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Abstract. By a (generalized) Fock space we understand a Hilbert
space of entire analytic functions in the complex plane C which are
square integrable with respect to a weight of the type e~2(*) where
Q(z) is a quadratic form such that tr @ > 0. Each such space is in a
natural way associated with an (oriented) circle C in C. We consider
the problem of interpolation between two Fock spaces. If Cy and C;
are the corresponding circles, one is led to consider the pencil of circles
generated by Cy and C;. If H is the one parameter Lie group of Moebius
transformations leaving invariant the circles in the pencil, we consider
its complexification H®, which permutes these circles and with the aid
of which we can construet the “Calderdn curve” giving the complex
interpolation. Similarly, real interpolation leads to a multiplier problem
for the transformation that diagonalizes all the operators in H€. It turns
out that the result is rather sensitive to the nature of the pencil, and we
obtain nearly complete results for elliptic and parabolic pencils only.
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Introduction.

In this paper we shall understand by a generalized Fock space a
Hilbert space of entire analytic functions in the complex plane C which
are squarce integrable with respect to a weight of the type e “2(*) where
@ is a real quadratic form such that tr @ > 0.

Such a quadratic form can be written as

Q(z) = k|z|* — Re(l2?),

where & 1s a positive number (k> 0) and [ is a complex number. Indeed,
putting = = « + 1y, we have

Q(z)=(k=Rel)2> + (k+Rel)y* +2(Iml) 2y,

so that there are enough parameters to describe the most general real
quadratic form. Moreover, we have

Q= (k=Rel)+ (k+Rel) =2k >0,

while

det @ = (k — Rel)(k+ Rel) = (Im1)? = k* — |I|?.

Thus, our spaces are labelled by pairs (k,[) and shall henceforth
be denoted by Fi . If f € Fiy gy its norm || f]|, ;) will be defined by

|2 ¢ KPR g (2

112
Ak =

where we have written dm(z) = dr dy (Euclidean measure). The cor-
responding inner product will be written (f, f1)xp if f, f1 € Fleyp -

More generally, for 0 < p < oo we let F(L ;) be the space of en-
tire analytic functions f such that (with the usual interpretation as a
supremum if p = o0)

k12 k|z|2+Re(iz2))/2\"

“f”(k Dp = / ([f(:)le“( |z[*+Re(lz ))/-> dm(z) < oo;
i ;C

for p > 1 the expression ||f||(,\ ));p 15 @ norm and we have a Banach

- space; if p < 11t is a quasi-norm and we have a quasi-Banach space.

(In Section 4 we shall also briefly say a few words about (generalized)
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Orlicz-Fock spaces F(q;_ 5y -) Most of the time we shall however take
p=2.

Exasprr 1. In the paper [6] two special cases were considered:

. I ~12
Flo)y=:Fr - wecight e k=l
. 92

Fir =G - weighte 2ky
there the normalization was a slightly different one.

It will also be convenient to consider a certain limiting case of the
spaces F{y 1), namely the case | = ket k — oo. To fix the ideas take
first § = 0. Then formally

Ri/2 o g2 1 e
——_r——/c|f(:)|‘e 2ky d;rdy——»——ﬁ/ |f(z)]? de.

This 1s because

p1/2 2ky? 1
v d — 4 Di , .
— | y — Wer (v) (Dirac measure)

Thus we are led to the space L?(R) of square integrable (non-analytic!)
functions on the real line R equipped with the measure dz/\/7. In
the same way, for general  we obtain the space L?(e™*°R) of square
integrable functions on the line e7*/2R. We shall, alternatively, denote
this space by Sg (Schrédinger space). Its exact significance will be made
more clear later on (see Example 1 in Section 1). We remark however
right away that it should be viewed not primarily as a Lebesgue space,
but as the completion in the metric in question of a space of certain
analytic functions. The spaces Sy have also a nice interpretation in
terms of the heat equation (cf. [9]). but this point of view will not be
pursued lere.

The space F' := F(; o) will be called the standard Fock space and
its norm will be written |[ - [ = - [/, 4, -

In [6], among other things, the question of interpolation of the two
scales of spaces F} and G was raised.

1) Regarding complex interpolation the following result was estab-
g g I g
lished:
(FLo FPlo = Fl . (G, Gllo = Gl
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where in both cases pg is given by

1 1-6 6
— =4 —, 0<f<1,
Pe Po Pi

while kg is in the former case a weighted geometric mean of b and &;:
. _ 1-6,6
ke = ko™ " k]

and in the latter case the corresponding weighted harmonic mean:

1_1-6.6
]\'9— A‘O ]‘Tl.

2) What real interpolation concerns only a reduction to a multiplier
problem was indicated in the case of the scale F} (with p fixed, k
variable).

This curious simultaneous occurence of both the geometric and the
harmonic mean in essentialy the same context, already recorded in [6],
has rised our curiosity. It is one of the objects of this paper to clarify
this point and it is for this reason that it was decided that it is necessary
to put oneself on the level of the generalized Fock spaces. At the same
time we shall also settle the issue of real interpolation, at least in the
two cases just indicated.!

It turns out that the subject is intimately connected with classi-
cal end 19th century higher geometry (German: “hohere Geometrie”),
especially circle geometry. Namely, each space F( ;) is in a natural
way associated with a certain circle C ) (or, perhaps rather, a disk
D¢k.1y).- And the problem of interpolation between two spaces Fg, 1,)
and Fy, ;) leads one to consider the pencil of circles generated by
Clko 1oy a01d Ci, 1,y - There are basically three different types of pen-
cils which we have decided to term elliptic, parabolic and hyperbolic.
We have been able to settle most of our question in the elliptic and,
to some extent, in the parabolic case but in the hyperbolic case some
uncxpected difficulties turn up so in this case our results are so far less
complete.

Eventually we would like to extend the theory developed in the
present paper to the case of several variables. We expect that the role

1 . . .
As we shall see, the occurence of these special means is, however, a delusion to

some extent!
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played by the unit disk here will be taken over by a bounded symmetric
domain of tube type, in the first instance one of type III. But this has
to wait for the future ...

The plan of the paper is as follows. In Section 1 we set the founda-
tions for the theory of generalized Fock spaces. In particular, we begin
to uncover the geometric and the group theoretic aspects of the matter.
In an appendix to Section 1 we discuss of the possiblity of assigning
spaces not only to proper disks (not containing the point at infintity)
but also to arbitrary disks on the Riemann sphere S?. In the next two
sections the interpolation theory of generalized Fock spaces will be de-
veloped, complex interpolation in Section 2 and real interpolation in
Section 3. The short Section 4 contains some auxiliary results not di-
rectly related to the main theme of the paper. The theorems, lemmas
ete. are numbered independently in each section.

1. Gauss-Weierstrass functions and Shale-Weil operators.
Segal bundle.

We shall study our generalized Fock spaces F(; ;) with the aid of

the family of functions e, ,
Cacl(z) = el0HeR/2,

where a and c are arbitrary complex numbers. In [9]? these functions
were rcferred to as Gauss- Wererstrass functions; other names current
in the literature are: coherent states, Gabor wavelets etc. In our theory
they serve as “atoms”.

From [9] we take over the following formula:

) Reac? 2 —
(1) lleac||? = exp (M) (1= a2y~

1— |af?

or in polarized form

d? + be? -
2 ac, €bd) = €X = T —ab)” ’
(2) (€ac, €bd) e\p< — )(1 ab)

2 We would like to turn the reader’s attention to the circumstance that there is,

regretfully, an abundance of misprints in [9]; this is most unfortunate as this reference

was meant to be “a small compendium of useful formulae connected with ... Fock space”.
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the proper interpretation of these formulac being that e,. € F if and
only if |a| < 1. In particular, the system of functions {e,.}, with |a| < 1,
ceC,is total in F.

Next we perform a reduction to standard form. We rewrite the
norm in our space Fi y as follows:

122 1 4 .2 .
B Ml =1 oy = |z £ () 7
In other words, we have a unitary map
Vo Hk,l'} — F

. 1 Z 2 /5]
(4) f(2y o =7 F () €7

that is,

ey =IVEl, Hfe€Fry.

The inverse map reads

V_l B F(k,l)

(5) f(:) — kl/-i f(k]/zz) 6-“122/2 ]

Using (3) in conjunction with (1) we can formally give an expression
for the norm of a Gauss-Weierstrass function in the space Fi i) :

(a+ne |
re(ltDe) lf
- 2 /2 k2 k la + 1|
(6) leaelfiy = 172 exp ( e ) (1- By
k2
Indeed. with the above notation we have
7 1 A 0y :
V€ae = o770 Ela+1)/k.ck=112 ”606”(}:,1) = ||Veacll,

so, using (1) and (4), (6) readily follows. (The reader will have no
difficulty in writing down the corresponding polarized identity.) The
interpretation of (6) is the following:

€ac € Fixy ifandonlyif |a+1<k.
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Thus, to the space Fiy ;) there corresponds the disk Dy 1y with radius
k and center at the point —I, Dy = {a : |la + 1] < k}. We denote
by Cx1) the circle which constitutes the boundary of Dy p, that is,
Ci:np={a:la+1l =k} Weput D= D) and C = C(, ), unit disk
and unit circle respectively. A total system of functions in this case is
{€ac}, with a € D¢t ). c € C.
EXAMPLE 1. In [6] the following instances of this are found:

e to the space Fj there corresponds the disk Dy o={a: |a| < k},

e to the space G there corresponds the disk Dy r={a: |a+ k| < k}.

To this we may now add:

e to the space Sy there corresponds the halfplane
Py = {a:Reae™? < 0} (a generalized disk).

We see that Sy has the interpretation as the closure of the functions
{€qc} with a € Py, ¢ € C in a suitable metric.

EXAMPLE 2. As another application of formula (6) let us record the
following formula for the reproducing kernel in the space Fiy gy :

K(z,w) = k!/? e~ a2 kzw

If k= 1,1 = 0 it reduces, of course, to the well-known expression for
the reproducing kernel in the standard Fock space F:
K(z,w)=¢e";
see e.g. [6, formula (7.2)] with &« = 0 and n = 1. The reproducing
kernel will not play any réle in our discussion.
Returning to the general discusion, let us note that the intersection
of two Fock spaces Fi, 1) and Fi, ;) is non-nil,

Flro1o) N Firy 1) # {0},

provided the corresponding disks have non-empty intersection,

Dipatix N Deg, iy # 9.
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This is follows from the fact that eqe € Figq,10) V F{k,.1y) if @« € Do N Dy,
ceC?

Next, we put into play the Shale- Weil operators. Let G = Sp(2,C)
the group of complex 2 x 2 matrices g = (5 g) with aé — By =1. To
such a matrix ¢ we associate an integral operator

_ B/? Az? + 2Bz + Cw? lwl?
(7) Tyf(2) = /exp( ‘)w ad )f(w)e 1wl dm(w),
C Z
where 5 )
f_ P _ 2 -2
A= 5 B 5 C 5

We proceed somewhat informally. We think of T, as being defined on
a suitable (preferably dense) subspace of our standard Fock space F
and, for the time being (¢f. Remark 1 below), we let Ty go undefined if
6 = 0. In addition, due to the ambiguity in the definition of the square
root B/2 T, is actually determined only up to sign +.

In [9] the following statement was proved:

T, 1is unitary of and only if g 1s a psewdo-unitary matriz, v.e.

g € G=SU(1,1);

we consider the previous group G¢ as the complexification of the group
G. It was also shown in [9] that the composition of two such operators

Ty, and T,,, if it makes sense, is again an operator of the same type;
indeed, one has T, T,, = £T, ,,. In other words, we have a unitary

representation of a suitable double cover of G = SU(1,1) = Sp(2,R)
(the symplectic group), viz. the metaplectic group G= Mp(2,R). It is
the ambiguity in the definition of the square root that forces us to pass
to a cover. A typical element of G is given by a pair §, an element
g = (9 H ) of G plus a determination of the squarc root of 6, the
composition heing defined as follows: If we have a second element §',
then the composition §" = §'g is found exploiting the identity

\/:5—’7=\/1+%90\/§\/5.

As the referee has pointed out to us, it is likely that, conversely, F(*o-'o)np(kx.lx);é

3

{0} implies D(x,10)0 Pk, ,1,)7#@, but we do not know how to prove such a result. We
are indepted to him for several other precious remarks as well.
Added in proof (Nov. 95). This question has now been affirmatively settled by the

authors.
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We use the fact that, as |y'/6'| < 1, one can define a — (1+(y'/6')a)'/?
as an analytic function in the unit disk D(1,0) taking the value 1 at
the origin.

This representation is known in the literature under various names:
oscillator, harmonic, Bargmann-Segal, Shale-Weil, etc. representation.
One speaks also, referring to the operators Ty, of the oscillator group.
If one restricts attention to matrices g with the property that the cor-
responding Moebius transformation a — ga = (aa + f8)/(ya + ) maps
the unit disk D(0,1) into itself, not onto, then one obtains instead the
oscillator semi-group (cf. [5], [10]).

Another formula, in [9] established for the group G, is

1 v c?
&) Toeacls) = oy &P ( - m) €ga,c/(va+6)(2)

which is easy to verify at least on the formal level.

REMARK 1. Note that, in contradistinction to (7) above, this for-
mula (8) makes sense even if § = 0. Thus (8) may serve as a definition
of T, in this case; we view then T as a linear operator on the linear hull
of the family of functions {ea.}. We must only make sure that ga # co
or that ya + 6 # 0.

Using (1) we find from this

, 1 1 ) v c?
WTgeacll” = = o] ekp( Re 7a+6>
(9) ——2, P
Rega( ) +
e ya+4 lva + 6| lan12Y=1/2
ekp ( 1 _ |ga'2 (1 lgal ) *

EXAMPLE 3. Let ¢ = (§ §), so that § = a~!. Then T,f(z) =
o'/? f(az)ePe? for a general function f, while

Tyeac(z) = o' P eaatpyys,c/6(2) -

Let us write a = k~1/2, 8 = k~1/2], so that 6§ = k!/2. (The correspond-
ing Moebius transformation is thus @ — (a + [)/k.) Then we see that

: LRSIy :
V =T, with g = ( oz )- That is, we have || f|| ;. ,y = | T, f|| for
feFun.

0
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The above suggests to consider in general Hilbert spaces with a
norm of the type ||T, f|| for some ¢ € G¢, where || - || stands for the
standard Fock norm in our standard Fock space F.

In this direction we can establish the following basic result.

Theorem 1. Let g be an element of G¢ such that g~}(D) = D
(in particular, one has oo & g~'(D)). Here D = D ) is the unit
disk. Then Tg‘l(F) = Fk,) . Moreover, we have || f|| ,, = [Tyl for
fe F(k,” . ’

REMARK 2. The transformations g occurring in the statement give an
element of G°\G, that is, a residue class modulo G in G€.

The proof of this theorem which will be based on the following two
lemmata may be of independent interest.

Lemma 1 (generalized Lagrange identity). Let g = (§ ’3) be a matriz
in G¢ such that the inverse image of the unit disk D 1is the disk Dy py.
Then

1 k2—a+]?

—_ 2 f—
(10) 1~ lgaf? = g ——
Moreover, one has
1 af — 56
11 k= — ———— s = ——
) o — P falf ~ P

Lemma 2. Let the matriz g and the parameters k and | be as in Lemma
1. Then the following identity holds

(12) (@a+B)k—(va+8)(a+l) =~k —|a+1?).

REMARK 3. If ¢(D) = D, i.e. if g € G, then we get from Lemma 1 the
well-known identity

(13) 1—|gaf’> = et iR (1-laf®),
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often used in function theory; in [9] it was called Lagrange identity. (The
reason for this choice of name is the following: let us put ourselves in
the case of the fundamental symmetry of D interchanging an arbitrary
point b € D and the origin 0, that is, the mapping a — (b—a)/(1 — ab).
Then (10) becomes

1~ abf? — b —af? = (1~ o) (1 - ]b").

Introducing homogeneous coordinates (writing a = a;/ag, etc.), this
gives
laobo — a1b1|* = (lao|* — |as|*) (lbo|* = |B:[*).

This is the expression of the norm of a bivector in the pseudo-Hermitean
metric |ag|? — |a1|%.) In the same way from Lemma 2 we obtain the
usual condition for a complex unimodular matrix to be in G, viz. @ =4,

B=n.

ProoF OF LEMMA 1. After having chased a denominator we perform
the following chain of transformations:

lya + 6]* — |aa + B> = |7/* |a|* + 2 Revba + |6]?
— (Jaf? [a* + 2 Reafa + |B]?)

— _(laf — ) |a 4 2B=T8 )
= ~(af* ~ ) |a + o5
s g 4 188 =78
+ (18 =182 + o)

The last term in the last expression can be rewritten as

68— 36 _ |af* 6 + 1B y[? ~ 2 Reatps
la]? —|y]* |af? — |7|?

_Jad =By 1

e =2 el =

61> — 181° +

where we in the last step used aé — fy = 1. Taking now (10) as
" definition of the numbers k and [, we formally arrive at formula (11). It
is however readily seen from this equality that these parameters must
have the desired significance.
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PROOF OF LEMMA 2. Step 1. First we observe that if (12) holds for a
matrix g, unimodular or not, then it holds for any multiple ¢ - g, where
teR. _

Step 2. Reduction to the case k =1, ! = 0. Put a; = (a + k)/k. Then
l[ga] < 1 if and only if |a;| < 1, while (12) can be written

__ p-la 6—lyy _
(aal + ; ) - (’701+ A 7)611 =7(1—[a1|2).
But this is nothing but (12) for g; = (5 5; ), where 8, = (8 — la)/k,
8y = (6 — ly)/k, and this matrix represents the transformation a; — b,
where b = ga. Clearly detg; = aé; — f1v = 1/k € R. By Step 1 the
same equality holds then also for the corresponding unimodular matrix.

Step 3. The case k = 1, I = 0. In this case, as is we have already

noted (see Remark 1) that in this case &@ = 6, § = . So then (12) is
equivalent to the absolutely trivial relation

(6a+7) = (ya+8)a=~(1~la?).

Next we proceed to the proof of the Theorem 1.

PROOF OF THEOREM 1. Let g be a matrix such that g=!(D) = D .
It suffices to show that

(14) ”Tgeucll = Heac”(k[ ) for a € D(k,l) , C S C.
%))
For then we have by polarization
(Tyeac, Tgepa) = (€ac,€bd) (k1) > for a,b € D1y, c,d€C,

whence, by considering linear combinations of Gauss-Weierstrass func-
tions and applying a density argument (the Gauss-Weierstrass functions
form a total set), it follows that || T, f|| = || f|l,, for all f € F4 ).

Now we verify (14). To this end we must do some transformations
in formula (9) showing that it reduces to (6).

First, we observe that the two exponent free factors combine in
view of (10) in Lemma 1 to a factor

K2 (1_ |a+z|2)—1/2_

™ k2
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Next, we look at the exponential factors. Using Lemma 1 once
more we see that the coefficient of |c|? in the exponent becomes

1

la + 17
1-—5

b

as it should. Similarly, formula (2) in Lemma 2 helps us to bring the
c?-term into the right shape. Indeed, we find (this is what stands after
the sign Re after we have combined the two exponential factors)

vl ga c

ve+d  1-—lgaf® (va+6)?
:(_ 7c2 . aa+ f )c2
yetd  (1—lgal*)|ya+6[*(va+é)

_ = —la+ 1)+ aa+ Bk ,

(at o) (b —Jat1P)

a-+1 9
——— ¢
k2 —la+12 " °

which is precisely what is desired (see (6)). (In [9] the corresponding
computations were done when g € G.)

Let us also indicate an alternative less direct approach. Although
it is apparently shorter than our previous proof, we prefer the form
because of its constructive flavor involving also the beautiful identities
in Lemma 1 and Lemma 2, which, as we have hinted at, may well be of
independent interest.

ALTERNATIVE PROOF OF THEOREM 1. We begin by noting that the
unitary map V in (4) obviously corresponds to the standard affine map
go : Dxyy — D given by goa = (a + I)/k, 1.e. V = Ty, . It follows
that if g is any element of G® such that ¢~!'(D) = D then we
have ¢ = hgg for some h € G (a pseudo-unitary matrix). But then
T, = £TT,, = £T,V. As T} is a unitary map on the Hilbert space
F, this again implies that

1T fIl = I TwV £ = IV A= [ fllx,py »

where we in the last step used (4).
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Theorem 1 has an obvious generalization to the spaces FP, p > 1.

Corollary. Let g be as in Theorern 1. Let p > 1. Then again
T, (Fr) = Fl. 1) Moreover, we have the norm equivalence 1Al k). =

”T!If”p f(lT‘ f € F(pk,l) .

PROOF. In [9] it was shown that the group G° acts on the spaces F? (for
the case p < 1 see Section 4). Therefore the previous (alternative) proof
of Theorem 1 extends to the present situation without any changes.

Appendix to Section 1. Non-existence of a certain bundle.?

Now we have settled our main question (see the above Theorem 1)
but only in the auxiliary assumption that the inverse image of the unit
disk under g does not contain the point at infinity, co. It is a legitimate
question whether it might be possible to free oneself of this assumption.
In this appendix we give a brief discussion of this issue. However, it is
mainly a negative experience.

First we recall that there are on the Riemann sphere 52 three kinds
of (generalized) disks:

1) proper disks;

2) halfplanes (limiting case of a disk);

3) exteriors of proper disk.

Alternatively, we could speak of oriented (generalized) circles: if
an oriented circle is given, we pick up the disk that is to its “left”. Thus
there is a 1:1 correspondence

disks «—— oriented circles.

The question is thus whether it is possible to associate in a natural
way to a generalized disk D on S? a “Fock space” §p, extending the
previous correspondence D ) +— F(i ). Introducing the notation 91
for the manifold of disks (oriented circles) this would yield a bundle
of Fock spaces § over M, say. (Let us remark that in previous work

1 A reader who is only interested in analysis questions (interpolation, multipliers)
can safely omit this appendix. The senior author would like to thank Johan Rade for an
illuminating discussion helping to clarifying some questions connected with the topology

of the Lie groups G, G and G°.
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one of us has already encountered several occurences of vector bundles
(of infinite rank) over complex manifolds: the Fock bundle [11] and the
Fischer bundle [12]; here we have a manifold 9 which is not complex.)
However, this secems to be a chimera: the bundle § does not exist. Let
us indicate why this is so.

Let us fix the disk D. Then D can be mapped conformally onto
the unit disk D(0,1) but not in a unique way. Any such map comes
from a certain element g of the group G¢, for reference, let us call it a
frame. It is natural to try to define the fiber Fp as a kind of pullback
of the standard Fock space F' = F{y ). More exactly, given any two
frames coming from group elements ¢ and g; we can write g; = ug
with u € G and one is then led to consider two functions f; and f in
F as representatives of one and the same element of Fp if fi = T f.
However, by the above T, is defined only up to sign £, which seems to
be an unsurmountable difficulty and so our approach breaks down. It
is only when we restrict ourselves to suitable open subsets of DT that
we can make it work, for instance, when we consider the subset of all
disks avoiding one point, say, the point at infinity, but then we are back
in the situation considered already in Section 1.

A possible way out would be to count elements of F' modulo sign
but this would then essentially lead to a projective bundle, not a vector
bundle, but this is not exactly what we desire.

One can give the above somewhat heuristic considerations also a
somewhat more rigorous formulation using the language of principal
bundles and their associated bundles, which we now indicate very quick-
ly.5 Let us denote by R the manifold of all frames. Of course, we have
the trivial identification R =~ G°. Moreover, we can identify 9t with
a certain space of cosets of G¢, M ~ G\GC. It follows that ;R can be
viewed as a principal bundle over M with G as structure group. If V
is a any vector space on which G acts (a representation space), there
is an associated vector bundle U on which G acts. In our case we
would like to take V' = F but the trouble is that its double cover the
metaplectic G acts on F, not G itself. There seems to be no way out
of this dilemma. This is connected with the fact that while G admits
a double cover, its complexification G¢ does not. This again depends
on the following facts: On the one hand, as G¢ as a topological space

We are now adressing ourselves to those readers who are familiar we the rudiments
of this theory (see e.g. the book [8]). Notice that in the conventional treatment the
structure group usually acts from the right, while in our formulation we have a group

action (of the group G) from the left.
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is simply connected its fundamental group is trivial, 71(G¢) = 1, while,
on the other hand, G is contractible to a circle S! and thus has the
fundamental group m (G) = Z.

2. Complex interpolation. Circle geometry.

Now we begin to interpolate. In this Section we shall deal with
complex interpolation exclusively, thus relegating real interpolation to
Section 3.

Our objective is to determine the complex interpolation spaces
between two given Fock spaces Fy, ;) and Fx, ). Assuming that
their intersection is not nil, F(x, ;o) N F(x, 1,) # {0}, we shall show that
the interpolation space [F(x,.10), F(k, 1,)]6 again is a certain Fock space
Fliy 1p) - Indeed, if Cyy 15 and Cyy, 4, are the circles corresponding to
the spaces Fii, 1) and Fg, 1,), then the circle Cg, 1,) corresponding
to F(z, 1,) belongs to the pencil of circles generated by the two given
circles C(ko,lo) and C(kl,ll) .

First we recall some general facts about complex interpolation (for
details, consult the excellent book Bergh-Lofstrom [2]).

Consider quite generally any Banach couple (Ag, A1), t.e. Ap and
A; are two Banach spaces (over C) both continuously imbedded in a
Hausdorff topological vector space A. An element a in the linear hull
Ag + Ay of Ag and A, in A is said to be in the complex interpolation
space [Ag, A1]s, where 0 < 6 < 1, if, informally speaking, there is a
complex curve through a connecting Ag and A;. More exactly, we
require that there exists a holomorphic function f(({), where ( = £ +1ip
is a complex variable, defined in the strip 0 < Re{ < 1 with values in
Ap + A; such that a = f(#) and such that its boundary values satisfy
f(in) € Ao, f(1+1n) € A;. In addition, some growth conditions must
be satisfied, and we have not told in what sense the boundary values
are taken, but we shall not enter into such technicalities here.

Next, let us specialize to the case when

Ay = E = a given Banach space,
A; = D(A) = the domain of a closed

unbounded operator A acting in E.

Then one expects that, in suitable assumptions, one has [E, D(A)]s =
D(A?), where A% stands for the suitably defined 6-th power of A. For
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instance, it suffices that imaginary powers A‘" make sense and satisfy
a suitable growth estimate, e.g. ||A'?|| < C (1 + |p|)™ or even ||A*]| <
Cel"l', 1 < 1, will do and certainly [A*]| = 1 (isometry). Then the
canonical quasi-optimal choice of the function in the above construction
is f(¢) = A% Ce, where ¢ is an element of the space E. In particular,
the following situation is allowed: E = a Hilbert space, A = a positive
self-adjoint operator in E.

In the Fock case there is a natural choice for the operators A€,
namely A¢ = T,., where the transformations g; form a certain complex
one parameter subgroup of G¢ leaving invariant the pencil generated by
the given circles Cx, 1,) and Cx, 1,) . Before making this more precise
let us review some basic facts about circle geometry (classical references
for “higher geometry” are Klein [7] and Blaschke [1]°).

The equation of a (generalized) circle C on the Riemann sphere S?
can be written

(1) Aaa+2ReBa+C =0

(or equivalently Aad + Ba + Ba + C = 0), where A and C are real
numbers, while B is a complex quantity. Thus (1) means one of the
following: a genuine (real) circle; in a limiting case, a line (a circle
through the point at infinity); a point circle; an imaginary circle. We
see that each circle C gives a triple ¢ = (4, B,C) determined up to
a non-zero real multiple. Note that such a triple consists of two real
and one complex numbers; alternatively, splitting B into its real and
imaginary parts, we could likewise have spoken of a quadruple of real
numbers, thus a point in R*. (Sometimes it is also convenient to put
é = (A,B,B,C).) A pencil of circles is a one parameter of family of
circles of the form

(A0+tA1)ac'1.+2Re(Bo+tB1)&+(C0+tCI)=0, tER

We say that the pencil is generated by the circles Cy and C; correspond-
ing to the triples ¢ = (Ao, Bo,Co) and ¢; = (A1,B1,Cy). It is the
sign of the discriminant D = AC — | B|? that determines the geometric
meaning of the equation (1): assuming that A # 0

if D < 0 it 1s a real circle;

if D =0 it is a point circle;

6 The former book was actually edited by Blaschke.
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if D > 0 it is an imaginary circle.

The assignment C +— (A, B, C) thus defines a mapping from the space
of all (generalized) circles to real projective space PR? equipped with a
distinguished quadric

Q:(¢a¢)=D=‘4C-IB|2=O»

corresponding to a quadratic form in R? of signature + — — — (or index
of inertia (1, 3)).
We can thus set up a small dictionary.

space of circles projective space PR>

point circle point on Q

circle point not on @

pencil of circles line

the group G*¢ the Lorentz group SO(1, 3)

We can apply the insights gained above to describe the structure
of pencils of circles. There are essentially three cases depending on the
mutual position of the corresponding line in PR® and the quadric Q.
This is depicted in the figure on this page.

@® @ ©C

hyperbolic parabolic elliptic
(time-like) (light-like) (space-like)

Thus in the former case the circles go through two real points, in the
middle case they are tangent at a real point and in the last case they
go through two imaginary points (and do not meet in the real).

It is clear that the spaces F}. correspond to an elliptic situation (the
concentric circles |a| < k), while the spaces G correspond to a parabolic
situation (the circles |a + k| < k tangent to the imaginary axes at
the origin). This ezplains, in particular, their different interpolational
behavior (see Introduction).
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REMARK 1. Note also that a pencil of circles contains in general a
unique line called its power line. The exception is when we have a
pencil of circles through the point at infinity. Then all elements of the
pencil are lines, of course.

REMARK 2. Notice also that there is a duality for pencils of circles.
The dual pencil consists of all circles orthogonal to the circles of the
given pencil. This duality interchanges elliptic and hyperbolic, respects
parabolic.

Now we discuss the subgroup of G¢ which preserves a given pencil
of circles. Let Cy and C; a pair of generating circles and denote by H
the group of transformations leaving each of them invariant. Then we
have the following lemma, which is the key to our discussion of complex
interpolation of Fock spaces in general.

Lemma 1. Let H® be the complezification of the group H. Then H®
preserves the pencil (that is, the transformations in H® map each circle
in the pencil onto another circle of the same pencil -we say that they
permute the circles in the pencil).

PROOF. It can be shown (inspection!) that the group H is a one
dimensional Lie group, hence commutative. So, using the exponential
mapping, its element can be written in the form g¢, where ¢ is a real pa-
rameter (£ € R). Similarly the transformations in the complexification
H¢ will be written g¢, where ( is a complex parameter (( = {+1in € C).
To fix the ideas, let us assume that we are in the hyperbolic case, denot-
ing the points through which the circles go by p and ¢. (The other two
cases are dealt with in a similar fashion.) Thus we have two equations
of the type g¢p = p and g¢q = ¢ (£ € R). Then it is manifest that they
remain true also after passing to the complexification (with £ replaced
by ¢). In other words, we have g.p = p and geq = ¢ (( = +1in € C).
So if C is any circle passing through p and ¢, then its image g¢(C) under
gc¢ 1s a circle which still passes through p and ¢ and so belongs to the
given pencil; but in general it is not the same circle (g¢(C) # C).

Let us look at the three cases (hyperbolic, parabolic and elliptic)
separately.

1. Elliptic case. Making a preliminary conformal transformation
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we may pass to the normal form when it is question of concentric circles
about the origin. The group H fixing any two of these circles, and thus
all of them, consists of the maps g, = e*%a -rotation about the origin.
Complexifying we get the transformations gca = (a, where we have
put ¢ = re' -rotations followed by dilation. (Note that here we made
a passage from additive language to multiplicative language.)

2. Parabolic case. Now we may assume that we are dealing with
straight lines parallel to the real axis -this is a pencil of degenerate
circles. (In the case corresponding to the spaces G this can be achieved
by applying the Bargmann transformation whereby Fock space G gets
replaced by the Schrédinger space Sp; see Introduction.) The maps in
H consist of translations a — a + 3 with 3 real. Complexifying yields
the corresponding transformations with # complex. Note that in this
limiting case the full group preserving the pencil is the 3-dimensional
“(aa + B)-group” with a # 0 real, f complex.®

3. Hyperbolic case. As normal form we may use the straight lines
through the origin. Then the transformations preserving the pencil are
formally the same as in Case 1, a — (a, the difference being that it
is when we take the variable ( real that we get the maps that leave
invariant each element of the pencil (a degenerate circle).

REMARK 3. We note that H is compact precisely in the elliptic case.

Next we turn to the problem of the analytic description of the
group H or H€. Recall that if ¢ = (A, B, C) is the triple corresponding
to a circle C, we have already introduced the metric form

() (¢,4) = AC — |B|*.

If we have one more circle C' corresponding to the triple ¢' =(A', B', C"),
we obtain by polarization the inner product

(2 (¢,4) = % (AC'+ CA')—Re BB'.

EXAMPLE 1. A point circle can be identfied to the triple ¢,=(1,—a,|a|?).
Then (1) can, in view of (2'), be written as

(6,¢.) =0.

8 Since the letter ais occupied by the variable, we cannot speak of the (az+b)-group!
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We can also rewrite our previous formula for norm of the function e,
(see Section 1) as

Ileacllfk,:)
a bl a -
(Re( <¢;(_l¢ ) c2> —(—(¢, ¢))/? |c|2) (6, ba) )_1/2
—(®, ¢a) (—(9,9)) ’

= exp

which perhaps looks more convincing; here ¢ = (1,1, |I|?, —k?).

Let us now fix a pencil of circles. To determine the corresponding
group H, the latter being one dimensional and hence commutative, it
suffices to determine its infinitesimal generator X (forming a basis for
the Lie algebra l) of H). This is essentially an exercise in linear algebra.

The image of the pencil under the circle-to-point map C — ¢ =
(A, B, C) is, by what we have said, a line L in PR>. Let ¢o =(4q, Bo, Co)
and ¢; = (A1, B;,C1) be on L. We seek a linear map X on R* which
vanishes on the span of the vectors ¢y and ¢;, and is skew-Hermitean
with respect to the metric (¢, ¢). Clearly, X is the inverse image of X.

It is easily seen that X is given by the the condition

A' B' B'C'
ABBC
Ao By BoCo
A, B, B,C,

= (¢',X¢), where ¢’ =(A',B',C") (and i® = —1).

1
Expanding the determinant and comparing with (2') shows that
A BB ABC BBC

—3:’3(-4»]3,6')*’7' - ‘40301:70 » Ao BoCo |, 301:3000
AlB]B] AlBlC'l BIBICI

Putting ¢* = ¢ = (A*,B*,C*), we can write this, expanding the
3 x 3 determinants also, as

. By By Ao B le Bo| - )
A =i - 04 B B+0),
?< 'Bl B, +|Al By 4, B
. B() CO ‘40 CO AO BO -)
3 B* =i — A4 - B+0+ B,
©) ’( B, C ‘A, c A1 B,
By, C By, Cyl - B, B
C*=i(0+ Bo 0 _ | Bo 0 o Bo C).
B] C] Bl Cl B] Bl
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That 1s, we have, in matrix form,

_|Bo By Ao 1:30 4o By 0

B, B 4, B A, B
v o |Bo Co| |40 Co Ao By
) X=il =g ¢ 4, O 0 A, B,
0 By Co| _|Bs Co By By
Bl Cl Bl Cl Bl Bl

EXAMPLE 2 (The case of concentric circles). We can take ¢q = (1,0, 1),
¢1 = (1,0,2). Then A* = C* = 0, B* = B. This corresponds to the
circle transformations B +— €'Y B, again induced by the point trans-
formations z ~ ez (votations about the origin). This we know, of
course.

The map X is an element of the Lie algebra s0(1,3). Now we seek
the corresponding element X in g€ = s((2,C).

First we work on the group level. Let g = (3 g) be in G¢. Then
a circle C corresponding to the quadruple ¢ = (4, B, B, C) is mapped
into a circle C* corresponding to the quadruple ¢ = (4*, B*, B*, C*),
where

A* = Aaa + Bya + Bay + Cv7,
B* = ABa + Béa + BBy + Cé7,
C* = ABB + B6B + BB + Cé5.

Thus the point transformation ¢ induces the circle transformation

Il

Il

aq & oy 7Y
. _[Ba sa By &%
7\ aB 1B ab 48
pE 68 ps 68

Passing to the infinitesimal (algebra) level we see that to the matrix

X = (‘; g) €5((2,C)

there corresponds the matrix

2 Rea & o 0
. 5 B —ilma 0 5
(5) X = 3 0 ilma - €s50(1,3).
0 B B -2 Rea
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(Here we use a + § = 0, corresponding to aé — 3y = 1.)
Now we compare the general formula (4) to (3). This gives in our

case
Ay Co| _|Bo Bo 'BO Co
A] 6'1 Bl Bl - B1 C]
(6) X = _ _
.40 Bg ‘40 CO BU BO
'Al B A G| T | B B

This is the sought infinitesimal generator of the Lie algebra §.
We may summarize the preceding discussion as follows.

Lemma 2. The Lie group H fizing the two circles Cy and Cy cor-
responding to the triple ¢9 = (Ao, Bo,Co) and ¢ = (A1,B1,C1) 1s
generated by the matriz given by formula (6).

Let us give another example.

EXAMPLE 3. Consider the hyperbolic pencil of circles through the
points 1 and —1. These circles correspond to the parameters £ =
V1+m2, | = im with m real. We may take ¢ = (1,0,—1) (unit
circle), ¢; = (0,7, 0) (real axis). Then (6) readily gives

= (2 1),

Thus integrating we get the transformations

g = (cosh( sinh() .

sinh( cosh(

Each of the maps g. preserves, if ( is real, any of the circles of the
pencil. If we let ¢ assume complex values, we obtain transformations
that permute the circles. If ¢ is purely imaginary, ( = in, then the
image of the unit circle corresponds to

. sin2
=sec2n, =1 1

7 k= =1 tan2 = tan2n).
(7) cos 2n cos 27y L RARE, (m = tan2n)

In particular, for n = m/4 the unit circle is mapped onto the real axis
(Cayley transformation).
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Now that we have a rather complete picture of the transformations
permuting the circles of a given pencil, that is, of the complexification
H¢ of the group H of transformations fixing any two of them, it is
possible also to answer the initial question of complex interpolation of
two given spaces Fx, 1) and F(y, ;) corresponding to any two circles
Co = Clko,1o) and C; = C(4, 1,) in the pencil.

We let Dy = D(g,,1,) and Dy = Dy, 1,) be the corresponding disks
(the disks bounding the circles and not containing the point at infinity).
We assume that we have

(8) DoﬂDl#Q.

As was already recorded in Section 1, this implies that Fi, 1) N Flk,,1,)
# {0}. Changing somewhat the notation we may assume that the maps
Gin (n € R) in H€ leave Cp and C; invariant. We may also assume that
91(Cy) = Co. (This amounts to normalizing the group parameter.)

Lemma 3. It is possible to choose g; such that g;(Dy) = Dy .

PRroOF. By inspection. Expect in the hyperbolic case this is automatic.
In the latter case we first choose g; to be minimal, that is, g;(C1) = Co
but g¢(Cy) # Cp for 0 < £ < 1. Then either g;(D;) = Dy or else
g1(Dy) = Dy, where Dy is the complementary disk Dy = S?\Dy. In this
case the group generated by g; must be compact. (On the other hand,
the one generated by g¢; equals H and is not compact c¢f. Remark 3.)
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Therefore it must be periodic. If 7 is the period, we can now achieve
91(D1) = Dy replacing if necessary g; by g1/2-r .

Corollary. It follows that Tg, (F(k, 1,)) = F(ko,1,) ond in particular that
1
“f“(kl,l,) = 1Ty, flli, for f € Fiay 1,y -

For 6§ € (0,1) let now the circle Cgy be chosen in such a way that
ge(Cq) = Cy. We let further Dy be the disk corresponding to the cir-
cle Cq.

Lemma 4. We have co ¢ g¢(D;), 8 € (0,1). In particular, we have
96(Dg) = Do .

PROOF. By a continuity argument. The elliptic and parabolic cases
are quite obvious, because then the circles Cy lie all between Cy and
Ci. So let us again look at the hyperbolic case. In this case it is
clear that the relation gg(Dy) = Dy holds true at least for 6 close to
0. If the assertion were not true, then it is easy to see that for some
particular value 6y € (0,1) the corresponding circle Cy, degenerates
and becomes a line, the power line of our pencil (see Remark 3). But
at that moment the corresponding disk degenerates into a halfplane.
Continuing the parameter 6 beyond the value 6, it is now easy to arrive
at a contradiction, namely that g;(D;) = Do, where again Do stands
for the complementary disc.

We can now announce the following result.

Theorem 1. Let F(y, 1) and Fi, 1) be the generalized Fock spaces
corresponding to the circles Ci, i1,y and Cik, 1,). If Do and Dy be the
corresponding disks, we assume that (8) holds true. Let g¢ be the one
paramneter group of conformal maps as defined above in the course of
the discussion of Lemma 2 and 3. (In particular thus gi1(D;) = Do.)
For 0 < 6 < 1 define the circle Cix, 1,) by 96(Co 1)) = Clio,1o)- Then
we have the isometry

(9) [Flko o)y Fhr )]0 = Flko ls) 5 0<f<1.

PROOF. This follows from the general facts about complex interpola-
tion which we recalled in the beginning of this section. In particular,
the role of the operators AS is now played by the maps Ty, , as follows
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readily from Section 1, Theorem 1. The crucial thing is that for purely
imaginary values of ¢ these are unitary maps in Fig, 1, |Ty;, || = 1 for
n € R. So there is really nothing to prove.

in

EXAMPLE 4. It is clear that Theorem 1 contains as special cases the
results from [6] for p = 2 with the spaces Fj and Gy which were recalled
in the Introduction. These are elliptic and parabolic cases respectively.
A concrete example in a hyperbolic situation can easily be constructed
at the hand of Example 3 ultra. Let us fix attention to the circles in
the hyperbolic pencil there which lie in the upper halfplane, that is, if
k > 1is, as usual, the radius then the second parameter ! is determined
by [ =1v/1 — k? (with the positive sign of the square root). We are thus
lead to consider the family of spaces Ej of entire analytic functions f
with the metric

.1/2 , ,
I£11? = i;r-'/(;e—kl" “2VI=EST ) 2 dm(z).

In agreement with our previous notation (¢f. Introduction) we have
in particular £} = F} = F (our standard Foch space) and Ey, = G;.
Thus this connects the spaces F; and G;. We conclude that we have
the interpolation formula

[Ek07Ek1]9=Ekg ) 0<0<1,

where kg is obtained from kg and k; according to the following rule:
if we write ko = sec2ny and k; = sec2n; then kg = sec2p with n =
(1 —=8)no + 6 .

REMARK 5. The recepee for computing the “mean” of the parameters
ko and k; is thus rather complicated in this case. That the rule has such
a simple form in the case of the families F} (geometric mean) and Gi
(harmonic mean) is rather exceptional. In particular, the homogeneity
is accounted for by the fact that the corresponding pencils are dilation
invariant then. The phenomenon we initially set out to clarify in this
paper has turned to be an exception!

So far we have only dealt with Hilbert spaces, that is, the problem
of complex interpolation of the scale of generalized Fock spaces Fiy 1.
Now we pass to the corresponding problem for the Banach spaces F; (”k’ )
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(1 < p < 00). On a formal basis we expect that the obvious analogue
of (9), viz. the interpolation formula,

(10) [FF

(korto) Flhyi)e = Flig 1y » - 0<0 <1,

to be true, perhaps not isometrically but at least up to an equivalence of
norm. (For simplicity we keep the parameter p fixed taking pp = p1 =p
and interpolate only k and [; how to treat the case py # p; is indicated
in [6].) The main difficulty is again to estimate the operator norm of
Ty, this time in the space F(};co,lo) . It turns out that the different cases
(elliptic, etc.) behave differently.

Let us first look at the elliptic case. Putting into play the map
V=V: F(pko,lo) — FP, which by Section 1 is an isometry (only the
case p = 2 was worked out there), we can reduce to the case when
C(ko,lo) 1s the unit circle C(; o). We recall from [9], Section 8, that the
metaplectic group G acts continuously on the spaces F?, but this action
is not isometric if p # 2. Indeed the operators T,, g € G, admit in F?
the following norm estimate:

(11) ITll, = 18] /22721,

In the present elliptic case the one parameter group g¢;, is compact (cf.
Remark 3). Therefore it follows from (11) that we have || T, ~ C.
So we are in business. We get thus back the result for the spaces Ff
(|6, Theorem 9.3, the case pg = p;]).

REMARK 6. In this situation we could have used instead of Vy another
more cleverly chosen Shale-Weil transformation reducing ourselves to
the case when C(y, 1,) is a concentric circle C(x gy . Then we are back in
the set up of [6].

Next, let us look look at the parabolic situation. It is then readily
seen that the matrices g;, are conjugated to the matrices

.M .n
1+272— 15
.M .M
—l:—z- 1—15

by a fixed matrix. It follows then from (11) that now || T}, ||, = (1+|7))™
for some number m, that is, we have power-like growth. We are again in
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business and have, in particular, essentially recovered the corresponding
result for the spaces G% ([6, formula 11.6, the case pg = p;]).

Finally, we turn to the hyperbolic situation. From Example 3 it is
seen that now the gi, are conjugated to the matrices

- _ [ coshn sinhp
9 = \ sinhn coshn )

But according to (11) this gives exponential growth of the norm and
we must conclude that the general theory is not applicable. The dif-
ferent cases thus behave essentially differently. We may summarize the
preceding discussion as follows.

Theorem 2. We return to the set up of Theorem 1, replacing every-
where the space Fir 1y by F(pk s P 2 1. Then we have the interpolation

formula (10)
(10) {F(pko,[o)» -F(pkl'h)]ﬂ = F(Pkg,lg) ’ 0<é<l1 y

which 1s an isomorphism (equality up to equivalence of norm), provided
the pencil generated by the circles Cx, 1) and Cig, 1,y 18 either elliptic
or parabolic. If however this pencil is hyperbolic the natural approach
fails and we do not know whether (10) is true or not.

3. Real interpolation. Multipliers.

Now we turn to real interpolation. The problem is thus to de-
scribe the real interpolation spaces between two given space F{’ko lo)

and F{h.h) .
in general (and we refer again to [2] for details).

If (Ap, A;) is any Banach couple, one begins by defining the K-
functional: for any element a in the sum Ay + A; and any t with

0 < t < oo one puts?

First we recall some salient facts about real interpolation

K(t,a) = inf{||ao]| , +tllaalla, }

& If X is any Banach space, we use a subsript X to designate the corresponding norm,

thus writing |[-[| -
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where the infimum extends over all decompositions of a of the form
a = ag + a; with ag € Ag, a; € A;. One says that a belongs to the
K-space (Ag,A1)g,y, where 0 < § < 1 and 0 < ¢ < oo, if and only if

deff [ . _o.- dt\1/9
“a”(AO,A‘L)G.q = (/ (t 0I\ (t, a))q T) < o0 ;
0

if g = oo the left hand side of the inequality is interpreted as a supre-
mum.’ In order to obtain a concrete representation of the K-spaces
one has to compute the K -functional, at least approximately.

If we are in the situation of an “operator pair” (E,D(A)) (see
Section 2), it is natural to try to exploit the functional or spectral
calculus associated with the operator A in question. More specifically,
in some situations one can prove that one has an estimate of the type

o K(t,a) ~ lp(tA)al

with a suitable scalar function . (In particular, the couple (E, D(A))
is thus “quasi-linearizable” in a certain technical sense.) Then one has

@ ae® DW= ([ ¢ lotenaler F)" <oo.

Let us look at some special cases.

1) In the Hilbert case (viz. E = a Hilbert space, A a positive self-
adjoint operator acting in E; c¢f. Section 2), there are plenty of such
functions: any function ¢ defined on (0, 00) such that ¢(A) = min(1, A)
will do. With the aid of this one can prove that in case ¢ = 1/2 indeed
holds (E,D(A))s,1/2 = D(A%), up to equivalence of norm. (Indeed,
there is now a canonical choice for the function ¢: p(A) = (1+A72)7%;
with this choice one has even an isometry, provide the I{-functional is
replaced by what is known as the K;-functional.) Thus, in this case,
and in general only in this case, the two approaches -real and complex
interpolation- produce the same result.

2) In the general case, it is natural to try to exploit the resolvent
R(t) = (1 +tA)~! (t > 0). If one has the estimate ||R(t)|| < C, with
C independent of t, it is not very hard to show that (1) is fulfilled with

9 In the literature there is a J-functional and J-spaces, but these need not bother us

here.
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©(A) = A/(1 + X); operators A with this property are called positive.!°
Thus (2) in this case means that

@) ae (5D = ([T I haler )" < oo

3) If A is the generator of a semi-group of operators, it is again
natural to use instead the semi-group of operators G(t) = e'A. If one
has ||G(t)|| < C, with C independent of ¢, one speaks of a bounded
semi-group and in this case one has the following result:

K(t,a) = uéi; IG(s)a—a||g .

Although this is formally weaker than (1), it is nevertheless sufficient
for establishing the desired analogue of (2), viz.

() aeEDWg = ([ ¢ I6wa-dler )" <oo.

Let us mention that if A is the generator of a bounded semi-group of
operators, then A is positive.

REMARK 1. Above we have summarized some classical results due to
Lions, Grisvard, and others. Besides [2] we can also refer to the books
Butzer-Behrens (3], Triebel [16]. Case 3) will not be used here, but we
have now made mention of this case anyhow. (Perhaps somebody in
the future might want to use semigroups in the Fock context ... )

After this long digression let us return to our generalized Fock
spaces for good. More specifically, we are addressing ourselves to the
problem of quasi-linearizability. The case p = 2 is essentially trivial,
because as we have seen in 1) wltra in the Hilbert space case in general
we can, in principle, even obtain an exact result. Therefore we proceed
directly to the case of general p. (The problem of interpolation between
two Fock spaces with different p’s seems to be very hard; at least, it is
not likely that one has a quasi-linearizable couple in that case.) So we
are given two spaces F(, ., and Fj, |\ with F{ NFG | # {0}, as-
suming also that the corresponding disks have non-empty intersection,
D(kq,10) N Dk, 1) # @- There is a natural candidate for the operator A,

10 por Hilbert spaces the two notions of positivity coincide.
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namely the operator Ty = T}, constructed in Section 2. So the problem
becomes to decide when operator Ty is positive in the above sense, that
iz, when the operators (1 4 ¢73)7! are uniformly bounded. Again this
1s basically a multiplier problem in the natural basis provided by the
spectral theorem (if p = 2) for which T} comes in diagonal form. The
nature of its solution depends on the type of the corresponding pencil
of circle. Therefore we shall proceed by case by case study.

1. Elliptic case. Making a preliminary conformal mapping (see
Section 1), one can put oneself in the situation of the two spaces FP =
FP = (”1'0) and Ff = F(”k,o), where we can assume, with no loss of
generality, that k > 1. In this case we have Ty f(z) = f(k~1/22) (¢f.
Section 1, Corollary to Theorem 1). It will be expedient to write § =
k=12, so that 0 < é < 1. In particular, we have then T} : 2™ + §™ z™,
so a basis in which T3 is in diagonal form is provided by the monomials
{z"} (n # 0). Moreover, we have as a consequence R(t) : z" ~— (1 +
t6™)~1z™. This suggests to look quite generally at multiplier transforms
on the space FP.

Given a bounded function w(n) defined on the set N of non-negative
integers, N = {0,1,2,...}, we define an operator R,, by setting

oo
R,f(2) = z w(n)anz"
n=0
whenever f € FP has the expansion
oo
f(z)= z anz".
n=0
it follows that R, maps each basis vector z™ into a multiple of itself,
R, : z" = w(n) z". We are interested in the boundedness of R, on F?.
First we establish an easy transference result which reduces the study
of R, to the study of Fourier multipliers.
Let us define the operator R, on L? (T), where T is the unit circle
parametrized by arc length 8, by
[ o]
R,f(8) = Z w(n)a,e™?
n=0

whenever f € LP(T) has the Fourier expansion

f(z)= Z ane’™?.

n=0
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Proposition 1. The operator R, 1s bounded on FP whenever R, is
bounded on LP = LP(T).

ProoF. We have
oo 2n
Lirsp e ) = [ [ R ety do et v ar
C
Ooo 0~ 2
= [ MRs e,
0

where we have written f,(8) = f(re*). If we assume that R,, : L? — LP
is bounded, then

[ 2]

§ : anrnetn0
n=0

do.

- 27
RSB < C /
0
It therefore follows that

[ IRat@p 2 dmz) < © [ If)p P2 dm).
C C

We can now prove the following theorem; we assume now that w

is defined for all £ > 0.

Proposition 2. Let w a bounded function on (0,00) such that

(o}
JACGESES
Then for 1 < p < oo the multiplier R, is bounded on FP.

PROOF. In view of the previous Proposition 1 it is enough to show that
R, is bounded on LP, 1 < p < co. Again, using another transference
result between multipliers for the Fourier series and multipliers for the
Fourier transform (see [14, Chapter VII, Theorem 3.8]) it is enough to
show that the operator

Suf(z) = / "€ w(€) F(€) de

— 00

is bounded on L?(R). But this follows from the Marcinkiewicz mul-
tiplier theorem (cf. [4, Proposition 4.1]) under the above hypothesis
onw.
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REMARK 2. The proof of the Marcinkiewicz multiplier theorem actually
gives a bound for the norm of R, on F?. In fact,

IR, < (nwuw w [ 1w'(s>|da> I, 1<p<oo.

In applications one encounters multipliers of the form w.({) =
e(t(€)), t > 0, where ¥ is a positive monotone function. If we as-
sume that ¢ is bounded and that f0°° |¢'(€)] d€ < oo, then the operator
R, will be bounded on F? with a bound independent of ¢, ¢ > 0. In-
deed, as wi(€) = @'(t9(€)) t¥'(€) we have w0 + [ k'(€)|dE < C
with C independent of ¢, so that Proposition 2 is applicable (see Re-
mark 1). In particular, taking ¢(¢) = 6¢, where 0 < § < 1, we see that
the operators

oo

(3) Rif(z) =) an(1+t8") 7" 2"

n=0

are uniformly bounded on F?, 1 < p < oco. In view of the general
remarks in the beginning of this Section we have thus established the
following theorem, which thus in particular settles in part a question
left over in [6].

Theorem 1. Let1 < p < 00, 0 < ¢ < 0o. Then the operators R; as
defined in (3) (with § = k~Y/%) are uniformly bounded in F? = FP and
for f € FP = F? + F? we have

< dt\1/g
fe Moy = ([ € IRflry F) " <.

REMARK 3. Thus the pair (F?, FT) is quasi-linearizable in the technical
sense.

There remain the cases p = 1, p < 1 and p = co. Here we shall
only consider the former case. It is not hard to see that for each ¢t > 0
the operator R; is bounded on F!. But unfortunately they are not
uniformly bounded. This indicates that it is very unlikely that the
Banach couple (F, F}) is quasi-linearizable, again indicating that no
result of the type of (2) can be true in this case. For reference, we state
the result as a theorem.
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Theorem 2. The operators R, are not uniformly bounded on F1.

The proof is by contradiction, but as it is rather long we prefer to
split it up into several steps in the form Propositions 3-5 below. Let us
begin by explaining the basic underlying idea.

Suppose that the operators Ry are uniformly bounded on F'. Tak-
ing f(z) = eg,c(z) = e°* (c € C) and noting that

/ [co,c(z)} e"lZP/Z dm(z) - e|c|7/2 :

Cc

we see that one must have the estimate

) [ 1Rea e dmz) < €l
(o

(As the functions serve as “atoms” in the space F!, one sees that,
conversely, (4) implies uniform boundedness; ¢f. [6, Theorem 8.1.])
In what follows we shall show that (4) cannot hold true, proving the
theorem. In doing this we may as well assume that ¢ is a positive

number.

Let us set
2 " 1
(5) f(z,t,é)—;;?m, t>0, 0<é<1.

We wish thus to test the hypothesis
(6) /|f(cz,t,5)|e-l=f’/2 dm(z) < C e /?
C

for ¢ > 0 and C independent of ¢ and c.

First we replace f(z,t,6) by chain of simpler functions ending up
with the function j(z,t,4) in formula (13) below and then proceed to
the study of that function. Our first intermediary result is thus the
following.

Proposition 3. If inequality (6) holds with f(cz,t,6), then it holds with
f(cz,t,8) replaced by j(cz,t,6).
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Proor. Performing a Mellin transformation with respect to ¢ gives the
representation

' 1 frhice 4=A 26>
@) Fz,t,6) = = / Lo’
21 .7

—ico  SIDTA

for A =+ iy, 0 <y < 1. It follows from (7) that

co

(o0.6) = flot1 6y = — [ SR i
® J@t0 =150 ./-oo sinh 7 € du

3

where we also have moved the path of integration to the left so that it
passes through the origin. (Note that the identity (8) is a special case
of a more general formula stated in [13].) The essential feature of the

right hand member of (8) is the factor e**” " for which

(9) / Ie“‘s—‘“ | e~z dm(z) =2n e /2,
C

Introducing the “c-norm” of an entire function f by

11l = /C |F(c2)| !/ dm(z)

(in the notation of the Introduction it is up to a factor just the norm in
the space Fll/ﬁ), we see that the right hand side of (8) is a superposition
of functions all having the c-norm equal to e’/2, Now, t is going to
be large so the term f(z,t!,§) can easily be seen to satisfy (6). Thus
the right hand member of (8) is essentially a representation of f(z,t,6).
Due to rapid convergence at infinity of the integral in (8) we can pass

to the function

A .
sin(plnt) i
t.6) = T e d
(10) g(z7 3 ) /A Sinhﬂ'l.t e ,'l

with A fixed > 0. This again may be replaced by

A .
h(z,t,6) ___/ sin(ulnt) e 4
-A K

B /Alll(1/5) sin(ulnt/In(1/8)) .o
—Aln(1/86) H a

(11)
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where in the last equality we have made the change of variable py —
p/1In(1/6). Choosing A so that Aln(1/6) = 7 we get

(12) h(z,t,6) = /" sin(ulnt: In(1/6)) .ein i

Finally, we pass to the function

(13) i(2,6,8) = /_ Sin("sli’;(tl/l};gl/é)) e dy.

It is easy to estimate the error thereby committed but we shall not enter
into details. Thus, testing (6) for f(z,t,0) is completely equivalent to
testing it for j(z,t,0).

Next we establish the following result.

Proposition 4. Let ¢ be a bounded radial function in C : p(2) =
S p(k)e 8. Then one has the identity

/j(cz,tN, 5)(,0(2) e~/ dm(z)
C

(14) N )
=(2n)° ) = 2"°0(5 +1) ¢(-n),

where logt,, = (N +1/2)log(1/6).

PROOF. For every bounded function ¢ we clearly have

/C i(z,t,6)p(z) /% dm2)
_ (/wsin(}llnt/ln(l/a)) dp) (Aecze‘”¢(z)e_|:|2/2 dm(z)).

—r sin(p/2)

(15)

Setting z = re'®, writing

(e ]

p(z) = p(re®) = Y @(n,r)em?,

n=—oo
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(for our purposes we may without loss of generality assume that this is
a finite sum) and using the expansion

. o cn o cn
tu . . .
ecte’t = § :_' 2™ eitH — — rt em@ e:np.’
n. n.
n=0 n=0

we see that the inner integral in (15) equals
c" * 2
(16) ZWZ —e'"“/ G(—n,r)r*e " 2rdr.
0

Now choose ¢ =t in (15) so that Int/In(1/6) = N + 1/2, where N is
a positive integer at our disposal. Using the well-known identity

sin(N + 1/2)u

N
142 cosny = - ,
ngl sin(p/2)

we get inserting (16) into (15)

A j(crty6) o(z) eI/ dm(z)

(17) N n oo )
=(27r)zzm/o S(—n,r)rte " /2rdr.
n=0

Specializing to the case p(e'?), that is, ¢(n) = $(n,r) independent
of r, we get

b 2 e 2
/ G(—n,r)r" e 2 rdr = $(—n) rte " 2 rdr
0 0

= @(—n)/ (25)M% e ds
ré= 0

co
= @(—n) on/? / s™?2 e ds
0

= ¢(-n)2"/* (3 +1).

Summing up we obtain in this case in view of (17) the desired formula,
viz. (14).
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Finally, we prove the following result.

Proposition 5. There ezist trigonometric polynomials ¢ = o, of
]

degree N wuniformly bounded in z and N, such thai
. . 112/ . 2 -
(18) A](cz,tN,é)Ql\,(z)c l21%/2 dm(z) > Cef 1o IV,

where C > 0.

Proor. We choose ¢ as a pure cosine series, t.e. J(n) = @(—n):

(19) c,c=a0+2Zc,, cosné .

n=1
Even more, we shall take ¢ to be the Fejér function
cos cos 26 cos N9
e =sy i tan sttt T

cos(N +1)8  cos(IV +2)8 _cosZNG
1 2 2N -1’

(20)

cf. [15, p. 416, 13.41], where it is proved that supc |¢ (2} £ C. Com-
paring (19) and (20) we see that

- . 1
(pN(O)=0, 2(,9N(71)=-‘--2—N—:'('é“7:‘—:—f5, (ISRSN),

t.e. (18) becomes

/ j(CZ,tN,(S) 997\1(3) €—|:|2/2 d’n'(:)
c !
(21)

By Stirling’s formula we have

Fz+1) = (%)I\/?.—?r_:z—t(l+o(1)), as T -+ co.
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For large n we therefore get

n n\n/2 n
n - (X o & .
DE+1)=(5) (/25 (L+o(1);

nl=T(n+1) = ()" Vamm (1+0(1)),

so that

. —

@)

Hence, for n large,

I(% +1)2"/? (%)"/2\/7?5 exn/2 1
— (1+0(1)) = (-7-;) -ﬁ(lé-o(l)).

c?e

¢ _.n "z 4
(22) —T(z+1)2"2 = (-n—) —5 (1+0(1)).

For N > M both large we now get by (21) and (22) (if we use
1+0(1) >21/2)

/ i(czty, 8) oy () e~ /2 dm(z)
C

A L PN 1
> (21)? —= - —_—
2 (2m) 4\/§n=ZM(n> 2N —(2n—-1)

Now, take c as a large positive integer and choose N = ¢2, M = 2 —c
in (23). Then the sum in the right hand side of (23) becomes

2
S 3 (2 L
n 2¢2 — (2n - 1)

n=M n=c?—¢

2.
B Xc: Ze (c*=j)/2 1
& cz2—j 27 +1

(23)

=2 4 2
o<y<d =0
c . (c*—j5)/2
= e (14 L 1
7=0 ¢ —J 2 +1

~eil?
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- 1 2
2C’e°/2z - >C e ?loge,
pr 2)+1

proving (18).

It is clear that from Proposition 4 we get a contradiction to the
hypothesis (6) (or (4)). Thereby we have proved also Theorem 3.

Next we treat the parabolic case. As this case is rather parallel to
the elliptic one, we shall not be so detailed.

2. Parabolic case. We can again put ourselves in a model situation,
namely, when we have the two spaces GP = G} = F(”1 ;) and Gh =

Fliy»
k(> 1), whatever we like). Thus this situation corresponds to the pencil
of circles tangent to the imaginary axis at the origin. We have to put
the corresponding operators Ty, on diagonal form. To this end we first
take p = 2 so that we are dealing with Hilbert spaces. (As usual, we
then drop the superscript p in the notation for the spaces.) Then we

have the norms

where we without loss of generality can assume that k£ < 1 (or

91 = 15 e am(),
I = [ AP €™ dm(z).
Introducing the Fourier transform

fo) = / e f(z) dx,

— 0o

then the right hand sides of the previous formulae become
RN 2
c [ IFE s,
c/ IF(2 X /2kdx.

From here it is readily seen that

e ST = F) XD,
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In terms of Moebius transformations thizs corresponds to the fol-
lowing. First it is seen that to f(z) — f())e*"/* there corresponds the

map
a+2 1 1

ar— b=

2a a 2

(It is the correspondence a +— 1/a that accounts for the Fourier trans-
form; as before (see Section 1) the symbol a is used the designate a
generic point of C.) This gives the isomorphism G = Sy (Schrodinger
space). In the same way, to f(z) — fA(A)e’\z/4k there corresponds the
map

a+ 2k 1
2ka o2k

Elimination of a between the two equations yields

a

REMARK 3. Note that in particular this implies that for 6 € (0,1)

lgell%: = /C F(R)2 e dm(z),

where 1/kg = 1—6+6/k. This is the result from [JPR], which we wrote
down already in the Introduction (see also Theorem 2 in Section 2).
From (24) we see now that our question is about the multiplier

1
1+ teQ/k—102/2

Imitating what we have done already in the elliptic case (this Section
infra, we associate, quite generally, with any suitable locally integrable
function Q(A) on the real line R a multiplier transform Pq (it is the
analogue of the previous R,,) defined on the space G? by the formula

Paf()) = Q(\) f(N).

We denote by Pq the same transformation when consider on the
Lebesgue space L,(R). Then we have the following analogue of Propo-
sition 1.
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Proposition 6. The operator Pq is bounded on GP whenever Py is
bounded on LP(R).

PROOF. The proof parallels the proof of Proposition 1. Assuming that
Pq is bounded on LP(R) we obtain

Lirser e an = [~ e ([ pag@pc)
<[ e ([ i) d

=c/c|f(z)|f’e-2y’ dm(z).

Thus Pq is bounded on GP.

Similarly, it is easy to carry over Proposition 2 and from there one
derives the expected analogue of Theorem 1 (in the statement of the
theorem replace everywhere FP and F: by GP and G: respectively),
but according to our above promise we omit the details.

There remains the hyperbolic case. But there is a difficulty hidden
which we have not been able to overcome ...

3. Hyperbolic case. In a model situation the pencil might consist
of lines through a point, say, the origin -the configuration that perhaps
first comes to our mind. So if p = 2 we are in a situation when the
spaces to be interpolated are Schrodinger spaces Sy. The trouble is
that in the general case p # 2 we do not possess a workable analogue of
these spaces; in particular, we know of no counterpart of the Corollary
to Theorem 1 in Section 1.

So let us instead take as model the case of the spaces F? and F(”k’ 0
with £ = secd, | = itanf. The pencil then consists of the circles
through the points 0 and —2 — 2:tan . (It is easy to see that this is
basically the set up of Section 2, Example 3 shifted the amount 2 to
the left.)

It is convenient to introduce, quite generally, the notation H} =
F(”k,,) if k and [ are related by the previous relation k = sec8, ! = itané.
The corresponding circle with center at the point —1 — 7 tan § may be
written Cy. We are going to follow our usual abuses putting H = H,
and also dropping the superscript p if p = 2.
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So we want to interpolate between H? and a fixed space HE. The
first thing is to determine the corresponding diagonalizing map (taking
temporarily p = 2). In the case of H we have § = 0 and the circle Cq
is the unit circle so transforming the space H into a Schrédinger space
So goes as before (in the parabolic case) via the Moebius map

a+2
2a

&

1 1
== 4=
a

5"

a— b=

In the case of H; and the circle Cy we first observe that the parameter
6 has a geometric meaning: it is the angle between this circle and Cs.
Hence the previous map must essentially be composed by a rotation by
an angle 6. This leads to the map

e'%a + 2secl

L
2 e'% secfa a

ar— b =

N =

Elimination between the last two identities, as in the parabolic case,
yields

/_1. 1 _ie_—e_io 1..
b—§s1n0+(b—§)e —-a—+-2-zsm9,
where we have used Euler’s formula e~ * = cos —isin 8. From this we
get the map
(25) f(Z) — f"'(eiO/\) eisin 61%/4 .

(This would correspond to f(A) - f(A) eS/E=1A*/4 ip the parabolic
case; see formula (24).) But, in view of the appearence, of the factor e
in front of the variable A in the second half of (25), the map given by
this formula does not give a simultanous diagonalization of the group
operators { — g¢. To get a bona fide diagonalization we must first
apply a Mellin type transformation to the Fourier transform f( A). But
then we do not have anymore any such simple transfer results as the
above Propositions 1 and 6. Therefore we stop here hoping to be able
to resume this thread on a future occasion. Concluding let us only
remark (as a conjecture!) that perhaps it is the case that the presence
of a hyperbolic pencil does not imply quasi-linearizability.
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4. Concluding remarks.

In this section we consider some left-overs from the previous sec-
tions, also complementing some points in [9]. We begin by some easy
observations on the Orlicz case.

4.1. On Orlicz-Fock spaces.

Recall that, generally speaking, a measurable function f on some
measure space X endowed with a measure p is said to belong to the Or-
licz space L? = L¥(X, 1), where & is an Orlicz function (in particular,
increasing), if

(1) /x 3 (M) du(z) < o0

04

for some number « > 0. It is well-known that L% is a (quasi-)Banach
space with the (quasi-)norm of f defined by

(2) [fllge = infe,

‘where a ranges over all numbers satisfying (1). If @ is convex, we can
drop the affix “quasi” everywhere. If ®(u) = uP, p > 0, then we get
back the Lebesgue space L”.

This suggests (c¢f. Section 1) to introduce in our case the Orlicz-
Fock spaces F(q,’c, ) as the space of entire analytic functions f in C such

that the function |f(z)|e~(klzI*~Re(lz")/2 belongs to L® when X = C
and g = m (BEuclidean measure). Again it is clear that if ®(u) = u?,
p > 0, they reduce to the spaces F("k‘,). Also in the general case they
should have similar properties as the spaces F(q,zyl). The norm of f in
F'(d;:,l) is the induced norm and will be written || f||; ;.4 - (In the special
case k =1, [ = 0 we allow us to drop these indices in the notation.)

We shall limit ourselves to calculating the norm of the correspond-
ing Gauss-Weierstrass functions e,. in one simple case, namely when @
is of the form

B(u)=) ApuP  with 4, >0,
p=1

for simplicity’s sake also taking k=1, 1= 0.
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REMARK 1. More generally we could have allowed functions admitting
an integral representation (Mellin transform):

®(u) = [; A(p)uP dp with A(p) > 0.

Using a formula established in [9, Section 2] for the norm of e, in
the space FP, we then find

eae(2) e 121272\ "
o (L e

o0 2) o121/
=ZAP/C(Iea,C( )‘l; )p dm(z)

p=1
=2 2
(3) - _ exp (B Reac +2|ci )
_ ZA (£> 2 1—|af 1
= P
2773 ar (- JaP)i72
1 Reac? + |c?
e (X (3= jal? ) 1
o or (1= a2/

where we in the last step have introduced the notation

oo

®i(u) = 2 (g)—l ApuP .

We now take account of (2) letting a tend to ||eqc]l¢. Then we end up
with the formula

1 Reac® + |c[2> 1
4 €aclle = exp (-_— —
( ) ” ”Q‘ 2 1_'012 @ll((1_|a|2)1/2)

In particular, we draw the conclusion that e, . € F(di_ ) if and only if
la] < 1. Obviously, a similar result must hold true for gencral ¥ and [
as well.
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4.2. Fock space in the case 0 <p < 1.

Now we return to the case of Lebesgue spaces L? but for a change
take p < 1. (Thus we are leaving the realm of Banach spaces.) Also we
take again k = 1, I = 0. In this situation we have the following obvious
generalizing of a corresponding result in [9, Section 8] for p > 1.1!

Theorem 1. The metaplectic group G = Mp(2,R) acts on the space
F? 0 < p < 1. Indeed, if g € G then we have the following estimate
for the opearator norm of Ty in FP:

, 1
(5) “Ty”p ~ (1 _ Ig0|2)(l/p—1/2)/2 :

PROOF. Let f be in FP. Let us write ||f]|, = ”f“F, for the (quasi-)
norm in F,; we use this notation even for p > 1. Let us further put
ec(z) = eoc(z) = e* (exponential function). In view of Wallstén’s
theorem [17] (atomic decomposition in Fp, 0 < p < 1; generalization of
the corresponding result for Fj in [6, Theorem 8.1]) we can write

f::Z/\L-ﬂze—c-El-l— Wlth Zl/\,{lp<00,
k caliz k

for some sequence of complex numbers {c;}. For ¢ € G we now obtain

Tgf::Zz\L—Tgci

M Tearll;
For each index k we have ([9], Section 3)
Tyec, = €g0,c,/5 5712 g ek /26

In particular, we have

-1/2 70%.-
ITyecll, = llego,euell, 161772 exp ( - Re TE
Bek | el
(1 EpE e
‘(5) P\ 3 187
LT

11 This theorem again was used already in Section 2.
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/2p
:m“l _1/2 e}
( W 16] expk -—Re 5)
p
9

( )_ r |6ll/p -1/2 lel /'2
\

while
”cc‘k |Iz o qum/z

It follows that

I Tgeenllp

" N ATy R
7,515 < 23 lm( ) <z_(2) i 5o < o0,

whence T, f € F,. As

o , 2, 18P _ 1
go==,  1-|g0] ~1""W—7|3-|5,

it likewise follows that inequality {5) is true.
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