedure as follows. One starts with a solid torus T in R?® and another
solid torus T; embedded inside T as in [D, Figure 9-7, p. 68]. (See
also [K, p. 81ff].) T3 should be embedded into T' in such a way that it
is homotopically trivial but clasped to make it isotopically nontrivial.
That is, T cannot be deformed to a standard torus inside T' without
crossing itself. One then iterates this construction by identifying T3
with T to get a new torus T inside T}, and then repeating the process
indefinitely to get a sequence of nested solid tori T;. The Whitehead
continuum is obtained by taking the intersection of the T};’s. The key
property (iii) above can be reduced to the fact that the meridional circle
in 0T pictured in [D, Figure 9-7] cannot be contracted to a point in T
without touching the intersection of the Tj’s. (See D, Proposition 9,
p. 76] and the remarks which preceed it. See also [K, p. 82].)

We shall use the Whitehead continuum in Section 4 to prove The-
orem 1.12.a), and we shall employ similar iterative constructions for b)
and c). Before we consider specific examples in detail we should for-
mulate this iterative procedure in more general terms, starting with a
basic definition from [D, bottom of p. 61].
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Definition 2.2. 4 defining sequence in R® is a sequence {C;} of closed
subsets of R® such that each C; is the closure of a bounded open set with
smooth boundary and such that C;;y i3 contained in the interior of C;
for each 1. The C;’s need not be connected.

Given a defining sequence {C;} in R*, we can define a decomposi-
tion G of R? by taking the elements of G to be the components of NC;
together with the singletons from R3 \ NC;. In the earlier discussion of
the Whitehead continuum each C; = T; had only one component, as did
NC;. In the other examples considered here the number of components
of C; grows exponentially.

The iterative procedures that we shall use will be represented by
the following. For the record, a “domain” is a connected open set.

Definition 2.3. An initial package P consists of a bounded smooth
domain D in R3, a finite collection Dy,...,D, of smooth subdomains
with disjoint closures contained in D, and mappings ¢;, j = 1,...,n,
such that each ¢; is a diffeomorphism from a neighborhood of D onto
a neighborhood of D; which maps D onto D; .

For example, in the construction of the Whitehead continuum we
had an initial package (with n = 1) consisting of D = T, D; = Ty, and
any reasonable choice of ¢; .

To an initial package P we can associate a defining sequence {C;}
by taking Cy to be D, C; to be UD;, C, to be the union of the images
of the D}’s under #; inside each I)-j, and so forth. Thus C; is the union
of n' images of D under various compositions of the ¢;’s.

As explained in [D, Section 9], there are some very interesting de-
compositions of R* which can be obtained from an initial package in
this way. One such decomposition G, due to Bing [B3], has a nonman-
ifold quotient R®/G (called “the dogbone space”) even though G has
the property of being cellular. A compact set K in R? is said to be
cellular if for each open set U C R?® with U D K there is a topologi-
cal 3-ball contained in U which contains ', and a decomposition G of
R? is said to be cellular if each of its elements is a cellular set. (See
p. 35 and Corollary 2A on p. 36 of [D].) The Whitehead continuum
is definitely not cellular [D, p. 76, Proposition 9], and at one point it
was apparently hoped that a cellular quotient of S would be S* again.
Bing’s example shows that this is not true, and we shall use it to prove
Theorem 1.12.b).
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There is an older example which Bing considered in [B1] for which
the quotient is homeomorphic to R® but in a nontrivial way. For in-
stance, this decomposition has a symmetry about a 2-plane which gives
rise to an involution on S* whose fixed point set is a wild sphere. This
example was also used in [F'S], and it will be used here to prove Theorem
1.12.c).

Our next task will be to take the construction of a decomposition
and an associated quotient of R® from an initial package and adapt
it in such a way as to have better geometric properties. For a bare
bones version of Theorem 1.12 all we really need to do is deform the
Euclidean metric smoothly on D in such a way that the ¢;’s become
similarities near 0D. A straightforward iterative construction would
then allow us to build a metric with respect to which the ¢;’s are
similarities on all of D. This metric would deteriorate near the elements
of the decomposition, as it should. In this way we can build a metric
space which is topologically equivalent to the decomposition space and
which has nice geometric self-similarity properties. For the sake of
concreteness and other benefits it is better to construct theses spaces
as subsets of Euclidean spaces, and the examples used in this paper even
fit into R*. In fact their embeddings into R* and their complementary
components have some especially nice properties for which we shall
take extra care to make manifest. If one simply wants to build such’
sets without worrying about extra properties then some of the efforts
and assumptions in the next section are unnecessary. (See the remarks
after Definition 3.2.)

3. The general construction.

The next definition describes excellent packages, which consist of
an initial package P together with objects which will allow us to convert
P into a topologically equivalent object in R* for which the analogue of
the ¢;’s are similarities. Recall that a (Euclidean) similarity on R* is an
affine transformation which is a combination of a translation, dilation
by a positive number (called the dilation factor of the similarity), and
an orthogonal transformation.

Convention 3.1. P denotes the z; = 0 hyperplane in R*, and from
now on we identify it with R, so that any objects living on R® (like an
initial package) will be viewed as living on P.
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Definition 3.2. An ezcellent package € consists of an initial package
P ={D,Dy,...,Dpn,¢1,...,6,} as in Definition 2.3 together with a
bounded smooth domain Q in R*, smooth subdomains wy,...,w, of
with disjoint closures contained in Q, another collection of smooth sub-
domains Qy,...,, with disjoint closures contained in Q, orientation-
preserving similarities ;, 1 < j <n, on R* which all preserve P and
have the same dilation factor p € (0,1/10), and a diffecomorphism 6 on
R* which satisfy the following properties:

(3.3) QNP=D,w;NnP=D;, and

0R), Ow; all intersect P transversely;
(3.4) $5(R) = 9 for all j;
(3.5) 8(Q) = Q and 6 = the identity on R*\Q

and on a neighborhood of O

(3.6) O(w;) =, and 9=¢jo¢;1
on a neighborhood of D; in P for each j .

Thus 2 and the w;’s are fattened-up versions of D and the D;’s in
R*, the Q,’s are “straightened” versions of the w;’s, and 6 converts the
slightly twisted D;’s into the straighter Q;NP’s at the cost of deforming
P inside Q.

These excellent packages have more structure than we actually need
for Theorem 1.12. Instead of the requirement that 6 exist as a diffeo-
morphism on all of R* it would be enough to have § as an embedding
of P into R*, say. If were also willing to work in a larger space than
R* then this weaker version of an excellent package would exist for any
initial package. (R” is plenty large enough.) As it is, the above defi-
nition of an excellent package imposes some topological restrictions on
an initial package. These restrictions will be satisfied in the examples
that we shall consider, and the extra structure that we obtain will be
pleasant to have. Note that the kind of bare-bones deformation of the
metric for an initial package described at the end of Section 2 involves
no topological obstructions whatsoever.

For the rest of this section we shall assume that we are given an
excellent package £ as above and build some surfaces from it. This
construction is similar to the one used in [Se5, Section 5] (with Lemma
5.6 there providing the excellent package).
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Define A1 C R* by M! = 6(P). Thus M! is the same as P outside
Q, it agrees with ¥;(D) = ©; N P inside ;, and it is some smooth
manifold in 2\ UQ;. We want to define a sequence of submanifolds
M7 with many twists like the ones in M, but to do this we should first
sort out the relevant codings.

Let S; denote the finite sequences a = {a;}!_, with [ terms such
that a; € {1,...,n} for all <. Thus we can identify S; with {1,...,n},
and it will be useful to consider Sy as a set with just one element, the
empty sequence, sometimes denoted @. Define ¥, and Q, for a € S
recursively in the following manner. If [ = 1, so that we can view «a as
an element of {1,...,n}, then we simply take ¢, and Q, to be as in
Definition 3.2 above. If I > 1 and « = {a;}!_,, then let o' = {a;}!Z] be
the “parent” of a in S;j—; and set Qo = Ya/(Qq,) and Yo = P 0 PYyg,.
We view the empty sequence in Sp as being the parent of the elements
of &1, so that the preceding equations hold with Qg = Q and ¥4 taken
to be the identity. We shall call two elements of S; “siblings” if they
have the same parent, and extend this terminology to the Q,’s as well.
With these conventions we have the following properties for ¢, and Qq
for each a € &;, 1 > 1, with o' the parent of a:

(3.7) 1he is a similarity with dilation factor p',
and ¢4(P) =P, '

(3.8) Qo = %a(Q),

(3.9 Qo C Qg and

Q, is disjoint from its siblings in Q4 .
The Q,’s have additional nesting properties, which we state as a lemma.

Lemma 3.10. Suppose that « € S; and € S. Then either 2, and
Qg are disjoint (and have disjoint closures), or o C Qg, in which case
1>k and « is a descendant of B, or Qg C Q4q, 1n which case k > 1 and
B 18 a descendaent of a. In particular Qo and Sdg are disjoint (and have
disjoint closures) when k=1 and o # .

To see this choose v € S, to be the common ancestor of o and £
with m as large as possible (but perhaps = 0). If v is equal to either
a or [, then one is an ancestor of the other, and we are in business.
Otherwise, & and f§ are descended from distinct children of «, and
disjointness follows from (3.9).
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We can define ¢, and D, in the same way as ¥, and Q,, so that
¢« and D, are given to us as part of our initial package when a € &,
bo = bor 0 ¢a, when I > 1, @ = {a;}}_;, and o' is the parent of a,
and D, is defined to be ¢o(D). The D,’s satisfy the same nesting
properties as the §24’s, in the sense that the analogue of Lemma 3.10
for the D, ’s is true, with the same proof. If we set C; = Uc,e,g,_ﬁa, then
this 1s equivalent to the defining sequence mentioned after Definition
2.3.

Set
[}
(3.11) F=) Qo s
=1 a€S,
and let S denote the collection of all infinite sequences s = {s;} of
elements of {1,...,n}, so that S is the natural limit of the S;’s. Thus

F is a Cantor set in R* which actually lies in P, because of (3.7) and
(3.8), and there is a natural bijection f : & — F which is defined in the
obvious manner. (Each element s of S determines a nested sequence
of Q4’s which converges to a point (by (3.7)-(3.9)), and f(s) is defined
to be this point. Conversely, every element of F' must arise from such
a nested sequence of §,'s, by Lemma 3.10.) If we perform the same
construction for the D[ s instead of the Q,’s, then we might not get
a Cantor set but a more complicated set with nontrivial components.
These components are the nontrivial elements of the decomposition
associated to the defining sequence C; above (as described just after
Definition 2.2). (See Sublemma 3.40.)

Set Y = Q \ U219, and Yo = o(Y). These compact sets in
R* are the closures of smooth domains. As before let us set Yy = Y,
where @ is the empty sequence in Sg. If « € & and S € Sk, and if
Y, intersects Y3, then one of «, f is the parent of the other, and their
intersection equals dQ.,, where v is whichever of a and f is the child.
This is an easy consequence of Lemma 3.10, (3.9), and the definitions.
Notice also that

m

(3.12) R“:(R“\Q)U(U U y;,)u( U Qa)

=0 «€S; a€ESm 41

for each m > 0, and

s

(3.13) R* = (R\Q)U ( Y,,) UF.

l§ Q€S

Il
o
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The basic building block for the construction of the A{7’s is
(3.14) 2:9('5\UD,-).
i=1

This is a compact embedded 3-dimensional submanifold of R* with
boundary which satisfies £ C Y and £ = P on a neighborhood of 0Y
inside Y (by (3.5) and (3.6)). Setting £, = ¢o(Z) for a € S;, 1 > 0 (so
that ¥z = ¥ when [ = 0, as usual), we have that

(3.15) Lo CY,
and
(3.16) Yo = P on a neighborhood of 0Y, inside Y, .

Define M7 for j > 1 by

j=1

(3.17) MJ = (P\D)uU ( U U S) U ( U Qan P) .

=0 a€S; 065,'

In accordance with our usual conventions for | = 0 we set M° = P. It is
easy to see that this agrees with A1 = §(P) from before, because of the
definitions and the properties of §. All the M7’s are embedded smooth
submanifolds of R*, because of (3.16) and the disjointness properties of
the Y, ’s. Also,

(3.18) M) =M outside | ) QW, i<k

This implies in particular that the Af7’s are converging in the Hausdorff
topology to

(G

(3.19) M = (P\D)U ( \:a) UF.

=0 a€S;

This is a smooth embedded submanifold away from the Cantor set
F C P. It will sometimes be convenient to denote M by M to make
the notation more uniform.
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These submanifolds have the self-similarity property that
(320)  QuNMI =9, (ANM7') whenaeS and0<I<y.

Here we allow j = oo, which gives the relevant property for M. This
equality is not hard to derive from the definitions (which were chosen
precisely so that this would be true).

These are basically the sets that we are interested in, but for tech-
nical reasons we shall need to define another set M which is not quite
as singular as M but which contains a (small) copy of each M7. To
do this let {Bx}}2, be a sequence of balls in R* with disjoint doubles
whose radii tend to 0 and whose centers lie on P and converge to the
origin, and let 4, : R* — R? be affine mappings composed of transla-
tions and (nonzero) dilations such that Ak(ﬁk) C By and Ax(P) = P.
Set M = Ak(M*), so that M* = P outside By (and the interesting
part of M* is contained in By). Let M be the subset of R* such that
M = MP* inside each By and M = P outside Ui Bk- (Compare with
[Tul, Example on p. 69] and [HY, Example 6.6].) For convenience we
also require that there exist balls B}, with radius < 100radius By such
that B; C B}, when ! > k but BN B}, = @ when | < k. This is not hard
to arrange, by taking the By’s to be B(z;,272573%) with |z = 272
and setting B} = B(0,272**+1), for instance. For the clarity of future
arguments it is best for us to simply require that the B}’s be chosen in
this manner, and with all the z;’s lying on the same line through the
origin, rather than worry about the level of generality in which we can
do this construction.

It is clear that the M’s have a lot of self-similarity, but we also
need to keep track of their topological properties. Recall the definition
of the D,’s and Ci’s (just before (3.11)), and let G be the decompo-
sition associated to the defining sequence {C}}, as discussed just after
Definition 2.2. We want to show that A is homeomorphic to R*/G,
where G is the decomposition associated to our initial package in the
manner described after Definition 2.3. We also want to build some
parameterizations of the M7’s which approximate the aforementioned
homeomorphism in a nice way.

Lemma 3.21. There ezist diffeomorphisms hj from R* onto itself,
0 <j < oo, and a continuous mapping h from R onto itself with the
following properties: h;(R*) = M7 and h(R3) = M; h = hj = 6 on
R*\ (UL ,671(Q4)); hj — h uniformly on RY; h(Dy) = M N Qq for
o 1n any S; and h;(Ds) = MI N Q4 for a in any S; with 1 < j; h
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18 constant on each element of the decomposition G, and it induces a
homeomorphism from R®/G onto M. There is also a homeomorphism

h from R* onto itself which maps R® onto M and which equals the

identity off of each By (and off each Ar(Q)), which maps each By N P

’

onto By N M, and which 13 a diffeomorphism away from the origin.

Let us define first little copies of § on the various ,’s. Set
(3.22) Oo =1ha oo,
so that
(3.23) 0,(Qs) = Qg and b, = the identity on R*\ Q4
and on a neighborhood of 09 .
I+1

If « is the empty sequence in Sp, then 8, = 6. If § = {b;};Z] € Si41 is
the child of o with b7 = p, then

(3.24) 6, =g o ¢>P_1 0! on a neighborhood of 14(D,) in P

by (3.6).

Let g; denote the composition of all 8, for a € S;. Because the Q4,’s
for a € & are pairwise disjoint (by Lemma 3.10), these 6,’s commute,
and so we need not to worry about how we do the composition. Note
that go = 46,

(3.25) qi(Sg) = Qs whenever f € Sk, k<1,

and

(3.26) g1 = the identity on R4\( U Q.,) when k < 1.
YESK

These observations follow easily from Lemma 3.10.
Define h; for j > 1 by

(3.27) hj =gj_10gj_20---0gq .

These are obviously diffeomorphisms, and h; = go = §. We can take
hg to be the identity, for completeness. Note that

(3.28) hy o hj‘1 = the identity on R*\ ( U Qa)
a€S;
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and
(3.29) hio hj_l(Qa) =4, forall a € Sj

when j < k. In particular

(3.30) hj = hy on R4\( U 9“(9,)) when j > 1.

i=1
Let us check that

hj=1q0¢3" on D, (and hence hj(Dqa)=%s N P)

(3.31)
when a € §; .

We do this by induction. When j = 1 this reduces to (3.6) and the
definitions of D, and §,. Suppose now that we know (3.31) for some
value of j and that we want to verify it for j + 1. Let 8 € S;4+1 be
given, and let @ € §; be its parent. Set p = bjy; € {1,...,n}, where
B = {b;})F!. From our induction hypothesis we get that hj(Dg) C
hij(Dy) € Qq, and so hjy; = gjohj =640 h; on ﬁp. Our induction
hypothesis also gives hj(Dg) = ¥ 0 ¢71(Dj). By definitions we have
that Dg = ¢5(D) and ¢g = ¢a 0 ¢p, and so ¢7(Dp) = ¢5'(¢s(D)) =
$p(D) = Dp. Thus hj(Dg) = o(D,), and this permits us to use (3.24)
to obtain hji; = g o ¢;1 on Dg from our induction hypothesis that
(3.31) holds for j and «. This in turn implies that hj;1(Dg) = ¥g(D),
and this last is the same as {3 N P because of (3.3), (3.7), and (3.8).
This proves (3.31).
Observe that

(3.32) hi(Da) C Qq , whena € S5, j <k.

This follows from (3.31) and (3.29).

Set E = D\ U7, D; and Eq = ¢4(E) for any « in any S;. Thus
E, is the same as D, with the children of D, removed (i.e., the Dg’s
with # € 8141 a child of «). As usual we have Eg = E for the empty
sequence in &g. Let us check that

(3.33) hi(Ey) = Zo when a € S5, j <k.

It suffices to check this when & = j+ 1, because hy °hj—~:1 = the identity
on L, when o € §j and k > j + 1, because of (3.29) and (3.15).
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Because hj(Eq) C hj(Da) C Qo we get that g; = 84 on hj(Eq), while
(3.31) implies that hj(Ey) = ¥o(E). Hence hj11(Eqs) = gj(hj(Eq)) =
Oo(Va(E)) = Ya(8(E)) by (3.22). Using (3.14) we get ¢¥o(0(E)) =
Ya(X) = T4, which proves (3.33).

It is now easy to check that hj(D,) = MINQ, for a in any S
with | < j, using (3.33), (3.31), the definition (3.17) of M7, and the
nesting properties of the 5’s (as in Lemma 3.10). We also have that

(3.34) hk(Rz\( U D,,)) gR‘*\( U Qa)

a€S a€ESy

because of (3.33). This implies that

(3.35) hm = hi on Rs\ ( U Da) , when m > k,

a€Sk

because of (3.28).
From (3.28) and (3.29) we have that

(3.36)  [|hj = hillo < sup diam Qq = p? diam Q when j < k,

a€S;

where p is the dilation factor of the 1;’s (as in Definition 3.2). This
implies that the h;'s converge uniformly to a continuous mapping A :
R?* — R*. Notice that

(3.37) h=h; onR\( |J Da),

QGSJ'
(3.38) h=h =60 on R4\( U G‘I(Qi)) ,
1=1
and

(3.39) I(Dy) C Qy for any o € §j and any j,

because of (3.35), (3.30), and (3.32).

Let {Ci} be the defining sequence associated to the D,’s, so that
Ci| = Uges, Da, and set C = NG By definition our decomposition
G of R? consists of the components of C and the singletons in R*\C.
We understand h well on R3\C, because of (3.37), and we want to
understand it on C. We must first analyze the components of C.
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Let S be as before (defined just after (3.11)). Given a sequence
s={s;}%, € S, let 4, denote the intersection of the D,’s which come
from ancestors a of s. That is, @ € S; is an ancestor of s if a = {s;}]_;.
It is easy to check that the A,’s are pairwise disjoint, using the nesting
properties of the D,’s.

Sublemma 3.40. C = UaES A, and the A,’s are the connected com-
ponents of C.

C contains all the A,’s by definition. Conversely, if p € C, then for
each j there is an a; € §; such that p € ﬁaj. The analogue of Lemma
3.10 for the D’s instead of the Q’s implies that a;4; must be a child
of aj for each 7. This means that the a;’s combine to form a sequence
$ € S, and it is clear that p € A4,. .

Each A, is connected. For this we use the fact that each Dy, is
connected, since our original domain D is (by the definition of domain).
Thus A, is the decreasing intersection of compact connected sets, and
it is an elementary general fact that .4, must itself be connected under
these conditions. (If A, were disconnected, it would be contained in
the union of two disjoint open sets, each of which intersects it, and the
same would then have to be true for some D, .)

Each A, is a component of C. If not, there would be an 4, and
an A; which lie in the same component of C, with s # t. Let a € S; be
the common ancestor of s and ¢ with j as large as possible (but perhaps
equal to 0). Then C is contained in the union of the complement of D,
and the closures of the children of D,, and A, and A, lie in different
children of D,. Since the closures of these children are disjoint and lie
in D, we see that 4; and 4, cannot both touch the same component
of C. This proves Sublemma 3.40.

Recall the (bijective) mapping f : S — F defined just after the
definition of the Cantor set F' in (3.11). We have that

(3.41) h(p) = f(s), forallpe A;and s € S,

because of (3.39) and the definitions of A; and f(s). It is easy to check
that

(3.42) Nh(Dg)=MnNQ,, for any « in any S,

because of (3.19), (3.37), (3.18), (3.41), and the corresponding state-
ment for the hj’s (just before (3.34)). In other words, h looks like the
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h;’s away from C, M looks like the M7’s away from F, and C and F
correspond under A the way that they should because of (3.41).

It is not hard to check that & induces a homeomorphism from R*/G
onto M. Sublemma 3.40 provides us with a complete understanding of
the decomposition G, we know how h behaves on and near the nontrivial
elements of G because of (3.41) and (3.42), and we understand h away
from C because of (3.37).

The last part of Lemma 3.21, about %, is an easy consequence
of the earlier part. That is, we set h = the identity off the 4;(02)’s
and h = Arohro A;l on each Ar(S2). Because each hj equals the
identity off 2 and maps 2 onto itself it is easy to see that this is a
homeomorphism, and it maps R® onto A by definition. It is also clear
that it is a diffeomorphism away from the origin.

This completes the proof of Lemmma 3.21.

RECAPITULATION 3.43. We started with an excellent package, which
contained an initial package. From the initial package we can generate
a decomposition of R? as in Section 2. The excellent package is, roughly
speaking, a topologically equivalent version of the initial package which
lives in R* and has better geometric properties (like self-similarity). We
have now used the excellent package to construct sets M, M7, and M ,
and Lemma 3.21 tells us that they have the correct compatibility with
the decomposition associated to the initial package. To prove Theorem
1.12 we shall choose specific excellent packages (in Sections 4, 5, and 6)

and use the resulting sets A, M.

Before we consider specific examples we shall establish some gen-
eral properties of the construction which will be relevant for all of the
examples. For this we shall need a case-by-case analysis of the posi-
tions of balls centered on these sets whose basic structure will be used
repeatedly in this paper, and so we establish it first. For the moment
we restrict ourselves to A/ and M7 and forget about M.

Lemma 3.44. Letx € MJ andr > 0 be given, where we allow j = 0o in

which case M7 = M. Let a > 0 be a small number that we get to choose

but which should be small enough so that 2adiam Q < dist (2,,2,) for

alp,g=1,....n, p#q. Then one of the following alternatives holds:
i) B(z,m)NQ =g,

i) B(z,r)NQ # F and r > adiamQ,



1,

212 S. SEMMES

i) B(ax,r)NQ # 3, r < adiamQ, and B(z,r) € @,

iv) there is an o 1n some S;, 0 < 1 < j, such that B(z,r) C Qq
and r 2 adiam Q4 ,

v) there is an a in some S, 0 <1 < j, such that B(z,r) C Q,,
r < adiam g, and either l = 5 or B(z,r)NYy #D.

Recall that Y, was defined just before (3.12), and note that [ =3
is not an option when 5 = oc.

Lemma 3.44 is quite straightforward. If none of the first three
cases hold then we have r < adiam Q and B(z,r) C Q. Choose [ < j
as large as possible so that B(z,r) C 2, for some a € S;, where | =0
is allowed. If also » > adiam{,, then iv) obtains (unless | = 0, in
which case ii) was already satisfied). If » < adiam{2,, then v) has to
hold because we took [ to be as large as possible. That is, if | < j and
B(z,7)NY, = @, then we could replace Q, by one of its children. For
this last step we need to know that a is sufficiently small so that B(z,r)
cannot touch two different children of 2,, and the condition on a in
the lemma ensures precisely this.

Let us now establish the Ahlfors regularity of these sets.

Lemma 3.45. If p*n < 1, where p, n are as in Definition 3.2, then
the sets M, M7, and M are all regular with dimension 3, and with a
constant that 1s bounded independently of j.

Notice first that M, M7 and M are all closed.
We should begin with some preliminary facts. The first is that

(3.46) H}F)=0.

This follows from the definition (3.11) of F', which implies that F' C
Uses, Sa for each [, so that

(3.47) H3(F) <limsup Z (diam Q4)* < limsup n'p* (diam Q)*
l—oo l—oco
a€ES

by definition of Hausdorff measure. (Do not forget that S; has n' el-
ements.) This implies (3.46), since we are assuming that p*n < 1.
Notice that a similar argument implies that

(3.48) Hausdorff dimension (F) < d, if p'n<1.
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In our examples we shall have the freedom to choose p to be as small
as we wish, and so we can make F have Hausdorff dimension as small
as we wish.

Next we check that

(3.49) H}QNM)<C<oo,

for some constant C which does not depend on j. In view of (3.46)
and the definitions (3.17) and (3.19) of M7 and M we are reduced to
estimating

(3.50) JZ_j > HYZa)+ Y H(Q.NP).

=0 a€S ozE.S,-

Since Hausdorfl measure behaves properly under similarities we have
that H3(Z4) = p3' H3(Z) when « € S; and H3(Q,NP) = p*7 H3(QNP)
when o € §j, and so (3.50) reduces to

j-1
(3.51) > n' M HYZ) +nd p¥ HY(QOP).

=0

The desired bound follows from our assumption that p®*n < 1, since
H3(Z) and H*(2N P) are finite.

Notice also that each ¥, satisfies the “compact” version of regu-
larity, namely that

(3.52) Cyls® < H3Zo N B(y,s)) < Cos?,

for some constant Cy (which does not depend on «) and all y € £, and
0 < s < diamX,. For ¥ itself (3.52) is a consequence of its smoothness,
while for the general £, (3.52) reduces to the case of ¥ because every-
thing behaves properly under similarities. The same reasoning implies
that

(3.53) Cyls* < H¥ Qo N PN DB(y,s)) < Cos®,

for some constant Cy (which does not depend on a) and all y € §2, and
0<s<diamQy.

To prove Lemma 3.45 let us deal first with M and M7 and let us
take M = M as before. Let @ € M7 and r > 0 be given, so that we
want to show that

(3.54) C '3 < H3MINB(z,r) <Cr?,
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for some constant C which does not depend on z, r,or j. Fixana >0
which is small enough so that Lemma 3.44 can be applied, and also so
that

(3.55) 2adiam 2 < pdist (092,Q,) < dist (992,Q,),

for p = 1,...,n. Lemma 3.44 provides us with five alternatives to
consider separately. In case i) we have that AM/7 N B(z,r) = PN B(z,r),
and in particular that z € P, and (3.54) follows.

Now suppose that ii) holds. In this case the upper bound in (3.54)
1s autornatic, because of the corresponding bound for P and (3.49). The
lower bound is slightly a nuisance, but it is not deep. Let us first check
that

(3.56) H3(P\Q)N B(z,r)) > C™1r3,

for some constant C' when « € P\ 2. When r < 10diam {2 this follows
from the smoothness of 2, while for r > 10diam 2 it holds also for
z € Q, because (P\ Q) N B(z,r) must then contain the intersection of
P with a ball of radius r/3. These observations imply that in order
to establish the lower bound in (3.54) we may as well assume that
z € Q and r < 10diam Q. Since we are already assuming in ii) that
r > adiam {2, we have that r is bounded and bounded from below. Let
m be the smallest positive integer such that p™*! < a/2, and notice
that m does not depend on x,r, or j. The main point in the rest of
the argument is that the parts of M7 which correspond to levels above
m do not really matter. If j < m, then either 2 € X, for an a € &¢
with k < 7 or z € Qo N P for some a € §; (see (3.17)). In this case
we can derive the desired lower bound in (3.54) from (3.52) or (3.53)
(applied with s = a small (but not too small) muitiple of r). Thus we
may assume that j > m, so that ©5 C M7 whenever 8 € S, | < m. If
z € 5, for an « € S with k < m, then we can again derive the lower
bound in (3.54) from (3.52). We are left with the case where z € Q4
for some a € S, 41, because of the nesting properties of the Q2.’s (as in
Lemma 3.10). Our choice of m implies that diam 2, < r/2, and hence
there is a point y in B(a,r/2) which lies on (the boundary of) g,
where § € Sy, is the parent of a. This permits us to reduce to (3.52)
again since H3(M7 N B(x,r)) 2 H*(Zg N B(y,r/2)). This establishes
(3.54) when i11) holds.

When iii) holds, our assumption (3.55) on a implies that B(z,r)
cannot touch the Q,’s, 1 < p < n, so that M7 N B(z,r) = ((P\Q) U



GOOD METRIC SPACES WITHOUT GOOD PARAMETERIZATIONS 215

Y) N B(xz,r). In this case (3.54) is an immediate consequence of the
smoothness of ¥ and D.

If iv) holds, then we can reduce to | = 0 (and Q4 = Q) using the
self-similarity property (3.20), and this is just a special case of ii).

We are left with v). As before we can use (3.20) to reduce to I =0
and Q, = Q. Ifj = 0 then M/ = P and (3.54) is immediate. If
j = 1 then M7 = M? is smooth and (3.54) is again clear. Thus we may
assume that j > 1. The key observation now is that

(3.57) B(z,r)NQ, =9, forally € S, .
To see this first notice that (3.55) implies that
(3.58) 2a diam 2 < dist (09, Q)

whenever 3 € §; and v € S; is a child of 8. (Do not forget that p is
the dilation factor of the similarity 13, and do not forget (3.8) either.)
Our assumption v) implies that B(z,r) intersects ¥ (defined just before
(3.12)), and so if B(z,r) intersected some 2., v € S;, then (3.58) would
not be true, since we have also that r < adiam §2 from v). Thus (3.57)
is true, which implies that

(3.59) B(z,r) 0 M’ = B(z,r) N (S U (ﬂg 53,3))

since we have also that B(z,r) C Q by v). The regularity estimate
(3.54) follows easily (from (3.52), for instance).

This proves that the AM7’s are regular with a uniformly bounded
constant. It remains to deal withﬂ. Let z € M and r > 0 be
given, and recall the definition of Af and the related notation (just
after (3.20)). If B(z,r) is disjoint from all the By’s, then B(z, r)ﬂH =
B(z,r)N P, and we are in business. If B(z,r) C 2 By, for some k, then
x € A(MF), B(z,r)N M = B(z,7) N Ag(M*), and the necessary
estimates on H3(B(xz.7)N ﬁ?) follow fromn the regularity of AM*. From
this case we get that

(3.60) H¥M 0 By) < C (radius By)®

for all k. Now suppose that B(z,r) intersects some Bj’s but that it
is not contained in any 2 B). Let I denote the set of &’s such that
B(z,r) intersects By. Since B(x,r) € 2By for any k we have that
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2r > radius By when k € I{, and so Urex Br € B(z,5r). Because the
B,’s are all disjoint and centered on P we obtain from this that

(3.61) ) (vadius B)* < (5r)°
keN

since H3((Uker Brx) N P) < H¥(B(z,5r) N P). Because (3.60) implies
that

H*(B(z,r)N M) < H3(B(z,r)N P)

(3.62) + > HB(z,r)NMNB) < Cr°,
keEK

for some constant C, we get the upper bound that we need from (3.61).
For the lower bound we observe that

(3.63) H*(B(z,r)N PN (2B;\By)) > C~ ! (radius By)®

when k € U, because B(z,r) intersects such a By but is not contained
in 2 By.. Hence

(3.64) H(B(z,r)N M) 2 H® ((B(rc,r)nP)\(kLejkBk))

> C~ ! H}(B(z,r)N P),

for some constant C. This uses also the disjointness of the 2 By’s. Thus
we get the lower bound on H3(B(z,r)N M) that we needed, so that M
is also regular.

This completes the proof of Lemma 3.45. The same basic structure
of the argument will be used repeatedly in this paper. That is, we shall
need to prove various properties about balls on M or on an M7, and we
shall use Lemma 3.44 to distinguish some cases. Case i) will always by
trivial, and iii) and v) will typically be easy because of the smoothness
of M and the Af7’s away from the singular set F. Cases ii) and iv) are
generally about the same as each other and often require more specific
information about the excellent package. To simplify these future ar-
guments we collect first some information in the following lemma that
will be common to many of them.

Lemma 3.65. Consider M, j < oo, with j = co corresponding to M.
There ezist a small constant a and a large constant Cy (depending on
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the exzcellent package but not on j) so that if = € M7 and r > 0 satisfy
i), iii), or v) in Lemma 3.44, or if they satisfy ii) and also j < oo,
then there is an open set W in R* with B(z,r) C W C B(z,Cyr) and
a diffeomorphism A from B(0,r) onto W such thet A(P N B(0,r)) =
MINW. In the cases i), iii), and v) (but not ii)) we can also take A to
be Cy-bilipschitz, 1.e.,

(3.66) Co'ly =2l < D) = A=) < Goly - =,
for ally,z € B(0,r).

In other words, M7 can be flattened out in a nice way near B(z,r).
Note the scale-invariance of the bilipschitz condition (3.66). This is very
important when we are working with small balls near the singular set,
because we shall not have uniform bounds on higher derivatives of A.

Let us prove Lemma 3.65. Let a be small, to be chosen soon, and
let z € M’ and r > 0 be given. If (z,r) satisfies i) in Lemma 3.44,
then B(z,r)N M’ = B(z,r)N P, and we can simply take W = B(z,r)
and A to be a translation. If ii) holds, so that B(z,r)NQ # @ and r >
adiam 2, then B(z,Cr) 2 Q for C = 1+ a~!. In this case B(z,Cr) N
M7 = hj(B(z,Cr) N P), where h; is the diffeomorphism (for j < co)
promised in Lemma 3.21, and so we can simply take W = h;(B(z,Cr))
and A to be a translation of /;. If iii) holds, then B(z,r) must intersect
0. If a is small enough, then B(z,7) N M’ = B(z,r) N ((P\Q) U L).
The right hand side is a smooth submanifold with boundary, and B(z,r)
stays away from the boundary when a is sufficiently small. In this case
M/ is a small smooth perturbation of a 3-plane inside B(z,r), and it is
easy to get the desired W and A (with Cy = 2, for instance). Before we
deal with v) let us introduce some auxiliary notation and definitions.
We may as well assume that j > 2, because the j = 0 case is trivial
and we can simply use the diffeomorphism h; provided by Lemma 3.21
to get Lemma 3.65 when j = 1.

Given B € Sk, k < j, set & = Ep when k < j and ¥ =QsNP
when & = j. This is just a convenient way to allow for the slightly
exceptional case where & = j < oo without having make additional
statements. Define N, for « in some S;, | < j, in the following manner.
fOo<lI<j—1set

(3.67) Ny =S;US,U (U Eia) ,

where § is the parent of o in §;_; and the union is taken over the f’s
in Si41 which are children of . If | = j define N, in the same way
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except that we drop the ¥j’s (since the children of o do not matter).
If | = 0 then replace I} in (3.67) with P\D but keep the rest. In each
case N, is a smooth embedded submanifold of R* which contains T/,
with some room to spare. Specifically, there is a constant C' > 0 so that

(3.68) {z€ M?: dist(z,2) < C 'diamQ,} C N, ,

and in fact the left hand side does not get too close to the boundary
of N,. This constant C does not depend on «, j, or [; this is easy
to check, using the usual self-similarity argument based on (3.20) to
reduce to the (finitely many) { = 0,1 cases.

Now suppose that v) in Lemma 3.44 is true, and let a,! be as in
v). Remember from v) that either [ = j or B(z,r) intersects Y,. If a is
small enough then we have that B(z,r) N M’ = B(z,r) N Ng, because
of (3.68), and B(z,r) stays away from the boundary of N,. In this case
we can get the desired W and X as soon as a is small enough, for the
same reasons of smoothness as in case iii). We can even get uniform
estimates (which do not depend on « or I) because the self-similarity
provided by (3.20) permits us to reduce the problem to a finite number
of models for the Ng's. This proves Lemma 3.65.

Next we deal with the property about bilipschitz balls in the con-
clusion of Theorem 1.12. This will occupy us for the remainder of the
section, and the reader may wish to skip the long argument for the time
being. Let us assume that

(3.69) P\D and D\ U D; are connected.
This assumption will hold in all of our examples.

Proposition 3.70. Assuming that our initial package satisfies (3.69),
there is a constant L so that if E = MM, j\?, or M7 for some j < oo,
then every pair of distinct points p,q € E i3 contained in a closed subset
W of E such that W is L-bilipschitz equivalent to a closed Euclidean
3-ball. In particular there is a curve in E which joins them and which
has length less or equal than L? |p — q|.

This proposition (which is a variant of [Seb, Proposition 4.25])
is basically trivial, but it takes some space to do it with a moderate
amount of care. Suppose for simplicity that we are working with M
rather than Af7 or M. The first step is to connect p and ¢ by a nice
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curve. “Nice” means in particular that the curve should avoid the
singularities of M as much as possible. It may be necessary for the
curve to do a fair amount of looping near p and q, because of the
twisting of M, but we can understand this in a clear and simple way
because we understand the singularities of M so well (by construction).
The second step is to “fatten up” this curve to get a subset of M which
is bilipschitz equivalent to a 3-ball. The amount of fattening is allowed
to degenerate linearly as we move toward the endpoints of the curve,
because we only want a bilipschitz ball (as opposed to a smooth ball).
By choosing the curve to move away from the singularities of M as fast
as possible we shall have that M is very flat near points on the curve
(at the appropriate scale), and this will allow us to fatten the curve
sufficiently.

The proof will show that we can choose W so that W\{p,q} is
contained in the smooth part of E (i.e., it is disjoint from F when
E = M and it does not contain the origin when E = M ), and that
the bilipschitz equivalence between W and a ball can be taken to be
smooth away from p and ¢. This observation will be useful in Section
10.

Much of the structure of an excellent package is unnecessary for
Proposition 3.70, in the same way as discussed just after Definition
3.2. In particular the existence of these bilipschitz balls involves only
“internal” properties of the A’s, and not their relationship with the
ambient space.

Let us now begin the proof of Proposition 3.70. Suppose first that
E = M/, where j = oo is allowed, and let p,q € M7 be given, p # q.
We may as well assume that j > 2, since M® = P and M is bilipschitz
equivalent to P (via the diffeomorphism h; from Lemma 3.21).

Given u.v in P and ¢ > 0 let S(u,v) denote the segment which
connects u to v and let S¢(u,v) be the set of points z in P such that
dist (2, S(u,v)) < edist (2, {u,v}). Thus Se(w,v) is the union of two
truncated cones, one with vertex u, the other with vertex v. It is
also bilipschitz equivalent to a Euclidean 3-ball, with a bilipschitz con-
stant which depends only on ¢. In order to produce a set W as in the
proposition it is better to think of ¥ as being bilipschitz equivalent to
some Sc(u,v) rather than a round ball. Typically I will look like a
twisted version of Se(u,v) which spirals around at the ends. (To get
the smoothness we want one should smooth out the spherical “corner”
in the middle of Sc(u,v), but that is easy to do.)
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It will be more convenient in the proof to use a slightly different
analysis of cases than the one in Lemma 3.44. We begin with an easy
one.

Lemma 3.71. If p,q € M/ satisfy p,q € Ny for some o € S;, | < 7,
then the conclusions of Proposition 3.70 hold for M7 with this choice of
p and q. Here Nq 1s as in (3.67).

To see this, forget about all this specific notation for a moment,
and let N be a compact connected smooth 3-dimensional embedded
submanifold of R* (with boundary). Then any pair of points in N are
contained in a closed subset of N which is bilipschitz equivalent to a
closed Euclidean 3-ball. This is not hard to prove, and we leave it as an
exercise. Lemma 3.71 is a special case of this statement, at least when
l > 0,.modulo the issue of getting uniform bounds on the bilipschitz
constants. These uniform bounds come from the self-similarity property
(3.20), which ensures that the N,’s are all similar to a finite collection
of models. The argument for [ = 0 is similar but modifications are
needed because N, is now unbounded (but equal to P outside 2). In
bounded regions this case behaves in the same way as the previous one,
but in unbounded regions it behaves like the corresponding question
for P\B, where B is some ball. The point is simply that one must
sometimes be careful to choose W so that it avoids the hole. Again the
details are left to the reader.

The next lemma covers the most interesting case for Proposition

3.70.

Lemma 3.72. The conclusions of Proposition 3.70 hold for M7 when
j=o0and p,q € F.

Choose § € Sm such that p,q € Qs and m is as large as possible.
Let a; and S be the unique elements of S; such that p € Q,, and
g € Qp,. Thus ap = P, = 6, and a4y and B4y are both children
of §, but they are distinct children, since m is maximal. Choose points
p1 € 0Z,, and @i € 0Xg, in an arbitrary manner. There is a constant
C which depends only on our excellent package so that

(3.73) C~'diam Q,, < |p1 — piy1| € Cdiam Q,, ,
(3.74) C~'diam Q, < g1 — qr41] € C diam Qg ,
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(3.75) C7 ' diam Q5 < [pm+1 — gm41] < C diam Qs ,
(3.76) C'diamQs < |p—¢] < Cdiam Q5 .

Note that p; — p and ¢ —» ¢ as | — oco. We shall build our bilips-
chitz ball W by combining a family of smooth tubes which connect the
successive p;’s and ¢;’s.

Remember that diam Q, = p'diamQ when o € S;. Thus {|p; —
pi+1]} and {|g1 — qi+1]}1 are approximately geometric sequences.

In order to prove Lemima 3.72 it suffices to find € > 0 and a bilip-
schitz mapping f : S.(z,w) — M (with uniform choices of £ and the
bilipschitz constant) such that f(z) = p and f(w) = ¢. We shall de-
fine f in stages. To understand how f is constructed it is helpful to
visualize the region f(Se(z,w)) that we shall have to construct. It will
be a union of 3-dimensional tubes in M, where the tubes connect the
successive p;’s and ¢;’s. These tubes will be diffeomorphic to rectangles
and they will be neither too thin nor too close to F. To build these
tubes we shall first choose some smooth Jordan arcs which connect the
successive p;’s and ¢;’s, and the tubes will be little tubular neighbor-
hoods of these arcs. The next sublemma deals with the existence of
these Jordan arcs.

Sublemma 3.77. Given any a in any S; and any pair of points a,b in
different components of the boundary of 4, we can find an arc v C I,
which connects a to b and has the following properties: if u and v are
two points on v, then the length of the arc in v which connects u to
v i3 bounded by C |u — v|; inside B(a,C~'diam,) the curve v agrees
with the line segment in P which emanates from a, is orthogonal to
0L, at a, and goes-inside S, and similarly for b (remember that the
part of L, near its boundary lies in P); if u € v, then dist (u,0L4) >
C~dist (u, {a,b}) (so that v does not get close to the boundary ezcept
near the endpoints); for each positive integer ¢ the Euclidean norm of
the i*h derivative of the arclength parameterization of v is bounded by
C(i)(diam Qq4)' ™. (Notice that this estimate is scale-invariant.) These
constants C and C(z) depend only on our excellent package.

This is an easy exercise. The main points are that we can reduce
to the case where ! = 0 and T, = ¥ using the self-similarity principle
(3.20), and that T is a smooth connected (by (3.69)) compact manifold
with boundary which agrees with P near its boundary. Thus we can cer-
tainly connect any pair of points in ¥ with a curve, but by being a little
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bit careful we can choose the curve so that it avoids self-intersections
and the boundary of X, we can make it smooth, etc.

Next we connect a sequence of curves as provided by Sublemma

3.77.

Sublemma 3.78. There ezist points z and w in P and a bilipschitz
map f : S(z,w) — M with uniformly bounded bilipschitz constant
which satisfy the following properties: f(z) =p and f(w) = ¢;

(3.79)  C~ldist(t, {z,w}) < dist (f(¢), F) < Cdist (¢, {z, w}),

for allt € 5(z,w) (s0 that the image of f avoids the singular set F as
much as possible); f is i3 smooth away from the endpoints z and w, and
if f) denotes the i*" order derivative of f on S(z,w), f' = f), then
F(&) =1 and

(3.80) 17O ()] < C(3) dist (¢, {z,w}) ™!,

for all t € S(z,w)\{z,w} and i > 1. These constants depend only on
our ezcellent package (and 7 in the case of C(7)).

Given | > m let 4; be the curve provided by Sublemma 3.77 for
a = aj, a = py, and b = pj4+;. Thus the length of +; is comparable to
[Pt — pi4+1], which is controlled by (3.73). Similarly, let 5; be the curve
which corresponds to 8, q;, and q;4+1, and let v be the curve which
corresponds t0 8, prm+1, and qpmy1. We shall choose f so that its image
is precisely the union of all these curves together with p and q.

Notice first that the sum of the lengths of all the 4’s is controlled
by a convergent geometric series and hence is finite. In fact this total
length is comparable to |p — ¢|, because of (3.76). Choose z,w € P
so that |z — w| equals the sum of the lengths of the 4's. (Except for
this z and w can be arbitrary.) Set f(z) = p and f(w) = ¢, and define
f on S(z,w) in such a way that it is really just the concatenation of
the arclength parameterizations of the «’s, ordered in the obvious way.
This mapping is smooth on S(z,w)\{z,w}, because of the properties
of the 4’s in Sublemma 3.77.

Each arc v corresponds to a segment I; in S(z,w), and the length
of I; and its distance to z are both comparable to |p; — pi4+1]. Similar
statements apply to the other v’s. Using these observations it is easy to
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derive (3.80) from the corresponding property in Sublemma 3.77, while
(3.79) uses also the fact that

(3.81) C~!diam Q, < dist (¢, F) < Cdiam Q,

whenr € X, .

The Lipschitzness of f and the fact that |f'| = 1 on S(z,w)\{z,w}
follow from the fact that we are using the arclength parameterizations of
the 4’s. It remains to show that f is bilipschitz, i.e., that | f(u)— f(v)]| >
C~'|u — v| whenever u,v € S(z,w). If f(u) and f(v) lie in the same
arc among the 4’s then this follows immediately from the chord-arc
property in Sublemma 3.77. If f(u) and f(v) lie in adjacent arcs among
the «’s then this estimate can also be derived from the properties of
these arcs given in Sublemma 3.77. If they do not lie in adjacent 4’s -in
particular if one of u or v equals z or w- then we use the fact that we
know where the arcs lie in terms of the ©,’s together with the various
nesting and separation properties of the Y,’s and 2,’s. For instance,
we know that Ts, C Qa,,,, and Zg, C Qg,,,, when [ > m, and we
know that dist (Qa,myy Dy, ) = C 'diam Qs since am4y # Bm41 by
the maximality of m. This implies that |f(u) — f(v)| > C7!|lp—¢q| >
C~!|u — v| when f(u) lies in one of the v,’s and f(v) lies in one of the
Jx’s. Similarly, dist (Z4,,Q4,) = C~'diam Q,, when k > 1 + 1, as one
can check by reducing to the case where ¥ = [+ 2 and | = 0, using
the nesting properties in Lemma 3.10 and self-similarity (3.20). This
implies that |f(u) — f(v)] > C~1diam Q,, if f(u) lies in v; and f(v) lies
in v with £ > [+ 1. In this case we have that |u —v| < C diam Q,, and
hence |f(u) — f(v)] = C~!|u — v|. The other cases can be handled in
the same way, and we obtain that f is indeed bilipschitz. This proves
Sublemma 3.78.

From now on we assume that f is defined on S(z,w) as in Sub-
lemma 3.78. We want to extend f to S.(z,w) for suitable ¢ > 0. To do
this we analyze the unit normals to A along the image of f, then we
shall determine a first-order (linear) approximation to this extension of
f, and then we build a true extension of f.

Sublemma 3.82. There is a smooth function v : S(z,w)\{z,w} —
R* such that v(t) is normal to M at f(t), |v(t)] = 1, and the derivatives

of v satisfy

(3.83) WD) < ) dist (2, {=,w})

for allt € S(z,w)\{z,w} and : > 1. These constants depend only on :
and our ezcellent package.
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This is easy to see. The point is that there is a smooth unit normal
on ¥ simply because L is smooth, and there are smooth unit normals to
the ¥,’s by self-similarity. We can get v by piecing together these unit
normals. The estimates (3.83) come from the estimates on f in Sub-
lemma 3.78 and the self-similarity of the £,’s. This proves Sublemma
3.82. '

From now on (in this proof of Lemma 3.72) we let v be as in the
Sublemma. Set vg = (w—2z)/|w—2z|and v; = (0,0,0,1) (= the standard
unit normal to P). When we write f'(¢) we shall mean the derivative
of f at ¢ in the direction vy.

Sublemma 3.84. There is ¢ smooth map ¢ from S(z,w)\{z,w} into
rotations on R* such that ¢ satisfies ¢(t)vg = f'(t), ¢(t)v1 = v(t), and

(3.85) 16()] < C(i) dist(t, {z,w}) ",

for allt € S(z,w)\{z,w} and i > 0, where C(i) depends only on i and
our ezcellent package.

Let us first resolve the “differentiated” version of this problem, in
which we construct a family of antisymmetric linear mappings which
will turn out to be ¢'(t)¢(t)"!. Given t € S(z,w)\{z,w} define linear
mappings ¥o(t), ¥1(t) : R* — R* by

(3.86) po(t) = F(&) (f'(1),C) +v'(8) (v(2), ),

(3.87) () ¢ = v(t) (/' (1), £ () (f'(2), €)
+ /(&) (f (1), v(8)) (v (1), C) -

Note that f’(t) and v(t) are orthogonal to each other for all ¢, so that
Yo(t)f'(t) = f"(t) and vo(t)r(t) = v'(t). We also have that

('), fi(1)y =0,  (V(t),v(t)) =0,
(V'(2), () + (v(1), (1)) = O,

because (f'(t), f'(t)), (»(¢),»(t)), and (¥(t), f'(t)) are all constant and
hence have vanishing derivative. (Remember from Sublemma 3.78 that
|f'(t)|=1.) This implies that ¥;(¢) is antisymmetric and that ¥§(t) f'(t)
= ¥1(t)f'(t) and Pi(t)v(t) = ¥1(t)v(t) for all ¢, where ¢ denotes the
transpose of . Set ¥ = 1o — ¢ + ;. Thus 9(t) is antisymmetric and
P(t)f'(t) = f'(t) and ¥(t)v(t) = v'(t) for all ¢.

(3.88)
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We want to define ¢ now by solving the differential equation ¢' =
¥¢. Let u be the midpoint of S(z,w), and take ¢(u) to be any rotation
which satisfies ¢(u)vg = f'(u), ¢(u)v; = v(u). With this choice made
we can extend ¢ to all of S(z,w)\{z,w} by solving the aforementioned
differential equation. Because 9 is always antisymmetric we get that
every ¢(t) is a rotation. Qur choice of ¥ also ensures that ¢(t)ve = f'(t)
and @(t)v; = v(t) for all . To get the bounds (3.85) we observe that

(3.89) [p @ (t)] < C(E)dist (¢, {z,w}) 7T,
for all t € S(z,w)\{z,w} and 7 > 0, where C(¢) depends only on i

and our excellent package. This follows from the definition of ¥ and
straightforward computation. The bounds for ¢ follow easily from this
(and the fact that every ¢(t) is a rotation, and hence has norm one).

This proves Sublemma 3.84.

Sublemma 3.90. There is a small number n > 0 so that f admits
an extension to a smooth mapping (also called f) from S,(z,w) into
M such that the differential of this eztension att € S(z,w) equals the
restriction of ¢(t) to P, where ¢ ts as in Sublemma 3.84, and such that

(3.91) |Vif(z)| < C(i)dist(z, {z,w})™"*!,

(3.92) C~!dist (z, {z,w}) < dist (f(z), F) < Cdist (z, {z,w}),

for all z € Sy(z,w)\{z,w} end i > 1. These constants n, C, and C(2)
depend only on our excellent package.

There are several ways to prove this, all of them boring. Here’s
one. Define an auxiliary extension g of f as a map from S, (z,w) into R*
by taking g to be affine in the directions perpendicular to S(z,w), with
the affine mapping chosen in the obvious way using ¢ from Sublemma
3.84. It is not hard to check that g satisfies the analogues of (3.91) and
(3.92), using (3.80) and (3.85), at least if n is small enough (for the
first inequality in (3.92)). In particular g is Lipschitz, with a uniform
bound. This Lipschitz bound implies that the image of g stays very
close to M compared to its distance to F when 7 is small. To make
this precise let m denote the orthogonal projection of P onto the line
through S(z,w). Then

lg(x) = f(m(2))] = lg(=) = g(n(2))|
(3.93) < Clz — n(z)|
< Cydist (z,{z,w})
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when z € S,(z,w). We are using here the fact that (z) € S(z,w)
when z € §,(z,w) (and # < 1) and also the Lipschitzness of g.

We want to define f(z) for z € S,(z,w) by taking the point on
M which is closest to g(z). A priori this is dangerous, but here we
need only deal with pieces of M which are far from the singular set
compared to the length scale at which we are working, and there is no
problem with the nearest-point-projections on such small pieces of M.
More precisely, there is a small constant a > 0 depending only on our
excellent package so that if { € M\F and B = B(£,adist (€, F)), then
the mapping II on B which takes a point and sends it to the (unique)
nearest point in M is well defined, smooth, and satisfies

(3.94) sup |V'II| < C(i) dist (¢, F)™ "+
B

for ¢ > 1. This is not hard to prove, using the smoothness of M
away from F' and the self-similarity property (3.20) to get the uniform
estimates. (To do this from scratch one must compute a little to reduce
to the inverse function theorem.)

Once we have these nearest-point-projections on small balls like
B we can get f as in Sublemma 3.90 by projecting g onto M. This
will only work when 7 .is small enough, which ensures that the image
points of g lie in balls like the ones just described, because of (3.93) and
(3.79). It is not hard to check that this definition of f satisfies (3.91)
and (3.92). Also, we defined g so that it had the correct differential
along S(z,w), and the nearest-point-projections onto M don’t change
that (because the image of the differential lies in the tangent space to
M). This proves Sublemma 3.90.

Sublemma 3.95. Let f : S,(z,w) — M be as in Sublemma 3.90. If
€ > 0 is small enough, then the restriction of f to S.(z,w) is bilips-
chitz, with ¢ and the bilipschitz constant depending only on our ezcellent
package.

The point here is that we chose ¢ carefully to make the extension
spread out in the right way. We shall show first that f is bilipschitz
on certain small balls using our choice of ¢, and then we shall use the
bilipschitzness of f on S(z,w) to control the global behavior of f.

Givent € S(z,w)set r = dist (¢, {z,w}) and B = B(t) = B(t,br)N
P, where b > 0 is small and to be chosen. Let us show that if b is small
enough then the restriction of f to B is bilipschitz with a bounded
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constant. This is an easy consequence of Sublemma 3.90. Let A(z)
be the affine function from P into R* defined by A(z) = f(t) + ¢(t)z,
where ¢ is as in Sublemma 3.84. This is the affine Taylor approximation
to f at t, and it preserves distances, since ¢(t) is a rotation. We can
estimate f — 4 (or rather its gradient) on B using (3.91), and we get

sup [V(f — A)| < Cbr sup [V3f]
B

(3.96) _ B
< Chbrsupdist(z,{z,w})”" <Cb.
B

This uses also the fact that dist(z,{z,w}) = r when z € B (assuming
b < 1/2, say). If b is small enough then we conclude that

1
(3.97) sle—yl<|f(=)—fW)|<2le—yl, whena,y€ B,

since A preserves distances. Choose such a b and let it be fixed from
now on.

Now let z,y be any pair of points in S.(z,w), and let us check
the bilipschitz condition for them. We already know from (3.91) that
f is Lipschitz on S.(z,w), and so we need only concern ourselves with
getting a lower bound for |f(z) — f(y)]. We may assume that z and
y do not both belong to any ball B(t),t € S(z,w) as above, since we
have (3.97) already. Thus y ¢ B(w(z)), and this implies that |z —y| >
10~2 bdist (z, {z,w}) if € is small enough. We get the same inequality
with the roles of z and y reversed, and so

(3.98) |z —y| > 1072 b max{dist (z, {z,w}), dist (y, {z,w})}.
Since f is bilipschitz on S(z,w) (Sublemma 3.78) we get that
(3.99) |f(n(2)) = f(x(y))| > C7 |n(z) — x(y)].

This implies that

(3.100) |f(x(2)) = f(x(¥)| = C" |2 — 9],

because (3.98) yields |z —m(z)|+|y—7(y)| L Cb le|z—y| <107} |z—y|
when ¢ is small enough. To get back to |f(2) — f(y)| we observe that

(3.101)  |f(m(x)) = f(2)] < Cedist(z,{z,w}) S Cb le|z —y|
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because of the Lipschitzness of f, the fact that # € S,(z,w), and (3.98).
We also have the same estimate for y instead of z, and we conclude frem

(3.100) that

(3.102) [f(z) = fy) 2C7 |z —y]

if € is small enough.
This completes the proof of Sublemma 3.95, and Lemma 3.72 fol-
lows.

Lemma 3.103. The conclusions of Proposition 3.70 hold for M? when
p,q € Q, whether or not j = co.

Again choose § in some S, so that p,q € s and m is as large
as possible. We may as well assume that m < j — 1 and that one of
p and ¢ lies in §2, for some v € S,,43, since otherwise we can apply
Lemma 3.71. This implies that |p—¢| > C~diam Q; for some constant
C (which depends only on the excellent package); if |p — ¢g| were small
compared to diam §, then we could use the fact that one of p and g lies
in an Q., ¥ € Sm42, to conclude that p, ¢ € Q for some child { € S
of 6, in contradiction to the maximality of m.

Under these conditions we can apply the same basic construction
as in the proof of Lemma 3.72. It can happen now that now one or
both of p and ¢ does not lie in F', or that 7 < oo, so that the sequences
of a;’s and f;’s might have to stop in a finite number of steps. In fact,
we could have that one of p or ¢ lies in Z;, so that there would be no
ay’s, or no fB¢’s. Thus it may be necessary to modify the construction at
one or both “ends”, but the estimates and underlying principles remain
the same. One chooses points like the p;’s and the ¢;’s, one connects
these points with nice curves in A7 (using Sublemma 3.77, extended
slightly to include £.’'s when j < o0), one combines the curves and
parameterizes the union by a bilipschitz map as in Sublemma 3.78, one
extends this mapping as in Sublemma 3.90 (using a good family of
frames as in Sublemma 3.84), and then one checks bilipschitzness as in
Sublemma 3.95. The details are left to the reader.

Lemmas 3.71, 3.72, and 3.103 cover all the possible locations of
p,q € MJ except for p € Q4 for some o € S; and ¢ € P\Q (or the
other way around). (See (3.17) and (3.19).) In this case we have that
lp — ¢| > C~! for some constant C. Set m = 0 and let § be the
empty sequence in Sy, so that Q5 = Q. We can choose a; € S§; and
p1 € 004, as in the beginning of the proof of Lemma 3.72, except that
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these sequences may stop in A finite number of steps. We can use the
same basic construction as in the proof of Lemma 3.72 to connect p
to an auxiliary point on the boundary of 92 through a nice sequence
of curves, as in Sublemmas 3.77 and 3.78. We can connect ¢ to this
auxiliary point in a nice way from P\, simply because PN Q is a
bounded smooth domain in P and P\ is connected (by (3.69)). (This
is similar to part of Lemma 3.71.) If we do these things in a non-
stupid manner then we can fatten up this connection between p and
g to get a bilipschitz 3-ball in M7 which contains them. There is a
minor difference in this situation, however. If S, denotes the analogue
of 5.(z,w) (from the proof of Lemma 3.72) adapted to this situation,
then the proportion of S, devoted to the connection from p to 99 will
be comparable in size to the diameter of Q (a positive constant). If
|p — g] is very large, then this will be a small proportion of S, much
less than half, and most of S, will be devoted to the connection from
g to 0. This does not pose a serious problem, but it does mean that
the bulge in the middle of S, should be placed away from 2, where
everything is flat. The details are again left to the reader.

This proves Proposition 3.70 in the case where E = M or M. j
Suppose now that E = M. Let p,q € M be glven p # q. Let {Bx} be
the sequence of balls used in the definition of A (just after (3.20)), and
let M* be the affine i image of M* with the interestesting part squeezed
into By, as in the definition of M. If P,q € (3/2) By for some k, then we
can use the previous result for M ¥ to obtain that p and ¢ are contamed
in a set W' C M* which is bilipschitz equivalent to a Euclidean 3-
ball. If one is careful about the previous construction one can choose
W' so that W' C 2By, but one can also simply force this to happen,
in the following manner. We can choose W' so that W' C CB; for
some uniformly bounded constant C; if this is not true to begin with,
it simply means that W' is unnecessarily large, and we can replace it
with a smaller subset. Let ¥ be a bilipschitz map from CBy into 2By
which equals the identity on (3/2) By and maps (C By \(3/2)Bx)NP into
2B;NP. If weset W = ¥(1'), then W C M*N2By, and hence W C M.
We also have that W is uniformly bilipschitz equivalent to a Euclidean
3-ball and contains p and ¢. Thus the case where p,q € (3/2) By for
some k can be reduced to the previous results.

If neither p nor q lie in any By, then it is not hard to show directly
that they are contained in a subset W of P\ (UB:) C M which is
bilipschitz equivalent to a Euclidean 3-ball with a uniform bound. It is
easier to think of W as being bilipschitz equivalent to a set like S, (u,v)
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as described at the beginning of the proof of Proposition 3.70 rather
than a standard ball, so that it is easier to visualize the way the ends
are placed into P \ (UBy). It is also convenient to choose the By’s in
the rather specific manner described in the paragraph after (3.20).

We are left with the case where p lies in some B and ¢ lies outside
(3/2) Br. Suppose first that ¢ does not lie in any other B;. We can use
the same kind of argument as in Lemmas 3.72 and 3.103 to connect p to
an auxiliary point in 9((3/2) Bi) in a nice way (as in Sublemma 3.78),
using a family of smooth arcs. We can then connect from there to ¢
inside P \ (UB)) by a more direct construction, since the structure of
P\(UBy) is so simple. These two connections can be combined and then
filled out to get a bilipschitz 3-ball in M which connects p and ¢g. This
combination and filling-out will be realized concretely as a bilipschitz
map from a set of the form S.(z,w) into A, with the restriction of
this map to one end of S.(z,w) providing the connection from p to
0((3/2) B), and the rest corresponding to the connection from there
to g. The diameter of S.(z,w) should be comparable to |p — ¢|, while
the diameter of the piece at the end corresponding to the connection
from p to 9((3/2) Bi) should be comparable to the radius of Bi. These
sizes are not inconsistent with each other, because |p — ¢| is at least
one-half the radius of By. It may well be that |p — ¢| is much larger
than the radius of By, in which case we should be slightly careful to
put the middle of S.(z,w) far away from the B;’s. This type of detail
is awkward but not at all deep.

If instead ¢ does lie in some By, then we use the method of Lemmas
3.72 and 3.103 to connect p to an auxiliary point in 9((3/2) Bx) and
q to an auxiliary point in 9((3/2) By) by well-behaved curves (as in
Sublemma 3.78). We can connect these auxiliary points in a nice way
inside P\ (UB,,) by a direct construction, and these three connections
can be combined and filled out in such a way as to get a bilipschitz
3-ball in M which connects p and q. If we think of the combination of
these connections as being represented by a bilipschitz map from a set
of the form S.(z,w), then the connections from p to 9((3/2) By) and
from ¢ to 9((3/2) Bi) will correspond to pieces of Sc(z,w) at the two
ends of Se(z,w). These two pieces will have sizes comparable to the
radii of By and By, respectively, while the diameter of S.(z,w) should
be about the same as |p—g|. These sizes are consistent with each other,
because [p — ¢| is at least one-half the radius of each of By and B;. As
usual, if |p — ¢| is much larger than the radii of By and By, then we
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have to be careful to map the large middle of S.(z,w) away from the
various B;’s.

This completes the proof of Proposition 3.70, modulo various pack-
ages of details left to the reader. In all cases the argument can be under-
stood in terms of connecting sequences of smooth curves together and
then parameterizing these curves and filling out these parameteriza-
tions to get a bilipschitz mapping defined on a set of the form S.(z,w).
There are some minor variations among the various cases -whether the
sequence of constituent curves is finite or infinite, whether we work only
in bounded regions like the Q4’s or we have to go wandering outside to
the large flat regions of the M’s, or whether we have to worry about
where the “bulge” in the middle of S.(z,w) should be sent- but the
actual constructions are simpler than their gory detailed descriptions.

Note that if we were only interested in the last part of Proposition
3.70 (about connecting p and g by a curve in E whose length is bounded
by a constant times |p — ¢|) then the preceding proof would simplify
substantially. For instance, under the assumptions of Lemma 3.72 we
would need much less than Sublemma 3.78.

Corollary 3.104. If our initial package satisfies (3.69) and E = M, j\?,
or M?, j < oo, then E is linearly locally connected, with constants
that do not depend on j in the latter case. This means that there 1s
a constant C so that for each z € E and t > 0 we have that any two
points in ENB(x,t) lie in the same component of ENB(z,Ct), and any
two points in E\B(z,t) lie in the same component of E\B(z,C~'t).

This is an easy consequence of Proposition 3.70. One could also
prove it more directly, in the same way that it is much easier to connect
pairs of points in the M’s by curves which are not too long than it is to
get the bilipschitz balls in Proposition 3.70. If one were to try to give
a more direct proof of the corollary, then Lemma 3.44 would be rather
convenient for proving the second part of the linear local connectedness
condition, but it is better to apply it to B(x,(1 + a~1)~!¢), where a is
as in Lemma 3.65, than to B(x,t) itself.

The main result of [HK] provides a good reason to care about linear
local connectedness. This result states that if a 3-dimensional regular
set E is linearly locally connected, and if E admits a homeomorphic
parameterization by R*® by a mapping which satisfies the pointwise def-
inition of quasiconformality, then in fact this mapping must be qua-
sisymmetric. Thus the sets promised in Theorem 1.12 cannot even be
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quasiconformally equivalent to R3. In this particular situation it is a
little ridiculous to cite the theorem in [HK], because the same result
could be obtained more directly using standard results about quasicon-
formal mappings between domains in R™ and the fact that the £,’s are
all smooth and similar to each other. (One could also use Proposition
3.70.)

In the next three sections we consider specific examples of excellent
packages.

4. The Whitehead example.

We shall continue to use the definitions and notation of the pre-
ceding section here.

Let D be a smooth solid torus in R®, and let D; be another smooth
solid torus whose closure is contained in D and which is clasped inside
of D in the usual manner for generating the Whitehead continuum, i.e.,
in the manner shown in [D, p. 68, Figure 9-7] (see also [K, p. 81ff]).
Note that this clasping prevents D; from being isotopic to a standard
(small) solid torus in D, but D, is homotopically trivial in D. In other
words, we can deform D, inside D into something small, but D; has to
cross itself along the way. Let ¢; be a smooth diffeomorphism which
maps a neighborhood of D onto D; and sends D onto D;. (One can
think of simply bending D around in R® to get D,.) This gives us an
initial package, and note that it satisfies (3.69).

To get an excellent package we take 2 and w; to be (4-dimen-
sional) solid tori in R* which satisfy (3.3). The property of being a
“4-dimensional solid torus” here means in particular that Q is diffeo-
morphic to D x (—1,1) and similarly for w. It is helpful to take w; to
be much flatter than © in the z4 direction, to provide plenty of room
to move around. We take p to be small and positive but otherwise at
our disposal, and we choose 1; to be a combination of a translation
(by an element of P) and dilation by p such that ; = ¥;(Q) and its
closure lie in a ball in . To build § we use the fact that (unlike D,
and D) w; is not really clasped inside §2, because of the freedom of
movement provided by the extra dimension. We can lift up one end
of the clasping part of w; (in the x4 direction) while leaving the other
clasping end alone, and then we can bring it around in Q and shrink
it until w, is deformed into ;. One can do this process in such a way
that w; N P = D, is deformed to 2; N P, and one can even extend this
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motion to all of R* without ever moving points outside of Q2. These ob-
servations are more easily made rigorous using the following well-known
“isotopy extension” result.

Lemma 4.1. Let O be a bounded open set in R™ and let K be a compact
subset of O. Suppose that g(z,t) 1s @ smooth R™-valued mapping defined
for z in a neighborhood of I and t in [0,1] such that g(z,0) = z for
all z and g(-,t) is a diffeomorphism onto its image for each t. Assume
also that g(K x [0,1]) € O. Then there ezists a smooth mapping G :
R™ x [0,1] — R" such that g(z,t) = G(z,t) when z € K, G(-,1) is
a diffeomorphism on R™ for each t, G(z,t) = z when z € R™\ O, and
G(z,0) =z for all z.

To see this we begin by observing that there is a smooth time-
dependent vector field V(y,t) on R™ such that V(g(z,t),t)=0g(z,t)/0t
for all z € I and ¢ € [0,1] and such that V(y,t) vanishes whenever z
lies outside any prescribed neighborhood of g(K& x [0,1]). Indeed, we
start by defining V' on pairs of the form (g(z,t),t) for £ near K and
t in [0,1], and we can extend V to all (z,t) € R™ x [0,1] using a cut-
off function. Let G(z,t) be the solution of the ordinary differential
equation 0G(z,t)/0t = V(G(a,t),t) for all (z,t) € R™ x [0,1], with
the initial condition G(z,0) = z for all z. The uniqueness theorem for
ordinary differential equations and standard facts imply that G has the
required properties. This proves Lemma 4.1.

Using Lemma 4.1 and the deformation process described above one
can build a diffeomorphism 6 on R?* which satisfies (3.5), (w1) = 04,
and also (D;) = Q; N P. If one is careful one can get that 6 = y; o ¢,
on a neighborhood of D; in P, but it is simpler to just redefine ¢; so
that this is true.

The conclusion of all this is that we get an excellent package as-
sociated to our initial package, and we can take p to be as small as we
want. The construction of Section 3 produces sets M7 and M.

Theorem 4.2. M satisfies (1) but not (¥). The Mi’s for j < oo
satisfy (1) with constants which remain bounded, but they do not satisfy
(*) with bounded constants.

This result together with Lemma 3.45 and Proposition 3.70 imply
Theorem 1.12.a).
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Of course the MJ’s for j < oo and M are homeomorphic to R3
(and hence topological manifolds) by Lemma 3.21.

Let us first prove the bounded contractability conditions for the
M?3’s. Let a be chosen as in Lemma 3.65, and let 0 < j < 0o, z € M7,
and r > 0 be given. We want to check that we can contract B(z,r)NM7
to a point inside B(z,Cr) N M7 for some constant C which does not
depend on z,r, or j. Lemma 3.44 permits us to consider separately the
five cases listed there. All but case iv) are covered by Lemma 3.65, and
so we suppose that iv) holds.

Let Qs be the parent of Q4, and let us show that

(4.3) Q0 N M7 can be contracted to a point inside Qs N M7 .

To prove this we may as well assume that | = 1, so that Q5 = , since
otherwise we can use s to pull everything back to Q2. (This will change
M7 to M7~! asin (3.20), but that is okay.) Using the homeomorphism
h; from Lemma 3.21 we can reduce further to the problem of contracting
D) to a point in D. This we can do, because of the specific choice of the
Whitehead initial package. (It is not true for arbitrary initial packages.)

This proves that the M7’s satisfy (1) uniformly, and so we consider
now M. Recall its definition and related notation from the paragraph
after (3.20). Part of this argument also works in general, and so we
split it off as a separate lemma.

Lemma 4.4. Suppose that we have started with any ezcellent package

and constructed M as in Section 3. Let b > 0,z € M and r > 0 be
given, and assume that for each k we have either B(z,r)N By = D or
r> bradius By, where {B}} is the sequence of balls in the definition of

M. Then there is a relatively open set U C M which is homeomorphic
to a 3-ball and satisfies B(x,r) N McCUC B(z,Cr)N M, where C

depends on b but not on z orr.

Let z,r be given as in the lemma. If B(z,r)N By = @ for all k
then B(z,r) N M= B(z,7) N P and there is nothing to do. Suppose
that B(x,r) N By # @ for some k and choose such a k¥ which is as
small as possible. Let Bj be as in the paragraph defining M (Just
after (3.20)), so that radius B; < 100radius By, B; C B;, when [ > k,
and ByN B, = @ when | < k. Let . be as in Lemma 3.21, and set
U= 7;((3(3;,7*) U B;) N P). This is a topological 3-ball, because the
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union of two intersecting (standard) 3-balls is a topological 3-ball. We
also have that

=(((B(a:,r)UBk (UB,)) )U((UB,)MZ)

C B(z, r)UB

(4.5)

because of the properties of h in Lemma 3.21. The hypothesis of
Lemma 4.4 guarantees that radius By < b~ !r, which implies in turn
that diamU < Cr for a suitable constant C. It is easy to check also
that B(z,r)N M C U because of the properties of h in Lemma 3.21.
This proves Lemma 4.4.

Let us now show that A7 satisfies (1). We already know that it is
a topological manifold, and so we need only check the contractability
condition. Let b > 0 be small, which we get to choose. Let € M and
r > 0 be given. Because of Lemma 4.4 we may as well assume that
there is a & such that B(z,r) intersects By and r < bradius Bg. These
conditions imply in particular that B(xz,r) C 2 B,.. Hence B(z, r)ﬂﬂ =
B(z,r) N Ax(M*), and since we already know that () holds uniformly
for the M7’s, and since the similarity Ay does not affect the (1) property
(or its constant) we get that there is a constant C’ such that B(z,r)N
Ar(MF) can be contracted to a point inside B(z,C'r) N Ax(M*). If
b is small enough (depending on C'), then B(z,C'r) C 2 By too, so
that B(z,C'r) N Ax(M*) = B(z,C'r)n M. Thus B(z,r) N M can be
contracted to a point inside B(z,C'r) N H, which is what we wanted.
This proves that M also satisfies (1).

(Incidentally, the choice of b in the preceding argument is a little
bit stupid, in the sense that if one looks carefully one sees that a far less
small choice of b would work fine. However, this additional complication
is not needed for the proof.)

It remains to show that (*) is bad. This will be derived from a
famous property of the Whitehead continuum. Since n = 1 we have
that each S; has only one element, and so if the defining sequence {C;}
is constructed from our initial package as described after Definition 2.3,
then each C; has only one component, namely D, for @ = the unique
element of S;. Set W = N;C;. This is the Whitehead continuum, and
it is the only nondegenerate element of the decomposition G associated
to {C;} as discussed just after Definition 2.2. We shall sometimes find
it convenient to view W as a subset of the 3 sphe1e S3.

Recall that a compact set I C R3 is said to be cellular if for each
open set V 2 I there is a topological 3-ball U such that K CU C V.
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(See [D, p. 35].) A decomposition G of R? is said to be cellular if each
element of G is a cellular subset of R3. (See [D, p. 36, Corollary 2A].)
A topological space X is said to be simply connected at co if for each
compact set ' C X there is a compact set L C X with L D K such
that every loop in X'\L can be contracted to a point in X \ K. (See
[K, p. 83].) Note that S* \ K is simply-connected at oo if & C R? is
cellular.

Proposition 4.6. W is not a cellular subset of R3, and in fact S3\W
18 not simply connected at co.

The first statement is a reformulation of [D, p. 76, Proposition 9]
(see also the top of p. 69 of [D]). The second statement is discussed on
(K, p. 82-83].

Lemmﬁ 4.7. If M satisfies (%), or if the M7’s satisfy (x) with a
uniformly bounded constant, then W is cellular.

Suppose first that the A7’s satisfy (*) with a uniformly bounded
constant Cy. Let [ be given, and let j be larger than ! and at our
disposal. Let o and § be the unique elements of §; and S;, respectively,
and fix a point z in Q5N M. Our assumption on the M?’s implies that
there is a topological 3-ball U such that

(4.8) QsNM! CUC B(zx,Codiam Q) N M7,

If j — 1 is sufficiently large, depending on Cj, then B(z,Cp diam§2g) €
Qq, so that U C Q, N M7, We can use the homeomorphism k; in
Lemma 3.21 to bring U back to R®, and we get a topological 3-ball
V = h;-'](U) such that Dg C V C D,. Since | was arbitrary and we
obtain that W is cellular. .

The same argument works if we assume that A satisfies (*). The

point is that A contains a copy of 2N Af7 for each j, and we never left
) in the preceding argument. This proves Lemma 4.7.

Proposition 4.6 and Lemma 4.7 imply that M does not satisfy (%),
and that the M?’s do not satisfy (%) with a uniformly bounded constant.
This proves Theorem 4.2.

REMARK 4.9. Lemma 4.7 works for any excellent package. That is,
if we start with an excellent package and construct M7 and M as in
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Section 3, and if either M satisfies (%) or the M7’s satisfy (#) with a
uniformly bounded constant, then the decomposition G associated to
the initial package (as in Section 2) is cellular, i.e., each element of
G is a cellular subset of R®. This can be proved by exactly the same
argument as in Lemma 4.7, with minor additional complications when
the number n of D;’s is greater than 1.

REMARK 4.10. The set A corresponding to this excellent package is
homeomorphic to R?® with the Whitehead continuum contracted to a
point. This famous non-manifold has the property that its product with
R is homeomorphic to R*. (See [K, p. 87, Theorem 1} and [D, p. 83,
Theorem 3].) This space M xR arises in one description of the simplest
Casson handles, as in p. 86 and the bottom half of p. 83 of [I{]. These
Casson handles have been shown in [Bi] to be exotic in a certain sense
(with respect to their smooth structures). One can imagine that the
quasiconformal version of this exoticness is also true, because of [DoS].

5. Bing’s dogbone space.

We shall continue to use freely the notations and definitions of
Section 3. '

To prove Theorem 1.12.b) we shall use the construction of Bing’s
dogbone space, which is given in [B3] and as [D, p. 64, Example 4].
For this we define an intial package by taking D to be a smooth solid
two-handled torus which is embedded in R® in the standard way (no
funny business with the two handles). We also take n = 4 and the D;’s
to be solid two-handled tori in D arranged in the manner pictured in
[B3, p. 486, Figure 1] and in [D, p. 65, Figure 9-4] (and with diffeomor-
phisms ¢; as in Definition 2.3 chosen in a non-stupid manner). This
arrangement satisfies the requirements of Definition 2.3 and (3.69), and
it has the additional feature that each D; is (individually) embedded
in D in a topologically standard (unlinked) manner. In particular,

for each 1 = 1,2, 3,4 there is a topological 3-ball U;

1 —
(5-1) such that D; CU; CD.

This is obvious from the pictures; the point is that each D; is, as an
individual domain, not linking with itself inside D in any way. (As a
group the D;’s are definitely linked, not homologically, but in the sense
that they cannot be disentangled by an isotopy on D. This is related to
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the fact that the U; that works for one ¢ will have to intersect the other
D;’s.) Condition (5.1) implies that the decomposition G associated to
this initial package (as discussed in Section 2) is cellular (in the sense
described in the preceding section). However, the quotient is not a
manifold.

Theorem 5.2. (Bing, [B3, p. 498, Theorem 13]) R®/G is not ¢ mani-
fold.

For the proof of Theorem 1.12.b) (5.1) and Theorem 5.2 are the
only properties that we shall need. Note that there are other examples
in Section 9 (beginning on p. 61) of [D] of cellular decompositions of R?
which are obtained from initial packages and whose quotients are not
topological manifolds. Actually, [D] does not address directly the issue
of manifold quotients, only the stronger property of “shrinkability” of
the decomposition, but a theorem of Armentrout [Ar] implies that the
two properties are equivalent for (cellular) decompositions (as remarked
near the bottom of p. 22 of [D]). The bottom line is that there are other
examples that we could use to get Theorem 1.12.b).

We can also build an excellent package for this initial package.
Let Q and w;, 1 < ¢ < 4, be solid versions of D and the D;’s in R*
which satisfy (3.3). The phrase “solid version” means that § should
be diffeomorphic to D x (—1,1), and similarly for the w;’s. It is also a
good idea to require that the w;’s lie in a thin slab {z € R* : |z4| < €},
while §2 should contain a much fatter slab around most of D (and near
the w;’s in particular). This allows us to translate an w; “up” (in the
positive x4 direction) away from the other w’s and to move it around
up there without getting too close to the others. This ensures that
the w;’s are not linked in R? in any manner. Let 3;, 1 < i < 4, be
similarities on R? with a common dilation factor p which map P to
itself and which send  to domains Q; with disjoint closures in . It
is convenient to require also that the Q;’s stay away from all the w;’s.
We do not care too much about the specific value of p but it should be
reasonably small and we may take it to be as small as we want. The
main point now is that we can build a § as in Definition 3.2. To do this
we take wy, we lift it up in the positive x4 direction away from the slab
{z € R* : |a4| < €}, we shrink it and slide it around until it is the same
as ; but translated up a bit, and then we set it down onto §2;. In this
whole process we take care not to touch the w;’s or the Q;’s for i # 1,
and also to remain inside Q the whole time. We then repeat the process
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for wq, w3, wy. Lemma 4.1 allows us to extend these deformations to
all of R? in such a way that points in or near the complement of Q are
not moved, and points in the w;’s and the Q;’s move only when they
are supposed to. As a result we get a diffeomorphism 6 as in Definition
3.2. (To be honest, it is simpler to first build # and then choose the
¢i’s so that (3.6) holds, rather than adjusting 6 to fit the ¢;’s.)

Thus we have an excellent package associated to our initial package,
where p can be made as small as we want, and so we can use the
construction of Section 3 to produce sets M, M7, and M.

Theorem 5.3. M satisfies (%) but not (). The M?’s, 0 < j < oo,
satisfy (*) with a uniformly bounded constant, but they do not satisfy
(%) with uniform choices of the constant and modulus of continuity.

Let us first show that the M7’s satisfy () with a uniformly bounded
constant. Let a be as in Lemma 3.65, and let j, z € M7, and r > 0
be given. Lemma 3.44 allows us to consider separately the cases i)-v)
listed there, but Lemma 3.65 implies that we need only consider iv).
Let o be as in iv) in Lemma 3.44, and let § € S;—; be its parent. It
suffices to show that there exists a relatively open set U, in M7 which
is homeomorphic to a 3-ball and satisfies

(5.4) Qe NMICU, CQsN M.

For the usual self-similarity reasons (i.e., (3.20), but with «a replaced
by 6) we can reduce this to the case where I = 1 (and j is replaced by
7 — 1+ 1). This case reduces to (5.1) because of Lemma 3.21. (Take Uy
to be the image under hj_;4, of the appropriate U;.) This proves (5.4)
and the fact that the M7’s satisfy (*) with a bounded constant.

To show that M satisfies (%), one uses Lemma 4.4 to reduce to the
previous fact for the M7’s. The argument is practically identical to the
corresponding step in Section 4 (just after (4.5)), and we do not repeat
it.

Next we show that (*#) is bad for this excellent package.

Lemma 5.5. Ifﬁ satisfies (#%), or if the M7 ’s satisfy (**) with uni-
form choices of the constant and modulus of continuity, then M 1s a
topological manifold. (This works for any ezcellent package, and not
just the particular ones considered in this section.) '
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This is pretty straightforward. We have very precise control on
the convergence of the AM7’s to M which implies convergence in the
Hausdorff topology in particular. A uniform version of (**) would force
M to satisfy (*x) also, and of course (¥%) certainly implies that M is
a topological manifold. If M satisfies (*x), then we use the fact that
M contains a translation and dilation of the most interesting part of
each M. Since () is preserved by similarities we can use the same
argument to conclude that M is a topological manifold.

Theorem 5.3 now follows from Lemma 5.5, Lemma 3.21 (which
states that M is homeomorphic to R®/G, where G is the decomposition
associated to our initial package), and Theorem 5.2. Theorem 1.12.b)
follows from Theorem 5.3, Lemma 3.45, and Proposition 3.70.

Incidentally, the fact that Bing’s dogbone space R3/G could be
embedded topologically in R? was observed long ago [Cu].

REMARK 5.6. Note that we can make the singular set F' of M have
Hausdorff dimension as small as we want in this example, by taking the
parameter p to be small. See (3.48).

6. Bing doubling.

We shall use the definitions and notations from Section 3 freely in
this section.

To prove Theorem 1.12.c) we use another example studied by Bing
[B1], [D, p. 62, Example 1]. We start with a smooth solid torus D in
R3, and we take n = 2 and D;, D, to be two disjoint smooth solid tori
in D which are folded over and linked as in [B1, p. 357, Figure 3] and
[D, p. 63, Figure 9-1]. Each of these two tori are (separately) embedded
in a topologically trivial manner in D, and we have that

there are open sets Uy, U; C D with D; C U; such that

(8-1) U,,U, are each diffeomorphic to the closed unit 3-ball.
However, as a pair, D; and D; are linked, in the sense that they cannot
be pulled apart by an isotopy of D onto itself. Note that D, D;, and
D, satisfy (3.69).

Let Q and w;,w, be solid versions of the D’s in R* which satisfy
(3.3). As before, “solid version” means that  should be diffeomorphic
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to D x (—1,1), with QN P corresponding to D x {0}, and similarly for
the w;’s. One should not go out of one’s way to choose them stupidly,
and we shall see in the next section that it is a good idea to choose them
to be symmetric about P. As in the preceding section, it is better to
choose wy, w2 to lie much closer to P than 2, so that we can disentangle
w1 from w, in  with ease. For instance, it is convenient to require that
there exist € > 0 so that we have the following solid version of (6.1):

(6.1) w; CU; x (—¢,e) CU; x [—¢,6] € Q.

Let us ask also that w; 2 D; x (—b,b) for some b > 0 (for a minor
technical convenience in Section 8).

Let 1; and 1, be similarities on R* with the same dilation factor
p which map P onto itself and which send 2 onto domains §2,,£2; in
with disjoint closures and which stay away from the w;’s. As usual it is
good for p to be small, and we can take it to be as small as we want.
For the same reason as in Section 5 we can build a mapping 6 which
satisfies the requirements of Definition 3.2. We lift up w; (in the positive
z4 direction), deform it into a copy of §; sitting just over £2;, and drop
it onto ;, and then we repeat the process for §2,, taking care that the
deformations stay inside Q2 and do not disturb the other players (i.e., we
do not touch wy when deforming w;). We can use Lemma 4.1 to extend
these deformations to all of R* in such a way that points outside  never
move and points in wy,ws, 2y, 22 move only when they are supposed
to. In the end we get a mapping 8 with the right properties. As usual,
we can simply define the ¢;’s as in Definition 2.3 from this construction
of 6 (or make unnecessary efforts to adjust 6 to previous choices of the
#i’s). The bottom line is that we have initial and excellent packages in
this case, and so we get the associated decomposition G of R?® (as in
Section 2) and the sets A7, M7 constructed in Section 3. (We do not

need M for this example.)
It turns out that this decomposition is well behaved topologically,
but for nontrivial reasons.

Theorem 6.2 (Bing [B1]) R®/G is homeomorphic to R3, and in fact
there ezists a homeomorphism f from R3/G onto R® which agrees with
the “identity” on the complement of Dy U D, .

This result is given in [B1, Section 3, Paragraph III]. See also [B5].

Theorem 6.3. M satisfies (*=*).
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Let a be chosen as in Lemma 3.65. Let 2 € M and r > 0 be given,
so that we want to find a topological ball U and a parameterization of
it which satisfy the conditions in Definition 1.7. If z,r satisfy 1), iii),
or v) in Lemma 3.44, then we are in business, because of Lemma 3.65.
Suppose that we are in case iv) in Lemima 3.44. Because of (3.20) (with
j = o0, so that M7~! = M) we can reduce to the case where ! = 1. Note
that there is nothing fishy going on here with the uniform estimates,
because they are all chosen to behave properly under similarities. (Do
not forget that the radius r changes also with the similarity.) Let h be
as in Lemma 3.21, and choose ¢ = 1,2 so that Qo N M = h(D;), where
s is as in iv) in Lemma 3.44 (and hence a € S;). Set U = h(U;),
where U; is as in (6.1). Lemma 3.21 tells us that A descends to a
homeomorphism from R?/G onto M, and so U is homeomorphic to
U;/G. Our mapping f above (from Theorem 6.2) provides us with a
homeomorphism from U; /G onto U;. The bottom line is that U is
a topological ball whose closure is homeomorphic to a closed 3-ball.
Since there are only two choices here there is no problem with getting
the uniform estimates required in Definition 1.7, since continuous maps
between compact sets are uniformly continuous. In other words, in
case iv) we get our uniformity because the self-similarity (3.20) allows
us to reduce to a finite number of mappings. The whole construction
in Section 3 was designed to make this happen.

We are left with i1) in Lemma 3.44, which is slightly a nuisance but
not deep. Set r; =ri(r) = 2r + diam 2, so that

(64) Ty S Co T

(with Cy = 2+a™1) by ii), and let & be as in Lemma 3.21 again. Notice
that B(z,r;) 2 Q, and that

(6.5) h(B(z,r1)NP) = ((B(z,r1)NP)\D)U(QNM) 2 B(z,r)NM.
Setting U = h( B(x, 1 )NP), we have that B(z,r)N\M CU =B(z,r1)NM.

Let F be the homeomorphism from R? onto M obtained in the
following manner. We know that 2 descends to a homeomorphism from
R®/G onto M, and that f above is a homeomorphism from R?/G onto
R3, and we take F to be the composition of the former with the inverse
of the latter. From the properties of h and f we get that F' equals the
identity off D and that F maps D onto QN M. Thus U = F(B(z,r1)),
and U is a topological ball in particular. We need to check that we can
parameterize U with the right kind of uniform estimates for the moduli
of continuity.
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Since F is a homeomorphism which equals the identity off the
compact set D there is a locally bounded function ( : [0, 00) — [0, c0)
such that lim,_.q {(¢) =0,

(6.6) |F(y) -~ F(z)| <¢(ly —=])  wheny,z€eR’,
(6.7) |F (o) = F'(w)| < ((Jv—w|])  whenv,we M,
and

(6.8) ((()=2t  whent> diamQ.

These estimates are not quite what we want, because they do not scale
properly. The estimates that we need come down to the existence of a
function € : [0, 00) — [0, 00) such that lim;_g €(t) =0,

(6.9) [F(y) — F(=)] < r€0ri v = =)
when y,z € B(z,r;) NR®, and
(6.10) |[F~(v) = F~}w)| < r €(r 7o — w])

when v,w € B(z,r)N M-
It is important here that £ not depend on r (or z); if not for this
we could simply compute £ from (. As it is, we are lead to try

(6.11) £(t) = sup{r 1 ¢(rit) + r; 1 ((rt) : r > adiamQ},

(where r; is still related to r as above). This is actually finite and
locally bounded for all ¢, because of (6.8), but we need to check that
lim, 0 §(t) = 0. Let ¢ in (0,1) be given, and choose § € (0,1) so
that ¢(t) < & when t < 6. Suppose that t < Cy'eé (where Cp is
as in (6.4)), and let us show that £(t) is small. Let &;,&;, and £3 be
defined as in (6.11), but where the supremum is limited to the ranges
r>t7 ldiamQ, e7! <r <t ldiamQ, and adiam Q < r < ¢!, Thus £
is the same as the maximum of the &;’s. For §; we use (6.8) and (6.4)
to get

(6.12) £(t) <r i (2mt)+ 7 (2rt) < Ct < Ce.
For &, we use the fact that sup{((s):s < CydiamQ} < oc to obtain

(6.13) £(t) < Ce.
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As for £3 we simply use (6.4) and the fact that r is bounded from below
to get

(6.14) £3(t) S C sup{((s): s<é6} <Ce.

Altogether we get that £(t) < Ce when t < Cy ' €6, and so lim,—q £(2)
= 0, as desired. This completes the proof of Theorem 6.3.

Theorem 6.15. Af does not admit a quasisymmetric parameterization

by R3.

This is basically a small perturbation of [FS, Theorem 2.1]. This re-
sult in [FS] says that a certain discrete group of homeomorphisms on S3
is not homeomorphically conjugate to a group of quasiconformal map-
pings with uniformly bounded dilatation. The present story amounts
to building a different metric space where a topologically equivalent
form of this group acts uniformly quasiconformally, and we are con-
cluding that this metric space cannot be quasiconformally equivalent
to S3. However it is easier to prove the theorem directly. The idea of
the proof is that the sets Q, N M all look alike and are reasonably well-
shaped, while any homeomorphism from Af to R® has to twist at least
some of these sets rather severely, and more so than a quasisymmetric
map can.

To make this precise, let g be a homeomorphism from M onto R3,
let 7,° denote the collection of subsets of M of the form 0, N M with
a € 81, and let 7 be the set of images of elements of 7,° under g. We
want to show that no matter how g is chosen the geometry of some of
the elements of 7; will have to degenerate as | — oo. This will come
down to a lemma in [FS].

Let F be the homeomorphism described just after (6.5). Using F
we obtain that the elements of 7,° are homeomorphic to smooth solid
tori in R® when ! = 0,1, and they even have neighborhoods in M which
are homeomorphic to solid tori. The same is true for all | because of
the self-similarity property (3.20). Thus the elements of 7; are locally
flat topological solid tori in R®. Let T denote the unique element of
To. This is the solid torus in which all the action takes place, because
it contains all the others.

IfT € T, define length (I') to be the infimum of the (parameterized)
length of the loops in the interior of I' which represent a generator in
the fundamental group of I'. The next lemma is a consequence of [FS,
p. 81, Lemma 2.2].
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Lemma 6.16. There s a constant C > 0 so that

(6.17) 270 )" length(I') > C7?,
rer,

for all l. In particular, for each | there is at least one I' € T; such that
length (') > C1.

The second statement follows from the first, because 7; has 2! el-
ements (since n = 2 in this example). The idea behind the first part
is pretty simple. Fix an [/, and choose for each I' € 7; a loop 7 in the
interior of I which represents a generator of the fundamental group of
I'. Consider the combination of all 2! of these 4’s. The point is that
every time we increase ! by 1 we get to double the number of 4’s, but
we also have to double the number of times that this system of curves
“goes around” in T. (“Goes around” should be interpreted gcometri-
cally, and not homologically, because these curves do not go around in
T homologically at all.) It is easy to believe this after staring at the
pictures, and a proof is given in [FS].

Lemma 6.18. Assume that g : M — R3 is actually quasisymmetric.
Then there i3 a constant C > 0 so that lengthl' < CdiamT for all
'e7; and any l.

Let T' € 7; be given, and let a € §; be chosen so that I' = g(-ﬁ,, N
M). Let us first choose a loop 7 in 2,NA which represents a generator
of its fundamental group and which comes from some fixed smooth
curve in 2 N M. That is, we first make a nice choice of such a curve
(call it 7) in QN M, and then we use the self-similarity property (3.20)
and take vy = ¥4 (7). Thus v is smooth at the scale of ¢ diam Q, and
dist(o, M\y) = 6 diam Q, for fixed £,6 > 0 which do not depend on
aorl

Set ¥ = ¢(70). This represents a generator in the fundamen-
tal group of I, but it may have infinite length. However, there is a
fixed §' > 0, which does not depend on T, such that dist (y,R*\T") >
8" diamT". This follows from the corresponding property of 4o and the
quasisymmetry condition. This gives us enough room to deform « in-
side T' to a loop with length less or equal than C diamT, as desired.
(To be honest, to check this carefully one should notice that 4 cannot
oscillate too many times at the scale of (6'/10)diamT, say, because
of the smoothness property of v and the quasisymmetry of g. This
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implies that we only need to make a bounded number of modifica-
tions to v in a bounded number of little balls. Note that the condi-
tion dist (4, R3\I') > ¢’ diam I’ does not prevent v from looping around
many, many times in a little neighborhood of itself, even though we
know that this cannot happen here.)

Theorem 6.15 follows from Lemmas 6.16 and 6.18, because diam T’
tends to 0 as | — oo when I' € 7 (since the corresponding statement
is true for 7% and g is continuous). Theorem 1.12 .c) now follows from
Theorems 6.3 and 6.15 together with Lemma 3.45 and Proposition 3.70.

REMARK 6.19. I have a philosophical explanation for Theorem 6.15
which I cannot back up with a proof but which I would like to share
with the reader. The self-similarity properties of M stem from the fact
that we constructed T as in (3.14) so that its big boundary component
is similar to each of its small boundary components. The corresponding
part of our initial package is the set D \ U;D;, and one reason that we
cannot build a quasisymmetric parameterization of M is that D\U;D;
does not possess a version of this property. Specifically, if D were
conformally equivalent to each OD;, then we could try to build a quasi-
conformal parameterization of M by building a suitable quasiconformal
map from D \ U;D; onto T and putting copies of it on top of itself.
In order to have the dilatation not build up and become unbounded in
the limit we need this quasiconformal building block to be conformal
at the ends, which is why we would need to have 9D be conformally
equivalent to each 0D;. However, it is not true that 2-dimensional tori
are all conformally equivalent, and this is the source of the problem.
I do not know how to turn this explanation into an alternative proof
of Theorem 6.15, but I think that it would be interesting to do so, es-
pecially for the purpose of understanding other examples of this type.
(See also Section 12.)

7. The complementary components, part 1.

Throughout this section we assume that we are given an excellent
package as in Definition 3.2, and we shall consider the behavior of the
complementary components of A, the M7’s, and M. We shall use freely
the definitions and notation of Section 3.

Let Ut and U~ denote the two components of R*\ P, s.e., UT is
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the set of points € R? such that z4 > 0, and similarly for U~. Define
X* and X~ by

(7.1) x*:( Ln) )nUi

In this section we require that
(7.2) X*,QnU*, and U%\Q are connected.

This condition is not necessarily minimal, but it is valid in the examples
in Sections 4, 5, and 6 and others like them, and it is nicely clear.

Lemma 7.3. Each of M, the M’ ’s, and M has ezactly two comple-
mentary components in R%.

For M and the M7’s this is an immediate consequence of Lemma
3.21. For M we have to be slightly more careful.

Let g; : R* — R* be as in the proof of Lemma 3.21,1=0,1,2,...
and define a mapping e : R*\M — R* by

(7.4) e(z) = lim g5  ogit oo g

This limit exists because gr(z) = z for any r € R*\M and all suffi-
ciently large k, by (3.26). Also, if Iy is as in (3.27),

(7.5) hi(e(z)) =z,

for any = € R*\M and all sufficiently large I. In particular we have
that e maps R*\ M/ into R*\ P. Since e equals the identity outside Q2 we
conclude that R*\A{ has at least two components.

Let us analyze R*\AM a little more in order to show that it has
at exactly two components. Recall the definition of ¥ (shortly before
(3.12)) and set ¥t = (X 1), Y™ = 6(X~). Set Y7 = ¢o(Y™) and
Y = 1ha(Y ") for any a in any Si, and define V+ a,nd V= by

(7.6) vE=wn\Quly | v
=0 a€S;
It is easy to see that

(7.7) R\M =VtuVv—,
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because of (3.13) and (3.19). Let us check that

(7.8) V* and V™ are connected.

To see this note that if o € §;, I > 1, and § is the parent of «, then
(7.9) Y touches Yt

(at their respective boundaries), and similarly for Y. When | =1
(7.9) reduces easily to the fact that the 1;’s from Definition 3.2 are
required to be orientation-preserving. The general case can be reduced
to this one by using the fact that ¢4 = 15 o 1; for some j (as in the
definition of ¥, just before (3.7)). We also have that

(7.10) Yt touches U\

(at their boundaries), and similarly for Y ~, and (7.8) follows easily
from these observations and our assumption (7.2). This proves Lemma
7.3.

Note that the complementary domains of M/ also admit an ex-
pression like (7.7). That is, if we define Vj+ and V; by

(7.11) VE=(UH\Q)U (U U Yj) U ( U 2an U*) ,

=0 «€S; a€S;
then
a\ i _ v+ -
(7.12) R\MI = VUV,

because of (3.12) and (3.17), and VJ-:t are connected for the same reasons

as for (7.8). Thus Vj:t are the two complementary components of M.

Next we want to show that these various complementary domains
are uniform domains. Recall that a domain O in R? is a uniform domain
if there exists a constant C so that for each pair of points z,y € O we
can find a path I in O which connects z and y and satisfies

(7.13) diamT < Clx —y|
and

(7.14) dist (z,00) > C~ ! dist(z, {z,y}) whenz€Tl.
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(There are many equivalent characterizations of uniform domains, and
this condition is a little weaker in appearance than some of the others.)
Bounded smooth domains are uniform domains, but a domain with an
outward-pointing cusp is not. Note that this condition is scale-invariant.

Lemma 7.15 The complementary components of M, the M7 ’s, and M
in R* are uniform domains, with constants bounded independently of j

(in the case of the M7 ’s).

This is a fairly straightforward exercise. We could derive this
lemma from the general results in [V2], but let us give instead a direct
argument. Consider M and the M7’s and their complementary compo-
nents V1 and V]-+. Let us call sets of the form UT\Q, Y7 (a € 8;,1 < j),
and U* N Q, (a € S;) building blocks for V* or V]-+, as appropriate.
Notice that these building blocks are all uniform domains, with uni-
formly bounded constant. In the case of U\ this is true because it
has smooth boundary and looks like a half-space at infinity. For the
other building blocks this uniform estimate follows from the fact that
they are all similar to one of a finite number of bounded smooth do-
mains. The union of two building blocks which touch is also a uniform
domain with bounded constant, for the same reasons. (Remember also
that a Y, and a Y can touch only when one of a and 3 is the parent
of the other, as observed just before (3.12).)

Suppose now that we are given two points z,y in V* or V¥. We
want to connect them with a curve which satisfies (7.13) and (7.14)
(with O = V* or VJ-+, as appropriate). If z and y lie in the same
building block then we are in business, by the preceding remarks, and
also when they lie in different building blocks which touch. Thus we
may assume that = and y lie in disjoint building blocks. Consider first
the case where € ¥} and y € Y; for some a # B, a € S, B € Sk,
k,l < j. Our assumption of disjointness implies that neither of o or
B is the parent of the other. Let § be the “last” common ancestor of
a and B3, so that either « = 6, 8 = 6, or @ and 3 are descended from
different children of §. Notice that

(7.16) dist (Y5, Y;) < e —y].
(7.17)  diam Y} + diam Yﬂ"’ < 2diam Qs < Cdist (Y}, Y5).

(The last inequality reduces via the similarity 15 to the fact that the
distance between the children of  is positive (when § is different from
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both « and ), and to the fact that the distance between Y and any of
the Q,’s with € S5 is positive (when 6 equals one of a and 3). We get
a uniform estimate because the similarity allows us to reduce to a finite
number of cases.) We can build a curve which goes from z to Y,
then ascends to 9YF for the various successive ancestors v of a until
we get to 6, and then goes down to OY} for the successive descendants
v of § until we get to OY;’, from which we can connect easily to £.
This curve will satisfy (7.13) because it will be contained in Qs and
because diam 25 < C'|z — y|, by (7.16) and (7.17). If we are a little bit
careful we can choose the curve so that (7.14) also holds. (The point is
to stay as far away from 3)’."*' N M7 as possible -i.e., at distance greater
or equal than C™' diam Y- for all the intermediate v’s. In Y} and
Y;’ it may be necessary to let the curve get close to the boundary of
V* or Vj+ because of the positions of z and y.) The remaining possible
situations where z and y lie in disjoint building blocks (e.g., z € UT\,
ory € Ut NQ, for an o € S;) are handled in essentially the same way.

Thus one can show that V* and the Vj+’s are uniform domains,
with bounded constants. The same argument works for the V™’s. It
is easy to show that the complementary components of A are uniform
domains using the corresponding statement for the M7’s and the con-
struction of A (just after (3.20)). For this one should go through the
usual analysis of cases, i.e., the cases where the given pair of points
both lie in the same 2By, or they both lie outside all the By’s, or they
lie in different 2B\ ’s, or one lies in some 2B, and the other lies outside
all the other B’s. The details are left to the reader. This completes
the proof of Lemma 7.15.

In our examples we also have that there exist bilipschitz reflections
across M, the M7’s, and M. To sce this we first define a suitable
symmetry condition for an excellent package.

Definition 7.18. An excellent package as in Definition 3.2 is said to
be symmetric if Q, the w;'s and the Q;’s are symmetric about P, and
if the restriction of 6 to a neighborhood of each T; commutes with the
obvious reflection about P.

It is important here that we do not require that § commute with
the reflection about P cverywhere, because that will not be true in the
interesting examples.
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Lemma 7.19. We can choose the ezcellent packages in Sections 4, 5,
and 6 to be symmetric.

This is straightforward but slightly tedious. There is absolutely no
problem about making the various Q’s and w;’s be symmetric, but the
symmetry condition on 8 is slightly more complicated. The main point
is that we always obtained 8 by first building suitable isotopies on the
w’s and then extending them to all of 2 using Lemma 4.1. The first step
is the only one that really matters here and is the one which is most
easily controlled. It is easy to check that it can be carried out in such
a manner as to get the desired symmetry condition. In the examples in
Sections 5 and 6, for instance, these isotopies on the w’s could be taken
to be translations in the positive z4 direction, followed by a certain
“unwinding” operation centered on the relevant vertical translate P'of
P, followed by a translation back down to P. One need only demand
that this middle unwinding operation be symmetric with respect to P’,
which is easily accomplished, because this unwinding operation really
comes from a 3-dimensional process. The example in Section 4 is a bit
different, because one translates part of w up a little while leaving the
other part alone, but it is also not difficult to handle. We leave the
details as an exercise. (Keep in mind that the intermediate stages of
the deformation do not have to be symmetric about P, only the end
result.)

Proposition 7.20. If our exzcellent package 1s symmetric, then there
ezists a bilipschitz reflection r on R? across M, and there exist reflec-
tions r; across each M7 which are uniformly bilipschitz. These reflec-
tions all agree with the standard reflection across P outside 2. There
18 also a bilipschitz reflection across M.

Let 7 denote the standard reflection across P, and for any « in any
S; define o, by

(7.21) 0o =9a0foTo0f T otp T,

This is the same as taking 6 o 7 0 6=, which agrees with 7 outside
and on a neighborhood of its boundary (by (3.5)) but does something
complicated inside, and then transporting it to Q, using %,. Our
symmetry assumptions in Definition 7.18 imply that 8 o 7 0 §7! also
agrecs with 7 on a neighborhood of each Q;, and hence

(7.22) 0o = 7 on R*\Y, and on a neighborhood of Y,
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(where Y, is as defined just before (3.12)). Also,
(7.23) oY) =Y7 and o, (Y])=Y],
by definition of Yai, and

(7:24) va(z)=z forallze S,

because of the definition of X4 (just before (3.15)) and the fact that 7
fixes every element of P.

Define » by taking r to be the identity on M, r = 7 on R*\Q, and
T = 04 on each Y,. Define 7; to be the identity on M, rj = Ton R4\ Q,
and r; = o, on each Y, with @ € &, 1 < j, and rj = 7 on Qq when
a € §;. Clearly r and the r;’s are involutions, and one can use the
formulae (7.6) and (7.11) for the complementary components of M and
M and (7.23) to show that r and the r;’s exchange the complementary
components of M and AM7. It is not hard to check that r and the r?’s
are continuous (and even smooth in the case of the r;’s), because of
the way that the ,’s fit together, and because of (7.22). One should
be a little bit careful about the continuity of r and the r;’s across A
and the M?’s, but the only slightly tricky issue is the continuity of r at
points in the singular set F' of M. For this it is it is useful to observe
that

(7.25) r(Qe) =

for all @ in any S;. This observation is easy to derive from the definition
of r and the simpler fact that r(¥Y,) = Y, for all . (Note that the
analogue of (7.25) for the r;’s holds as well.)

The uniform Lipschitz conditions are easy to check. The main
point is that the 04’s are uniformly Lipschitz. For the r;’s this is enough
because the smoothness of the r;’s permits their uniform Lipschitzness
to be derived from a bound on their gradients, which we get from the
corresponding bounds for the o4 ’s. In the case of r one must be a little
more careful, since it is not smooth across M, but the continuity of r
across M allows one to piece the local Lipschitz conditions together.
Uniform bilipschitzness follows from uniform Lipschitzness and the fact
that these mappings are involutions (and hence are their own inverses).

As usual, one can deal with M by treating separately the little
pieces which look like M7’s (as in the definition of M, just after (3.20)).
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RECAPITULATION 7.26. Under mild additional conditions on our excel-
lent package which are satisfied in the examples, we obtain that M, the
M?7’s, and M have exactly two complementary components Wthh are
uniform domains, and there are uniformly bilipschitz reflections across

the M’s.

8. The complementary components, part 2.

Throughout this section we use the excellent package described
in Section 6, taking a modicum of care to ensure that the additional
requirements of the preceding section ((7.2) and symmetry) are met.
We shall use freely the definitions and notation of Section 3, and in
particular we assume that Af has been constructed as in Section 3. Let
V¥ be the complementary domains of M, as in (7.6) and (7.7).

Theorem 8.1. a) V¥ are uniform domains, and there is a bilipschitz
reflection on R* which equals the identity outside §, fizes every point
on M, and interchanges V* and V~. Neither V¥ nor V= is quasicon-
formally equivalent to a ball (or a half-space).

b) There is a homeomorphism v from R* onto itself such that v =
the identity outside Q, v = 8 outside wy Uwz, v(w;) = Q; for 1 =1,2,
and v meps P onto M.

c) There ezist a constant C > 0 and a locally bounded function
n:[{0,00) — [0, 00) with lim¢—o n(t) = 0 such that for each x € M and
r > 0 there is an open set W C R* with B(x,r) C W C B(z,Cr) and a
homeomorphism p f‘rom B(0,1) onto W which satisfy u(B(0,1)NP) =
Mnw,

(8.2) lu(y) — p(2) <ra(ly—z]), forally,z € B(0,1),
and
(8.3) =)= (D <n(r~tp—ql), forall pgeU.

Part c) is a stronger version of (**) for A which takes into account
the ambient space as well. It implies that V* and V= are strongly uni-
form domains in the sense of [HY). This follows from the compactness
result in [HY, Theorem 4.4].
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One should keep in mind that the boundaries of these “Bing do-
mains” arc Ahlfors regular (at least if we choose p small enough, as
in Lemma 3.45), uniformly rectifiable (in the sense of [DS4]), and
have well-behaved geodesic distance functions (as in Theorem 1.12 and
Lemma 3.69). One can construct much simpler examples which sat-
isfy the properties in Theorem 8.1 using the methods of [Tu2], but the
boundaries of these examples are not so well behaved.

The fact that V* are uniform domains and the existence of the
bilipschitz reflection were proved in the preceding section (Lemma 7.15
and Proposition 7.20). It follows that V¥ cannot be quasiconformally
equivalent to a ball, since, as pointed out in the introduction, well-
known results about uniform domains then imply that the quasicon-
formal map would extend to a quasisymmetric map between the clo-
sures, which would contradict the fact that M is not quasisymmetrically
equivalent to R®. This gives a).

Let us assume b) for the moment and derive c¢). We use the same
argument as in the proof of Theorem 6.3. We choose a as in Lemma
3.65, and we consider separately the cases i)-v) in Lemma 3.44. The
cases i), iii), and v) are covered by Lemma 3.65. We shall use the next
lemma to deal with case iv), and we shall consider ii) after that.

Lemma 8.4. There e:ci.st_apen subsets O, and 0_2_ of Q such that Q; C
O; for i =1,2 and each O; is homeomorphic to B(0,1) via a mapping
which sends M N O; onto PN B(0,1).

Set O; = U; x (—¢,¢€), where U; and ¢ are as in (6.1) and (6.1).
Clearly each —O_: is homeomorphic to B(0,1) via a mapping which takes
P to itself, since the U;’s are closed topological 3-balls. Thus if v is as
in b) then O; = v(0!), ¢ = 1,2, are open subsets of 2 such that O; 2 §;
and each O; is homeomorphic to B(0,1) via a mapping which sends M
to P. This proves Lemma 8.4.

Now suppose that @, r satisfy iv) in Lemma 3.44. If the [ from iv)
equals 1, then we can take ¥ to be one of the O;’s from Lemma 8.4.
When | > 1 we can reduce to the | = 1 case using the self-similarity
property (3.20). These choices of W admit homeomorphic parameter-
izations with the right kind of equicontinuity conditions because they
all reduce to the two (uniformly continuous) models in Lemma 8.4 by
self-similarity.

The remaining case, where z,r satisfies ii), is handled in exactly
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the same way as the corresponding step in the proof of Theorem 6.3
(with v playing the role of F'). That is, one must go through the song-
and-dance of (6.11), but that part of the argument applies equally well
to the current situation. This proves c) given b).

We are left with proving b). Recall that G is the decomposition of
R® which is associated to the present initial package as in Section 2 (just
after Definition 2.2). (See also the discussion around Sublemma 3.40.)
Let G’ denote the decomposition of R* which extends G trivially. That
is, G' consists of the elements of G (viewed as subsets of R*) together
with the singletons from R*\P. Our first task in proving b) is to come
to grips with R*/G".

Proposition 8.5. There is a homeomorphism & from R*/G' onto R?
which sends P/G onto P and which equals “the identity” outside wyUws.

In other words, there is a nice extension of the homeomorphism
given by Theorem 6.2 to R*. To prove this we use the following.

Lemma 8.6. There 1s a continuous l-parameter family f,, t € [0,1],
of continuous mappings from R3 onto itself such that fy s the identity,
each f; agrees with the identity outside D;UD, (where Dy and D, come
from our initial package), each f; for t < 1 i3 a homeomorphism, and
f1 induces a homeomorphism from R®/G onto R3.

Thus the homeomorphism in Theorem 6.2 can be deformed to the
identity in a natural way. This follows from Bing’s construction of a
homeomorphism as in Theorem 6.2. Specifically, Bing produces an in-
creasing sequence of integers {j;} with j; > 1 and homeomorphisms
{T:} on R® such that T; maps the D,’s with @ € Sj;, to sets of diam-
eter less that 1 and T; = T;_; o T}, where T} takes each Dy to itself
when 8 € §j;_, and T} equals the identity outside of all these Dpg’s.
Each of the T]’s can be deformed continuously to the identity through
homeomorphisms which also take each of these Dy’s to themselves and
equal the identity off of the Dg’s. This follows from the construction;
Bing obtains T} by sliding the D,’s around, a € §j;, without ever doing
anything outside the Dg’s. (The point is to slide the Dy’s around to
malke them have very small diameter.) This sequence {T;} converges
to a mapping T which induces a homeomorphism from R?/G onto R3.
Indeed, by construction 7T; = T; on the complement of the D,’s for
a € §j; when I > 17, and T)(Do) = T;(Dqs) has diameter less than 1/¢
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for each a € Sj;, and these properties imply that {T;} converges to a
mapping which induces a homeomorphism from R?/G onto R3.

To get the deformation described in Lemma 8.6 we take fp to
be the identity, f; to be T, f; to be T; when t = ¢/(i + 1), and on
(:—1)/1 < t < i/(i+1) we deform T;_; into T; through homeomorphisms
by deforming the identity to T} through homeomorphisms which map
each D, to itself for a € §j; and which equal the identity off these
Dg’s. (For ¢ = 1 this makes sense with Tj taken to be the identity.) It
is not hard to check that this deformation has the properties described
in Lemma 8.6.

Proposition 8.5 is a straightforward consequence of Lemma 8.6.
Let b > 0 be such that D; x [~b,b] C w; for i = 1,2. We define £ by
setting it to be the identity when |z4] > b and by taking £ to be the
obvious copy of f; on the z4 = +b(1 — t) 3-planes when 0 < ¢t < 1.
That is, £ should take these 3-planes to themselves, and be the same as
ft module the obvious vertical translation down to P and back. It is
easy to check that this choice of € has the right properties. This proves
Proposition 8.5.

To prove b) in Theorem 1.2 it is enough to produce a mapping
¢ : R* —» R* which agrees with 6 outside w; U w,, maps P onto M,
and induces a homeomorphism from R*/G’ onto R*. Indeed, if we can
build such a mapping ¢, then the desired v will result from Proposition
8.5. We would like to simply take { = h, where h is as in Lemma 3.21,
but it is not completely clear that & has the right properties on R?, i.e.,
h=1(Q4) might leak out into R*\P further than we want even when
a € & for I large. Rather than attempt some fine analysis we shall
modify h a little bit brutally to avoid this problem. Note that h has
some nice self-similarity properties that we do not need to replicate in
¢.

Given a € & define w, to be h™}(f,). This is compatible with
the choice of w;’s in our initial package, because of Lemma 3.21 and
(3.6), and we could have defined the w,’s through the same kind of
recursive constructions as in Section 3, but this amounts to the same
thing as the present definition. Set C} = Uqes,@Wa, in analogy with
the definition of the defining sequence {C}} associated to the Dy ’s (just
before (3.11)). Set C* = N;CY, and let G* denote the decomposition of
R* associated to the defining sequence {C}} in the manner described
just after Definition 2.2.
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Lemma 8.7. h i3 constant on each element of G*, and it induces a
homeomorphism from R*/G* onto R%.

The proof of this is practically the same as for the corresponding
statement for R3/G in Lemma 3.21. Let us briefly review the highlights.
The w,’s (and their closures) enjoy the same nesting properties as do
the Q,’s (as described in Lemma 3.10). Let S be, as before (just after
(3.11)), the set of infinite sequences which take valuesin {1,... ,n}. To
each element s of § we associate a set A} which is the intersection of
the @W4’s which correspond to the ancestors a@ € S; of the sequence s,
just as for the D,’s (before Sublemma 3.40).

Sublemma 8.8. C* = | J,cs 45, and the Aj’s are the connected com-
ponents of C*.

This is the analogue of Sublemma 3.40 for the w,’s, and the same
proof works here, except that we should verify that the @,’s are con-
nected. A priori we have a problem, since h is not a homeomorphism,
but in fact we have that

8.9 wo =h71(Na), forallaes,
!

where h; is as in the proof of Lemma 3.21. This equality is an easy
consequence of the definitions in the proof of Lemma 3.21, but let us
write it out. Notice first that

(8.10) ho h;l = the identity on R*\ U Qs ,
5€S;

and

(8.11) ho h,‘_:l(-ﬁg) =0y, forall B€ Sy .

These follow immediately from (3.28), (3.29), and the definition of A
as the limit of the h;’s. (Actually, one should think a little about the
inclusion “2” in (8.11). To derive this inclusion from its counterpart in
(3.29) one can use the compactness of Q3 and the uniform convergence
of the hy'’s to h.) Even though h is not a homeomorphism we can
convert (8.11) into (ko hj}})™*(§5) = O using (8.10) and the fact
that the _S'_l,@’s, B € Si41, are disjoint (Lemma 3.10). Since ﬁg C Q4
when S is a child of a (by (3.9)) we conclude that

(8.12) (ho ha}l)_l(Qa) =Q, whenac€s
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using also (8.10) again. From (3.27) we have that hiy; = gioh, where g;
is as in the proof of Lemma 3.21, and from (3.25) we obtain ¢;(Q,) =
Qq when o € 8. Thus (8.12) yields (ho b)) (Qa) = (ho ki o
91)"1(Q%) = Qo. This proves (8.9).

It follows that the T,’s are connected (since each h; is a homeo-
morphism), which is the fact we needed for Sublernma 8.8.

Recall the (bijective) mapping f : S — F defined just after (3.11).
We have that

(8.13) h(p) = f(s), forallpe A, and s€ S.

This is the analogue of (3.41) in this situation, and it follows from
chasing definitions. Because of Sublemma 8.8 this says exactly that
h is constant on each component of C*, and hence on the nontrivial
elements of G*. Thus h induces a continuous map from R*/G* into
R*. It is not hard to see that it is actually a bijection and even a
homeomorphism, using (8.13), (8.10), (8.11), (3.13), and the fact that
the h;’s are all homeomorphisms. This proves Lemma 8.7.

_ Because of Lemma 8.7, the proof of Theorem 8.1.b) comes down
to showing that the decompositions G* and G’ of R* are equivalent in
a way which does not disturb points in P. Let us first check that they
“agree” on P. To do this we begin with the observation that

(8.14) weNP=D,, forallaes

(and any I). By (8.9) the left side is the same as h; ' (£24) N P, and since
hy(P) = M' this is the same as h] ' (R, NAL"). Since hy(Dy) = QaNM,
by Lemma 3.21, we get (8.14). Thus if C is as in Sublemma 3.40 and
C* is as in Sublemma 8.8, then C' = C* N P, because the corresponding
statement is true for the defining sequences {C;} and {C;}}, by (8.14).
Moreover, if A; and A% are as in Sublemmas 3.40 and 8.8, then

(8.15) A, =4nP, foralses,
by the definitions of A, and 4%. This makes precise the sense in which

G* and G' “agree” on P, since the 4,’s and A%’s are the only nontrivial
elements of these decompositions.
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Lemma 8.16. There is a homeomorphism o from R*/G* onto R*/G’
which “equals the identity” on P and on the complement of w; U wa,
and which sends w;/G* to w;/G" fori=1,2.

The statement of the lemma is an abuse of language whose meaning
is hopcfully clear to the reader. It is “justified” by (8.15) and the fact
that both the decompositions G* and G’ are trivial (consisting only of
singletons) on the complement of w; Uws.

To prove Lemma 8.16 we shall construct a sequence of diffeomor-
phisms {0/}{2, on R* with the following properties (for all [):

(8.17) o = the identity on P U (R*\(w; Uw,)), and

o(w;) =w;, forz=1,2;

(8.18) o141 =0 on R*\ U W ;

065,
(8.19) Or1{wa) = 0i(wa), forall a € Sp;
(8.20) every point in oy(@4) lies within 7! of D, ,

for all « € S; when [ > 2.

We take o; to be the identity, and to construct the later o;’s we use an
iterative construction based on the following.

Sublemma 8.21. For each € > 0 and any a € S; (with | arbitrary) we
can find a diffeomorphism of R* onto itself which equals the identity on
P and on the complement of ws and which maps g to a set which lies
within ¢ of Dy for each of the two children 8 of & in Siyy -

If ] =0, so that w, = 2 and the children of w, are simply w; and
wy, then this sublemma follows from the way that 2, w;, and w, were
chosen (as smooth solid 4-dimensional tori which are cut in half by the
3-plane P in the standard way, etc.). In other words, we can just shrink
the w;’s in Q as close to the D;’s as we want, without disturbing any
points in P or outside of £2. One can do this rather explicitly, but one
could also use Lemma 4.1 (or rather a small variant of it).

For an arbitrary o € S; we can reduce to the preceding case as
follows. We know from (8.9) that hj(ws) = Qo = ¥a(2), and we have
that hy(we N P) = h(Dq) = Qo NP = %4(2N P) by (8.14), (3.31),
(3.8), and (3.7). We want to show that h(wg) is the same as the image
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under ¥, of w; or ws when F is a child of a. If 8 is a child of «, then
wg = hi}(Qg) by (8.9), and so hy(wg) = hyo h () = g7 (Qp)
by the definition (3.27) of h;4q, where g; is as in the proof of Lemma
3.21. We also have g; ' (23) = 6;!(Q3) because of the definition of g
(just before (3.25)). The fact that this is the same as the image under
Yo of wy or wy follows from (3.22) and (3.6), using also the definitions
of Q5 and ¥, (just before (3.7)) to get that 3;!(25) is one of §; or
Q2. Now that we understand h;(wg) we can reduce Sublemma 8.21 for
wq to the | = 0 case of the preceding paragraph using h;. Note that
this reduction of the general case to 1 involves mappings with large
distortions, so that we are not getting good estimates (as a function of
!l and ¢), but we do not care. This proves Sublemma 8.21.

It is now a simple matter to construct the o/’s recursively. Given
oy, one builds oy4; by composing o on the right with diffeomorphisms
on each of the w,’s, € &, which are chosen as in Sublemma 8.21.
Because these diffeomorphisms equal the identity on P and outside
the corresponding wq’s the properties (8.17), (8.18), and (8.19) are
maintained. We get (8.20) for 0,41 simply by choosing € in Sublemma
8.21 to be suitably small. This choice of € will depend on the modulus
of continuity of oy, but we do not mind.

Once we have the o/’s we simply take o to be their limit as | — oo.
This makes sense as an R*-valued mapping only as long as we stay away
from C*, but in fact the limit exists as a map from R*/G* onto R*/G’
because of (8.20). It is not hard to check that this choice of ¢ has the
required properties. This proves Lemma 8.16.

Because of Lemmas 8.16 and 8.7 we can form the map ( = hoo™!
which gives a homeomorphism from R*/G' onto R*. Lemmas 8.16 and .
3.21 imply that ( agrees with § outside w; U w2 and that it maps P
onto M. By composing ( with the inverse of the map promised in
Proposition 8.5 we get a homeomorphism » as in Theorem 8.1.b). This
completes the proof of Theorem 8.1.

9. Analysis on these sets.

To what extent can we do analysis on the sets M, M7, and M?
Because the geometry of these sets is approximately Euclidean we can
hope that much of the usual analysis on Euclidean spaces also works on



GOOD METRIC SPACES WITHOUT GOOD PARAMETERIZATIONS 261

these sets. For this we should remember to require that p in Definition
3.2 satisfy p’n < 1, so that (3.46) and the conclusions of Lemma 3.45
hold.

We can get a lot of milage out of the fact that the M7’s are
all smooth, M is smooth away from a compact singular set with 3-
dimensional measure zero, and M is smooth away from a single point.
For instance we can talk about smooth functions (away from the sin-
gular sets) and we can use Stokes’ theorem (if we are a little bit careful
about the singularities). We also have automatically the “local” results
in real analysis, like the existence almost everywhere of Lebesgue points
of locally integrable functions, points of density of measurable sets, and
derivatives of Lipschitz functions. We can get more quantitative results
from real analysis using the fact that our sets are Ahlfors regular and
hence “spaces of homogeneous type” in the sense of [CW1], [CW2], with
uniform bounds in the case of the M7’s. The uniform rectifiability of
these sets implies additional analytical information, as in [Da], [DS2],
[DS3], [DS4]. Of course the M’s are much nicer than most regular or
uniformly rectifiable sets, because they degenerate only near small sets,
and in a moderate way.

What about Sobolev and Poincaré inequalities? To what extent
can we control a function on A in terms of its gradient? If these sets
were quasisymmetrically equivalent to R® then they would have to be
well behaved for Sobolev and Poincaré inequalities. Indeed, if a qua-
sisymmetric parameterization were to exist, it would distort Hausdorff
measure by only an “As weight”, by the method of Gehring [Ge] (see
also [DS1], [Se3]), and one could then obtain Sobolev and Poincaré in-
equalities from the results in [DS1] (since the A, weight in question
would have to be a strong Ao, weight). This approach is not available
here, but we can verify Sobolev and Poincaré inequalities directly using
the bilipschitz balls provided by Proposition 3.70, as we shall do in the
next section. (One could do with less than these bilipschitz balls, but
there is not much point in that here. The method of [Sel] (see also
[DS3, Section 6]) would work too, but it is unnecessarily indirect for
the present situation.)

It would be interesting to find nice ways to see the strangeness
of the M’s in terms of analysis on them or on their complementary
domains, e.g., in terms of harmonic functions, or Clifford holomorphic
functions (see [BDS]), or nonlinear potential theory.
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10. Sobolev and Poincaré inequalities.

The main result of this section is that the sets A, Af’, or M
from Section 3 satisfy Sobolev and Poincaré inequalities under mild
assumptions. This will be a rather simple consequence of Proposition
3.70. Much of the structure of excellent packages will not really be
needed, as in the comments which follow Definition 3.2, and there is
nothing special about the dimension 3. For that matter, we could do
with less than the bilipschitz balls provided by Proposition 3.70, but
since we have them we may as well use them.

Let us begin with some general definitions. Let us call a subset of
R* a “singular submanifold” if it is a smooth embedded 3-dimensional
submanifold away from a singular set which is closed and has zero 3-
dimensional Hausdorff measure. This definition accommodates the sets
M and M, while the M7’s are everywhere smooth already. All of our
integrals, L” norms, etc., on singular submanifolds will be taken with
respect to 3-dimensional Hausdorff measure, which we shall denote by
“dz” or something similar. If f is a locally integrable function on a sin-
gular submanifold then its differential df makes sense as a distribution
(or more precisely a current, as in [Fe]) which is defined away from the
singular set. As a practical matter one should not take this business
about currents too seriously here, because we shall always work with
the differential on the smooth part of our set, in such a way that all the
computations can be reduced to similar problems on a piece of R* using
local coordinates. We shall always assume that df is locally integrable
away from the singular set, so that we can use the Euclidean metric
to define |df| and hence L? norms and other integrals of |df|. When
we say that “df is locally integrable” on our singular submanifold we
shall mean that |df| is actually locally integrable across the singular
set, and hence has an unambiguous locally integrable extension to the
whole singular submanifold, since the singular set has measure zero.
This extension may differ from the natural distributional definitions of
df near the singular set -i.e., we could be dropping Dirac masses or
other singular contributions to the “true” df- but we do not care. We
shall always do our distribution theory away from the singular set and
then extend brutally across the singular set.

Proposition 10.1. Suppose that E = M, H, or M7 for some j, that
p in Definition 3.2 satisfies p°n < 1, and that our ezcellent package
satisfies (3.69). There ezist constants L, and Cy, depending only on our
excellent package, so that if p,q € E, [ is a locally integrable function
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on EN B(p,Lilp — ¢|), p and q are Lebesgue points for f, and df is
locally integrable on ENDB(p, Ly |p—q|) (in the sense just described when

E = M or M), then

1 1
02 1f0)-f@I<C [ (gt ) G
EnB(p,Lrlp—ql)

The statement that p is a Lebesgue point for f means that

(10.3) lim r~? / If(2) = f(u)|du=0.

EnB(p,r)

The “du” here refers to 3-dimensional Hausdorff measure, as indicated
above. Almost all points are Lebesgue points.

To prove Proposition 10.1 let us first review the situation for R3.
Suppose that h is a smooth function on a ball B in R? with radius r.

Then
(10.4) 1*_6/ / [h(u) — h(v)|dudv < Cr‘B/ r |dh(w)|dw,
BJB B

where C' does not depend on h,B, or r. The proof of this is quite
easy. We can express h(u) — h(v) in terms of an integral of dh over
the line segment which connects « to v, and (10.4) is obtained by av-
eraging this formula over all v and v and applying Fubini’s theorem.
This Poincaré-type inequality (10.4) also holds when & is merely locally
integrable and has locally integrable distributional first derivatives, be-
cause of standard approximation arguments (as in the proof of [St,
p. 122, Proposition 1]).

Now suppose that 2 and y lie in B, h is locally integrable and has
locally integrable first derivatives on B, and that z and y are Lebesgue
points for & in the sense of (10.3) with E = B. (If z or y lies in 0B, so
that they are not in the putative domain of h, then we simply assume
that h is also defined at @ and y in such a way that (10.3) holds.) Then

1
y— 2|

(10.5)  Jh(x) - h(y)| < C/B (|ar—13|2 + ;) ldh(2)|dz

This is also well-known, but let us quickly go through a proof. Let us
assume for simplicity that B is centered at the origin and has radius
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one. Set Bi(z) = B((1 — 27%)z,27%) for k > 0, and define Bi(y)
similarly. Thus By(z) = Bo(y) = B and B4y C By C B for all k (by
the triangle inequality). If we let Av(h, Z) denote the average of  over
the subset Z of B (with positive measure), then our assumption that
z and y are Lebesgue points implies that limj o, Av (h, Bi(z)) = h(z)
and similarly for y. Hence

[h(z) = h(y)] <D [Av(h, Bi(z)) — Av (h, Bisa (2))|
k=0

+ > |Av(h, Bi(y)) — Av(h, Bira ()],
k=0

(10.6)

since By(z) = By(y). We also have that
(10.7) |Av (h, Bi(z)) — Av(h, By (2))| < c/ 272k |dh(2)|dz,
By (z)

and similarly with z replaced by y, because of (10.4) applied to Bg. It
is easy to derive (10.5) from these inequalities.

Proposition 10.1 follows immediately from (10.5) and Proposition
3.70. We are also using here the comment made shortly after the state-
ment of Proposition 3.70 to the effect that the bilipschitz 3-ball W in
Proposition 3.70 can be chosen to be smooth away from p and ¢, and
the bilipschitz parameterization of W can be taken to be smooth away
from these points. This permits us to avoid technical issues concern-
ing the distribution theory. Other than that we are simply using the
bilipschitz invariance of (10.2) and (10.3) in a brutal way.

Proposition 10.8. Suppose that E = M, H, or M7 for some j, that
p in Definition 3.2 satisfies p*n < 1, and that our exzcellent package
satisfies (3.69). Then there ezist constants Ly and C;, depending only
on our ezcellent package, so that if B is a ball with radius r centered
on E and f is a locally integrable function on E N LyB such that df
18 also locally integrable there (in the sense described before Proposition

10.1 when E = M or .7\?), then we have the Poincaré inequality

(109) r~® / /lf(-v)—f(y)ldrdysczr"‘ / r |df (=) d=

ENB EnB EnL,B
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If f is a locally integrable funciion on E with compact support and if
df is locally integrable on E, then

(10.10) f@)<C /E ,—_1—,2 df(2)] dz,

for some C (depending only on our ezcellent package) and almost all
z€E.

To prove this let us first check that

1
10.11 ——dzr <
( ) / I’t — zlg < Ct,
B(z,t)nE

for all z € F and t > 0. Using the Ahlfors regularity of E we get that

(10.12) dr <Cs,

|z — z|?
(B(z,28)\B(z,9))NE

for all s > 0, and (10.11) follows from this by summing the obvious
geometric series.

Once we have (10.11) we can derive (10.9) from Proposition 10.1
by simply averaging (10.2) over p and ¢ and using Fubini’s theorem.
The pointwise inequality (10.10) is an immediate consequence of (10.2).
(Just take y to be far far away.)

Let us now check that Sobolev embeddings work for the sets E as in
Proposition 10.8. Consider first the potential operator I; on functions
on E defined by

(10.13) Li(g)(z) = /5‘ iz jzlz g(z)d=.

This operator has exactly the same L? — L7 mapping properties on
any regular set of dimension 3 as on R? itself, i.e., it maps LP(E) into
LI(E) when 1 <p<3and1l/q=1/p—1/3. This is not hard to prove
-the point is that the two situations are essentially the same at the level
of this kind of measure theory- and one can simply mimic the proof of
the corresponding result on R® ([St, p. 119, Theorem 1}). This is really
just a minor variation on [St, p. 121, Comment 1.4]. Alternatively, one
could invoke theorems from the real method of interpolation of Banach
spaces or other general results.
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The usual Sobolev embedding theorems on E follow immediately
from the LP — L% mapping properties for the potential operator I} and
(10.10), at least for p > 1. This method breaks down for p = 1, but one
can establish isoperimetric inequalities for these sets using the Poincaré
inequality (10.9) and a covering lemma. (A very similar argument was
used in [DS1].)

If df lies in L? for some p > 3, then one can modify f on a set
of measure zero to get a function which is Holder continuous of order
1 —3/p. This is an easy consequence of (10.2) and Hélder’s inequality.
If df € L* then f lies in BMO(E), because of (10.9).

The bottom line is that Propositions 10.1 and 10.8 permit us to
verify that many of the usual results about functions on R?® which satisfy
Sobolev space conditions also work on A, M, and the M7’s. Of course
the preceding list is not exhaustive.

11. A remark about polyhedra.

Proposition 11.1. A finite d-dimensional polyhedron P (in some R™)
which 13 a topological manifold (without boundary) satisfies the analogue
of (*%) for compact sets (i.e., the conditions of Definition 1.7 hold when
r 18 sufficiently small).

These polyhedra can be pretty strange, because of the results of
Edwards and Cannon on the double suspensions of spheres (as men-
tioned in Sections 1 and 2).

Proposition 11.1 is no surprise, but it seems worthwhile to record it
in view of the gap between (**) and the existence of a quasisymmetric
parameterization established by Theorem 1.12, and since we know that
there are interesting examples of these polyhedra.

Let us prove the proposition. Let P be as above, and note that P
must have pure dimension d. Since P is a polyhedron we can give it the
structure of a simplicial complex. That is, we can realize P as a (finite)
union of d-dimensional simplices in such a way that the collection of all
these simplices together with all their faces (of any dimension, including
0 (vertices)) have the property that when any two of them intersect,
either one is a face of the other or the two intersect in a common face.
We shall call a simplex in P “distinguished” if it is one of these basic
simplices or one of their faces (as opposed to a random simplex floating
around in R"). All simplices in this discussion are assumed to be closed,



GOOD METRIC SPACES WITHOUT GOOD PARAMETERIZATIONS 267

and 0A will be used to denote the geometric (or simplicial) boundary
of A (as opposed to the uninteresting topological boundary of A as a
subset of R™). If A is just a vertex, then we interpret A4 to be the
empty set.

Finite polyhedra obviously have a lot of homogeneity to them, and
the proof of Proposition 11.1 merely requires a precise formulation of
this homogeneity. We begin with a preliminary fact.

Let A, X be distinguished simplices in P, with A € X. Then 4
is a face of X, and we can order the vertices v;,...,v of X in such
a way that v;,...,v; are the vertices of A. Thus A is the convex hull
of vy,...,v; and X is the convex hull of v;,...,v;. The j — 1-plane
Q(A) determined by A can be described as the set of points of the form
ZL] Aiv; where 3. A; =1 and the A;’s are real numbers. (Points in 4
correspond to restricting ourselves to A;’s which are nonnegative.) Let
Qo(A) denote the set of points of the form Zf=1 Aijvi where 3. A; = 0.
This is just a translation of Q(4) which contains the origin. Notice
that Q(A) is preserved by translations by elements of Qo(A).

Let H(A, X) be the set of points of the form ), Ajv; with ). A; =1
and \; > 0 when ¢ > 5. Notice that X C H(A4,X). If A is just a vertex
then H(A, X) is the cone with vertex A generated by X, while in general
it is a product of the plane determined by A with a cone. Note that
H(A,X) is preserved by translations of elements of Qo(A4). One can
also check that H(A, X)) is preserved by dilations by positive constants
centered at elements of Q(A), i.e., mappings of the form z — a+1(z—a)
for a € Q(A) and t > 0. We shall eventually use these symmetries of
H(A,X) to make precise the homogeneity of P, but first we establish
the following.

Lemma 11.2. Let A, X be as in the preceding paragraphs, and let
a € Aandp € H(A,X)\X be given. Then there is a point x on the
line segment that joins a and p with the property that = lies in a face
of X which does not contain (all of ) A. (It could be that x = a € OA).

By assumptions, a = Y, a;v; and p = Y ; A\jv;, where ) . a; =
S;Ai=1,a; >20wheni<j, a; =0 wheni>j, and A\; >0 whenz >
j. Choose t to be the first real number > 0 such that (1 —-t)a;+tX; =0
for some 7 < j (t = 0 is possible), and set = = 3_;((1 — t)a; + tA;)vi.
Our choice of ¢ implies that (1 — t)a; + tA; > 0 for all ¢ < j, and this
is true when ¢ > j as well, by our assumptions. It is easy to check that
z lies in a face of X which does not contain 4. Also, t < 1, because
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p ¢ X (and hence A\; < 0 for some 7 < j). This proves the lemma.

Given a distinguished simplex A in P let S(A4) denote the star of
A, r.e., the union of all the distinguished simplices in P which contain
A as a face. Because P has pure dimension d one may simply take the
union of the d-dimensional distinguished simplices which contain A as
a face. (The d-dimensional ones will contain all the others.) If 4 is a
vertex then S(A) is a neighborhood of A (in P) with nice properties. If
A has positive dimension, then every point in A\JA lies in the interior
of S(A) (relative to P), but this is not necessarily true for points in JA.
Let H(A) be the union of H(A,X) for all distinguished simplices X in
P which contain A, and note that S(A4) C H(A).

For a distinguished simplex A in P let C(A) denote the union
of all distinguished simplices X which do not contain A. Thus C(A)
contains 0A in particular, and C(A) is approximately the same as the
complement of S(A). In fact C(A) is the union of the complement of
S(A) and the faces of the d-simplices in S(A) which do not contain A.

There is a constant k such that

(11.3) dist (a, C(4)) > kdist(a,04),

for any distinguished simplex A in P and all a € A. This comes down
to the fact that if X is a distinguished simplex in P, and if X does not
contain A, then either X is disjoint from A, X is contained in dA, or
X meets A in a face of 04 and makes a definite angle with A. Keep
in mind also that there are only finitely many A’s and X’s around, so
that we can easily choose k to be independent of them. When A is a
vertex the correct version of (11.3) is that dist (4,C(A)) is bounded
from below.

Let us call a ball B(z,r) centered on P “good” with respect to a
distinguished simplex A in P if z € A and B(z,7r) N C(A) = &. The
key property of a good ball is that

(11.4) B(z,r)N P = B(z,r)N H(A4)

when B(z,r) is good relative to A. Clearly B(z,r)NP = B(z,7)NS(A)
when B(z,r) is good, and so we get one inclusion in (11.4) from the
fact that S(4) € H(A). If we have a point p in B(z,7) N H(A) which
does not lie in S(A), then Lemma 11.2 produces a point 2 on the line
segment which joins p and z (so that € B(z,r)) with the property that
z lies in a distinguished simplex in P which does not contain 4. This
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means that © € C(A), which contradicts the assumption that B(z,r) is
good. This proves (11.4).

If B(y, s) is another ball which is good relative to 4 then the obvi-
ous translation and dilation which sends B(z,r) onto B(y, s) must send
B(z,r) N P onto B(y,s) N P. This follows from (11.4), because each
H(A,X) is preserved by this translation and dilation (see the para-
graph just before Lemma 11.2), and so H(A) is also preserved by these
mappings. Thus the intersection of a good ball with P is equivalent (by
a translation and a dilation) to one of finitely many models. To prove
Proposition 11.1 we need to show that we can ignore the bad balls.

Lemma 11.5. Given any constant L > 0, there ezist positive constants
K, e (depending on L and P) with the property that if ¢ € P and 0 <
r < € then there 1s a ball B(€,t) such that B({, Lt) i3 good with respect
to some simplez, B(€,t) D B(z,r), and t < Kr.

Let z and r be given, and let A be a distinguished simplex in P
which contains z. The ball B(z, Lr) is itself good if Lr < kdist (z,04),
where k is as in (11.3), and so we assume that this inequality is not
true. This means that there is a point y € 0A such that B(z,r) C
B(y,Cr) for a suitable constant C = C(L). Thus y lies in a lower-
dimensional simplex, and we can repeat the argument to conclude that
either B(y, LCr) is good or B(y,Cr) is contained in B(z,C?r) for some
z in a lower dimensional simplex. Repeating this as many times as
necessary (but at most d times) we reduce to the case of vertices. A
ball centered at a vertex is good as soon as its radius is small enough.
Lemma 11.5 follows easily from this.

Let us analyze the the structure of the H(A)’s some more. For
each distinguished simplex A4 in P we have that H(A) is a topological
manifold. Indeed, near a point in A\0A H(A) looks like P, because
of (11.4) and the existence of good points, and therefore H(A) is a
topological manifold near such points. This implies that all points of
H(A) are manifold points, because H(A) is invariant under transla-
tions by elements of Q¢(.4) and dilations centered at points in Q(4)
(as discussed just before Lemma 11.2). In fact we get that there is a
constant L so that if a € 4 and r > 0 then there is a relatively open
set U of H(A) with B(z,r)N H(A) CU C B(z,Lr)N H(A) such that
U is a topological d-ball and its closure is homeomorphic to the closed
unit d-ball. This follows easily from the invariance properties of H(A4)
just mentioned. (That is, we choose U once for some fixed ball, and
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then we use the translations and dilations to extend this choice to other
balls.) We can also choose these sets U so that they are all translates
and dilates of each other for a fixed A. Hence there are only finitely
many models total, since there are only finitely many A’s. We can also
choose the constant L so that it does not depend on A, since there are
only finitely many A’s.

We can now finish the proof of Proposition 11.1. Let z € P and
r > 0 be given. Lemma 11.5 implies that if r is small enough, then
there is a ball B(€,t) such that B(¢, Lt) is good with respect to some
simplex A, B(§,t) D B(z,r), and t < Kr. From the observations of
the preeeding paragraph we obtain that there is relatively open set U
in H(A) which is a topological d-ball and satisfies B(,t) N H(A) C
U C B(¢,Lt)n H(A). Since B(€,Lt) is good we actually have that
B(¢,Lt)yn H(A) = B(§,Lt)N P. As mentioned above, we can also
choose U so that its closure is homeomorphic to a closed ball and so
that U can be reduced by translations and dilations to one of a finite
set of models. This implies that P satisfies the compact version of (*x),
as promised. (Of course it is the finiteness of the set of the models for U
which gives us the uniform estimates as in (**), as opposed to (*). Do
not forget that continuous maps between compact sets are uniformly
continuous.)

12. Concluding remarks.

Geometric topology provides a lot of technology for building home-
omorphic parameterizations of a set, and it provides many interesting
examples, but little is known about quantitative estimates on the geo-
metric complexity of these parameterizations. The most basic example
that I know is the type of mapping constructed by Bing in [B1], for
which optimal estimates are (apparently) still unknown (but see [B5]
and the remarks at the end of Section 2 of [FS]). The construction in
Section 3 gives an interesting formulation to this problem, namely, what
kind of estimates can be satisfied by a homeomorphic parameterization
of the set M from Section 6 by R®? We know from [B1] that such a
parameterization exists, and we know that it cannot be quasisymmet-
ric, but it seems to be unknown whether M can be parameterized by
a Holder continuous map whose inverse is also Holder continuous (for
instance), let alone the possible range of orders of Holder continuity (if
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any). I am also unaware of any estimates (other than uniform continu-
ity) for the homeomorphisms between the strange polyhedral spheres
of Edwards and Cannon and standard Euclidean spheres.

One can wonder whether Condition (**), even in combination with
Ahlfors regularity, implies the existence of local homeomorphic param-
eterizations with a universal choice (or family of choices) of modulus of
continuity w as in Definition 1.7. For instance, do Condition (**) and
Ahlfors regularity imply the existence of homeomorphic local param-
eterizations which are Hélder continuous, of some universal order, or
even of just some positive order? This leads back to questions about
the type of mapping produced in [B1] for the set M from Section 6, or
the kind of local coordinates that might exist for the strange polyhe-
dral spheres of Edwards and Cannon. (I am not optimistic.) Note that
there is a positive result when d = 2, because of Theorem 1.6.

One can also ask whether the combination of (**) and Ahlfors
regularity (of the same dimension) imply the existence of local home-
omorphic parameterizations which satisfy Sobolev space conditions, as
well as their inverses. (One should be a little careful in the formu-
lation of Sobolev space conditions for a map into a metric space. I
prefer to use maximal functions, as in [Se2].) In the case of quasisym-
metric parameterizations there are pretty strong results of this type,
with the Sobolev exponent p larger than the dimension, because of a
method of Gehring [Ge] (see also [DS1] and [Se3]). The general case
would be more complicated (if true at all), because one would have
to modify the parameterization. Note that the 2-dimensional case is
again special, because of Theorem 1.6. In all dimensions one can get
“uniform rectifiability” (in the sense of [DS4]) under even more gen-
eral conditions, by [DS5]. Uniform rectifiability implies the existence of
some non-homeomorphic parameterizations with otherwise very good
estimates, i.e., there are bilipschitz parameterizations of large pieces
of the set, and the set can be put inside a bigger one which admits a
controlled parameterization that allows a limited amount of crossing.
(See also [DS2].)

Geometric topology is particularly successful at parameterizing a
set if one is permitted to “stabilize” first by taking a Cartesian product
with the real line or some R¥. Perhaps there is a general theorem to the
effect that (*), possibly in combination with Ahlfors regularity, implies
(*+) after stabilizing. This should be compared with the result of Ferry
[F2] for (1) mentioned in the introduction. A positive conjecture is
supported by the examples discussed in Sections 4 and 5. In each
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of those situations the non-manifold M becomes homeomorphic to R*
after taking a Cartesian product with the real line. (See [K, p. 87,
Theorem 1] for the set discussed in Section 4, [B4] for the set discussed
in Section 5, and [D, Section 11] for both cases and others.) This fact
together with self-similarity allows us to obtain (**) for the product by
the same arguments as used in Section 6 to prove Theorem 6.3. Other
examples can be produced as in of [D, Section 11].

One can also ask whether stabilization makes it easier to get qua-
sisymmetric parameterizations. That is, if M is the non-manifold con-
structed as in Sections 4 or 5, then does M x R admit a quasisymmetric
parameterization by R* ? I am pessimistic, for reasons like those in Re-
mark 6.19.

See also [Se5] for some related topics.
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