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0. Introduction, notations and main results.
0.1. Boundary Harnack Principle.

There is an extensive literature on Boundary Harnack Principle
(BHP). The results are of the following type: let  be a domain in
R™ with a certain geometric property of 92 and let u, v be positive
harmonic functions on 2 vanishing on V N 0Q (V is an open set), then
there exists a constant C = C(Q,V, K) such that

(0.1) Msc, for z,y e KN,

u(y)/v(y)

where K is a compact in V.

For domains with Lipschitz boundary this was proved indepen-
dently by Ancona [A1l] and Wu [W]. These results have been extended
later by Bass and Burdzy [BB] to Holder domains and L-harmonic
functions, where L is a uniformly elliptic operator with bounded coef-
ficients. Here we need a stronger version of BHP similar to the one in
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nontangentially accessible domains (NTA) which is due to Jerison and
Kenig [JK]. Namely they proved a Holder estimate:

u(z)/v(z)
(0.2) —=——= -1 < C(Q,V,K)|z —y|*
u(@)/o(w) (@K~
for z,y € KNQif Q is an NTA domain in R™.
A byproduct of their approach and important ingredient in proving
(0.2) is a fundamental property of harmonic measure in NTA domains:

(0.3) w(B(z,2R)) < Cw(B(z, R)),

where B(z, R) denotes the euclidean ball and z € 9. Inequality (0.3)
is called the doubling condition.

Note that simply connected NTA domains in R? are just quasidiscs
and (0.2), (0.3) are standard. i

We are going to extend these results to a wider class, namely the
class of John domains. We send the reader to [Po] or [NV] for the
detailed account on this class of domains. Also for terminology such as
John constant, etc., see [Po], [NV].

Johnness is a very natural generalization of NTA property. How-
ever (0.3) and (0.2) are false even for simply connected John domains
(i.e. John discs). Here is a simple example:

In this example Q is the complement of three segments meeting at
the origin. Then wq(B;) ~ r™/ (™= and wq(B;) ~r > rr/(m—c)

However, harmonic measure of John discs satisfies a certain dou-
bling condition. One needs to replace euclidean balls by the balls in
internal metric p (= infimum diameters of curves): for Q € 0R, let

B,(Q,r) = {z € Q : there exists 7g,, such that z,Q € 7¢,z,

7.z \ {@,z} C Q, and diamyq,: <r}.
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Using the properties of the Riemann mapping (see [Po]) one can now
prove:

Proposition 1 Let Q be a John disc. Then there ezists Cq < oo such
that for all Q € 002, r > 0,

(0.4) w(f, B,(Q,2r)) < Caw(®, B,(Q,1)).

To formulate results of the first part of our paper let us introduce
the following notion of uniformly John domain.

A domain 2 on the Riemann sphere is called @ uniformly John
domain if for any two points z;,z2 € §Q there exists a curve ¥ = vz, z,
connecting z; to z2 and lying in Q such that

1) for all £ € v, dist (£,09) > c; dist (€, {z1,z2});
ii) diam~y < C; p(z1,22).

In this definition "dist” and ”diam” are understood in the spherical
metric.

John discs are uniformly John domains by the results of Gehring,
Hag and Martio [GHM] and Nakki, J. Viisala [NV]. One can choose
the hyperbolic geodesics to serve as vz, z,.

Our main goal is to extend (0.2) and (0.3) to a broader class of
domains. The class of John domains would be a good candidate if
we replace the spherical metric by the internal metric. The change of
metric is partially justified by the above example and proposition.

But it turns out that (0.2) and (0.3), even with the corresponding
change of metric are generally false. This is shown by the example after
Theorem 3.2. (Our example concerns (0.2) but may be used as well to
disprove (0.3).)

To have the extension of (0.2) and (0.3) one wishes to have a cer-
tain approximate "self- similarity” of the boundary which is given, for
example by uniform Johnness (see Proposition 2).

One can imagine a uniformly John domain as a domain which is
uniformly thick at "every scale” (see Proposition 2 below). We also need
the complement to be uniformly thick in the sense of potential theory.
Here comes the widely used condition of uniformly perfectness of the
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boundary (UP). Let us recall that a set E is called uniformly perfect
with UP constant o > 0 if

cap(B(z,r) N E)>acap(B(z,r)), forall z€E, forall r<diamFE.
Here are some of our results:

Theorem 3.1. Let Q be a uniformly John domain with uniformly per-
fect boundary. Then harmonic measure satisfies the doubling condition
in the sense that (0.4) holds.

Theorem 3.2. Let Q be a uniformly John domain with uniformly
perfect boundary. And let u,v be harmonic functions as in (0.2). Then
for z,y € K we have

u(z)/v(z) 2 V)
w)/o(y) 1| <C(Q,V,K)p(z,y)° .

The above formulation of the result is stated in Section 3 as Coro-
lary 3.3 and it follows immediately from Theorem 3.2.

Neither uniform Johnness nor UP is necessary for (0.4). It is not
difficult to construct the corresponding examples. We do not know
necessary and sufficient conditions neither for (0.4) nor for (0.5). On
the other hand in our dynamical applications we always have the UP
property as a natural feature. Uniform Johnness is also available for a
wide class of holomorphic dynamical systems.

On the other hand, in a certain sense Theorems 3.1, 3.2 are sharp.
At least there is no hope that they hold for an arbitrary John domain.
The next example is an easy modification of the example above. We
are grateful to Juha Heinonen for it -our initial one was more compli-
cated. Domain {2 now is the complement of three segments united with
U(z},z2), where (z2 — z1)/z1 — 0. It is a John domain and it is
not uniformly John. The ball B; has harmonic measure of the order
r1+¢  As to B, it has a “mushroom” in its upper part. The size of this
mushroom is O(r). So the doubling condition (0.4) fails. By similar
considerations the conclusion of Theorem 3.2 also fails for this domain.
The conclusion: Change of metric helps only if we can localize Q in the
sense which we are going to describe.
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The main difficulty of the proofs comes from the “generic” infinite
connectivity of Q. To overcome this, we use an important feature of
uniformly John domains. That is: a geometric localization.

This property is similar to the one proven by P. Jones in [Jo] for
NTA domains and it was used essentially by Jerison and Kenig in [JK]
to prove (0.3). We would like to mention that there is also an ab-
stract theory of BHP (on graphs, Riemann surfaces; see [A2]) which
also suggests the use of localization.

To formulate this property, let {2 be a John domain and Q € 91,
r > 0. We say that Q admits (K, M, N)-localization in @ at the scale
r if there exist John domains {Qf?(r)},ﬂ,,_.,N such that

1) Q45(r) C ©, and John constants of 2§ (r) are bounded by K;
2) UeQy(r) D By(Q,7);

3) diam Qf?(r) < Mr;

4) QL(r)NAY(r) =2, i # .

The domain Q is called John localizable if it is (K, M, N)-localizable
for all @ € 00 and for all r, 0 < r < diam Q with uniform bounds on
K,M and N.

For details on this property we refer to [BV1] and [BV2], where
the following assertion was proved:

Proposition 2. A John domain is uniformly John if and only if it is
John localizable.
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0.2. Applications to holomorphic dynamical systems.

In the second part of the paper we are going to apply our results to
study the harmonic measure on Julia sets of a large class of dynamical
systems.

Let us remind that a generalized polynomial-like map (GPL) is a
triple (f,V,U) where U is a topological disc and V is the finite union
of topological discs with disjoint closures and f: V — U is a branched
(or regular) covering. The limit set (= Julia set) is Jf = 0Ky, where
K; = N0 f7™({U) is the filled Julia set. The dynamics is called

semihyperbolic if
1) there are no parabolic points on Jy;

2) all critical points on Jy are separated from their orbit:
dist (¢, orb(c)) > A >0, for all c€ Crit(f) N Jy.

The reader may find the detailed account on semihyperbolicity e.g. in
[CTY], [Ma], [BV1], [BV2]. What we need is the important result of
[CJY] which we formulate in a form convenient for us:

Theorem A ([CJY]). For a generalized polynomial-like system (f,V,U),
the domain Ax(f) := C\ Ky) is a John domain if f is semihyperbolic.

Another important fact is a recent result by Mafié and da Rocha

[MR], Hinkkanen [H] and Eremenko [E].

Theorem B. Let (f,V,U) be a generalized polynomial-like map. Then
J¢ is uniformly perfect.

These results were proven in the context of rational dynamics but
the proofs can be carried over without major modifications. Or, one
can use the fact that a GPL is quasiconformally (qc) conjugated to
a polynomial. Johnness and the UP property are quasiconformally
invariant.

We may ask when a GPL (f,U, V) gives rise to a uniformly John
Aoo(f). For general semihyperbolic GPL this is not true (see [BV2)).
On the other hand the uniform Johnness of Ao (f) holds for the class
of so called separated semihyperbolic GPL. We are going to recall this
definition from [BV2].
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Let us remind that Ky denotes the filled Julia set of f. For z € K
we denote by K, the component of connectivity of Ky containing z.
We split the critical points in K in two parts:

Ci = {c1 € Ky : ¢ is critical point of f, K., = {c1}},
Cy = {c3 € Ky : ¢ is critical point of f, K, # {c2}}.

After this splitting we have:

Definition 1. A semihyperbolic GPL (f,U,V) is called separated if
there 13 § > 0 such that

dist (orb(c1), K¢,) > 6,

for anyc; € Cy and c3 € C5.

The following result from [BV2] shows that uniformly John do-
mains appear naturally in dynamics:

Theorem C ([BV2)]). _
1. If J5 is is totally disconnected, then the domain Axo(f) := C\ Ky
i3 a uniformly John domain if and only if Ax(f) i3 a John domain.

2. Suppose that the generalized polynomial-like system (f,V,U) is
semihyperbolic. The domain A (f) is uniformly John if and only if f
1s separated semihyperbolic.

So uniformly John domains can be met rather often. In the second
part of this paper we are going to use Theorem 3.2 to prove a certain
rigidity result of the harmonic measure on Julia sets of separated semi-
hyperbolic GPL. To explain this result let us recall that a GPL (¢,U, V)
is called mazimal if wy = my, where w, is the harmonic measure on J,
e valuated at infinity and mgy denotes the measure of maximal entropy.
We can now recall from [BPV]:

Definition 2. The GPL (f,U,V) is called conformally mazimal if f
i3 conformally conjugated in a neighborhhod of J¢ to ¢« GPL (g,U,V)
which is mazimal .

It is clear that for conformal maximality of (f, U, V) it is necessary
to have wy = my. By rigidity of harmonic measure, we understand the
sufficiency of this condition. Our result in this direction is:
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Theorem 5.5. Let (f,V,U) be a generalized polynomial-like map which
18 separated semihyperbolic. Then, (f,U,V) is conformally mazimal if
and only if harmonic measure is absolutely continuous with respect to
measure of mazimal entropy.

In particular if, in addition (f,V,U) is polynomial-like in the sense
of Douady and Hubbard then f is conformally equivalent to a polyno-
mial map if and only if harmonic measure is absolutely continuous with
respect to measure of mazimal entropy.

Note that infinite connectivity of A (f) is a main difficulty again.
Particular cases of this result can be found in [LyV] (hyperbolic case),
[BPV] (Jy is a Cantor set). Our result is related to results of Lopes
[Lo] and Maifie, Da Rocha [MR].

Commenting again the first part let us mention that throughout
it we play with ideas virtually present in [Al], [W], [JK]. This is why
Section 1 unites the results which have ezactly the same proofs as cor-
responding results of [JK]. We give only the statements and references.
Unfortunately two key results of [JK] cannot be imitated in our set-
ting. The reason is that for NTA domains internal metric is equivalent
to euclidean and for uniformly John domains this is no longer the case.
Section 2 contains the proof of these stubborn results. In Section 3,
Theorems 3.1 and 3.2 are proved.

In the second part of the paper we consider applications in dynam-
ics. In Section 4 we apply Theorem 3.2 to construct a lifting of the
harmonic measure to a one sided shift space.

In Section 5 we use this shift model of the harmonic measure to
prove Theorem 5.5 .

Commenting on the assumptions of Theorem 5.5, we believe that
the result is true for general f (without any condition of separated
semihyperbolicity.)

The results of this article were partially announced in [BV3].

1. Estimates of harmonic measure and Green’s function in
John domains.

Throughout this section domains are John domains with John con-
stants at most K and having uniformly perfect boundary with UP con-
stant at least .
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Lemma 1.1. There ezists § > 0 and ro > 0 such that for all Q € 0N
and r < rg; and every positive harmonic function u in , if u vanishes
continuously on B(Q,r) N O, then there ezists M = M(a) such that
for z€ QN B(Q,r)

z—Q\?
(1.1) U(Z)SM(' r I) eenrr\%%%QT)u

(€).

The proof is exactly the same as for [JK, Lemma 4.1].

Lemma 1.2. Let 2 be a John domain with John center A and diameter
D. Let Q € 0, d > 0 and Q' C Q be a domain with uniformly perfect
O such that Q\ Q' C B(Q,d/100). If u is positive harmonic in Q'
and u vanishes continuously on B(Q,d) N 0, then

(1.2) u(z) < M'u(A)
for all z € B(Q,d/2) N QY. Here M' = M'(d/D, K, a).

The proof is exactly the same as for [JK, Lemma 4.4]. See also
Carleson’s article [C, p. 398].

In what follows §(z) = dist(z,09) and G(-,P) denotes Green’s
function for the domain Q.

Lemma 1.3. Let Q be a John domain. Let @ € 0Q. Then there
ezists M = M(K,a) such that for everyr > 0, z € B(Q,r/2) and
P € Q\ B(z,6(2)/2)

G(z,P) < M w(B,(Q,r),P).

The proof is exactly the same as for [JK, (4.3)].

Lemma 1.4, Let (2 be a John domain with John center A and diameter
D. Letd > 0,Q,Q"' € 09, P € 2\ (B,(Q,2d)UB(Q’',2d)), |[P—A| > d.
Let Q' be a subdomain of Q with uniformly perfect Q' and such that
Q\ Q' c B(Q',d/100). Then there ezists M' = M'(D/d,K,a) < oo
such that:

Ga(A,P) < M'-w(Q,B,(Q,d),P).
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The independence of P is important here.

REMARK 1.5. The statement of the lemma stays true if we replace
“B,"” by “B” everywhere.

2. Estimates of harmonic measure and Green’s functions in
uniformly John domains.

We first prove some assertions concerning arbitrary John domains.
We have not been able to follow the lines of [JK], so the proofs are
given. As before K is a John constant and « > 0 is a UP constant of

oq.

Lemma 2.1. Let Q be a John domain with John center A and diameter
D. Letd > 0,Q,Q' € 99, P € Q\(B,(Q,20d)UB(Q’,20d)), |[P—A| >
10d. Let Q' be a subdomain in Q with uniformly perfect O and such
that Q\Q' C B(Q',d/100). Then there ezists M' = M'(D/d,K,a) < co
independent of P such that:

w(Q', B,(Q,d),P) < M'Ga:(A, P).
PROOF. We consider only the case 2 = Q'. The general case follows
exactly the same lines but it is more tedious. Let B(Q) = B(Q,3d/2),
B(P) = B(P,d/4). Lemma 1.2 implies that (consider Q\B(P, §(P)/4)):
(2.1) G(z,P) < M;G(A,P), z € Q\ B(P).
Points P and @ are 20 d-far apart in internal metric, but may not be
even 2d-far apart in euclidean metric. Still, if they are far enough in
euclidean sense, namely, if
(2.2) BQ)NB(P) =2,
we carry out the proof of [JK, (4.6)] as follows. Let ¢ be a C*°-function

supported by B(Q) such that ¢ = 1 exactly on B(Q,d). Then using
(2.1) and the estimate |Ap| < C - d~2 we get

w(B(Q,d), P) < / o (-, P) = |(p, AG(-, P))|



BouNDARY HARNACK PrincipLe 309

=\ / G(z, P) Ay dA(z)'
< M'G(A, P) /B PRaZO
<M'G(A,P),

which is even more than we wanted to prove: the left part is harmonic
measure of B(Q,d) and B(Q,d) D B,(Q,d).
Now assume the negation of (2.2):

(2.3) B(Q)NB(P)# @.

We cannot modify the proof by modifying ¢ above. If we try p =1
on B,(Q,d) and with support in B,(Q,3d/2) (which would be appro-
priate) we cannot claim that |Ag| ~ d~2. This might not be true.

Given (2.3) let O(P) denote the component of 2 N B(P,5d) which
contains P. Let I'(P) be the part of OO(P) which is not in 0Q; I'(P)
consists of parts of the circle 9B(P, 5d) which separate P from A. By
our assumptions
(2.4) O(P)N By(Q,d) = 2.

Let P' denote an arbitrary point on I'(P). By (2.3)
B(P'):= B(P',d/4)NnB(Q)=2.
Thus, the first part of the proof shows that
(2.5) w(By(Q,d), P') < M' G(4, P').
Now the minimum principle is applicable to the harmonic function

M G(sz) - w(BP(Q,d)vZ)’ z € O(P) .

It is non-negative on OO(P) by (2.4) and (2.5). Evaluating it at P €
O(P) we finish the proof of Lemma 2.1.

REMARK 2.2. The statement of the lemma holds if we replace every-
where “B,” by “B”.
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Lemma 2.3. Let Q be a John domain with center A and diameter
D. Let 0 < d < D/10, Q € Q, |Q — A| > 2d. Let Q; be a John
domain inside Q2 N B,(Q,d/4) with the same John and UP constants.
We assume that

dist,(Q, 2N OY) 2 ¢ d.

Let u, v be two positive harmonic functions in Q continuous in §2 and

vanishing on B(Q,d) N ON. Let Q} := Q1 N B,(Q,c1d/(4K)). We put

u . u M

M = max -, m = min — , b=—-1,
Q v Q v m
u . u M,

M; = max — m; = min — b =——-1.
Qv Qv m)

There ezists g € (0,1), ¢ = ¢(d/D,K,a,c1), such that
4 < qf.

PROOF. Put T' = (09) \ B(Q,d). Without loss of generality we may
assume that

(2.6) o) Sul@) <(1+v(9), el

We are going to prove that for all £ € Q] at once: either

2.7 v(€) < u(f) < (1+gf)v(f),
or
(2.8) (1+@1 = g)0)v(§) <u(€) < (1+£)v(E).

Any of these two relationships proves the lemma.
The left inequality (2.7) and the right one (2.8) are clear from (2.6)
as

u=v=0 on (3Q)NB(Q,d) = () \T.

Let us denote

r={eer: u(5)5(1+§)u(5)}, I, =T\T;.
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We put
v,—(z):/r.v({)dw(ﬂ,f,z), 1=1,2.

We first consider the case
(2.9) v1(A4) > vy(4).

Starting from (2.9) we will prove the right inequality (2.7). The nega-
tion of (2.9) leads to the left inequality (2.8).

First step. We are going to construct a special disc on which (2.9) is
nearly satisfied.

Let A; denote the John center of Q;. As by assumption diam Q; >
c1d we get dist (4;1,09Q1) > ¢1d/(2K). Let us consider a John arc in
Q2 connecting A and A;. It intersects 89 in, say, A;. We have |A; —
A;| > dist (A;,09) > c1d/(2K) and John property implies §(Az) :=
dist(A2,0Q) > c1d/(2K?). Put

. c1d cd
P “mm{u{?’ 10 }
and consider B(A;, ). By Harnack’s inequality and (2.9)
(2.10) v1(n) = vva(n), for all n € B(Az,8),

where 0 < v = v(d/D, K, ¢;).
Second step. Let us prove that

(2.11) u(n) < (1 +4¢'€v(n), forall n € B(A,8),

for a certain ¢' € (0,1), ¢' = ¢'(d/D, K, c;).
Apply Poisson formula to the function u in :

u(n) = /F u(€) dul( @, €, )

-

5(1+g)/rlv(g)+---+(1+£)/nv(§)..-

= (1 + g) v1(n) + (1 + €) va(n).
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Now (v1 + v2)/v =1 and v; > yv2 on B(A2,[). Thus (2.11) follows.
If (2.11) were true in Q) (:= 2,NB,(Q, c1d/4)) we would be already
done.
To push 7 in (2.11) from B(A;,f) to Q] we need several steps
more. Let O4i5¢ Q1 = (021) N Q.

Third step.
(2.12) v(n) 2v'v(4), € B(4B),
(2.13) o) < M'o(4), nef.

Here 0 < v' = 4'(d/D,K,c;), M' = M'(d/D,K,a) < oo. First in-
equality is just Harnack’s inequality. The second one follows by Lemma
1.2.

Forth step. Let {z;}i’il_ be a maximal /2-net on 045t £2; in the sense
of metric p; = pq, on ;. Clearly

(2.14) N =N(K,c;,d) < co.

Let B, denote B,,(zi,5/2).
We apply Lemmas 2.1 and 1.4 to Q; and n € Q] playing the role
of P, z; playing the role of Q. Then

(215) "-’(QI,B;UU) = Gﬂl(Al,W)a n e Q’1 3
(216) W(QI,B(A2HB)’7]) = Gﬂl(Alan)v n e Q’l .

The constants implicitly involved here depend only on d/D, K,a and
C.

Fifth step. We apply Poisson formula to u, (as in the second step) but
now in §;. For n € Q)(= Q1 N B,(Q, c1d/(4K))).
wn) = [ u(E)du(@, &)
Ogist 21

(2.17)
= / u(€) dw(y,€,7) + f u() dw(Q21,¢,m)

B(A2,8)noM (94ist 21\ B(A2,8)

<+q0) [ @+ +040 [ w©) -
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=(1+¢'0v'(n) + (1 + ) v*(n).

We are going to show that there exists 0 < v = 7"(d/D, K, a, ¢;) such
that

(2.18) vl(n) > 7" v (n), forall n € Q] .

To do this we proceed as follows. By (2.13)

< [ o)
< ZN: [

N
<M v(A)Zw(Ql,B;‘,n).

i=1

Now (2.14), (2.15) and (2.16) imply that for M" = M"(d/D, K, a,c;1) <
00

(2.19) v2(n) < M" v(A)w(, B(A2,8),7).

On other hand by (2.12)

o(n) = / o(E)dw(- ) > 7' v(A) (@, B(As, 8),17).
B(Az,ﬂ)ﬁadistﬂl

Together with (2.19) this gives (2.18).
Taking into account that (v! + v?)/v = 1 and (2.17), (2.18) we
obtain the required inequality

u(n) < (1+¢f)v(n), neq,

which is the right inequality in (2.7).
Completely similarly the negation of (2.9) leads to the proof of the
left part of (2.8). Lemma 2.3 is completed.

From now on {2 is uniformly John, that is, by Proposition 2 it is
localizable. Reminding that Q% (r), £ = 1,k(Q), are local John domains
with properties 1)-4) (see the introduction) we denote their John centers




314 Z. BALOGH AND A. VOLBERG

by A‘Q(r), and let K be their John constant. By Gg we denote Green’s
function with pole at A.

Clearly all aﬂg(r) are uniformly perfect (as €2 was) and we denote
by a, a > 0, the least UP constant for them.

Lemma 2.4. Let Q be untformly John with center A and let 0 < r <
diam 2, Q € 0. Then there ezists M = M(K,a) such that

k(Q)

w(Q, B,(Q,7/2),A) <M ) Ga(AH(r)).
=1

PROOF. We may put diamQ = 1. Let k£ = k(Q). Fix r > 0 and let
I' = B(Q,r) N 9N. Let {Q1,...,Qs} be a maximal r-net of ' in the
metric p. Clearly S = S(K) < co because 2 is a John domain.

In what follows Cy,C4,... are large constants depending on K and
a. Put Ty ={zeT: p(Q,2) <r/2}, T ={z€T: p(Q,z) > Cir}.
Let {Q1,...,Q.} be a subnet, ¢ < S, consisting of points Q; € .

Let us consider the finite family F = {Q§),(Csr)}, ¢ = 1,C ¢ =
1, k(Q:). Let Q be their union. We put B = B(Q,r) N Q. We have
to delete somehow this set because Green’s function on it cannot be

controlled by >, GQ(Atq(T)).
First step. Is to prove that

(220) z€ B(Q,r) and p(z,Q) >2Cir implies z€B.

In fact, let O be a component of B(Q,r) N Q) containing z and let
P € 0QN00. As p(P, z) < 2r we see that p(P,Q) > Cyr, thatis P € I.
Let @Q; be a p-closest to P from our net. Then p(z,Q;) < r +2r = 3r
and z € 2, (3r). Thus z € Q and (2.20) is proved.

Second step. Let

=0, O =QO\UQ€?I(C'2r)ﬂB(Q,r), ey
£

Q=% \[J0b,_ (Cr)nBQ,r), ..., Q2=0Q\B.
4

Denote by G(z),G1(z),...,Gk(2),...,G(z) Green’s functions of cor-
responding domains with pole at A. They are ordered:

(2.21) Ge(z) < -+ < Ga(2) < Gi(2) < G(z).
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Harmonic functions wi(2z) = w(Q, Ty, z) = w(Qk,Te N O, z) are or-
dered in the same way

we(z) £+ Swi(z) S w(z).
Let us prove first that
k
(2.22) we(A) < M(K,a) Y G(A§(2r)).
=1

To this end note that B(Q,r) N C B,(Q,2C;r). This is just another
way to state (2.20). Recall that B,(Q,2C;r) is covered by

3

U 96(2Mo Cl 1")

=1
and apply Lemma 1.2 to G(z) in each of this domains separately. Then

' k
(2.23) z€ B(Q,r) N Q, implies G(z) < M(K, ) Y G(AH(2My Cir)).
=1

We may now go along the lines of [JK, (4.6)]. In fact, (2.21) and
Harnack’s inequality imply

k
(2.24) Ge(z) MY G(AQ(r)), z€B(Qr)NQ.
=1

Consider a C'*°-function ¢ supported by B(Q,r) and such that ¢ =1
exactly on B(Q,r/2). Then

we(4) = (%, B,(Q, ), 4)
< (2%, B(Q, 3),4)
< [edue.n)
= l(p, G2)]

- ] / Ag Go(z, A) dA(2)
B(Q,r)
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k
<MY G(AG(r))r™? / dA(z)

=1 B er

k
=M G(45(r)).

=1
And (2.22) is proved. The key estimate was(2.23).
REMARK. We cannot hope to have (2.23) with  instead of §2,

Just because 2 N B(Q,r) may contain the points which
tremely far from @ in p-metric. For such points there is no
estimate G(z) by G(A‘Q(Cr) if 7 is small. This is the main ¢
and the main difference from NTA domains. This is why we
the procedure of excluding such points and this is why we nee

Third step.
(2.25) wi—-1(A4) < M(K,a)wr(A).

We denote u; = wg, u; = wg—1, thus having u; < uz. Denote t
matrix

k k(¢

{wm 1) = {wi(QF,(Car) N OB(Q,r), Ah,(Car))}

As C; grows the centers Af? , (Car) are getting more and more

from 0B(Q,r). In particular, the entries of this matrix can be

as small as we wish: Cj rules that. To choose appropriate C
notice that

(2.26) &€ € dB(Q,r)NQS, (Cor) implies wu2(€) < Cauz(AS, (
Qk Q

This is by Lemma 1.2 applied to Qék (r) and d ~ Car. Cons
depends on John and UP constants of Qék(Cﬂ‘), that is inde
of C;. We choose C; so large that ||[(I — CaU)7!|| < 2.

To compare uz(A§, (Cor)) and ui(A§, (Cor)) we write d
Poisson formula for us in Qf:

(4, (Car)) = us(44, (Cor) + [ u(€) duoi (€, AL,

Qp 1NN
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We use (2.26) and the choice of U to conclude
(2.27) u2(4§, (Car)) < 2u; (45, (Car)).

Put

1€ <G, 100y,
o' = (U @) N, 0" = (U2, (€)1 %=1,
¢ ¢

T' = 60’ ﬂ Qk—l y T” - 60" n Qk—l .
Clearly

' dist (T",Qx) > Cir,
(2.28) ) 1
{ C7 r < dist (T", Qk) < dist p(T", Qk) < 755 Ca-
Let {z;}7_, be a maximal Cj'r-net of T in the metric of pos. Clearly
n = n(K,C;) < co. Put B; = B,_,(zj,Cyr). Poisson formula for u;
in O' gives that if £ € T" then

uz(€) = /T uz(z) dwor (2, €)

221:/3

(2.29) < Cs ) uy(4f,(Car)) > woi(B;,€)
£ 1
<203y wi(4g,(Car) ) wor(B),€).
£ 1

We used (2.26), (2.27) and Lemma 1.2 with d ~ C,r. Let af be a point
of intersection of T" with the John arc connecting A, (Csr) with Q.

Let S denote a disc from the family { B;} containing af, and §¢ denote
B(a},d(ak)/2). Notice that

8(ad) > C(K)Chr > 10C) r
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if C} is large enough in comparison to C4. In particular S{ c S%.
Clearly (using the notations Af := A§, (Cqr)) if £ € T", then

(@) = [ ) doornn, (2,6)
(2:30) > C(K) Y ui(af) worna, (5%, €)
¢

> C(K,C2/C3) Y ui(Af)worna, (55, €) -
¢
Now we apply Lemmas 1.4 and 2.1 to the domain O’ and the fact that
~ Cyr to obtain '
wo'(BJ’ E) < C(Cé/cg, Ka a)wO'(Bta E) )

for all £ € T", and for all s, t.
Thus, if £ € T" then

(2.31) uz(€) < C(C3/C3, K,a)n Y ui(Af)wor (5%, ).
£

If we could prove that
(2.32) wo(55,€) < 2worne, (55,6), €T,
then (2.30)-(2.31)-(2.32) combined would imply

uz(€) < C(C2/Cy, K, a)ui(€), if €eT".

Applying this and the maximum principle to the component of Q \ T
which contains A we would get (2.25).

So we are left to prove (2.32).

Let us put

’Ll)2(€) =LUOI(S'£,E), wl(‘f) =w0'ﬂnk(‘§f:a€)'

Then w; < wy. To prove the inverse inequality let us consider both
functions in O' N Qi and let v = O' N (8(O' N Q)). From the con-
struction we conclude that vy C 0B(Q,r) and

dist,,, (v, Qk) < 2r.
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Clearly
(2.33) w2(€) < wi(é) +worna, (7x,§)m,
where m = max{w,(z) : z € y&}.

Introduce v(z) = w(0', B,,,(Qk, C(K)Cjr),2). On v, we have by

a-uniform perfectness that if z € 4
v(z) 27 2 yworna, (Tk, 2),

where v = y(a) > 0. On the rest of (O’ N ) both functions vanish.
Thus _

(2.34) £E€O'NQ implies v(¢) > ywona, (7k,€)-

Applying Lemmas 1.4 and 2.1 to O' and the fact that d ~ Cyr and
taking into account that the radius of S} is at least C(K)Chr we get
that if £ € T", then

v(€) < M'(Cy/CY, K, a)wor (S, €)
= M'(Cy/Cy, K, a)wa(£).

(2.35)
Uniting (2.33)-(2.35) we obtain that if £ € T", then

wa(€) Swi() +77" M'(C3/Cy, K, a)mwa(€).
By an obvious extremal length estimate

m = max{wz(z) : z € 1&}

can be made as small as we wish by taking C; very large. We keep the
ratio C;/C; bounded as we make Cj so large that

my ' M'(Cy/CY K, a) < -;— .

Then, (2.32) follows and the lemma is completed.
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3. Doubling condition and BHP for uniformly.
3.1. John domains.

As always p denotes the internal metric.

Theorem 3.1. Let  be a uniformly John domain with constant K
and center A, and let N be uniformly perfect with constant a. Then
there exists M = M(K,a) such that

w(S, B,(Q,2r), A) < M(K, a)w(, B,(Q,r), A).

ProoF. This follows from Lemma 2.4 if we apply the classical Har-
nack inequality to Gq(z) := Ga(z, A) for passing from GQ(A6(4T)) to
GQ(A&(ZT)), £ =1,...,k(Q). We just need to apply Lemma 1.3 to
finish the estimate.

Recall that in the introduction we showed that it was essential
to replace euclidean balls by B,. The second essential thing was to
consider uniformly John property (equivalent to John localizability).
The examples given in the introduction show that for general John
domains the doubling property in p-metric (and in euclidian metric as
well) fails to be true.

Theorem 3.2. Let Q be a uniformly John domain with constant K and
let O be uniformly perfect with constant a. Let Q € 92, R > 0, and
let u,v be two positive harmonic functions in §2 vanishing continuously
on B(Q,4R)NON. Then there ezist M = M(K,a) ande =e(K,a) >0
such that

u(€)/v(£) (&m)\* u(z)/v(z)
u(n)/v(n) -1fsm (p—R"") £ yEB(Q3R) (lm +1),

for all §,n € B(Q, R).

PRrRoOOF. We are going to use Proposition 2. from the introduction and
Lemma 2.3.

Let Q1 € 99 be a closest point to £. Then @ € B(Q,2R). Let
r' = |Q1 — €. If p(&,n) < /2, put r = 2’5 if p(€,n) > r'/2, put
r =4 p(¢,n). Consider the local John domain Q; := Qél(r) containing
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€,m; £€1,k(Q1). There exists M = M(K) (this is exactly M from (3)
in the introduction) such that diam Q; < Mr, thatis Q; C B,(Q1, Mr).
Choose a local John domain 2, := Qf?l(Mzr) containing {2;. Again,
diam Q, < M?3r, that is Q; C B,(Q1, M?r). Choose 3 := Qf-h(M"r)

containing Q;, etc. We stop when we choose 1, such that
n =max{k: M**1r <R},

that is
5 Llog(R/r)
2 logM

Now we are left to apply Lemma 2.3 n —1 times to pairs of nested John
domains 2, D Q-1 D -+ D QO D Q. For example, considering the
pair Qr O Qx_; we apply the lemma with M2¥~2r < D < M2y,
d = M?*3r ¢, = 1/M. If we denote by £; the quantity

rGRON

e w@f(ny

we obtain
ek—Z < Q(d/D,K»ascl)ek = q(Mva)ek aqquadq = Q(M,Ol) € (0,1)

Finally
el S qn/2—l Zn ’

which results in the estimate

“OPO y (r

€ u(z)v(z)
eme, u(n)/v(n) E) z,,,eIB?‘é‘,aR) (lu(y)/v(y) + 1) '

If r was chosen to be 4 p(£,n) this is what we want. Otherwise p(€,7n) <
r/4 = |Q1 — £|/2 = dist(€,000)/2 and we apply the usual Harnack’s
inequality in the disc B(¢,3|Q; — £|/4) lying entirely in ©;. Then

w(@/v() | < o P& u(z)/v(z)

umfo(n) 1= 7 1 Besiaem | u(y)/o(y)

)

where C is absolute.
Combining two inequalities above we finish the proof in this case
too.
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Corollary 3.3. Let Q be a domain containing co. Let U be an open
set containing C\Q and u,v be two continuous functions in U; positive,
harmonic in U NQ and vanishing on C\ Q. Suppose also that 2 is uni-
formly John with constant K and 0N is uniformly perfect with constant
a. Then if C i3 a compact subset of U we have for all {,n € C that

u(§)/v(€) _ . .
(3.1) o)~ Y S MG K@) (e ),

where e = ¢(C,K,a) > 0.

4. Generalized polynomial-like maps. Geometric coding
tree. Shift model for harmonic measure.

Throughout this section (f,V,U) is a generalized polynomial-like
system (see the introduction), J = Js. Let us remind an important
notion from [PS]. One constructs the geometric coding tree as follows.
Let zo € U\ J. Let 2!, ..., z% be its preimages. Let v* be curves joining
zgto 27, j=1,...,d, such that

d
orb(c) N U v =0
i=1

for any ¢ € Crit (f).
Let © = {1,...,d}N be the one sided shift space with o denoting
the shift to the left, and py be the standard metric on L:

PZ(aa ﬁ) = e—k(a’ﬁ) )

where k(a, B) is the least integer n for which a, # fB,. For each se-
quence a we put v!(a) = y*'. Suppose that for every m, 1 <m < n
and all @ € 3 the curves y™(a) : [0,1] = U are already defined in such
a way that f(77()) = 7" (#(a)) and 7™(a)(0) = 7™~ (a)(1). De-
fine y"*1(a) by taking respective preimages of y*(a(a)). Put z,(a) =
v™*(a)(1). The graph T = T(zp,7%,...,7%) with vertices 29, z,() and
edges v"(a) is called a geometric coding tree with root at zy. Given
a € I, the subgraph composed by zg, z,(a),¥"(a) is called a-branch
and is denoted by b(a). The branch b(«) is called strongly convergent
if {y™*(a)} converges to a point as n — oo.
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It is easily seen from [CJY, Theorem 2.1} or from [BV1], [BV2]
that the following simple proposition holds

Lemma 4.1. Let f be semihyperbolic, then there ezist C; < o0, 0 <
6, < 1, such that

(4.1) diam+y"(a) < C, 67, a€X.

In particular each b(a) strongly converges to a point of J. (For a
general f strong convergence of b(a) holds for all a except a set of zero
Hausdorff dimension in (X, pg).) Let 7(a) = lim zn(a) be a point of
convergence of b(a). Let ro(a) := |zp(a) — w(a)|.

Lemma 4.2. Let f be semihyperbolic. Then
(42)  #{z(B): BE X, |zn(B) — m(a)l < krn(a)} < C(k, f),
for any a € ¥ and any n.

PROOF. Put z = m(a). Choose Mj in such a way that

CioM ¢

(4.3) 1-6, < 5 s

where ¢ is from [CJY, Theorem 2.1] (Theorem B of [BV1], [BV2]).
Denote B = o™ Mo(q). Then 7(B) = f*"Mo(z). Let br(a) =

Uik7'(@). Using (4.3) we have that diambay, (8) < C18M° /(1 - 6,) <

€/2. Therefore bp,(8) C Uy := B(f"~Me(z),e/2). Denote by Wn_n,

the component of f~(»=Mo)(B(fn~Ms(z), ¢/2)) which contains z. We

conclude that b,(a) C Wh_p,, thus z,(a) € Wn_um,, and so

diam W, _p, > ra(a).

Also f"~Mo : W, _p, — Up is a branched covering of degree at most
D (see [CJY, Theorem 2.1]) and the same is true with 2Uj if we replace
Wo—m, by a corresponding component of f~(*~Mo)(2U,). Applying
Lemma C from [BV1], [BV2] we see that W,_p, is 7-thick at z, that
is Wa—m, D B(z, T ra(a)).

Our purpose now is to enlarge W, _ps, to the size of B(z, krp(a)).
To do this consider U; = B(f*~Me—M(z),¢/2) for a certain M to be
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chosen later. Let U; be a component of f~(Up) containing f™ Mo~ M(z)
Denote by Wy am,—m the component of f~("~Me=M)({J,) which contains
z. We have the covering f"~Me=M . W, _» _»r — U; which sends
Wyn_m, to Uz. This is the covering of degree at most D (see [CJY,
Theorem 2.1]) and the same is true for 2U; if W, _as,—u is replaced by
a corresponding component of f~(*~Mo=M)(27/,). Applying Lemma C
from [BV1], [BV2] or using [HR] we see that with constants independent

of n we have
diamW,_ap,—ym  diamU;

diam Wo_pr,  diamU; |

But from [CJY, Theorem 2.1] it follows that we can make diam U; as
small as we wish by choosing M large. Since Wy_pr—ar is 7-thick at «
given k we can choose M = M(k, f) so large that

B(x,krn(a)) C Wn—Mo—M .

The degree of the map fr—Mo—M . Wa—m,—m —> Ui is bounded by D
independent of n. So

#{z.(B) : za(B) € B(z,krn(a)}
< D#{zm+m,(B) : zm+m,(B) € Ur}
< DdMMo = C(k, §).

Now we are in a position to prove

Theorem 4.3. Let f be semihyperbolic. Then w : ¥ — J has the
following properties:

1) = 1s Holder continuous,
2) = i3 onto,
3) #{r~'(2)} < K(f) for anyz € J.

PRrooOF. Hoélder continuity is obvious from Lemma 4.1. Also 3) follows
immediately from Lemma 4.2. “Onto” part is also easy.

One just applies the criterion of accessibility obtained by Przytycki
in [P]. Or one can proceed as follows. Given Q € J let z,(x)(ax) = Q.
We may assume that o — a in . By Lemma 4.1 lzn(k)(ak)—w(ak)l <
€679, Thus |Q — n(a)| < 1Q — zn(@r)] + lzngm(ar) — n(ar)| +
[r(ax) — 7(a)] — 0, when £k — oo. So @ = m(a) and the proof is
completed.
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REMARK. In fact, more is true. If we assume that f is separated
semihyperbolic we can claim that the branches b(a) approximate the
endpoint m(a) = Q by exhausting all the prime ends with impression

Q.

PROOF. To see this we are going to prove that for any local domain
’Q(r) there is a point z,(a) € Qb(r) Because of the qc conjugacy it
is enough to prove this for polynomials.

Suppose the contrary: there exists a local domain, say Qéz(r) free
from preimages z,(a). Consider the function u, which is harmonic on
C\ Ky and such that u(z) > 0if z - Ky, z € C\ Qg(r) and u(z) - 1
if z > Ky, z € Qg(r). We define a sequence of functions (un)n by the
formula: )

un(z) = D —u(y),
yef~"z
where d is the degree of the polynomial f.

It is easy to see that u, are harmonic in C \ K. Furthermore if
z # 00, un(z) > 0. On the other hand, since oo is superattracting
fixed point we have un(c0) = u(oc0) > 0.

This observation leads to a contradiction proving the assertion.

Lemma 4.4. If f i3 semihyperbolic then

dist (zn(2),J)

@

where constants depend only on f.

This is another standard application of [CJY, Theorem 2.1] and
Lemma C of [BV1], [BV2] (see also [HR]).

Let us now consider (f, V,U), @ = C\ Ky. Our main assumption is
that f is separated semihyperbolic (see the introduction for definitions).

Then Theorem C claims that Q is uniformly John. We are going
to apply Corollary 3.3 to

u=Gof, v=G_G,

where G is Green’s function of  with pole at co. Immediately we
obtain
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Theorem 4.5. In the setting above for each a € ¥ there exists the
limit

(4.4) o) = lim —log %W

and moreover ¢ 1s a Holder continuous function on (I, px).

Let h, denote the entropy of the invariant measure v on X (see
e.g. [Wa]). Applying Sinai-Bowen-Ruelle thermodynamical formalism
we construct the measure p as in

Theorem D. Let ¢ be a Holder continuous function on (Z,0). Then
there ezists the limit (independent of § € X)

(4.5) P = P(p,0)= lim% log ( Z En(a)) )
B

aota=

where En(a) = exp(p(a) + ¢(oca) + -+ + ¢(c™'a)). Furthermore,
there ezists an invariant, ergodic probability measure p on ¥ such that

forany B e X

—ap _ #{a: a1 =B1,...,an = fBn} —nP
@O G S @ reeB) S

The measure p i3 unique with this property and it is equilibrium mea-
sure for ¢ which means that u mazimizes the functional b, + [ dv.
Moreover,we have:

hy + / pdu=P.
Definition. Measure p i3 called Gibbs measure with potential .

Theorem E. If ¢,v are two Holder continuous function on ), then
their Gibbs measures are either singular or the homologous equation

Yyoo—y=p—¢—P,+ Py
has a solution v among Holder continuous functions.

See [Bo] for Theorems D, E. In what follows ¢ is the function
constructed in Theorem 4.5.
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Lemma 4.6. P(p,0) <0.

PROOF. Boundary Harnack principle of Corollary 3.3 implies more
than the existence of the limit in (4.5). Actually

G(zn(a))
G(f(zn(e)))

uniformly in « and n. In particular

Ea"a:ﬂ E"(a) =1
Yonazp Glzn(a)) ~ 7

Now we apply Lemma 1.3 (even with B, replaced by B):

(4.8) p(a) —log <Cq",

G(zn(a)) £ M(K,a)w(B(zn(a),4rp(a))).

Denote Bp,o = B(za(a),47rn(a)). Discs {Bnalaey form the cover-
ing of J. Lemma 4.2 implies readily that this covering has a finite
multiplicity independent of n.

Combining these facts we get

Y En(a) < C(K,a)
and the lemma follows.

REMARK. One can prove that P(p,0) = 0, see [B]. But this requires
more careful estimates. Moreover it is proved in [B] that 7*p is mutually
absolutely continuous with respect to harmonic measure w.

Definition. We call 7*u the shift model measure for w. It is clearly
f-invariant.

5. w & m & conformal maximality.

We recall the definition from [BPV]. The system (f, V,U) is called
conformally mazimal if it is conformally equivalent to (g, V,,U,) for
which harmonic measure w, of C\ K, equals measure of maximal en-
tropy of g on J;. Measure of maximal entropy will be denoted by m
(or mg,mf, mo to highlight the dynamical system if we need this).
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Lemma 5.1. 7*m, = my.
PROOF. This is clear from [LW] and Theorem 4.3.

From Lemma 4.2 it is easy to deduce the following natural asser-
tion.

Lemma 5.2. Let F be a Borel subset of ¥ such that mqo(F) =0. Then
me(r~1nF)=0.

Now we are going to consider two cases:

First case: p 1L m,. Then Theorem D and Lemma 4.6 give
logd+/ pwdms < P(p) <0.
=

Second case: p = m,. Then Theorem E gives
¢ +logd=7y00 -7+ P(yp).

Anyway, either we have (for a certain positive ¢)

(5.1) logd+/ pdms, =—-2e<0
=
or
(5.2) ¢ +logd =700 -7, v € Hold(Z).

The last possibility oecurs only if u = m, and P(p) = 0.
Lemma 5.3. If (5.1) happens thenw L m.

Proor. By Birkhoff’s ergodic theorem:
1 -
~(p(@) + -+ p(o™ lov))—>/ ¢ dmg,
n z

for almost every a with respect to m, . Combining this with (5.1) we
see that

1 1
~(p(a)+- +¢(0" ) < —e+log 5, n2n(a),
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for almost every a with respect to m,. Combining this with (4.7) we
get the estimate of Green’s function

(5.3) G(zp(a)) < Ce ™ ™d™", n > n(a),

for almost every a with respect to m,. Let E be the set of a for which
(5.3) holds.
By Lemma 5.2 we may assume that

(5.4) E =n"le, ecJ, m(J\e)=0.
We are going to show that
(5.5) w(e) =0.

Clearly (5.4), (5.5) finishes the proof. To prove (5.5) we need Lemma
2.4. Put n(Q) = max,exr-1(g) n(a), where n(a) is taken from (5.3).
Let N be fixed and put

L

(@) = 157 oe

min |z a)—-Q|.
7r_1(Q)| max(N,n(Q))(a) — Q|

“Discs” {B,(Q,m(Q))}gee cover e and let Bf,, B;; := B,(Qi,r(Qs)), be
a disjoint family such that e C |J;5, 5 B;;. This family exists by Vitali’s
lemma. Lemma 2.4 claims that

(5.6) w(5B}) < My »_ G(Ag,(10r(Q:)))-
£

Remind that bx(a) = U;>ky/ (). Let m; be the first index greater than
max(N,n(Q;)) such that a € 7=1(Q;) implies

L r(Qi)
(5.7) zm;(a) and bp,;(a) lie inside LZJQI',(—E).

By the Remark after Theorem 4.3 we see that in each local domain
there is at least one point zp,; (a).
We can apply now Harnack’s inequality:

(58) > G(AL,(10r(Q)) <Mz Y G(zmi(a)),
£

a€r=1(Q:)
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where M3 depends only on M; and John constant of John arcs b(a)
(see Lemma 4.4 which claims that b(a) are John arcs with uniform
John constant). Now if M is the constant from (3) of the introduction
and M, > M then

¢ (r(Qi) _ ) — B
%, (Tr) € Bol@inr(Q) = B}
In particular from (5.7) we see that
(5.9) a€n '(Q;) implies zy,,(a) and bm,(a) lie inside B;;.
Combine (5.8), (5.6) and (5.3) to write

Zw(SB:,) < CM; Mye™ N Z #r Qi) d™™

i>1 i>1

<My N Y
i>1

(5.10)

On the other hand we have that if Q; # Q; then zp(a) & bm; (B) for
any pair o, 8, @ € 771(Q;), B € #71(Q;). This is just (5.9) combined
with the fact that B} and BJ are disjoint. If we denote C;:= {z € T :
T = ag, for some a € 771(Q;), and all k, 1 < k < m;} we conclude
that

(5.11) Qi #Q; implies C;NC;=0.

On the other hand m,(C;) > d~™:. This, (5.10) and (5.11) now imply
w(e) < Mye N m,(UC;) < My e~V .

We are done because N is arbitrary.

In what follows an important part is played by the so called auto-
morphic harmonic function. Given a generalized polynomial-like system
(f,V,U) (see the introduction) we say that the function 7 on U is an
automorphic harmonic function (for f) if

1) 7 is nonnegative subharmonic function on U,
2) 7 is positive and harmonic in U \ Ky,

3) T|K, =0,
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and

(Aut) T(fz) =d71(z2).

Lemma 5.4. Assume that (5.2) holds. Then there ezists an automor-
phic harmonic function for f.

PRrRoOOF. To avoid unimportant technicalities we are going to present
the proof only in the case of totally disconnected J. This gives the
advantage of only one local domain for given @, r. The general case
follows along the same lines. The procedure in the "boundedly many
local domains” case differs only technically from the "only one local
domain” case.

Applying Corollary 3.3 to u = Go f, v = G and taking into account
(5.2) we write
(5.12) log —GC;(—{;)—) —logd — (v(ca) — v(a))| £ C p(z,7a)c.

Let a; =14,...,1,...,1=1,...,d, and let ¢; = 7(a;).

Let B = By, to be such a small disc centered at ¢; that all com-
ponents W, of f~"(B) containing ¢; are free from critical points of
f.

Thus a univalent branch g = g4, of f~! is defined in B and g" :
B — W, is univalent. Putting a = «; into (5.12) we define a positive
finite limit

Uy(z) = lim d"G(g¢"z), z€ B,
n—oco

and Uy, (z) < C G(2), z € B. Let V,, = Uy, €"4). Thus V,, is positive

harmonic on B\ K, nonnegative subharmonic on B and by construction

im ZG&) _ @)
7a Uy (2)

that is

(5.13) | lim GG _ e

e Vg (2)

Now let I be the set of periodic points of £, ¢, = 7(x), x € I.
We can repeat the construction above and obtain Uy, Vy = Uy ¥
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defined in By, . Let L = Up»o0™"I. Fix | € L and define V; in a small
neighborhood of B, of n(l) by the relation

Vi(z) = d7"Vi(f"2)

if x = o™l. We clearly can use (5.12) to extend (5.13) on V} literally.
Let us try to prove that

(5.14) Vi,=Vi, on B, N By, .

Actually we are going to prove that either (5.14) holds, or a certain
symmetrized version (see (5.16) below) holds.

We use (5.13) for Vi,, Vi, to conclude that
(5'15) Ile(Z) - Vlz(z)l = O(G(z))v z € Blt n Blz .
Let us remind

Lemma F (A.F. Grishin [Gr]). Let wy, w2 be two nonnegative subhar-
monic functions on an open set O and wy > wy. Let

27

J= {z €0: (w1 —wsz)(2) = 1i£1}j(l)’lf | (wy —wy)(z +re'?)df = 0}_

Then
Aw; > Awy on J.

Lemma F and (5.15) imply that
AV), =AV;, on B;, N By, .

Thus the difference Vi, — V;, is harmonic in B, N B;,. Remind that it
vanishes on Ky N By, N By, .

We conclude that either (5.14) holds or K¢ N By, N By, is covered
by finitely many real analytic curves. In the latter case Ky = Jy is
covered by finitely many real analytic curves. As in [LyV] we conclude
that these curves are disjoint. Now let * be a holomorphic symmetry
with respect to these curves.

Consider

Viz) + V(=)

171(2) = 5
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Now W, — Vi, vanishes on these curves together with its normal deriva-
tive. That means Vi, =V}, in By, N By,. In this case we have a family
of functions V; and small neighborhoods B; of I, | € L with properties

(5.16) Vi, =Vi, on B;, N By,,
Voir(Fz) = dVi(2).

Let V; denote V; if (5.14) holds and denote ¥} if (5.16) holds. The
occurance of these alternatives depends on whether J is contained in a
finite union of analytic curves or not.

Put 7|p, = Vi|B,. So we choose a neighborhood @ of L, such that
f~}(O) C O and a subharmonic nonnegative function 7 on O such that

(5.17) 7(z) =d7r(f'2), z€0.

The function 7 is positive and harmonic in O \ Ky. It may happen
that O does not contain the whole J; inside. So we are going to extend
T as follows: Let ¢ be a number such that diameters of components
of f~™(B(z,¢€)) are at most C 0" (see [CJY, Theorem 2.1]). We are
going to extend 7 to B(gy,¢€), x € I (= periodic points). Let N be so
large that the component Wy of f~"(B(gy,€)) which contains g, is
contained in O. Thus fV : Wy — B(gy,¢€) is a branched covering. Let
z € B(gy,¢€) be a critical value of this covering and let I' be a curve not
meeting the critical values of fV and lying in B(gy,¢). We choose I to
connect z with a certain £ € Wy.

Let z,y be any two fV-preimages of z lying in Wy. Let 7,7, be
two liftings of T by fV into Wy, starting at z,y respectively. In a small
neighborhood U of I' we can define 7% and 7¥ by

() =d r(f; V), () = aV ().

Here f7N, fy N are branches of f~N on U mapping U into neighbor-

hoods of 7,7, respectively. Note that 7%,7¥ coincide near { because

of (5.17). So as harmonic function they should coincide in the whole U.
Clearly we have for this extension

G
Jim, "(()) =
2€B(gy,e) T \F

As before we can see that on Q = UyerB(gy,€) a subharmonic function
T is defined such that

T(fz) =dr(z), if z, f(z) € Q.
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The advantage of (2 in comparison to O is that 2 D Jy. Let m be so
large that f~™(U) \ Ky C Q. Define

(5.18) (z) =d™ r(f""2), ze U\ Ky .

Repeating the lifting argument above we see that (5.18) gives a single
valued function. Clearly 7 is an automorphic harmonic function we
were looking for and Lemma 5.4 is proved.

Now let us use the following

Theorem G ([BPV]). Let (f,V,U) be a generalized polynomial-like
system. Then it is conformally mazimal if and only if there ezists a
harmonic automorphic function for f.

Uniting Lemmas 5.3, 5.4 with Theorem G we obtain the following
criterion of conformal mazimality.

Theorem 5.5. Let (f,V,U) be a system with separated semihyperbolic
f. Then it is conformally mazimal if and only if harmonic measure on
J¢ is not singular with respect to measure of mazimal entropy on Jy.
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