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0. Introduction.

Let By be the unit ball in C%, S,; be the boundary of By, and o4 be
normalized Lebesgue measure on S;. The Hardy space H?(Bj,) is the
closure in L2(S4,04) of the analytic polynomials. The space H>(By)
of bounded functions in H?(B,) is precisely the space of functions that
are radial limits (o4-almost everywhere) of bounded analytic functions

on By. Let P denote the orthogonal projection from L2(S4,04) onto

H?*(By). If mis in H®(B,), the co-analytic Toeplitz operator ng(B")

is defined by
2
T,;I (Bd)f = Pmf.
The purpose of this paper is to study the common range of all the
2

co-analytic Toeplitz operators T (B4) |

For the case d = 1, it was shown in [2] that a function f is in the

2

range of every non-zero co-analytic Toeplitz operator Tg (B1) if and
only if the Taylor coefficients of f at zero satisfy

f(n) = O(e™=V™)

for some ¢ > 0. It was also shown that, for the case d > 1, if the Taylor
coefficients of some f in H?(By) satisfy

f(a) = O(emelolH)

47
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for some ¢ > 0, then the function f will be in the range of every non-zero
co-analytic Toeplitz operator on H%(By). It was asked if this sufficient
condition were also necessary. Qur main theorem answers this question
in the negative:

Theorem 1. Let f(z1,...,24) = fi(z1) = Yonepan2y, let ¢ > 0, and

suppose that a,, = O(e‘c"l/z“) for some ¢ > 0. Then f 1s in the range
2
of the Toeplitz operator T,g (Ba) for every non-zero m in H>*(By).

The exponent n'/2%¢ is not optimal -using results of [3] it can be
improved to /n logn. We do not know what necessary and sufficient
conditions are for a function to be in the range of every non-zero co-
analytic Toeplitz operator.

In dimension d = 1, Szegd’s theorem [9] states that a necessary
and sufficient condition for a positive bounded function g on the circle
to be the modulus of a non-zero function in H*°(B) is

(0.1) / log(g)doq > —c0.
Sa

For d > 1, condition (0.1) is necessary and sufficient for g to be the
modulus of a function in the larger Nevanlinna class N(By), consisting
of those holomorphic functions f on the ball for which

T(.1) = sup [ log* If(rO)]dou(¢) < o0

o<r<1Js,
[7, Theorem 10.11). It is no longer sufficient, however, for g to be the
modulus of a bounded analytic function, because the function

¢+ ess sup |m(e?¢)]
—n<6<m

must be lower semi-continuous on Sy if m is in H*®(By) [7]. In [T,
Theorem 12.5], Rudin proves that if ¢ is log-integrable, and there exists
some non-zero f in H*®(B,) with ¢ > |f| almost everywhere and g¢/|f|
lower semi-continuous, then there does exist m in H*°(By) with g = |m|
almost everywhere. We show

Theorem 2. Let d > 2. There is a non-negative continuous function
g on Sq, with de log(g)doq > —oo, aund which vanishes at only one
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point, but such that for no non-zero function m in H*(By) is |m| <g¢
almost everywhere with respect to oy .

This answers Question 15 of [7] in the negative.

When the original version of this paper was circulated in preprint
form (see the announcement in [1]), H. Alexander (private communi-
cation) produced a very simple constructive example of a function g
satisfying the conclusion of Theorem 2, obviating the complicated con-
struction in our proof. However, as we think our construction may be
of some use in solving the problem of characterising exactly which func-
tions are moduli of H*°(B,) functions, we elected to retain the proof
of Theorem 2 in this paper.

1. Preliminary Lemmata.

We need to know explicitly the projection from L2?(By) onto
H?(DBy). Let a = (ay,...,®q) be a multi-index and ¢ = (z;,...,24) a
point in C?. The function ¢* then maps { to zj"* ---z§*. The notation
la| stands for a1 + -+ + aq4, and a! = a;! -+ - aq!.

Lemma 1.1.

1 T dog = 65 =V
(1.2) S, (°CPdog = bap EEsEE

Moreover, iof Py2(p,) denotes the projection from L?(04) onto H%*(B,),
then

Prapolzs? - 123z

(1.3) 0, if 1<y,
(d=—1+7—j)las! -
(z'-—j)!(d—1+i+a'2+---+afd)!

I

27, i iz

PRrROOF. Formula (1.2) is proved in [6]. The expression on the left-hand
side of (1.3) is orthogonal to every monomial except z;~’; taking inner
products gives the constant.
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We need to consider co-analytic Toeplitz operators on different
spaces. If p is a compactly supported measure on C¢, let P?(u) denote
the closure of the polynomials in L?(y), and let Pp2(,) denote the or-
thogonal projection from L?(u) onto P2(u). If m is a bounded analytic
function on the support of u, the co-analytic Toeplitz operator T,;I:z(”)
is defined by

P2 -
T Wf = Ppa,y mf.

When p is o4, the space P?(u) is the Hardy space H%(B,), and we
recover our original definition.

In order to transfer information about co-analytic Toeplitz oper-
ators with the same symbol on different spaces, we use the following
lemma, whose proof is immediate:

Lemma 1.4. Let H be a Hilbert space of holomorphic functions on By
in which the monomials are mutually orthogonal. Let m(zy,...,24) =

> pend bsCP. Then

o B
.5 TH ¢ = bo— ——C— .
(1-5) ™ e, > ba-s 1P,

BLla

This lemma also allows us to define Toeplitz operators with an un-
bounded conjugate analytic symbol. The formal definition (1.5) defines
an upper triangular operator, with respect to the orthonormal basis
of normalized monomials. It therefore has a domain which contains all
the polynomials; we extend its domain to include all functions on which
T , thought of as a formal operator on the power series, gives a power
series whose coefficients are the Taylor coefficients of some function in

H.

Lemma 1.6. Let g be in the Nevanlinna class N(By), with ¢(0) # 0,
and 1 < a < 2. Then

/ (log™ |g])*dA < I¥,
B,

where IV 1s some constant depending only on T(g,1), |9(0)| and «.
PrOOF. The proof is in two parts. First we prove it for g zero-free,

then we prove it for ¢ a Blaschke product. As logg is the sum of the
logarithms of two such terms, this suffices.
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a) Suppose g has no zeroes in By, and without loss of generality
assume ||g|loc < 1. Then there is a singular measure p, such that, for
any 0 < r < 1,

- i L[ i (o
log ™ l9(re®)| = 5= [ Pron () log™ lo()] d + da()
T Jo
where P,is(¢'?) is the Poisson kernel. Therefore

/ (log™ |g(re!®Y)* r dr df
B

2m
0

1 2w N
= /7‘(1‘1'/ (]9(/ Pre‘”(eiQ)) (log— Ig(ei¢)| d¢ + dlls(¢)))
0 0
2m 1 2 o . o
< (/ (/7 (lr/ (lﬁ(P,.em(eié))a)l/ (log™ |g(e'¢)l(l¢+ (l/;a(dy)))
0 0 0

by Minkowski’s inequality. As the L*(A) norm of the Poisson kernel
for a fixed boundary point is at most (8/(2 — )/, we get

(i 8 ~__)°
/Bl(log lg(re™)P% rdrdf < 53— (1oglg(0)|) '

b) Suppose now g is a Blaschke product with zero-set {w,}. Then

([ noglate aac) ™

(L.7) = (/,,l (él"gl}z‘%’f IRZON
< 2 (/Bl (log 12—:%1—:15 )ucl.—’i(z))l/a.
Now let us estimate
/Bl (m-{%_‘ff )" da).

The terms for |w,| < 1/2 are dominated by T(g,1) + log™ |g(0)|, by
Jensen’s formula. For convenience, assume w is positive, and make the
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change of variables ¢ = re'® = (2 — w)/(1 — wz). Then

1 —wz|\@ .
/};1 (log p— ) dA(z)
1 e (1—w?)?
S22 (g d) LT g
(1.8) 7r</B, (log-) ey T r 49

_ ! e 1+ (rw)?
_v2(].—--w2)2‘/0A (IOg;) mrdr'

Break the integral (1.8) into two pieces: from 0 to 1/e, where the
integrand is bounded by some constant C) independent of w, and from
1/e to 1. For the latter integral, use the inequality log(1/r) < 2(1—wr).
One gets that (1.8) is bounded by Cy (1-w)*/(2—a), where C2 depends
on neither w nor a. So (1.7) is dominated by (C3 /(2 —-a))l/Cr S o(1—
|w,]), and Jensen’s formula again means we can dominate everything
by a constant depending on «, log|g(0)| and T'(g,1).

Let A™" consist of all holomorphic functions m in the unit disk
that satisfy [m(z)| = O((1 — |z|)™"). The space A% is H>(B;).

Lemma 1.9. Let f be in A™" for some n, and 0 < o < 2. Then

/ (log™ | f])¥dA < .
B,

ProOF. We can assume that f(0) # 0. As f need not be in N(B)
we cannot apply Lemma 1.6 directly; but f is in the Nevanlinna class
of certain smaller domains that touch the boundary of B; at only one
point, and we shall average over these.

Fix p strictly between 1 and 2/, let a = ap < 2,let ¢ =p/(p—1)
and let N > ¢q. Let D; be a smoothly bounded convex domain inside
the disk, containing {z : |z| < 1/2}, whose closure touches the unit
circle only at 1, and which has a high degree of tangency at 1: let the
boundary of D) be {p(8)e'® : —7 < § < 7}, and assume 1 —p(6) ~ |9|V.
For any other point ¢ = e'® on the boundary of the unit disk, let
D( = ei0°D1 .

Let ¢ be the Riemann map of D¢ onto B; that takes 0 to 0 and
¢ to (. As the boundary of D, is smooth, it follows from the Kellog-
Warschawski theorem (see e.g. [5]) that i¢ and its derivatives extend
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continuously to the closure of D¢, so distances before and after the

conformal mapping are comparable.

o If » <1/N, then f is in H"(D;), and sup;eg, ||f 0 uﬁrC_l”Hr < oo.
s

/ (log” |f1)2dA < C,  forall .
D .

et®

Integrating with respect to 6 and changing the order of integration
yields

/ (log™ |f(re")N2 (1 = )N rdrdg < .
By

Now
/ (log™ |f])” dA
By

s(/,;(log‘ lfl)Q"(l—r)”/NdA)l/P( (l—r)_"/NdA)l/q<oo.

By

Let 4, be the measure on the unit disk given by dua(z) = 7~1(1—
|z|2)* dA(z), and let H, be P?(u,). It is routine to verify that in H,
the monomials are mutually orthogonal, and

12415, = i -
Ho = (k+1) - (k+n+1)

The space H, is the usual Bergman space for the disk. The following
lemma is proved in [3] (in fact a slightly sharper form is proved). We
include the following proof, which is sufficient for our purposes, for
completeness:

Lemma 1.10. Let n > 0, and m be a function in A™™, not identically
zero. Suppose f(z) = Y po, arz® where a = O(e“"kwu‘) for some ¢
and c greater than 0. Then for any s > 2n there exists g in H, such
that THeg = f.

PRrROOF. First, observe that f = T,}’f’g for some g if and only if there is
a constant C such that for all polynomials p

(p, Fm.| < Cﬂ/lplzlml'2 du, .
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So 1t is sufficient to prove that

. 1
!?___:Oakp(k)(k_*'1)"'(k+5+1)l <C /(1)[2|m|2dus‘

This in turn will follow from the Banach-Steinhaus theorem if we can
show that for any function A in P?(|m|?pu,),

(1.11) h(k) = Ok,

Now Stoll showed in [8] that if & satisfies
/ (log* |R])* dA < o0
B,

for some a > 0 then A(k) = O(e°?/(2+e)) We can assume ¢ is small,
and take o = (2 — 4¢)/(1 + 2¢). As his in P?(|m|%u,), h(z)m(z) (1 —
[22)%/? := k(z) is in L?*(dA), and

log™ |h| < log™t [k| +log™ (1 — |2[*)*/?| +log™ |m].

The first two terms on the right are clearly integrable to the o't power,
and so is the third by Lemma 1.9; therefore h satisfies (1.11) as desired.

We want to be able to restrict functions in the ball to planes and
factor out zeros without losing control of the size of the function; the

next lemma allows us to do this.

Lemma 1.12. Let m be holomorphic on By and satisfy

|m(31,--~ ) ,3‘,)' < C(l — \/|:-1|2 + ...]zd|2)—s.

Suppose also that

t+1
m(zy,...,24) = :f, mo(21,...,24) + zd+ m3(z1,....24),
where my and msz are analytic. Let
my(2y,...,2d=1) = Ma(21,...,24-1,0).

Then
[my(z1,- e zam)] S (B FC (1= ]z 2+ .- Jzam [2)70FD.
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ProOOF. Let (21,...,24-1) be in By—;, and let

1
e=gi(=VIal+- 4]z ).

Then the polydisk centered at (zy,...,24-1,0) with multi-radius (e, ...,
¢) is contained in (1 —¢) By. Integrating on the distinguished boundary
of the polydisk we get

Imi(z1,...,2d=1)] = |ma(z1,...,24-1,0)]

=| / m(C1,---,Cd) < C
(

Cé — gstt :
314y 3d=1,0)+eT?

2. Common Range of T} .

We can now prove that a function that depends on only one variable

2
is in the range of every T.,g (Ba) it its Taylor coefficients decay like

L1/ 24
e~ck .

Theorem 1. Let f(z1,...,24) = f1(21) = Ynep @n2l, let € > 0, and
suppose that a, = O(e““‘”“z) for some ¢ > 0. Then f i3 in the range

2
of the Toeplitz operator T,g (Ba) for every non-zero m in H*®(By).

ProOF. For d = 1, this is proved (without the ¢) in [2], so assume
d > 2. Fix m in H*°(By);

Let
S ={(72,...,1q) : for some iy, b; i, #0}.

Define
tqg = inf{iq : for some 3,...,74-1, (t2,...,%2d-1,%24) € S},
and define t; inductively by

tr = inf{ig : for some i2,...,7k-1, (i2,...,2k=1,2k,tkt1,---,td) € S}.
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Let n=1ty + - -4 1t,4.
Cuse a) n = 0. Then the function

mi(z1) = m(z,0,...,0)
is not identically zero, and is in H*°(B,;). By Lemma 1.1,

B i (t—j+1)---(t—j+d-1) ;
m Zb]() .0 (?+1)'(l+d""1) “1 .

So by Lemma 1.4, if one can solve the equation

P Ha-

(2.1) Ti! 91 = f

for some g¢; in Hy_o, then g(z1,...,24) = g1(z1) solves

H*(B
7! 4) f,

m

and, by equation (1.2), ||9lln2B,) = V(d—1)! |lg1]ln,., < co. By
Lemma (1.10), equation (2.1) has a solution.
Cause b) n > 0. One can decompose m as

m(z1,...,2d) =z;’---:;‘,’i ma(z1,...,24) + ma(z1,...,24);

L+l
where each term in the expansion of m3 is divisible by some z; et

Applying Lemma 1.12 inductively, m;(z) = m3(2,0,...,0) is in A "
and by the choice of tq,...,t4, it is not identically zero. Consider the
function

oo

fz)=) a(k+d)(k+d+1)--(k+dn+1)z*
k=0

As d > 2, we can apply Lemma 1.10 with s = dn, so there is
oc
=Sk +1)(k+2) - (k+dn+1)2*

in Hy,, with

(2.2) THingy = f .
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Define ¢g by

1

9(31,...,Zd)=m32 "'Zd

S k1) (k+2) - (k+n+d—1)2F.
k=0

The function ¢ is in H2(B,1) because

oWtz (m,) = ey ,ZI WP (k+1)-(k+n+d-1)

1—1
g ‘ ZW (k+1)---(k+dn+1)

(61 1!
:to! f ||| OHH(d ”n<00.
Moreover P50 4 (B :
d d
T 00 =T e !
is a function of z; onlv it 1s, in fact, f. For if TH (B‘) = Zf;o exzr,
and m;(z) = 5o, crz¥, then taking the inner product with =] we get
(d-1)! H*(By)  _j
Grn-Gra-n =T e
(2.3) = <0-,:'§""4d my 2]) (B,)

=(d-1)! Z’yk Ck—j -
k=3

Taking the inner product with z7 in equation (2.2), we get

1 x :
T:Himgy, 27
o Grd-ps = I e
(2.4) = (g2, m127 )2y,

oo
=D Wi -
k=j

Comparing equations (2.3) and (2.4). we see that T,f (B")g f, as
desired.
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3. Boundary moduli.

Define F, ., by

1— |wl?
(3.1) Few(z) =exp (CW) :

We need the following two results. The first was proved by Drewnowski;
a proof is given in [4, Lemma 3.2].

Lemma 3.2 (Drewnowski).

lim sup / log(l+ |cFewl|)dog = 0.
c=0 weBy Jsy

The second result, due to Nawrocki, estimates the growth of the
Taylor coefficients of Fi ,, . We are interested in w = re; = (r,0,...,0);
in this case all the Taylor coefficients of F ,., are positive, and the
following follows easily from the proof of [4, Lemma 3.3]:

Lemma 3.3 (Nawrocki). For each ¢ > 0 there ezists ¢ > 0 such that

- jd/(d+1)

d—1+0)
=1+ o 0,06 >0.

(d— 1)

inf sup
i€l g<r<1

We can now use our knowledge of the common range of co-analytic
Toeplitz operators to prove:

Theorem 2. Let d > 2. There 1s a continuous non-negative function
g on Sy, vanishing only at the point e;, and satisfying -[Sd log(g)doy >
—oc. with the property that the only function m in H*(By) with jm| < g
almost cverywhere with respect to o4 1s the zero function.

Proor. Let .
Vn-——{CGSdi IC—CMZ;}-

By Lemma 3.3, for any sequence ¢, tending to zero, one can choose 1,
and 7, such that

(3.4) Fo e (ina0,...,0) > cﬁ elin)7
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(because 4/7 < d/(d+ 1)). Moreover, by passing to a subsequence, one
can assume that

. N 1
(3.5) sup ¢, |Fe, rne (O < o
CEV, 2

because ¢ € V,, implies that

1

Il - <C,T‘n€]>| Z M

and that )
/ log(1 + |y Fep rner ) dog < o

by Lemma 3.2. Define g by

1

1 + Z lcn Fc,,,r,,el(C)l2

n=1

9(¢) =

Tt follows from (3.5) that ¢ is continuous and vanishes only at e; . More-
over

/ loggdog = -——/ log 1+ Z len Fepyrner | ) dog
JSq Sa

n=1

> —‘/ log H(1+ICH Fcn,rne1|)2 ClO'd
Sa

n=1

= ——72/ l()g 1 + IC" Cn, n€1 |)d0'd > —-2.

n=1

Now suppose there is a non-zero m in H*(Bg) with |m| < ¢ almost
everywhere. Then cach of the functions ¢, Fe, r,e,, being analytic in
the ball of radius 1/r,, 1s In 1)2(I777.|20'); moreover they are all of norm
less than one in this space, because

/ |C” Fcn yTn€l '2 i’71|2 (]U S / ]cﬂ. Fcn'rnel |2 gz CIG. <1.
Saq Sa

Let -

Z e_k4/7 (k +d—- 1)! k

flz1y.o0y2d) = (d - 1)'k! 1

k=0
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By Theorem 1, there is a function h in H?(By) with
TR _
It follows that the linear map
T:ip—=(p, flusy

defined a priori on the polynomials, extends by continuity to a bounded
linear map on P2(|m|%s), as

IT(p)| = [{p, P(mh))| = l/Pm I—ldffd‘ < 2oy 1Pl P2(mi20) -

Moreover, each function ¢, F¢, r.e, is uniformly approximated on Sy by
the partial sums of its Taylor serics; hence

~ AT
cnFe, rre (K)e K

s

(3.6) D(cn Feprpey) =
k

0

But all the terms on the right-hand side of (3.6) are positive, and the it
term is at least n by equation (3.4). This contradicts the boundedness

of I.
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