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The spectrum of singularities
of Riemann’s function

Stephane Jaffard

Abstract. We determine the Holder regularity of Riemann’s function
at each point; we deduce from this analysis its spectrum of singularities,
thus showing its multifractal nature.

1. Introduction.

According to the tradition, Riemann would have proposed the func-
tion

— 1
p(z) = E 2 sinmn’z
1

as an example of continuous nowhere differentiable function. It turned
out that, unlike lacunary series, the regularity of this function varies
strongly from point to point. Let ¢ € R; by definition, a function f is
C?(zo) if there exists a polynomial P of order at most a such that

(1) |f(2) — P(z — z0)| < Clz — zo|*.

Let us recall the main steps of the determination of the Holder regularity
of ¢ at every point. :

Hardy and Littlewood proved that ¢ is nowhere C3/4 except per-
haps at the rational points of the form (2p 4+ 1)/(2¢ + 1), p,q € Z (see
[9]). Their proof is interesting under many respects; for instance it
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anticipates wavelet methods; they remark that the function
C(a,b) = -‘23(0(1; +ia) — 1)

(where 6 is the Jacobi function 6(z) = 3 ., ei""z’) is the convolution
of ¢ with contractions (by a factor a) of

1
P
Since 9 has a vanishing integral, an Abel type theorem (which we will
state precisely in Proposition 1) shows that, if ¢ is. smooth at zo, C(a, b)
must have a certain decay when a — 0 and b — zo. This method will
thus yield upper bounds for the function

a(z0) = sup{f: ¢ € CP(z0)}.

This method actually yields the following more precise result which
relates the pointwise behavior of ¢ at zy to the Diophantine approx-
imation properties of zo. Let 2o ¢ Q, p./gn be the sequence of its
approximations by continued fractions and define

m 1
‘r(a:o)=sup{'r: ’zo—p— <—}

gm!  qn
for infinitely many m’s such that p,, and ¢, are not both odd, then

1 1
< - _—
o(zo) < 2 t 21(z0)

a result which is actually stated by J. J. Duistermaat [4] where a more
direct proof is given (this paper was actually one of the main motiva-
tions for writing the present one).

Converse results, which would yield an information about the po-
intwise regularity of ¢ from estimates on its convolutions are more dif-
ficult to obtain since they are of tauberian type, and were of course
unavailable at the time of Hardy and Littlewood. This is why they had
results concerning only the irregularity of Riemann’s function and not
its regularity. The Tauberian-type result we need is stated in Proposi-
tion 1.

Finally Gerver proved the differentiability at the rational points of
the form (2p + 1)/(2¢ + 1) [7] (where we now know that ¢ is exactly
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C3/?, see [13]). The analysis of the behavior of ¢ near such a rational
point zo has been considerably sharpened since; Y. Meyer exhibited a
complete “chirp” asymptotic expansion which describes the oscillations
of ¢:

1

cp(m):u(m)+Z(m—zo)n+3/2v;‘_(z_zo), if 22>z,
n2>0
1
‘P(z):u(z)+Z|:u—g;o|n+3/202(|z_zol), if £<zg,

n>0

where u is C®, the v} are 27 periodic, with a vanishing integral, and
are C"*t1/2, see [13] (we will actually show that these points are the
only ones where a chirp expansion exists).

The results of Hardy and Gerver left open the problem of the de-
termination of the exact regularity of ¢ at irrational points; one of
our purposes is to do this determination using the wavelet method we
sketched.

Let the spectrum of singularities of ¢ be the function d(3) which
associates to each § the Hausdorff dimension of the set of points z where
a(z) = B (conventionally the dimension of the empty set is —c0). We
will deduce form our study this spectrum which will be nonconstant on
a whole interval. The Holder singularities of ¢ are located on a whole
collection of sets of different dimensions, so that ¢ is truly a “multi-
fractal function”. More precisely the determination of the spectrum of
singularities is motivated by the following problem, referred to in the
litterature as the “Multifractal Formalism for functions”.

Let _

LP* = {f e L?: (-A)*/?f € LP}.

If g is a one variable function, define
n(p) = sup{s: g € LP*/7}.

Frisch and Parisi in [6] conjectured that the spectrum of singularities
of g is given by the following Legendre transform formula

(2) d(e) = ir;f(ap -n(p)+1).

Though one easily finds counterexamples, the exact mathematical range
of validity of this formula is a fascinating problem (see [1], [3] and [12]).
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Since ¢ has a nontrivial spectrum, it was natural to test this conjecture,
and we will show that it is correct in this case. The interesting point
here is that ¢ has a very different structure from the previous cases
where the Multifractal Formalism was known to hold (see [3] and [12]).

Our main results are stated in the following theorem.

Theorem 1. Let z ¢ Q and let p,/qn be the sequence of its approzi-
mations by continued fractions. Let

T(.’C):SUP{T: ‘:c— Pm| o —1-—}
for infinitely many m’s such that p, and ¢, are not both odd.
Then
| T
T2 27(z)

The spectrum of singularities of p is given by

. 13
4a—2, Zf&E[E,Z],
d(a) = . 3
0, if a=gz,
—00, else;

and if o < 3/4, d(a) satisfies (2).

The existence of this sets of smooth points is not only a conse-
quence of the kind of lacunarity introduced by the frequencies n?, but
also of the very special coefficents that are chosen, which creates an
exceptional behavior, as shown by the following remark: if the coeffi-
cients were multiplied by independant identically distributed Gaussians
or Rademacher series (+1), [14, Chapter 8, Theorem 4] shows that the
corresponding random function would be almost surely nowhere C*/2.

2. Pointwise regularity and wavelet transform.

Because of Hardy’s result, we will only consider Holder exponents
smaller than 3/4.
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Suppose that a function v is nonvanishing and satisfies the follow-
ing asumptions

3) W@+ @ <CA+)? and / $(z)dz =0,

and either

(4) / e dg—f - / " (=) ‘1—5 ~1

(5)  $(€)=0, i £<0 and /°°l¢(¢)|2'f”—§=1.

0

In the last case the wavelet is said to be analytic. The wavelet transform
of an L function f is defined by

cann =1 [1op e

We will consider the three following settings: In the first one the an-
alyzed function f is real valued, and the wavelet satisfies (5); in the
second one, f is complex valued and the wavelet satisfies (4); in the
third one, f(¢) = 0if £ < 0 and the wavelet satisfies (5).

In each case, the following results concerning the relationships be-
tween the size of the wavelet transform and the regularity of the function
hold.

Proposition 1. Suppose that 0 < a < 1. Under the previous hypothe-
ses if a function f is C*(zo),

o Ib — IOI a
(6) Cla, b))l < Ca (14+2=22) "
Conversely, if
) |C(a,b)(f)l £ Ca” (1 + ll:_—(;ic_o_l_)ﬂ' for an o' < a,

and if |z — zo| < 1/2, then

(8) |f(z) — f(z0)| < Clz — zo|*.
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The first assertion was first stated in the wavelet terminology in [10]
or [11], but it is only fair to say that it is at least implicitely contained
in Hardy’s paper [8]; and only the second assertion (see [11]) will have
new implications on Riemann’s function. Let us recall the proof of this
proposition for the reader’s convenience when 0 < @ < 1 (the only case
we will be interested in here).

PROOF OF PROPOSITION 1. If f € C%(zo),
Cla,b)(f)| = 1 |
=11 [0 - ey u(EY) df

SC/|z_z0|ﬂ(1+‘$—bl)2dx

g/ |z — b|™ 3 9/ dz
Sy T T Ry
Ty )01

Suppose now that we are in the first or the third case. In that case, f
is reconstructed from its wavelet transform by

SCa"(

(@) = / —-b dt;db
Let 4 db
w(a,z) =

if (7) holds,
o l.’L‘ — .'lfol o
|w(a,z)] < Ca (1 + — )
and

I%_(a(;ill < Ca®?! (1+l113+‘il?[)l)a'

Using the second estimate (and the mean value theorem) for a > |z —zo|
and the first estimate for a < |z — z¢|, we obtain

f@-fels [ ca (14 [F2R) -l 2

a>|z—zo|
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v [ o (]2

a<z—zol

< Clz —zol|*.

)" L

a

This also implies the result in the second case by superposing recon-
struction formulas for ¢ > 0 and £ < 0.

Using Cauchy’s formula, we obtain that (using the wavelet ¢(z) =
(z — i)72) the wavelet transform of ¢(z) is 2ia(8(b + ia) — 1)/2. Since
we want to determine Holder exponents between 1/2 and 3/4, because
of (7) we can add a term ¢a and the study of the pointwise regularity
of ¢ reduces to obtaining estimates similar to (6) for the function

(9) C(a,b) = ab(b + ia).

3. Theta Jacobi function and continued fractions.

The Theta modular group is obtained by composing the two trans-
forms

1
T—z+2 and Tr— ——.
z

It is composed of the fractional linear transformations

TT + 8
v(z) = ;
(z) pr—
where rp + sq = —1, r, s, p, q are integers and the matrix

ros\ . even odd odd even
(10) (q p) is of the form (odd even) or (even odd) .
When v belongs to the Theta modular group, 6 is transformed following
the formula (c¢f. [2] or [15])

(11) 8(z) = 6(7(z)) e'™"/* g~/ (z -2

where m is an integer which depends on r,s,p,q.
Let p ¢ Q and p,/qn the sequence of its approximations by con-
tinued fractions. The idea of the proof of Theorem 1 is to use (11),
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which will allow us to deduce the behavior of 8(z) near p,/q» (hence

near p) from its behavior near 0 or 1. Because of (10), we will have to

separate two cases depending whether p, and ¢, are both odd or not;

but let us first derive some straightforward estimates for 6 near 0 and 1.
First remark that

(12) 6(z) — 1] < if Imz2>1,

L
2 )

because in this case,

0(z) — 1] <23 e=Im s < 2emmr 1
- et —I_C—RImz—z
We also have
(13) 16(2)] < C |Imz|~1/2, if Imz2<1,

because |6(z)] < Y e~ “Imz; the sum for n < (Im 2)~%/2 is bounded
trivially by (Im 2)~1/2 41 and the same bound holds for n > (Im z)~1/2
(by comparison with an integral).

Let us now obtain the behavior of 6 near the point 1. Recall that
0 satisfies (see [2]) :

@ 0<1+z>=£<0<~£;>-9<—%>><
so that '

9(1+z)=2\/z (A(4z) — A(2)),
where A(z) = 0% e /% I Im(=1/2) 2 1,

|A(z)| < 2 exp ( —7Im (:})) ,

so that in that case,

(15) “9(1 +2)| <Clz|7V? exp (— 7Im (- %)) .
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Proposition 2. Let {pn/qn} be the sequence of approzimations of p by
continued fractions; let T, be defined by
1\™
oo o B2 = (1)
dn qn

For each n, if

Pn-1 I
dn-1

(17) 3,,,_? < Jb~p+ial <3|~

the following estimates hold:
If p, and g, are not both odd but p,_1 and gn—, are both odd, then

— 1/27,
(18) |C(a,b)| < Calt+}/m™m)/2 (1 n |b . pl) .

If pn and q, are not both odd and p,—1 and q,—1 are not both odd,
then

— 1/21,
(19) Cla,b)] < €ttt/ (14 L)Y
a
or
— 1/27,—
(20) [C(a,b)] < Calt+1/m-0/2 (1 L pl) 3
a

If p,, and g, are both odd
@) (O b < Cate0r (14 By,
a

Furthermore, if p, and g, are not both odd, these estimates are
optimal, which means that there ezists a point in the domain (17) where
(18) or (19) are equalities.

Remark that, since 7, > 2, this result together with Proposition
1 implies Hardy’s result that ¢(z) — @(zo) is nowhere o(|z — zo])3/*
except perhaps at the rational points quotient of two odd numbers.
More precisely, we have

Corollary 1. Let p ¢ Q; If there ezists an infinity of integers n such
that p, and g, are not both odd and 7, > 7, then

o(z) — p(z0) is not of |z — z,|)1+1/)/2
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but if there ezists N such that for any n > N (verifying p, and ¢, are
not both odd), T, < T, then

¢(z) = ¢(20) = O(lz — 2o )1+772.

Define I'*(zo) as the set of functions f such that

forall 8> a, f¢CP(zo),
{for all < a, feCP(zxo).

If n(p) = lim sup 7,(p), where the lim sup bears only on the n’s such that
Pn and g, are not both odd, this result implies that ¢ € T+1/7(2))/2( p),
We will prove this proposition in Sections 5 and 6, and in the next
section, we will show how to derive the spectrum of singularities from
this result.

Let us now recall a few properties of approximations by continued
fractions.

Since
(22) Pndn-1 —Pn-14qn = (—l)n_l
thus
1 =P_n_pn+1'>| _22
dn qn+1 dn gnt1l — gnl’

because (see [10]) pn/gn and pn+1/gn+1 are not on the same side of p;
and

1 ___&_pn-!-llszlp_&t_,
dn dn+1 dn dn+1 dn
so that
1\™m-1 1 1\™—1
P
qn dn+1 qn

4. Spectrum of singularities and Multifractal Formalism.

Recall that if

C . o
E,= {p: ’p B < — f{or infinitely many n’s} ,

dn qn
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the Hausdorff dimension of E, is 2/7 and the H?/T-measure of E, is
positive (a direct consequence of [5, Propositions 10.4 and 8.5]).

Let c
Y Pn
Fr = {P P 'q: < 'q",f} 3
for infinitely many n’s such that p, and ¢, are not both odd, and let
D C
Gr={p: ’p——" <—,},
Qn qn

for infinitely many n’s such that p, and ¢, are both odd. Of course,
because of the best approximation properties of continued fractions, we
have

E,=F,UG,.

R

We will need the following lemma proved in [17]:
"

Lemma 1. Let p € R; If p and g have no common factor and

lga—p| < —
q Y4 2qa

then p/q i3 a continued fraction approzimation of p.

This lemma implies that if p/q is a continued fraction which ap-
proximates p and such that p and ¢ are odd and |p — p/q| < ¢77 with
7 > 2, p/(2q) is a continued fraction which approximates p/2.

Let us prove that the H2/T-measure of F is positive. If the H2/7-
measure of G, vanishes, we have nothing to prove. Else, the remark we
just made shows that if 7 > 2 and = € G, then z/2 € F}; thus, if the
H2/™-measure of G, is positive, the H2/T-measure of F, is also positive
(ifr=2, F; =R).

Consider the set

F\ | E~.

T'>T

The H2/T-measure of Uy >rE vanishes; since F; has a positive M7
measure, Fr \ Uy5,FE, has dimension 2/7.

If p € Fr \Ups.E, since p € Fr, Proposition 2 implies that ¢
is not smoother than (1 + 1/7)/2 at p and since p ¢ Ups-Ep, @ is
CO+1/1/2=¢(p) for all € > 0; thus p € T'(1+1/7/2(p) and the dimension
of {p: ¢ € TU+/N/2(p)} is at least 2/7.
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Suppose that p is such that ¢ € T(1+1/7)/2(p); then ¢ is CA+1/T/2=¢(p)
for all € > 0 and thus p € E, for all 7' < 7; thus

{P: ‘Per(l+l/r)/2(p)}c U E.

'>r

and the dimension of {p : ¢ € T(1+1/7)/2(p}} is bounded by 2/, hence
the second part of Theorem 1 follows.

Let us now check that the Multifractal Formalism is true for Rie-
mann’s function. Let

S"(x) — Xn: eim"nz .
m=1

In (18], Z. Zalcwasser proves that

. n?/?, if 0<p<4,
/ |Sn(z)|Pdz ~ { n%log(n+1), if p=4,
0 n?=2, if p>4.

Thus, taking D-adic blocs (for a D large enough),

§ : eimzwz

{Df/4, if 0<p<d4,
Di<m?<Di+t L

Di(p=2)/(2p) if p>4.

Let & = Y e ™ /n2; we have &' € B, /*® if p < 4 and @' €
By /2P 4f b 5 4. So that & € BY** if p < 4 and & € BY/*T!/P>
if p > 4, and these estimates are optimal. Because of the continuity
of the Hilbert transform on Besov spaces, the same result holds for ¢.
Since n(p) can also be defined by

n(p) =sup{s: ¢ € B}/P*},

we have .

3p/4, if 0<p<4,

n(p) = :

14+p/2, if p>4.
Ha<1/2 infp(ap—n(p)+1)= —ccandif 1/2 < a < 3/4, inf,(ap—
n(p)+1) = 4 a —2; we recover thus the increasing part of the spectrum,
thus showing the validity of the Multifractal Formalim in that case.
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Remark that Propositions 1 and 2 imply that if zo € Fr, ¢ is
C(1+1/r)/2($0)_

We now prove Proposition 2.

5. The case when p, and ¢, are not both odd.

We first determine v, = (rnz+35)/(gnz—pp) in the theta modular
group such that the pole of v, is pn/gn. Because of (22) if p,—; and
gn—1 are not both odd, we can choose

rn=(=1)"qno1,  Sn=(=1)""pp_1;

the corresponding transform satisfies (10) and thus belongs to the theta
modular group; and if p,—; and ¢,—; are both odd, we can choose

Tn = (_l)nqn—l + qn , Sn = (_1)n+1pn-—1 — DPn -
Since )
Pn Tn
pli + Z2) = — - —
7n(‘1n ) gn gz’

applying (11) to pn/gn + z and 7, we obtain

(24) la(’;—:+z)l= [e(;—:-qﬁ%)lﬁ.

Since Im (—1/¢%z) = Im (z)/q?|z|?, we consider the two following cases.

First case: Im(2)/g2{z|? > 1; then (24) and (12) imply that

Pn 1
0(—+2z)| ~
oG +9~ 7o
so that c
IC(a,b)| ~ <
gn(a+ 10— p|)

(note that here and hereafter, ~ means that the two quantities are
equivalent, the constants in the equivalence being independant of n).
Because of (17),

1
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so that

|C(a,b)] < Ca1+1/m)/2 (1 I L pl)um—l)/z;

a

and because of (12) this upper bound becomes an equality if we choose
a =1/gi», b =0, hence (18) and (19) in this case, and we also have
proved their optimality.

Second case: Im(z)/q%|z|* < 1; we separate this case into two subcases:

First subcase: pn_; and gn,—1 are not both odd; then

, 1 Im(z)\=1/2 _ [ gnlz|
(25) | oG+l < 7=z () ‘\/?n;’

so that, since |z| > 2|p — pn/gnl,

(26) IC(a,b)] < 2V/agala+ 15— o).

Because of (17),

a+|b—p|§6|p_1_’"_—_l_l56( 1 )f"-tsﬁ(_l_)m-l/(rn-l-l);

dn-1 dn-1 dn
thus
h— 1/2
Cle b < Cagil? (14 2221)
1 (am1=D)/@racs) 1 [b— p|\1/2

< - - P=A
#0) _Ca(a+lb—p|) (+=7)

< Ca1/2+1/(21'n~1)(1 L Pl)l/(z"'“')_

< - :
hence (20).
Second Subcase: p,_; and g,—1 are both odd; then

Tn = (_1)nqn-—1 +4n, Sp = (—1)n+1Pn—1 —Pn -

We now want to estimate 6 near the points p, /g, where p, and ¢,
are both odd; we will deduce this estimate from (15).
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We see that (24) becomes

(=1)"gn-1 1 1
0 =(—"— - —+1
oG +9)| = JoC== -+ 0 o
let (-1) )
— nqnqn_ z —
gn(z) = 2z :
From (14), we get
-1
(L2 —6(—=)|.
I (qn +z)| \/anZHQn(Z , 49n(2) (gn(Z))l

Remark that

m( ) - Im (gn(2)) — Im (2) .
gn(2) lgn(2)2 g2 |2|? |gn(2)|?

If Im (—1/ga(z)) > 1, using (15),

) ) Im (z)
G+ 1= Ve = (" aepiocr)

1 g2 |2[* lgn(2)[* \1/4
qn |2 lgn(z)l ( Im (z) )

S(i—rgl(—z—))lﬂ'

so that |C(a, )| < a®/%; hence (18) in that case.
Suppose now that Im (—1/g.(z)) < 1. Then

P L (1 (=Ly)
Ie(q" * )l : gn 2] |gn(2)| <I (gn(z)))
< 1 gn |2[ lgn(2)|
" Vanlzllgn(2)]  /Im(2)
gn 2] lgn(2)|
Im(z)

Because of (17), |z| < 6/(gngn-1), so that |g.(z)] < 7/(¢2|z|) and

’0(5_"+Z)l < gn |2

g2 |2|Im(z) ~ \/qn—InT(7

455
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Thus

Vva
C(a,b)| < .
Clabis Y=

n

From (17), we have (1/¢n)™ < (a + |b — p|) so that

— 1/(27n)
|C(a,b)| < o!/2¥1/Gra) (1+————”’ "') o,
a

Hence (18) in that case.

6. The case when p, and ¢, are both odd.

Following the same procedure as in the previous section, we first
determine v, = (az + b)/(cz + d) such that y,.(pn/gn) = 1. We choose
either r, = gn41, Sn = Pnt1 OF Ty = —Qn+1, Sn = —Pn+1 Such that

PnTn —S$nqn = 1
(which is possible because of (22)). Now v, is defined by the coefficients
@a=gn+7Tn, b=—pn—sn, c=rn, d=-—s,.

One easily checks that (10) holds and thus v, belongs to the Theta
modular group;

1+Qn(7'n +Qn)z

DPn
’Yn(qn ) 1+annz fn( )
with )
- In?
fn(Z) - 1 +rnqnz
so that, because of (11),
Pn 1
1652 +2)| = 1601 + fa(2))] ;
0 A (s B et
dn dn+1
but (17) implies
Pn 3|Pn  Pn+1
2 23)p- 22| x> 2 |Bn _ Bet),
i P an!” 21¢n  gn1
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so that o(1
‘9(&_',2)[ < 161 + fa(2))| ‘

dn 1/2 |Z|1/2

Remark that the condition Im (—1/fn(z)) > 1 is equivalent to Im(z) >
¢2 |z|>. Thus we now consider the two following cases.

First Case: Im (z) > ¢2 |z|%. In that case, because of (15),

- Im(z)) ( 1 )1/2
g2 lz? "\ fa(2)ra 2|

-7 Im(z)) 114 rpgnz|*/?
a2 lz? 7 (Irnz])/2|q22]*/2

’8(&4—;’)! SCexp(

dn

SCexp(

Because of (16),
l/lrﬂqﬂ‘ < 2/‘111 ’

and thus 3
nin 2=
ragnel > 3
Thus
Pn —mIm(2) 1
0(— + =2 l <Cex
| (qn ) P qz|=|? ) |2|1/2g3/?
(q%|z|2)1/4 1 _ C
Im (z) |2[1/2 g2/ " Im(2)!/4
so that

C(a,b)] < a®/*;
hence (21) in that case.

Second Case: Im(z) S ¢%|z|%. In that case, from (13), (14) and (28),
we obtain

‘g(Pn + )‘

-1
V |fn(z)7'n l 4fn(2) (fn(z))l
C an IZII/Z
T /e lfa(z)[Im(2)
I1+7ngn zll/z
<(C —==—
B V7o Im(2)
< C |Qn Z|1/2
Im(z)
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as above |r, qn z| > 3/2, so that

C(a,b)] < Ca'?\/gqu(a + b - pl).

Because of (17),
a+1b—p| <3(1/gp)m-1/(Tn-1=1)

so that

- 1 (2fn— )
IC(a, b)| < C gl/2+1/(27nz1) (1 + |b p|) / D
a

Thus (21) holds in this case and Proposition 3 is proved.

The fact that (18) and (21) cannot be improved in a cone
Im(z—p) > CRe(z — p)

yields a slightly more precise information than the fact that ¢ is not
smoother than 1/2 4+ 1/(2n(p)) at p because it shows that ¢ has no
chirp expansion at an irrational point p (see [9]); thus the only points
where ¢ has a chirp expansion are the rationals of the form odd /
odd. It also shows that fractional integrals of ¢ of order s will be
exactly Te+1/2+1/(2n(P)(p). Actually, from Proposition 2, and the chirp
characterization given in [13], one easily obtains the following corollary.

Corollary 2. Let

oo

1 . 2
‘Ps(l) = 21: n—2'+—2; SN .

If s € (—1/2,400) and if p is not a rational quotient of two odd num-
bers, p, € Do+1/2+1/(21(0))(p) and the spectrum of singularities of @, is
given by

. 1 3
4a—s)—2, if a€ [S+§’S+Z]’

0, ifa=2s+g,

d(a) =

—00, else;.
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