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Abstract. How can one recognize when a metric space is bilipschitz
equivalent to a Euclidean space? One should not take the abstraction
of metric spaces too seriously here; subsets of R™ are already quite
interesting. It is easy to generate geometric conditions which are neces-
sary for bilipschitz equivalence, but it is not clear that such conditions
should ever be sufficient. The main point of this paper is that the opti-
mistic conjectures about the existence of bilipschitz parameterizations
are wrong. In other words, there are spaces whose geometry is very sim-
ilar to but still distinct from Euclidean geometry. Related questions of
bilipschitz equivalence and embeddings are addressed for metric spaces
obtained by deforming the Euclidean metric on R™ using an A, weight.

1. Introduction.

How can one recognize when a metric space is bilipschitz equivalent
to a Euclidean space? Recall that a map f : M; — M, between two
metric spaces M;, M, is bilipschitz if there is a constant K such that
K=Vdi(z,y) < da(f(z), f(y)) < K di(z,y) for all z,y € My, where d;
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and d; are the metrics on M; and M,. We shall sometimes say K-
bilipschitz to make the constant explicit. Two metric spaces are said
to be bilipschitz equivalent if there is a bilipschitz mapping from one
onto the other. If two metrics spaces are bilipschitz equivalent then
they should have approximately the same behavior in terms of lengths,
Hausdorff measure, topology, etc., and the question is whether some
nice combination of such conditions can detect bilipschitz equivalence
with Euclidean spaces.

Let (M,d(-,-)) be a metric space, and suppose that it is bilipschitz
equivalent to R? with the Euclidean metric. What are some of the
conditions that M must satisfy? For each pair of points z,y € M there
must be a curve that joins them whose length is at most Cd(z,y) for
some constant C (which depends only on M). There must be a measure
p on M with the property that the y-mass of a ball of radius 7 > 0
is approximately r¢, i.e., the y-mass must be bounded from above and
below by constants times r%. In fact this must be true with u equal to d-
dimensional Hausdorff measure on M. There must be another constant
C such that any metric ball B in M of radius r is contained in a d-
dimensional topological ball U which is itself contained in a metric ball
of radius C'r, and one could impose further restrictions on U. Suitable
formulations of the Sobolev and Poincaré inequalities on M must also
hold.

On the other hand, plenty of the familiar properties of R? do not
have to be satisfied, even approximately, by a bilipschitz-equivalent
metric space M. Bilipschitz mappings need not be smooth, or even
C', and so a bilipschitz-equivalent space could have a lot of corners.
For instance, if A : R? — R is any Lipschitz function (so that |A(z) —
A(y)| < C|z — y| for some C and all z,y € R?), then the graph of
A in R¥! equipped with the ambient Euclidean metric is bilipschitz
equivalent to RY.

The main purpose of this paper is to provide examples which show
that there is no hope for finding simple general conditions of the type
just described which ensure the existence of a bilipschitz parameteriza-
tion. The examples below will all be subsets of some Euclidean space
(with the inherited metric) or “conformal” deformations of R%. Let us
begin with the former, starting with a definition.

Definition 1.1. A subset E of R™ is said to be (Ahlfors) regular of
dimension d if it is closed and if there is a constant Co > 0 such that

(1.2) Cylr? < HYEN B(z,r)) < Cor?,
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for all z € E and r > 0. Here (and forevermore) H? denotes d-
dimensional Hausdorff measure and B(z,r) denotes the open ball with
center ¢ and radius r.

This condition is equivalent to the apparently more general version
in which one merely asks that there exist a measure u supported on E
which satisfies (1.2). In other words, if such a measure exists, it has
to be comparable in size to the restriction of d-dimensional Hausdorff
measure to E.

Roughly speaking, a set is regular if it behaves measure-theoretica-
lly like R?, even though it may be very different geometrically. There are
examples of regular sets which are self-similar Cantor sets, or snowflake
curves, or tree-like objects. Regular sets can have non-integer dimen-
sion. Of course any set which is bilipschitz equivalent to R? is regular.

Theorem 1.3. There is a 3-dimensional regular set E in R* which
i3 the itmage of a hyperplane under a global quasiconformal mapping
from R* onto itself but which is not bilipschitz equivalent to R3. This
quasiconformal mapping can also be taken to be Lipschitz continuous.
The set E enjoys the additional property that there is a constant Lo > 0
30 that every pair of distinct points r,y € E is contained in a closed
subset W of E which 1s Lq-bilipschitz equivalent to a closed Euclidean
3-ball. In particular, z and y can be connected by a curve in E of length
at most L2 |z — y|.

A quasiconformal mapping is one which does not distort relative
distances by more than a bounded factor. There are many equivalent
characterizations, one of which is that ® : R® — R™ is quasiconformal
if there is a constant. C' so that for each z € R™ and r > 0 there is
an s > 0 so that B(®(z),s) C ®(B(z,r)) C B(®(z),Cs). In other
words, ® maps a ball to a set which is trapped between two balls of
comparable radii. It is important that the image radius s is allowed
to be very different from r -otherwise this condition would reduce to
bilipschitzness- but that the constant C not be allowed to depend on z
or r. Recall that ® is Lipschitz continuous if there is a constant C so
that |®(z) — ®(y)| < C|z — y| for all z,y.

Although the image of a 3-plane under a global quasiconformal
mapping (or under a quasisymmetric mapping) can be fractal, an image
like this which is also regular of dimension 3 automatically has many
of the properties that it would have if it were bilipschitz equivalent to
R3. Such a set must be uniformly rectifiable (in the sense of [DS4]),
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every pair of points in the set can be connected by a path which is
not too long compared to the distance between them, and suitable
versions of Sobolev and Poincaré inequalities must hold on the set.
This uses a method of Gehring [Ge] which allows one to control well the
extent to which the quasiconformal mapping distorts distances in this
situation. (See also [DS1] and [Se4].) Theorem 1.3 resolves (negatively)
the obvious question of whether a quasiconformal image of a plane
which is regular of the same dimension must actually be bilipschitz
equivalent to a plane.

The set F in Theorem 1.3 is far from being bizarre or pathological.
It will be smooth off a self-similar Cantor set, around which it does some
spiralling. It can be approximated nicely by smooth submanifolds, and
it agrees with a hyperplane outside of a compact set. The obstruction
to the existence of a bilipschitz parameterization will be present locally
in the sense that even small neighborhoods of the singular points will
not admit bilipschitz parameterizations. By adjusting the parameters
we can make this set E especially nice, so that the inverse of the quasi-
conformal parameterization is Holder continuous of order as close to 1
as we like, while the mapping itself remains Lipschitz. Analogous state-
ments for Sobolev spaces are also true. On the other hand, by choosing
the parameters differently we can build E in such a way that there is
no homeomorphism from E onto R? which is locally Holder continuous
of any order a > 0 given in advance. See Theorem 5.27 below.

The construction of these examples will be based on “Antoine’s
Necklaces” [Mo] and the following lemma.

Lemma 1.4. If U is an open set in R? and K is a closed subset of
R?, and if K has Hausdorff dimension less than d — 2, then any loop
in U \ K can be contracted in U \ K if it can be contracted in U. In

particular, R?\ K is simply connected.

In other words, a set is invisible in terms of the properties of m; of
its complement if it is thin enough. This is given in [MRV, Lemma 3.3,
p. 9]. Actually, that result dealt only with the simple-connectivity of
the relevant domains, but the same proof applies to this formulation.
See also [LV] and [SS, p. 506].

This lemma provides us with a necessary condition for a set to be
bilipschitz equivalent to R¢, since any such metric space would have
to enjoy a similar property, and it is this necessary condition that the
examples in Theorem 1.3 will violate. That is, E will be constructed
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in such a way that it contains a compact set with Hausdorff dimension
less than 1 whose complement is not simply connected.

Let us consider briefly the conceptual ramifications of the exis-
tence of sets like E in Theorem 1.3. One could say that the above
list of geometric necessary conditions for bilipschitz equivalence with
a Euclidean space is simply too small, and that it should be enlarged
to include the property in Lemma 1.4 (and others). I am inclined to-
ward a different view. I am not optimistic that there are nice geometric
characterizations of sets which are bilipschitz equivalent to a Euclidean
space (although I would not be surprised if there were nice results in
more narrowly focussed situations, in which m; conditions as in Lemma,
1.4 would appear naturally). I think that the existence of sets like E in
Theorem 1.3 means that one should view bilipschitz parameterizations
as luxuries which are desirable but not reasonable to expect in general
and also not crucial. In other words, these examples are sufficiently
nice that they should be accommodated rather than excluded. Instead
of looking for more stringent criteria to ensure the existence of a bilips-
chitz parameterization one can look for simpler conditions which imply
a lot of good structure (of the type that these examples enjoy) if not
an actual bilipschitz parameterization. In this connection the notion
of uniform rectifiability (as in [DS4]) is very natural, because it incor-
porates many (but by no means all) of the nice features of bilipschitz
equivalence with a Euclidean space while being much more flexible and

easier to detect. See also [DS2], [DS3], [DS5], and [Se5].

Let us now consider analogous issues for some general “conformal”
deformations of Euclidean geometry.

Definition 1.5. A continuous weight w on R? is a nonnegative contin-
uous function whose zero set has Lebesgue measure zero. If A 13 a mea-
surable subset of R? then w(A) will be used to denote [, w. A continuous
weight w on R? is doubling (or satisfies a doubling condition) if there
is a constant C so that w(2B) < Cw(B) for all balls B in R?, where
2B denotes the ball with the same center as B but twice the radius. We
shall view w as defining a measure on R?, and also a conformal deforma-
tion of Euclidean geometry. To this end we associate to w the (possibly
degenerate) distance function D, (z,y), which is the infimum of the w-
length of all rectifiable paths in R® which join x to y. (The w-length of a
path v is defined to be f_ywl/d ds, where ds denotes arclength measure.)
We say that w i3 a sirong Ay, continuous weight if it i3 doubling and
if there s a C > 0 so0 that C~! w(BI,y)l/d < Dy(z,y) < Cw(By)/?
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for all z,y € RY, where B,y is the smallest closed Euclidean ball which
contains ¢ and y.

Constant functions provide trivial examples of strong Ao continu-
ous weights. Less trivial examples are given by w(z) = |z|*, a > 0. On
the other hand the strong-A., condition prevents w from vanishing on
a nontrivial line segment, or on any rectifiable curve for that matter,
since D, (z,y) would then vanish for some z # y. However, strong A
weights can vanish on Cantor sets of large Hausdorff dimension, as in
Proposition 4.4.

The “strong-Ao” condition was originally defined in [DS1]. The
strange-looking name was motivated by an observation that is recalled
below. The main point is that the strong- Ao, condition by itself implies
that the metric D, has many nice properties, without any smoothness
assumptions on w or anything like that. To understand this condi-
tion better it is helpful to consider 8,(z,y) = w(Bz,y)'/? as some kind
of distance function in its own right. Specifically, it is a quasimet-
ric, which means that it satisfies all the conditions normally required
of a metric except that the triangle inequality should be weakened to
du(z,2) < C(bu(z,y) + bu(y, 2)) for some C and all z,y,z. This con-
dition is easy to verify using the doubling property of w. Moreover, 4.,
is “quasiconformally” equivalent to the Euclidean metric, in the sense
that its balls are approximately the same as Euclidean balls. More pre-
cisely, if z € R? and r > 0 are given, and if R > 0 is chosen so that
w(B(z,R)) = R, then

(1.6) B(z,C'R)C {y e R*: é,(z,y) <r} C B(z,CR).

Here C depends on the doubling constant of w but not on z,r or R.
On the other hand, R and r can be wildly different from each other,
and either can be larger than the other. This fact (1.6) is easy to derive
from the definition of 4,, and the doubling condition on w, and one can
verify also that the w-diameters of B(z,C~!R) and B(z,CR) are both
approximately equal to r, i.e., they are bounded from above by C'r and
from below by C'~'r for some constant C'. The strong-Ae condition
says that the geodesic distance D, is comparable in size to 4, so that
D, has these features too.

If w is a strong A, continuous weight, then the metric space
(R%, D,,) enjoys many of the same properties as ordinary Euclidean
space. For instance, if 8 is a D,-ball, then there is a Euclidean (and
hence topological) ball B containing # whose D,-diameter is bounded
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by a constant times that of . This can be derived from (1.6). Also,
there is a constant C > 0 so that

(1.7) C'r? <w({y €R?: Dy(z,y) <r}) < Cr?,

because of (1.6) and the doubling condition. This is analogous to the
regularity condition 1.2.

It was observed in [DS1] that the strong-A., condition implies the
(much older) A, condition that there exist constants p > 1 and C > 0
such that

(1.8) (};ﬁwaP)w Scllflfaw’

for all balls B in R%, where |B| denotes the Lebesgue measure of B.
In other words, the strong-Ae condition implies that w € L} with
p > 1, and with a uniform and scale-invariant bound. This is basically
a reformulation of a result of Gehring [Ge], and there is also a bound
on averages of (small) negative powers of w. (See [Ga] and [Jr] for more
information about A, weights.) These bounds on w imply that D,,-
geometry is closer to Euclidean geometry than one might think. For
instance, they imply the “uniform rectifiability” condition that every
D,-ball in R? has a definite proportion (with respect to the w-volume)
which is uniformly bilipschitz equivalent to a subset of R? with the
Euclidean metric. Alternatively one can use (1.8) and its cousins to
obtain Sobolev space estimates on the identity mapping as a map from
(R%, |z — y|) to (R? D) and vice-versa. (Hélder continuity can be
derived directly from the doubling condition, as in Proposition 4.22.)

The main result of [DS1] states that the analogues of the usual
Sobolev and Poincaré inequalities on Euclidean spaces are also true for
(R?, D) when w is a strong Ao, weight. In view of all these common
features between D, and the Euclidean metric when w satisfies the
strong- Ao, condition it is natural to ask the following.

QUESTION 1.9. ([DS1]) If w is a strong Ao continuous weight on RY,
then is R? equipped with the metric D, bilipschitz equivalent to R?
equipped with the Euclidean metric?

This is equivalent to asking whether there is a quasiconformal map-
ping h : RY - R? whose jacobian J satisfies C™!w < J < C w for some
constant C. It is not hard to show that the doubling and strong-A.
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conditions on w are necessary in order for such a quasiconformal map-
ping to exist. Continuity of w is not necessary, though, but it is also not
required in the “true” definition of a strong Ao, weight in [DS1]. The
restriction to continuous weights here allows us to avoid some technical
complications which are not necessary for the purposes of this paper,
but discontinuous weights are indispensable for the complete story. The
general case of discontinuous weights is also discussed in [Sed].

The answer to Question 1.9 is no.

Theorem 1.10. There i3 a strong Ao continuous weight w on R3 for
such that (R®, D,,) is not bilipschitz equivalent to R® equipped with the
Euclidean metric. We can also take w to be bounded. Moreover, there i3
a constant Ly so that for every pair of distinct points z,y € R? there is
a closed subset W of R® which contains  and y and such that (W, D,,)
18 Ly -bilipschitz equivalent to a closed Euclidean 3-ball equipped with the
standard Euclidean metric.

The counterexamples for Theorem 1.10 will be based on the vi-
olation of the property in Lemma 1.4, and they can be taken to be
powers of the distance to a set in R3 like an Antoine’s necklace. The
resulting spaces (R?, D,,) will then be embedded into R* to produce the
counterexamples for Theorem 1.3. In fact Theorem 1.3 has to include
Theorem 1.10 (modulo continuity of the weight w), because one can
show that any set E as in Theorem 1.3 must be bilipschitz equivalent
to (R3, D) for some (not necessarily continuous) strong Ao, weight
w. In our case this fact will come from the construction. (See Lemma
5.25.)

An amusing consequence of Theorem 1.10 is that the Sobolev-
Poincaré inequalities obtained in [DS1] are nontrivial in the sense that
they cannot be reduced to the Euclidean case by a change of variables.
(However, for these particular examples there are much more direct
arguments than the ones in [DS1] for the general case.)

By adjusting the parameters of the construction one can obtain
various improvements of Theorem 1.10, just as for Theorem 1.3. See
Theorem 4.20 and the remarks that follow it.

Theorem 1.10 raises the same kind of conceptual issues as The-
orem 1.3 does. If one really wants to classify the weights that arise
as jacobians of quasiconformal mappings (or even give nice criteria for
this to happen), then one has to strengthen the strong-A., condition.
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Alternatively, one can take the view that a Euclidean space with its
geometry deformed by a strong A., weight as above is a rather nice
object, even if it is not quite as nice as the standard Euclidean space,
and that it should be accommodated rather than excluded. Again, I
am inclined toward this “big tent” philosophy.

Let us consider now the following weaker version of Question 1.9.

QUESTION 1.11. If w 1s @ strong Ac continuous weight on R?, then is
(R4, D) bilipschitz equivalent to a subset of some R™ equipped with the
Euclidean metric?

It is known that the answer to Question 1.11 is yes for many strong
Ao weights. The precise statement is complicated, but the main result
in [Se4] says that if a strong A, weight w has the property that it can
be made smaller to a nontrivial extent and remain a strong Ao, weight,
then the answer to Question 1.11 is yes for w. This criterion is not
satisfied by all strong A, weights, but it is satisfied by the important
subclass of A; weights (see Definition 2.8), and any strong A, weight
can be approximated by weights which satisfy this stronger condition.
Roughly speaking, the strong A., weights which do not satisfy this
stronger condition are sitting at the boundary of the space of strong
A weights.

Nonetheless, the answer to Question 1.11 is no.

Theorem 1.12. There is a strong Ao, weight on some R? such that
(R4, D) is not bilipschitz equivalent to any subset of any R™ (equipped
with the Euclidean metric).

Of course the statement of Theorem 1.12 is much stronger than
that of Theorem 1.10, except for the knowledge of the dimension d.
However, the example used to prove Theorem 1.10 will have the prop-
erty that one can embed (R?, D,,) bilipschitzly in R*, so that we ac-
tually know that there are counterexamples to Question 1.9 which are
not pathological for Question 1.11. In fact the examples for Theorem
1.10 satisfy the stronger version of the strong-A., condition in [Se4]
mentioned above, and they are nicer, simpler, and more flexible than
the examples for Theorem 1.12. The examples for Theorem 1.12 are
not based on Lemma 1.4 or Antoine’s necklaces or anything like that,
and unfortunately they are not very explicit.

Strong A.. weights are related to an abstract version of Question
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1.11 in an interesting way. To explain this we need another definition.

Definition 1.13. A metric space (M,d(:,-)) satisfies a doubling con-
dition if there is a constant C so that any ball in M can be covered by
at most C balls of half the radius.

This condition shows up in [A1], [A2], [A3], [CW1], [CW2], and
[Gr], but with different names. It provides a kind of boundedness on
the geometry of M. It is satisfied by Euclidean spaces, and hence
their subspaces, and it is not hard to show that (R¢, D,,) satisfies this
doubling condition when w is a strong Ac continuous weight, because
of the doubling condition on w in Definition 1.5.

The abstract version of Question 1.11 asks whether any metric
space which satisfies a doubling condition must be bilipschitz equivalent
to a subset of some R™. The answer is known to be no, and this point
will be discussed more in Section 7. There is very nice positive result
due to Assouad ([A3, Proposition 2.6, p. 436], see also [Al], [A2]),
however.

Theorem 1.14 (Assouad). If (M,d(-,-)) is a metric space which sat-
isfies a doubling condition, then for each o € (0,1) the metric space
(M, d(-,-)™) is bilipschitz equivalent to a subset of some R™.

Thus, given a metric space which satisfies a doubling condition,
one can perturb the metric in order to get a space which embeds into
a Euclidean space bilipschitzly. Although this perturbation is small in
some ways, it does have the unfortunate feature that it enlarges the
class of Lipschitz functions on the space enormously, in such a way as
to destroy any sort of differentiability almost everywhere theorem as
one has on Euclidean space. In fact the counterexamples to the o =1
case of Theorem 1.14 show that such destruction is necessary. (See
Section 7.)

Note that the doubling condition is necessary for the embedding
in Theorem 1.14 to exist (for any a > 0). Also, Theorem 1.14 implies
that every metric space which satisfies a doubling condition admits a
quasisymmetric embedding into some Euclidean space. (Basically a
quasisymmetric embedding is one that distorts relative distances by a
bounded amount, like quasiconformal mappings on R?, but we shall not
need the precise definition here.)

There is a converse to the fact that the deformations of Euclidean
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spaces associated to strong A, continuous weights satisfy the doubling
condition in Definition 1.13.

Theorem 1.15. If (M,d(-,-)) is a metric space which satisfies a dou-
bling condition, then there is a positive integer n and a strong Ao, con-
tinuous weight w on R™ such that (M,d(-,-)) is bilipschitz equivalent to
a subset of (R™, Dy (-,")).

Thus Question 1.11 is equivalent to its abstract version for metric
spaces which satisfy doubling conditions, and so the negative answer to
the abstract version (which was known to Assouad) implies the negative
answer to Question 1.11 itself (Theorem 1.12).

The next section provides more information about related results
and open problems but is not essential to the rest of the paper. An-
toine’s necklaces are reviewed in Section 3, and they are used to prove
Theorems 1.10 and 1.3 in Sections 4 and 5, respectively. Theorem 1.15
is proved in Section 6, and Theorem 1.12 is derived from it in Section
7. Section 8 is devoted to regular mappings, which are more flexible
cousins of bilipschitz mappings.

2. Some related results and problems.

One of the most interesting examples of a set which is not bilip-
schitz equivalent to the expected standard model is provided by the
following.

Theorem 2.1 (Edwards). There 1s a finite polyhedron P (in a Eu-
clidean space of modest dimension) which is homeomorphic to the 5-
sphere S° and which contains a polygonal arc T such that P\T is not
simply connected. In fact, for no open set U C P which intersects I i3
it true that U \ T is simply connected.

Corollary 2.2. If P and T are as above, then P is not bilipschitz equiv-
alent to S°, and no open subset U of P which intersects T is bilipschitz
equivalent to an open subset of RS.

The corollary follows from Edwards’ theorem and Lemma 1.4 (as
was explained in [SS,, Remark (b), p. 504]). Lemma 1.4 implies that
a closed set in S® with Hausdorff dimension less than 3 must always
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have simply-connected complement, so that any homeomorphism from
P onto S5 takes I to a set with Hausdorff dimension at least 3. Thus
no such homeomorphism can be Lipschitz or even Holder continuous of
order larger than 1/3. Similar arguments apply to open sets U as in
the coroll:

Edwards’ example is of the following form. Let H be a compact
smooth 3-dimension manifold which is not simply connected but which
does have the same (integer) homology as S3. Many examples of such
manifolds are known to exist, but note that if H were also simply
connected then the (as yet unproven) Poincaré conjecture would imply
that H is diffeomorphic to S3. Also, recall that a homology sphere of
dimension 1 or 2 has to be a standard sphere. Now take P to be the
“join” of H with a copy of S!. That is, P contains a copy of H and
of S!, and for each point in H and each point in S!, P contains a line
segment which joins the two points, these line segments are disjoint
except possibly for necessary intersections at their endpoints in H and
S!, and P does not contain any other points. We can do this in such
a way that P is a polyhedron, by applying this to polyhedral copies of
H and S! instead of smooth copies. The curve I' mentioned above is
simply the copy of S! inside P that we are using. It is easy to see that
P\T is homotopy-equivalent to the polyhedral copy of H inside P, and
hence is not simply connected. A little more thought gives the local
version of this lack of simple-connectivity mentioned above.

The deep part of Edwards’ theorem is that H can be chosen so
that P is homeomorphic to S®. To understand this better we need to
recall the notion of a suspension of a space. The suspension of H is
just like the join of H with S!, except that we use S° instead. That
is, we take two points off of H, and then we build a new space by join-
ing each of these points with a line segment to each point in H. For
example, if we take the suspension of a sphere, then we get a sphere
of one higher dimension. One can check that P is the same as the
suspension of the suspension (the double suspension) of H. Thus if we
used S? instead of H to build P, then it would be immediately clear
that P would be homeomorphic to S°, even piecewise-linearly. In the
case of a non-simply connected homology sphere H this is less clear.
The suspension of H is not a manifold, because the two cones points
are not manifold points. The idea is that it is almost a manifold, and
in fact almost a sphere, so that the second suspension makes it into a
topological manifold. This is not at all obvious. Edwards proved that
this worked for some homology spheres, and Cannon then proved that
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all homology spheres work. Edwards then proved a very general theo-
rem for recognizing when a topological space is a topological manifold
(which is the key point here). See [C1], [C2], [Da], and [E].

Let us think a little about the geometric properties of the space
P in Theorem 2.1. It is a finite polyhedron, i.e., a finite union of (5-
dimensional) simplices, it is homeomorphic to the 5-sphere, but it is
not bilipschitz equivalent to the 5-sphere, let alone piecewise-linearly
equivalent to S°. Nonetheless P has many of the same geometric prop-
erties as the 5-sphere. It is a 5-dimensional regular set in the sense
of Definition 1.1, modulo the necessary restriction to r < 1 (say) in
(1.2), since P is compact. It is easy to see that the usual Sobolev and
Poincaré inequalities hold on P, and that other aspects of analysis work
as well. It is not hard to prove that P also enjoys the following prop-
erty: thereis a C > 0 so that if z € P and 0 < r < C~?, then there is
an open subset V' of P such that PN B(z,r) CV C PN B(z,Cr) and
V is homeomorphic to a 5-ball. (This is true for any finite polyhedron
which is a topological manifold -see [Se6, Section 11]- but in the case of
P it is a little easier to see using its special form.) One can strengthen
this statement to include uniform scale-invariant bounds on the moduli
of continuity of the homeomorphisms between these sets V' and the unit
ball in R® and their inverses. (Roughly speaking, there are really only
two different V’s that one has to worry about, modulo some simple
operations like dilating.)

Thus P has many of the same nice metric properties as a smooth
manifold, even though it is not bilipschitz equivalent to one. It is in
very much the same spirit as the examples mentioned in the introduc-
tion that will be constructed in the next sections, but it is much more
impressive, since it is even a finite polyhedron. On the other hand,
the examples constructed below have the advantages that they are eas-
ier to verify, they work in lower dimensions (3 instead of 5), and their
parameterizability properties are better controlled (in terms of the ex-
istence or nonexistence of Holder continuous coordinates, for instance;
see Theorems 4.20 and 5.27).

Let us now consider more fully the question of the dimensions in
which these various types of examples exist.

PROBLEM 2.3. Are there analogues of Theorems 1.3 and 1.10 in di-
mension 2?2 For which dimensions d does Theorem 1.12 hold?

The Edwards’ examples work in all dimensions greater or equal
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than 5, but the construction does not make sense in lower dimensions
(because homology spheres are true spheres in dimensions 1 and 2).
The examples given here for Theorems 1.3 and 1.10 could be adapted
to higher dimensions, but the method breaks down completely in di-
mension 2. Of course many things are better in two dimensions, and
there could even be positive results in that case. (For the record, these
questions all degenerate into triviality when d = 1, because one can use
arclength parameterizations to build the required mappings.)

As for Theorem 1.12, the proof will give a value of d which is
computable in principle but whose smallness is not clear. See Section
7, and see Section 8 for some related questions.

There are some positive results which are special to dimension 2
but which address a slightly different question. That is, there are some
reasonable geometric criteria for a 2-dimensional metric space to admit
a quasisymmetric parameterization (which need not be bilipschitz). See
[Se2, Section 5], [DS3, Section 6], and [HK]. The reason that dimen-
sion 2 is special here is that one has the uniformization theorem which
can provide a conformal parameterization right from the start. (This
is analogous to the special role of the arclength parameterization in di-
mension 1.) One still has the problem of passing from the infinitesimal
conformality condition to distortion estimates at large scales, but this
can be managed, and in fact the results of Heinonen and Koskela [HK]
deal effectively with this problem under very general circumstances.
Nonetheless, the difficulty posed by the absence of the uniformization
theorem in higher dimensions remains, and in fact there are examples
[S6] which show that the analogues of the 2-dimensional results fail in
higher dimensions.

There is another special case of these questions which is not ad-
dressed by the known examples.

Definition 2.4. Let M be a hypersurface in R, and assume a priori
that M 1is smooth and nice at co. Given € > 0, we say that M 1s e-flat

if
(2.5) Dum(z,y) S(1+¢)lz—yl, foralz,ye M,

where Dp(z,y) denotes the geodesic distance on M (the infimum of the
lengths of all paths on M which join z to y), and if

(2.6) (1—¢e)var?® < HY(M N B(z,r)) < (1 +¢€)var?,
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for allz € M and r > 0, where vy denotes the volume of the unit ball
in R4

It is easy to see that M must be a hyperplane if it is e-flat with
e=0.

PROBLEM 2.7. If M C R%**! is e-flat, and if € is small enough, then
must it be true that M is bilipschitz equivalent to R? with a bilipschitz
constant that depends only on d? Is it bilipschitz equivalent to R? with
a constant which tends to 1 uniformly ase - 07

If M admits a K-bilipschitz parameterization by R¢, then (2.5) and
(2.6) must hold with ¢ — 0 as K — 1, as one can easily check. The point
of Problem 2.7 is to know whether the converse holds, with estimates
which do not depend quantitatively on the a priori assumptions.

It turns out that the e-flatness condition implies many other flat-
ness conditions that are necessary for the existence of such a bilipschitz
parameterization. For instance, it implies the existence of local co-
ordinates with good estimates in terms of Holder spaces and Sobolev
spaces, as long as one stays away from the Lipschitz class (which is
the question of Problem 2.7), and when d = 2 there is a positive re-
sult for quasisymmetric parameterizations, based on the uniformization
theorem. (See [Se2].) Also, there are some sufficient conditions for the
existence of bilipschitz parameterizations (with constant close to 1) in
terms of conditions which are stronger than e-flatness but which are
roughly of the same order of magnitude [T2]. When d = 2 there is
a nice sufficient condition in terms of the L? norm of the curvature
being small [T1]. This condition is stronger than e-flatness, and has
approximately the same relationship with e-flatness that the Sobolev
space W12(R?) has with BMO(R?) via the Sobolev embedding. When
d > 2 it is not known whether the L? norm of the principal curvatures
being small is sufficient to ensure the existence of a bilipschitz parame-
terization. This curvature condition is the natural one, in that it scales
correctly and implies e-flatness.

There are also some nice equivalent characterizations of e-flatness
with small ¢, in terms of the Gauss map having small BMO norm (and
hence small oscillation in a certain sense) [Se3] and in terms of singular
integral operators and Clifford analysis [Sel].

Despite all these good properties of e-flat surfaces, I am pessimistic
about Problem 2.7. However, I do not know any counterexamples, and
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the type of examples given in this paper will not work for this.
One could also consider small constant versions of Question 1.9.
When d = 2 one can reduce Problem 2.7 to such a question using [Se2].
There is another variant of Question 1.9 which has some hope. For
this it is much less reasonable to deal only with continuous weights, and
so we use the correct general definition.

Definition 2.8. A nonnegative measurable function w on R? which is
positive almost everywhere i3 called an A, weight if there is a constant
C such that

(2.9) 1713-} /Bw(y) dy < C essinf w(y),-

for all balls B in R

The A; condition implies the strong-A. condition, although the
definition of D,(-,-) needs to be modified since we are not assuming
continuity. (This issue is treated thoroughly in [Se4].) The A; condi-
tion is much stronger; it forbids any vanishing, while the strong-A.
condition forbids only certain kinds of vanishing. A simple example of
an A; weight on R? is w(z) = |z|™* for 0 < s < d. Similarly, an 4,
weight can blow up along a submanifold, but not as rapidly.

PROBLEM 2.10. Does Question 1.9 have an affirmative answer for A;
weights?

Question 1.11 does have an affirmative answer in the case of A4,
weights [Sed]. The situation for Question 1.9 is unclear, but the method
for producing an example as in Theorem 1.10 definitely does not work
in the case of A; weights. (The whole point will be to make the weight
vanish on a certain set, which an A, weight cannot do.)

See [Ga] and [Jr] for more information about A; weights.

There is a notion of “regular mappings” which is weaker (and more
flexible) than bilipschitzness and for which there are some interesting
results and problems related to Questions 1.9 and 1.11 and Problems
2.3 and 2.10. See Section 8.

For related questions and examples pertaining to strong-A., we-
ights, see [Se4], especially Sections 4 and 5.
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3. Antoine’s necklaces.

This section will be devoted to the necklaces of Antoine, which
are Cantor sets in R® whose complements are not simply connected.
These sets will be used heavily in the next two sections, to construct
the examples promised in the introduction. The basic reference for
this section is [Mo, Chapter 18]. (See also [B] for higher-dimensional
versions of Antoine’s necklaces.)

Let k be a reasonably large positive integer. This is a parameter
which is at our disposal; it needs to be reasonably large for the con-
struction to work nicely (k > 107 is fine), but there is no reason for us
to try to choose k as small as possible anyway. It will be important
later for us to have the option of taking k to be arbitrarily large. The
construction is a little nicer when k is even.

Fix a circle Iy in R® with radius 1. Let P, be a collection of &
equally spaced points on I's. For each p € Py choose a circle vo(p) in
R3 centered at p in such a way that all the vo(p)’s have the same radius
p(k) and the following properties are satisfied:

(3.1) E1 < p(k) < 2n kT,

(3.2) dist({p} Uo(p), {q} Uro(g)) = (100k)™", whenp+#g,

v0(p) and 7o(g) are linked (as circles in R?)
(3.3) if and only if p and ¢ are adjacent to each other

(as elements of Py).

It is not hard to check that these circles actually exist. (It is helpful
to remember that by taking k large we have that I’y is very flat at the
scale of k~!. If we did not want adjacent circles to link, but instead
to touch at a single point, then we would want to take p(k) = mk~1.
As it is, we need to take them a little larger, but (3.1) gives us enough
room. We could also impose additional symmetry requirements on the
7o(p)’s, but we shall not bother.) The union of the vy(p)’s, p € Py, link
together in a necklace near Iy, and we denote their union by N(T').
See [Mo, Figures 18.1 and 18.2, p. 127-8] for excellent pictures.

To build Antoine’s necklace we shall replace each vo(p) with a
smaller copy of N(T'g), and then replace each component of the resulting
set with a smaller copy of N(I'g), and so forth. To do this carefully we
need to “mark” our circles.
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Recall that a similarity on R™ is an affine mapping which is a
combination of a translation, (nonzero) dilation, and orthogonal trans-
formation.

Definition 3.4. A marked circle in R3 is a circle T' together with an
orientation-preserving similarity ¢ on R? (called the marking) such that

#(To) = T. We shall often let T' denote both a marked circle (with ¢
not mentioned ezplicitly) and the circle as a set.

Of course we shall always take I'y to be marked in the obvious way
(with ¢ = the identity).

Choose now markings ¢, for the circles y9(p)’s, p € Po. The choice
of the markings is insignificant, but they need to be fixed once and for
all. With the selection of these markings we can view N(I'p) as a union
of marked circles.

If T is a marked circle, with marking ¢, then we set

(3.5) N(T) = ¢(N(To)).

We shall consider N(I') to be a union of marked circles, with the mark-
ings induced by ¢ in the obvious way. These circles are also naturally
labelled by P.

If T and IV are marked circles and if ¢ : R® — R? is an orientation-
preserving similarity which takes I' to IV in a way which is compatible
with the markings, then

(3.6) $(N(T)) = N(T),

and the markings of the constituent circles of N(I';) and N(I';) corre-
spond under ¢ in the obvious way.

If E C R3 is a finite union of marked circles, then we take N(E)
to be the union of N(a), where a runs through the consitituent circles
of E. Thus if C denotes the set of subsets of R® which are finite unions
of marked circles, then N defines a mapping from C to itself. Note that
if E,E' € C, then EUE' € C and N(EUE') = N(E)UN(E'). Also,
orientation-preserving similarities act on C in the obvious way, and this
action commutes with NV, by (3.6).

Set Ag = Ty, A1 = N(I'y), and define A; in general by A; =
NY(Ty), where N'! denotes the I** power of N, viewed as a mapping on
C. That is, we view I'y and the A;’s as elements of C, so that we can
iterate IV in this way. Each A; is a union of k! marked circles of radius
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p(k)!, and A;4; is the union of the N(a)’s, where a runs through the
circles which make up A;. The Hausdorff limit of the A;’s will give a
necklace of Antoine. Before we deal with the Hausdorff limit we should
record some simple preliminary facts.

Lemma 3.7. For each j,1 with 0<j <[ we have that A; = UaN'"/(a),
where the union is taken over all the consitituent (marked) circles a in
A;, and the constituent circles of these two collections are marked in
the same way.

In other words, A; and UaN'~7(«) are the same as elements of C.
This follows easily from the definitions. :

Lemma 3.8. If k > 107, then every marked circle I’ in R3 satisfies

sup dist(z,T') < p(k)radius(T") < 107° radius(T).
zeN(T)

To prove this one reduces to the case where I' = T’y and uses (3.1)
and the definitions.

From now on we assume that k is at least 107. Given a circle I in
R3, let 7(T") be the small solid torus containing I" given by

(3.9) () = {x € R®: dist(z,T') < 10~° radiusT}.
If T and I are two circles and v is a similarity that maps one onto the
other, then ¥(7(T')) = 7(I'). If E is a finite union of circles in R3, then

we define 7(E) to be the union of the sets obtained by applying 7 to
the constituent circles of E.

Lemma 3.10. 7(N'(T)) C 7(T) for all marked cirles T and all1>0.

This follows from Lemma 3.8 and the definitions by estimating the
relevant geometric series.

Lemma 3.11. 7(4;) 2 7(A;) when 0 < 5 < 1.

This is an immediate consequence of Lemmas 3.10 and 3.7.



356 S. SEMMESs

We now define our Antoine’s necklace A by

(3.12) A=(r(4).

This is a compact subset of R3. It is the same as the Hausdorff limit of
the A;’s, but this definition is a little easier to use.

This set A is totally disconnected. To quantify this disconnected-
ness define 74(T") for @ > 0 and T a circle in R?® to be the solid torus
containing I given by

(3.13) 72(T) = {z € R®: dist(z,T) < a1075 radiusT'}.
Thus if @ > 1 then this is somewhat larger than 7(T).

Lemma 3.14. Let a and o' be two distinct circles among those which
make up A, 1 > 1. Then 750(a) and 150(a’) are disjoint.

To seeA this notice first that

(3.15) dist (y0(p), 70(g)) > 700~" radius yo(p)

when p,q € Py, p # ¢, because of (3.2) and (3.1). This implies that
750(70(p)) and 7s0(70(q)) are disjoint when p # ¢, which is the same as
the | = 1 case of Lemma 3.14. The case where ! > 1 and « and o' have
the same “parent” in A;—; reduces to the [ = 1 case by a similarity
transformation. Suppose now that | > 1 and a and o' have different
parents in A;_;. Let § be the parent of @, so that « is one of the circles

in N(§). Then
(316) 7'50(01) C_: T50(($)

because of Lemma 3.8. Thus the disjointness of 7s0(a) and 7s0(c’)
would follow if we could establish the disjointness of 750(d) and 750(4'),
where ¢’ is the parent of a'. By iterating this procedure we can reduce
to the previous case where the two circles have the same parent. This
proves the lemma.

For the record:
Theorem 3.17. R3\ A is not simply connected.
This is Theorem 4 of [Mo, p. 141)}.

Corollary 3.18. No homeomorphism from R3 to itself can map A to
a set with Hausdorff dimension less than 1.



ON THE NONEXISTENCE OF BILIPSCHITZ PARAMETERIZATIONS 357

This follows from Theorem 3.17 and Lemma 1.4. It is very amusing,
since A itself is homeomorphic to a standard Cantor set. Thus we
cannot find a global homeomorphism on R? which sends A to a standard
Cantor set. See also [Mo, Theorem 5, p. 131].

Notice that when k¥ — oo A tends to the circle I'y in the Hausdorff
topology. The Hausdorff dimension A is always larger than 1, and it
tends to 1 as k¥ — oo.

There is also a “local” version of Corollary 3.18.

Corollary 3.19. IfU is an open set in R which intersects A, then any
homeomorphism from U onto another open set in R® must take U N A
to a set with Hausdorff dimension at least 1.

Indeed, because of the obvious self-similarity of A, there must be
a small copy A of A inside U. Theorem 3.17 implies that there is a
small loop in U\ A which is contractible in U but not in U \ A, and so
Lemma 1.4 implies the corollary.

For more information about this kind of wildness phenomena see

[R].

4. Strong-A. weights.

This section will be devoted to Theorem 1.10 and some variants of
it. We shall consider continuous weights of the form

(4.1) w(z) = min (1, dist (z, 4)%?)

on R3, where A is a compact set and s > 0 is at our disposal. In fact
we shall take A to be the set constructed in the preceding section, with
the parameter k also at our disposal. We shall see that this weight
satisfies the strong-Ao, condition and has other interesting properties.
The typographically simpler weights of the form dist(z, A)** would be
practically as good, but it is nice to force w to be constant off a compact
set. There is nothing magical about the 3 in the exponent, it merely
reflects the fact that we shall use w as a density on R3, and it simplifies
some of the later formulae.

Our first task is to show that w is a strong Ao, weight. This point
is clearer in a more general setting.
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Definition 4.2. A closed set E in R™ is said to be uniformly dis-
connected if there i3 a constant Co > 0 so that for each z € E and
r > 0 there 1s a set F' such that EN B(z,r) CF C EN B(z,Cor) and
dist (F,E) > Cy'r. (The latter will be considered to hold vacuously
when E = F.)

In other words, E N B(z,r) should be contained in a little island
in E which is not too much larger and which is at a definite distance
from the rest of E. The standard Cantor set has this property, as well
as practically anything constructed in a similar manner, like the set A
in the preceding section.

Proposition 4.3. The set A constructed in Section 3 is uniformly
disconnected (for all k, which we require to be > 107, as in Section 3).

Proposition 4.4. If E C R"™ i3 closed and uniformly disconnected,
then the weight Q(z) = min(1,dist (z, E)*) is a strong A continuous
weight for all s > 0.

Corollary 4.5. If w is defined on R® as in (4.1), then w is a strong
Ao continuous weight for all s > 0 and k > 107.

Of course the corollary is an immediate consequence of the propo-
sitions.

Let us prove Proposition 4.3. We shall use freely the notations
and results from the previous section. All constants C' which appear in
the argument below will be permitted to depend on k. Indeed, since A
approximates a circle in the Hausdorff topology when k gets big, the
uniform disconnectedness constant for A has to blow up as k — oo.

Let z € A and r > 0 be given, as in Definition 4.2. We may as well
assume that r < 1071%p(k); if r > 1071%(k), then we can simply take
F = A, and the requirements of Definition 4.2 will be satisfied.

Choose [ > 1 as large as possible so that r < 1071%p(k)!, and let
a be the constituent circle in A; such that z € 7(a). Let ¢ be the
parent of @ in Aj—1, and set F = AN 7(8). Then B(z,r) C 7(9),
because dist (z,d) < 107%radius(é) < 1073 radius(d) — r by Lemma
3.8, our choice.of I, and the fact that the radius of § is p(k)'~. Thus
F 2 B(z,r) N A. On the other hand, dist (F, 4 \ F) > 1075 radius(4)
by Lemma 3.14 (applied to § and its cousins, and with [ replaced by
I[—1) when!—12>1. When /-1 =0 we have that § =T'g and F = A.
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Since r > 1071%p(k)"*! > C~!radius(é) we have that F C B(z,Cr).
Altogether we conclude that F" has the properties required in Definition
4.2, and Proposition 4.3 follows.

Now let us prove Proposition 4.4.

Lemma 4.6. If E C R" 3 closed and uniformly disconnected, then
there is a C > 0 3o that for each ball B in R™ there 1s a subball B' C B
such that B' C R™\ E and the radius of B' is at least C~! times the
radius of B.

To prove this we may as well assume that B is centered on E.
Indeed, either (1/2)B is disjoint from E, in which case the conclusion of
the lemma holds, or it is not, in which case we can find a ball contained
in B with exactly half the radius and whose center is an element of E.

With B centered on E let us apply Definition 4.2 with z,7 chosen
so that B(z,2Cyr) = B. This gives us a set F C (1/2)B such that
dist (F,E \ F) > C;'r. Using this it is easy to check that B has a
subball with the required properties.

One consequence of Lemma 4.6 is that E has Lebesgue measure
zero. The vulgar reason for this is that the conclusion of Lemma
4.6 implies that E cannot have any points of density (in the sense
of Lebesgue). A better reason is that E must even have Minkowski
dimension less than n. At any rate we deduce that Q as in Proposition
4.4 is at least a continuous weight.

Lemma 4.7. If E C R" is closed and uniformly disconnected, and if
1 i3 as in Proposition 4.4, then there is a C > 0 so that

(4.8) . supQSCL/Q,
2B |B| Jp

for all balls B in R™.

By Lemma 4.6, every ball with radius 1 contains a ball disjoint
from E whose radius is larger than some fixed positive number. Since
Q is bounded from below on at least one-half this ball we get that the
right side of (4.8) is bounded from below when B has radius at least 1
(by an easy argument). This implies that (4.8) holds (with a suitable
constant) when the radius of B is at least 1, since 2 < 1 by definition.

Suppose that B has radius less than 1. If 3B is disjoint from E,
then sup,g 2 < Cinfp 2 for a suitable constant C' by the definition
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of Q and simple geometric considerations, and so (4.8) is satisfied. If
3B intersects E, then sup,p ! < (5radius(B))*, while the right side of
(4.8) is bounded from below by C~'radius(B)* for some constant C,
because of Lemma 4.6 and the definition of . In this case also (4.8)
holds, and Lemma 4.7 follows.

Lemma 4.7 implies that Q is doubling and that
Dﬂ(x,y) < C‘Q(Bz,y)l/n .
(See Definition 1.5.)

Lemma 4.9. Suppose that E C R™ 1is closed and uniformly dis-
connected, and let z,y € R™ and a curve v which connects them be
gwen. Then there i3 a point p on v such that |p — z| < |y — z| and
dist (p, E) > C~ !y — z| for some C which does not depend on z,y, or

D
This is easy to verify using the uniform disconnectedness condition.

To finish the proof of Proposition 4.4 it remains to show that if E
and {2 are as above and z,y € R™ and a curve v which connects them
are given, then [ Ql/rds > C1Q(B, )", where B, , and Q(B,,y)
are as in Definition 1.5. Apply Lemma 4.9 to get a point p as above.
This means that there is a ball B centered at p and with radius equal to
Ci'ly — z| such that 2B is disjoint from E for some constant C;. This
condition implies in turn that supg 2 < Cyinfp (2 for some constant
C. Hence

/Ql/"dsz/ Q" ds
(4.10) L 1NB

>yt (i%m’/") ly —z| > C71(B)/".

On the other hand, Q(B)}/* > C~Q(B,,,)'/", since Q is doubling,
[p — z| € |y — z|, and the radius of B is not too small compared to
ly — z|, and hence f Ql/"ds > CQ(B,,y)/", as desired. Thus Q
satisfies the strong-A., condition, and the proof of Proposition 4.4 is
complete.
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Notice that for the weight { as in Proposition 4.4 the condition
(1.8) is much more obvious than for generic strong A, weights, because
of Lemma 4.7.

Next, let A be as in Section 3 and w be as in (4.1), and let us
estimate the Hausdorff dimension of A with respect to D, in terms
of the parameters s and k (from (4.1) and Section 3). For simplicity
we shall call this the w-Hausdorff dimension of A. The main point is
to know when this dimension is less than 1 (or even small) so that
we can apply Corollary 3.18 to get restrictions on Lipschitz or Holder
continuous maps from (R3,D,) to R® equipped with the Euclidean
metric.

To estimate the w-Hausdorff dimension of A we need to cover A
with little blobs, estimate the w-diameter of the little blobs, and then
bound the usual series. The computation is simplified by the homogene-
ity and self-similarity properties of A and w. For each ! let 4; denote
the collection of constituent circles in A;. Then 7(4;) = Uaea, 7(a), by
definition, and so

(4.11) Ac | (o)

a€A;

by (3.12). Thus we can use the 7(a), @ € Ay, as the little blobs.

We need to estimate the w-diameters of the 7(«a)’s, where “w-
diameter” means the diameter with respect to D,,. Observe first that
ANT7(a) # @. (Lemma 3.10 is helpful in this regard.) Thus

(4.12) supw < (2radius(a))®*

m(a)
by definition of w. Hence
(4.13) w-diameter (T(a)) < C radius(a)'**

by the definition of D,. By construction all the @ € A; have radius
p(k)!, and so we get

(4.14) w-diameter ((a)) < C p(k)'3+2).

Remember also that there are k! elements of 4;. Using this fact, (4.14),
and the definition of Hausdorff measure we get the following.
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Lemma 4.15. The w-Hausdorff dimension of A i3 less or equal than
a if limsup;_, ., k'p(k)'(1+9)¢ < 0.

It is not hard to see that the estimate on the w-Hausdorff dimension
provided by this lemma is sharp, but we shall not need that fact. (The
main point is to use the natural probability measure on A to get lower
bounds on w-Hausdorff measure.)

Although we could go back now and analyze p(k) carefully to get
as much out of Lemma 4.15 as possible, a much cruder analysis will be
sufficient for our purposes.

Lemma 4.16. The w-Hausdorff dimension of A is at most 3(1+3s)™1.

To see this we observe that

(4.17) m;p K p(k)¥ < 0.

This bound follows from the observation that p(k)% is a constant mul-
tiple of the Lebesgue measure of each 7(a), a € Aj, so that the left
side of (4.17) is dominated by the Lebesgue measure of a compact set
in R3. Lemma 4.16 follows immediately from (4.17) and Lemma 4.15.
Of course Lemma 4.16 is not at all sharp, but it enjoys the simplicity
of providing a bund which does not depend on k.

Lemma 4.18. For each fized s > 0 the w-Hausdorff dimension of A 13
less or equal than (1 + s/2)71 for k sufficiently large.

Recall from (3.1) that p(k) < 27k~!. Thus Lemma 4.15 im-
plies that the w-Hausdorff dimension of A is less or equal than a if
lim sup,_, o, k' ~1(1+9)8(27)0+9)2 < oo, If we take a = (14 35/2)7}, then
1—(1+4s)a <0, and k'=10+s)e(27)i0+9)a 4 0 as | — oo when k is
sufficiently large. Lemma 4.18 follows.

We are now ready to Prove Theorem 1.10 and some variants of it.
Let us first set some terminology. Let h be a map from an open subset
U of R? in to R3, viewed as a map from U equipped with the metric D,,
into R?® equipped with the Euclidean metric. We shall write this more
succinctly as k : (U, Du(z,y)) = (R3, |z — y|). We say that h is locally
Holder continuous of order ¢ if for each compact set K C U there is a
constant C' = C(K) such that

(4.19) |h(z) — h(y)| < C Du(z,y)°,
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for all z,y € K. When this holds with § = 1 we say that h is locally
Lipschitz.

Theorem 4.20. Let A and k be as in Section 3, and let w and s > 0
be as in (4.1). Let U be any open subset of R® which intersects A, and
let V be any other open subset of R3. (For instance take U =V = R3.)

a) If s > 2 then there does not ezist a homeomorphism h :
(U,Du(z,y)) = (V, |z —y|) which is locally Lipschitz.

b) For any s > 0 there does not ezist a homeomorphism h :
(U,Du(z,y)) = (V,|z—y|) which is locally Lipschitz if k is large enough.

c) For any s > 0 there does not ezist a homeomorphism h :
(U, Dy (z,y)) = (V,|z — y|) which is locally Holder continuous of order
greater than 3(1 + s)71.

Like the lemmas that came before it, the bounds in Theorem 4.20
are not sharp.
For the proof of Theorem 4.20 we we shall need the following.

Lemma 4.21. IfU C R3? is open, h : (U,Dy(z,y)) = (R3, |z — y|)
18 locally Holder continuous of order §, and K C U s a compact set
with w-Hausdorff dimension less or equal than a, then the Euclidean
Hausdorff dimension of h(K) s less or equal than § a.

This is a well-known and straightforward consequence of the defi-
nitions.

Recall now that Corollary 3.19 says that no homeomorphism b :
U — V can send U N A to a set of Euclidean Hausdorff dimension less
than 1. Using this and Lemma 4.21, parts a) and c) of Theorem 4.20
follow from Lemma 4.16, and part b) follows from Lemma 4.18.

Notice that part c) contains a) as a special case, but the point of
c) is more the fact that the Holder exponent of any homeomorphism
h : (R3,D,(z,y)) = (R3, |z — y|) has to go to 0 as s gets large. By
contrast we have the following simple and well-known fact.

Proposition 4.22. Ifw is any strong Ao, weight on R3 (or R", for that
matter), then the identity mapping on R3 is locally Holder continuous
as a map from (R3, D, (z,y)) to (R3,|z — y|) of some positive order.
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Because of Definition 1.5, Proposition 4.22 reduces itself to the
following.

Lemma 4.23. If Q 1s a continuous weight on R™ which i3 doubling,
then for each compact set K C R™ there ezist positive constants C and
N such that Q(B(z,r)) > CrN for allz € K and 0 < r < 1. Here
C depends on K but N does not.

Indeed, the doubling property implies that there is a constant Cy
such that Q(B(y,t)) > Cy'UB(y,2t)) for all y € R™ and ¢t > 0.
Let K, z, and r be given as in the lemma. If j is a positive integer
which is sufficiently large so that B(z,2'r) 2 K, then Q(B(z,r)) >
Cy’QUB(z,27r)) > Cy’Q(K). The lemma follows from this estimate,
since we can choose j to be —log,r + C.

Proposition 4.22 can be improved in various ways. A similar argu-
ment can be used to show that the identity is locally Hélder continuous
as a map in the other direction, i.e., from (R3, |z —y|) to (R3, Dy(z, y)).
The identity mapping is in truth quasisymmetric, essentially by defini-
tion of D,, and the strong-A, condition. This implies a scale-invariant
version of Proposition 4.22 in particular. Estimates like the reverse
Hélder inequality (1.8) can be used to show that the identity mapping
as a map from (R3, D, (z,y)) to (R3, |z — y|) (or the other way around)
satisfies local Sobolev space estimates. (These Sobolev spaces have to
be formulated carefully, since we are dealing with metric spaces.)

One can think of part ¢) of Theorem 4.20 as saying that
(R3, D, (z,y)) can be as far as possible from being bilipschitz equivalent
to (R3, |z — y|) even though w is a strong A, weight. Part b) is a com-
plement to this. It says that we can make the singularity of the weight
w as small as we want while still having (R3, Dy,(z,y)) and (R3, |z —y|)
be bilipschitz inequivalent. In terms of the metrics this means that the
identity mapping as a map from (R3, D, (z,y)) to (R?, |z —y]) is locally
Holder continuous of order § where § — 1 as s — 0. On the other
hand, the identity is trivially Lipschitz as a map from (R3, |z — y|) to
(R3, D(z,y)), since w < 1 by definition. As before, there are various
improvements of the statement about Holder continuity, in terms of
Sobolev space estimates, for instance. The bottom line is that we can
choose w so that it is a strong A, weight and so that (R3, D.(z,y))
is as close as we want to being bilipschitz equivalent to (R3,|z — y|)
without actually being bilipschitz equivalent.
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Note however that the strong-A., constant of w blows up as s gets
small; thus part b) does not really provide counterexamples to suitable
small-constant versions of Question 1.9 (as mentioned briefly in Section
2, after the discussion of Problem 2.7).

REMARK 4.24. If one took a non-wild version of the Cantor set A from
the preceding section (e.g., by replacing (3.3) by the requirement that
the 4o(p)’s be unlinked), and defined w as in (4.1), then (R, D (z,v))
would be bilipschitz equivalent to (R?, |z — y|), no matter how large s
is. (There is also nothing special about dimension 3 here.) This is not
very hard to prove. One could use the same construction as in the next
section. (See Remark 5.28.)

To finish the proof of Theorem 1.10 it remains to establish the last
part, about connecting an arbitrary pair of points by a set which is
bilipschitz equivalent to a standard Euclidean ball.

Proposition 4.25. Let A be as in Section 3 (with some choice of k)
and let w be as in (4.1) (with some choice of 8). There i3 a constant L,
(depending on k and s) with the property that for every pair of distinct
points p,q € R? there is a closed subset W of R® containing p and
q such that (W,D,,) is L,-bilipschitz equivalent to a closed Euclidean
3-ball with the standard Euclidean metric.

The rest of this section will be devoted to the proof of Proposition
4.25. The proof is basically trivial, but one should be a little careful.
The basic idea is to connect p and ¢ by a curve which stays away from
A as much as possible, and which is as smooth as it can be subject to
this constraint (and has no self-intersections), and then to take W to
be a fattened-up version of this curve. On this set W the “strangeness”
(deviation from Euclidean geometry) of the metric D,, will be essentially
like the strangeness of D, on a curve, and we shall be able to get rid
of it easily.

Let p,q € R® be given, p # ¢q. Given a pair of points y,2z in R?
and an ¢ in (0,1), let S(y, z) denote the segment which joins y to z,
and let S.(y, z) be the set of points = in R3 such that dist(z, S(y, z)) <
edist (z, {y, 2}). Thus S.(y, z) is the union of two truncated cones, one
with vertex y, the other with vertex z. It is also bilipschitz equivalent
to a Euclidean ball, with a bilipschitz constant which depends only on
€. In order to produce a set W as in the proposition it is better to
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think of W as being bilipschitz equivalent to some S, (y, z) rather than
a round ball. Typically W will look like a twisted version of S.(y, z),
with some spiralling at the ends. The segment S(y, z) will correspond
to the curve mentioned in the previous paragraph.

Let us begin with a preliminary fact.

Lemma 4.26. Suppose that X is a nonempty subset of R\ A which
satisfies dist (X, A) > p min{diam X, 1} for some pu > 0. Then there
18 a constant C = C(p) such that

(4.27) supw < C infw
X X
and
(4.28) C'w(z)'*|z — y| < Du(e,y) < Cuw(z)?le —yl,

forallz,y € X.

The first part (4.27) follows immediately from the definition (4.1)
of w. To establish the second part let us observe that

(4.29) C~'w(z)|B| < w(B) < Cw(2)|B],

whenever B is a Euclidean ball which contains some z € X and which
has diameter at most the diameter of X. Here |B| denotes the Euclidean
volume of B. These inequalities follow from our assumptions on X and
the definition of w. (It is helpful to distinguish between the cases where
dist (X, 4) < 1 and dist (X, A) > 1.) To prove (4.28) we use the fact
that w is a strong-A. weight (Corollary 4.5 and Definition 1.5) to
reduce to (4.29). This proves the lemma.

We shall use heavily the notation and definitions from Section 3 in
the rest of the proof of Proposition 4.25.

Lemma 4.30. The conclusion of Proposition 4.25 holds when there is
a circle a in some A; such that p,q € 7(a)\ 7(N?(a)). The same is
true when p,q € R\ 7(N(Ty)).

To prove this let us first observe that we can find a mapping ¢
from a closed Euclidean ball into X = 7(a) \ 7(N?%(a)) or X = R3\
7(N(Ty)) (as appropriate) such that the image of g contains p,q and g
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is bilipschitz with respect to the Euclidean metrics (and not D, ) with
a uniformly bounded constant. In the first case, where X = 7(a) \
7(N?%(a)), this is true because X is a nice smooth (connected) domain,
a torus with a few tori removed. These domains can all be realized
as images of each other under similarities, which makes transparent
the existence of estimates which do not depend on «. The second
case requires a tiny bit of extra care but is standard. (Think about
R3\ B(0,1) first.) Once we have such a mapping g we can precompose
with a dilation if necessary to get a uniformly bilipschitz map from a
Euclidean ball into (R?, D,,) whose image contains p and ¢ (because of
Lemma 4.26). This proves Lemma 4.30.

To deal with the remaining cases of Proposition 4.25 we cannot
simply “localize” in this manner, but instead we have to connect p and
g with chains of sets which each satisfy separately the hypotheses of
Lemma 4.26. The next lemma covers the most interesting case, and its
proof will take a while.

Lemma 4.31. If p,q € A, then the conclusions of Proposition 4.25
hold.

Choose § in some A,, such that p,q € 7(§) and m is as large as
possible. Note that m < co. Let a;, 81 be the (unique) circles in 4; such
that p € T(ai), ¢ € 7(B1), respectively, so that a;4+1 € N(a;) for each
l, etc. Choose (arbitrarily) points p; and ¢; in the boundaries of 7(a)
and 7(f;) for each [ > m. Of course p; = p and ¢t = g as [ = oco. Our
bilipschitz ball W will be obtained by combining a family of smooth
tubes which connect the successive p;’s and ¢;’s.

We should record some bounds on distances and diameters. Let us
write X = Y when the two quantities X and Y are each bounded by
a constant times the other, where the constant is allowed to depend on
our parameters k and s but nothing else. Thus

- ~ di ,

D, (p1,p1+1) = D,-diam a; = (diam oy)'**,
and similarly for the ¢;’s. Here “diam” refers to the diameter with
respect to the Euclidean metric, while “D,,-diam” refers to the diameter

with respect to D,,. Remember that

(4.33) diamy = p(k)' diam T when v € Ay,
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because of the construction in Section 3. This implies that

(4.34) D (pi,p1+1) = Du(pi+1,p142),

for all /, and similarly for the ¢;’s, and also

(4.35) Du(pm+1,Pm+2) = Du(Pm+1,dm+1) = Du(gm+1, qm+2) -

Notice that a; # 8 when | > m, because of the maximality of m. This
implies that

(436) [pm+1 - qm+1| 2 C'ldxa.m5

for some constant C.

Fix any line J in R3, and choose points z; and w; in J for [ > m in
the following manner. These points are supposed to correspond to the
pi’s and q;’s, and this will be made more precise soon. Choose zm,41
and wy,4; first, in such a way that |zm+1 — Wn+t1] = Du(Pm+1, Gm+1)-
Except for this constraint the specific choices do not matter. When
Il >m+1let z; and w; be the (unique) points such that |z; — zj_;| =
D.(pt,pi-1), |lwi —wi—1| = Do(qi,qi—1) for all I > m + 1 and such that
the z,’s and w;’s are ordered correctly. This means that z; is always
on the opposite side of z;_; from 2;_,, and similarly for the w;’s, and
that zm42 lies on the opposite side of 2,41 from w41, and that wm42
lies on the opposite side of w41 from zm41. Let z € J be the limit
of the z;’s, and let w € J be the limit of the w;’s. These points will
correspond to our original p and ¢g. Note that all the z;’s and w;’s lie on
S(z,w), because of our ordering, and that the sequences {|z; — z1_1|}i
and {|w; — w;—|}; are approximately geometric sequences, because of
(4.32) and (4.33).

In order to prove Lemma 4.31 it suffices to find € > 0 and a
bilipschitz mapping f from (S.(z,w), |z — y|) into (R3, D,,) (with uni-
form choices of € and the bilipschitz constant) such that f(z) = p and
f(w) = q. We shall define f in stages. To understand how f is con-
structed it is helpful to visualize the region f(S.(z,w)) that we shall
have to construct. It will be a union of little tubes, where the tubes
connect the successive p;’s and ¢;’s. These tubes will be diffeomorphic
to rectangles and they will be neither too thin nor too close to A. To
build these tubes we shall first choose some smooth Jordan arcs which
connect the successive p;’s and ¢;’s, and the tubes will be little tubular
neighborhoods of these arcs. Before we do all these things let us define
f initially on the z’s and w;’s in the obvious way.
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Sublemma 4.37. Let £ be the set consisting of z,w, and the z;’s and
w’s for | > m, and define f: € = R® by f(z) = p, f(w) =gq, f(z1) =
pi, and f(wi) = qi. Then f is bilipschitz as a map from (€, |z —y|) into
(R®,D,,) with uniformly bounded bilipschitz constant.

We defined f so that it satisfies the bilipschitz condition for con-
secutive points in €. In order to check the bilipschitz condition for
pairs of points which are further apart it is helpful to make some
additional observations. If j > I + 1, then 7(ej) C 7(N%(a1)), be-
cause of Lemma 3.10. This implies that dist (7(a;) \ 7(N(a1)), 7(aj)) =
diam a;, and similarly for the §’s. The constants implicit in this state-
ment do not depend on ! or j, as one can verify most easily using
the self-similarity of the constuction in Section 3. We also get that
D,-dist (1(a;) \ 7(N(a1)), 7(ej)) = D,-diam e, and similarly for the
B’s, with a uniform choice of the constant. This is a variant of (4.28)
which can also be derived from (4.29). (Note that X = 7(ay)\ 7(N(a1))
satisfies the hypotheses of Lemma 4.26.) Thus we can control the in-
teraction between the various a’s, and between the 3’s. We also have
that the a’s and the 3’s do not interact with each other. Specifically,
7(aj) € 7(am41) when j > m, because of Lemma 3.10, and similarly
for the #’s. The maximality of m implies that am+1 # Bm+1, and so
Lemma 3.14 yields dist (7(@m+1), 7(Bm+1)) = diamé. We can convert
this into D,-dist (7(am+1), 7(Bm+1)) = Do-diam é using the definition
of w and D,,. In other words we can control the interaction between all
the a’s and all the §’s. It is easy to verify Sublemma 4.37 using these
estimates.

Next we want to define f on S(z,w). Let us first record a simple
observation about curves which will provide the building blocks for this
extension of f.

Sublemma 4.38. Given any (marked) circle v in R® and any pair of
points a,b in different components of the boundary of 7(v) \ T(N(7)),
we can find an arc o in the closure of 7(y) \ 7(N (7)) which connects
a to b and has the following properties: if u and v are two points on
o, then the length of the arc in o which connects u to v is bounded
by C |u — v|; inside B(a,C~'diam~y) the curve o agrees with the line
segment emanating from a which is orthogonal to the boundary of 7(v)\
T(N(y)) at a and goes inside 7(v) \ 7(N(7)), and similarly for b; if
u € o, then dist (v, R3\ {7(7)\7(N(%))}) > C~1dist (u, {a, b}) (so0 that



370 S. SEMMEs

o does not get close to the boundary ezcept near the endpoints); for
each positive integer i the Euclidean norm of the i*h derivative of the
arclength parameterization of o is bounded by C(i)(diam~)'~*. (This
i3 the “scale-invariant” estimate on the higher derivatives.) Here the
constants C and C(i) depend only on the parameter k from Section 3.

This is an easy exercise. Note that 7(y) \ 7(IN(7)) is connected,
and that we can reduce to the case where y¥ = I'y by using a similarity.

Sublemma 4.39. There is @ map f : S(z,w) = R? which is smooth
away from the endpoints and satisfies the following properties: f 1is
defined on £ as in Sublemma 4.37; f is bilipschitz as @ map from
(S(z,w), |z —y|) into (R3, D) with uniformly bounded bilipschitz con-
stant; f(S(zm+1,Wm+1)) 18 contained in the closure of 7(8) \ 7(N(6)),
f(S(z1,2141)) i3 contained in the closure of T(ar)\7(N(au)) when | > m,
and f(S(wi,wit1)) is contained in the closure of T(Bi)\ 7(N(B1)) when

[ > m. In particular,

(4.40) dist (f(¢),A) =~ diamay when t € S(z1,z141), | > m,
and similarly for S(zm+41,Wm+1) and the S(wi,wiy1)’s, and

(4.41)  dist (f(t), A)'+* =~ dist(t, {z,w}), for allt € S(z,w).
Moreover, if f() denotes the it* order derivative of f on S(z,w), then
(442)  |fO@)] < CG) dist (£(2), A) dist (¢, {z, w}) ™,

for allt € S(z,w) \ {z,w} and i > 1, where C(i) depends on i and
the parameters k and s but nothing else and |- | denotes the ordinary
FEuclidean norm.

Before explaining how to build f -which comes down to connect-
ing arcs as in Sublemma 4.38 and parameterizing them at the correct
“speed”- let us consider the slightly odd-looking bound for |f()| in
(4.42). The first point to notice is that we could write (4.42) in many
different ways using (4.41). When i = 1, for instance, (4.42) reduces to
saying that the first derivative of f at ¢ is bounded by C dist (f(t), A)~*,
which is compatible with the bilipschitz condition on f. (In fact the
bilipschitzness requires that

(4.43)  |f'(t)| = dist (f(t), A)~* ~ dist (f(), A)dist (¢, {z,w}) !
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and this estimate will also be clear from the proof of Sublemma 4.39.)
The bounds on the higher derivatives of f in (4.42) basically mean
that f is chosen to be as smooth as it can be on each of the segments
S(Zm+1, Wm+1), S(21,2141), and S(wy, wi41), subject to the speed limit
(4.43) and the fact that f will probably have to do some nontrivial
turning on each of these segments.

To prove Sublemma 4.39 we begin by defining f on £ as in Sub-
lemma 4.37. To define f on the segments S(zm+1,Wm+1), S(21, z141),
and S(wi, wi+1) we connect the p;’s and g;’s by arcs as in Sublemma 4.38
and we take f to be certain parameterizations of these arcs. We cannot
use arclenth parameterizations, but instead we parameterize these arcs
at roughly constant speed. “Roughly constant” means that the max-
imum speed is bounded by a constant times the minimal speed. On
an S(zi, zi+1), for instance, this approximate speed is comparable to
|pt — pi+1]/|z1 — z1+1], and this is in turn comparable to (diamay)~*,
because of our choices of the p;’s and z;’s. Note that this average speed
on S(zi, z1+1) is comparable to that of the adjacent intervals, as is also
the case for S(zm+1,wm+1) and the S(wi, wi4+1)’s. We cannot use pa-
rameterizations which have truly constant speed, since that would lead
to discontinuities of the derivative of f at the z;’s and w;’s. Instead
we require that the speeds be roughly constant on these intervals while
also making a gentle transition from one interval to the next. If we
take some care to make the “gentle transitions” of the parameteriza-
tions of the adjacent arcs approximately as gentle as they can be, then
the estimates for the higher derivatives of f in (4.42) will follow from
the corresponding estimates in Sublemma 4.38 and the normalized be-
havior of the arcs in Sublemma 4.38 at their endpoints. It is not hard
to see that the mapping f that we produce in this way is bilipschitz
on the union of any two adjacent intervals among S(zm+1,Wm+1), the
S(z1,z141)’s, and the S(wi, wi41)’s. This uses the properties of the
curves in Sublemma 4.38 (especially the chord-arc property), the fact
that Dq is approximately a constant multiple of the Euclidean metric
on regions like 7(a;) \ 7(N%(ai)) (by Lemma 4.26), and the fact that
we chose the z;’s and the w;’s so that the constant multiples work out
correctly. The bilipschitzness on all of S(z,w) follows from an argu-
ment like the one used to prove Sublemma 4.37, using also the fact
that f(S(zi,2z1+1)) is contained in the closure of 7(a;) \ 7(N(a1)) when
[ > m, etc. The estimate (4.40) is an immediate consequence of the
definition of f (and the constructions in Section 3), and (4.41) follows
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from (4.40) and our choices of the z’s and w;’s. This proves Sublemma
4.39.

From now on we assume that f is defined on S(z,w) as in Sub-
lemma 4.39. We want to extend f to some S.(z,w). In the following
we set vg = (w — z)/|w — 2| and we let f'(t) denote the derivative of f
in the direction vg. This is defined for all t € S(z,w) \ {z,w}, and it is
a vector in R3.

Sublemma 4.44. There is a smooth map F from S(z,w)\ {z,w} into
linear mappings on R® such that each F(t) is an orientation-preserving
similarity (a combination of a rotation and a dilation) which satisfies

F(t)vo = f'(t) and
(4.45) [FO()] < C(:) dist (f(¢), A) dist (¢, {z,w}) "7,

for allt € S(z,w) \ {z,w} and ¢ > 0, where C(i) depends on i and the
parameters k and s but nothing else. (In other words, F satisfies the
same bounds on its derivatives as f' does.)

Notice first that the dilation factor for F(¢) must simply be |f'(t)|,
which is in turn controlled by (4.43). In particular | f'(¢)| never vanishes.

Sublemma 4.44 is basically trivial but we should be a little careful.
Let F' denote the derivative of F in the direction of vg. Instead of
trying to choose F' directly let us write F'(t) = ®(t) F(t) and choose
®(t) instead. We should choose @ so that f"(t) = ®(t) f'(t) and ®(¢t) =
(log | f'(t)])' I + #(t), where ¢(t) is antisymmetric (with respect to the
usual Euclidean inner product). If we set v(t) = |f'(¢)|~! f'(¢), then
we can reformulate the constraint that f"(t) = ®(¢) f'(¢) in terms of
¢ as v'(t) = ¢(t)v(t). We can produce such a ¢ algebraically; we take
#(t) to be the of the rank 1 map which sends v(t) to v'(t) minus its
transpose. This choice of ¢(t) satisfies v'(t) = @(t) v(t) because v'(t) is
orthogonal to v(t) (since |v(t)| = 1 for all t).

We are now ready to define F' by solving the differential equa-
tion. Choose F(zm41) to be any orientation-preserving similarity on
R?® which satisfies F(zm4+1)vo = f'(2zm+1), and extend F to all of
S(z,w)\ {z,w} by solving F'(t) = ®(t) F(t). Our selection of ®(¢) en-
sures that each F(t) is an orientation-preserving similarity on R? which
satisfies F(t)vg = f'(t) for all ¢. It is easy to see that the derivatives of
F satisfy the same estimates as the derivatives of f' do, because ®(t)
was chosen so that it satisfies the same estimates as (log |f'|)’ does, i.e.,
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|@3)(t)| < C(:) dist (¢, {z,w})"*"! for all t € S(z,w)\ {z,w} and 7 > 0,
and because F itself has the same size as f'. This proves Sublemma

4.44.

Let us now use F' to extend f in the directions orthogonal to J.
Let 7 denote the orthogonal projection of R® onto J. Given z € R?
such that 7(z) € S(z,w) \ {z,w}, set

(4.46) f(z) = f(n(z)) + F(n(z)) (z — =(c)).

Before we analyze this extension, let us record some simple observations
about S.(z,w). If z € S.(z,w), then

(4.47) |z — n(z)| < edist (z, {z,w}),
(4.48) dist (7(z), {z,w}) < dist (z, {z,w})

< 2dist (7(z), {z,w}),
and
(4.49) n(z) € S(z,w)

when 0 < € < 1/2. These are all easy consequences of the definition of
Se(z,w). Actually, (4.49) holds as soon as ¢ < 1, and it implies that
S.(z,w) is contained in the domain of our extension of f.

Sublemma 4.50. We can choose € > 0 small enough so that f defines
a bilipschitz map from (S.(z,w),|z —y|) into (R3, D), with € and the
bilipschitz constant depending only on the parameters k and s.

Using the definition of f and (4.45) (with : = 0) we get that

/() — f(n(2))] < Clz — n(z)| dist (f( (<)), A)
(451) - dist (7(z), {z,w})"!.

If £ € Se(z,w) and € < 1/2 then

(4.52) |f(z) = f(n(z))| < Cedist(f(n(z)), 4),

because of (4.47) and (4.48). If ¢ is small enough then we get that

(4.53) %dist (f(n(z)), A) < dist(f(z), A) < 2dist (f(n(z)), A).
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Thus f(z) will not stupidly fall into A too soon. From now on we
assume that ¢ < 1/2 and that ¢ is small enough so that (4.53) holds.
Next we observe that

(4.54) [V f(2)| < C(i)dist (f(z), A) dist (, {z,w}) ™",

for all € S.(z,w)\ {z,w} and ¢ > 1, where C(i) depends on i and the
parameters k and s but nothing else. This is easy to check, using (4.42)
and (4.45) to control the derivatives of this extension (4.46) of f, and
then (4.48), and (4.53) to get the estimates in the form of (4.54) (i.e.,
to replace m(z) with z when necessary). Let us check that

(4.55) IVf(z) < CG)dist (f(z), 4)7°,
for all z € S.(z,w)\ {z,w}. Using (4.41), (4.53), and (4.48) we get that

dist (f(z), 4)'** = dist (f(n(z)), 4)'*+°
(4.56) ~ dist (n(z), {z,w})
~ dist (z, {z,w}).

This and (4.54) imply (4.55). From (4.55) we obtain that f is Lipschitz
as a map from (Sc(z,w),|r — y|) into (R3, D,) (modulo some small
additional attention at the points z and w).

To show that f is bilipschitz let us consider first a special case.
Let 7 > 0 be small, to be chosen soon, and let ¢t € S(z,w) be given.
Set r = dist(¢,{z,w}), and consider the ball B = B(t) = B(t,nr).
Let us show that if n is small enough, then the restriction of f to
B is bilipschitz (as a map into (R3?,D,)), with a uniformly bounded
bilipschitz constant. Notice first that

(4.57.a) dist (z, {z,w}) = dist (¢, {z,w})
and
(4.57.b) dist (f(z),A) ~ dist (f(t),A), whenze€ B,

by the triangle inequality, (4.51), (4.41), and the requirement that n be
small. Also,

(4.58) diam f(B) < C dist (f(t), A)
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by (4.54) (with i = 1) and (4.57). Thus the hypotheses of Lemma 4.26
are satisfied with X = f(B), and we conclude that

(459)  Du(§,¢) = dist (f(2),4)" 1§ —¢|, when ¢, ¢ € f(B).

To prove that f is bilipschitz on B as a map into (R3, D,,) we should
show that

(4.60)  dist(f(t),4)°|f(z) — f(y)| = |z —y|, whenz,y€B.

To do this we shall approximate f on B using Taylor’s theorem.

Define (z) by 1(z) = f(t)+ F(t) (z —t). This is the linear Taylor
approximation to f at t. (See (4.46) and Sublemma 4.44.) Because
F(t) is a similarity with dilation factor |f'(t)| we have that

(461) - [¥(=) — 9| = f' Oz — y| = dist (f(2), A)™" |z — v,

because of (4.43). We can control f — 3 using (4.54) and Taylor’s
theorem. In fact we are really interested in V(f — %), and we have that

sup [V = Vp| < C (sup [V2]) diam B
(4.62) B B
< Cdist (f(2), A) dist (¢, {z,w}) " 2qr,

because of (4.54), (4.57), and the definition of B. We can simplify this
further using (4.41) and the definition of r to get

(4.63) sup| VS — V4| < Cndist (f(1), 4) ™"

This means that

(4.64)  |(f —¥)(=z) — (f — )W) < Cndist (f(2), 4)7° |z — o]

when z,y € B. If 5 is small enough then we get (4.60) from (4.61)
and (4.64). Choose n small enough so that this is true (i.e., the bilip-
schitzness of f on the ball B = B(t)), and let it be fixed from now
on. :

Suppose now that we are given any z,y € S.(z,w), and let us
estimate D, (f(z), f(y)) from below. If z and y both lie in a ball of
the form B(t) as above then we already have the estimate that we need
from (4.60), and so we may assume that this is not the case. Note that
u € B(w(u)) for all u € S.(z,w) if € is small enough (compared to ). If
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|z — y| is small compared to ndist (z,{z,w}) then y € B(n(z)) (if also
€ is small enough), and we are assuming that this is not true. We are
making the same assumption with the roles of z and y reversed, and so
we obtain that

(4.65) |z —yl > C™'n max{dist (z, {z,w}},dist (y, {z,w})),

for some constant C. (The 5 in (4.65) does not matter, since it is fixed
now anyway.)

We need to estimate D, (f(z), f(y)) from below, and we shall do
this in terms of Dy, (f(7(z)), f(n(y))). We already know that f is bilip-

schitz on S(z,w), and so

(4.66) Do (f(n(z)), f(m(y))) 2 C7" |n(z) — 7(y)|.

This implies that

(4.67) Do (f(m(x)), f(n(y))) =2 C7" |z — |

when ¢ is small enough, because (4.65) and (4.47) yield |z — n(z)| +
ly — n(y)] < Cn~le|r —y|. To get from here to D (f(z), f(y)) we
have to control some error terms. Since f is Lipschitz as a map from
(S.(z,w), |z — y|) into (R3, D) we have that

(468)  Du(f(z),f(n(2))) < Clz —n(z)| < Cedist(z,{z,w}).

The same estimate is true with = replaced by y. These estimates com-

bined with (4.65) and (4.67) give the desired

(4.69) D.(f(z), f(y)) 2 C™" |z —

when ¢ is small enough.

This completes the proof of Sublemma 4.50, and Lemma 4.31 fol-
lows. The remaining cases involve similar constructions of connecting
curves and their tubular neighborhoods, and we shall treat them in less
detail.

Lemma 4.70. If p,q € 7(I'y), then the conclusion of Proposition 4.25
holds.

Again choose ¢ in some A,, so that p,q € 7(§) and m is as large as
possible. We may as well assume that one of p and ¢ lies in T7(NZ%(4)),
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since otherwise we can apply Lemma 4.30. This implies that |p — ¢| >
C~ldiam § for some constant C (which depends only on the parameter
k from Section 3): if |p — g| were small compared to diamd, then we
could use the fact that one of p and q lies in 7(N?(4)) to conclude
that p,q € 7(v) for some child v € An41 of 4, in contradiction to the
maximality of m.

Under these conditions we can apply the same basic construction
as in the proof of Lemma 4.31. The difference is that now one or both
of p and ¢ may not lie in A, so that the sequences of a;’s and f’s
might stop in a finite number of steps. In fact, we could have that
one of p or ¢ lies in 7(8) \ 7(N(4)), so that there would be no a’s,
or no f’'s. Thus it may be necessary to make some adjustments to
the construction at one or both of the “ends”, but the estimates and
underlying principles remain the same. (We use Sublemma 4.38 to find
nice curves, we connect them as in Sublemma 4.39, we extend out to
little neighborhoods of the curves as in (4.46), and we conclude as in
Sublemma 4.50.) The details are left to the reader.

Lemmas 4.30, 4.31, and 4.70 cover all the possible locations of p
and g except for p € T7(N(I'p)) and ¢ € R?\ 7(T'9) (or the other way
around). In this case we have that |p—g| is bounded below by some fixed
constant. This situation also lends itself to the same basic construction
in Lemma 4.31. That is, we set m = 0, § = I'g, and we define a;’s and
pi’s as before, except that these sequences will stop after finitely many
steps if p ¢ A. We can then connect p to the boundary of 7(I'g) by a
sequence of smooth curves in the various 7(a;) \ 7(N(ay))’s. Since ¢
now lies in R®\ 7(Ig), we do not have to go through any contortions to
connect it to the boundary of 7(T'p) in a nice way, we can simply do it.
We can then combine these two curves and fatten them up as before.
More precisely, this means that we can build a map f from a set S, like
Se(z,w) in the proof of Lemma 4.31 into R3 such that the restriction
of f to one end of S, provides a connection from p to the boundary of
7(T'0) and the restriction of f to the rest of S, provides a connection
from there to ¢g. Note that the proportion of S, which corresponds to p
will be much smaller than half of S. when |p— g| is very large, in which
case the part of S, that goes from the boundary of 7(T'y) to ¢ will have
to have a big bulge in the middle. This does not cause a problem, but
one should be careful to map the bulge away from A. The remaining
details are much like those in the proof of Lemma 4.31, and we leave
them to the reader.

This completes the proof of Proposition 4.25.
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5. The proof of Theorem 1.3.

In the previous section we saw how to build strong A, continuous
weights on R® such that the associated metric on R? is not bilipschitz
equivalent to the Euclidean metric. In this section we want to build
subsets of R™ which have many of the same nice properties as R? (say)
without being bilipschitz equivalent to R?® (with the Euclidean metric).
One way to do this would be to show that we can embed (R3, D, (z,y))
bilipschitzly into R™ with the Euclidean metric. There is a general result
in [Se4] which could be applied to give such a bilipschitz embedding for
the weights constructed in the previous section. In this special case,
however, such embeddings can be produced with much less fuss than
the general construction in [Se4]. Alternatively, one can go to some
trouble and build embeddings with especially nice properties. That is
what we shall do here.

The construction that we shall make in this section will proceed
along the following lines. The first step will be to build a set F' which
is analogous to the set A from Section 3 except that at each stage we
use slightly smaller circles. These circles will not be linked, unlike their
predecessors. Then we shall build a sequence of diffeomorphisms on
R* which send the various approximations to A to the corresponding
approximations to F. This would be impossible in R3, because of the
linking properties, but none of the circles are linked in R%, and it will
be easy to build these mappings. In the limit we shall obtain a quasi-
conformal map on R* which sends A to F and maps R? to a reasonably
well-behaved surface. This surface will however be bilipschitz equiva-
lent to (R3, D,(z,y)) with w as in (4.1) for a suitable choice of s, and
so we shall be able to choose the parameters in such a way that it is
not bilipschitz equivalent to R?® with the Euclidean metric.

Thus we need to begin by extending the construction in Section 3,
and in the following we use the notation, assumptions, and results of
Section 3 freely.

Let p € (0,1) be fixed but arbitrary. It will correspond eventually
to the parameter s in (4.1). The parameter k from Section 3 should
also be treated as fixed and will play the same role as before. However,
for this section it will be convenient to assume that k is a little larger,
and so we require that k > 101°.

Our first task is to choose some circles fo(p), p € Po, which will be
cousins to the 4q’s in Section 3. Each SBy(p) should be a circle in R?
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centered at p with radius pp(k), and we require also that
(5.1)  dist({p} U Bo(p), {g} UBo(g)) 2 (100k)™" when p#q.

Fix any circles with these properties. When p is small we can simply
take Bo(p) to be the circle centered at p which is obtained from +o(p)
by the obvious dilation, but when p is closer to 1 this will not work
(because the circles could touch) and so the circles should be tilted a
little (or a lot, for that matter). To simplify the discussion let us simply
require that the Sy(p)’s be unlinked, which in fact they must be when
p is small enough.

In short, the By(p)’s are a bunch of little circles centered on I'g and
placed at regular intervals. Think of [Mo, Figure 18.1, p. 127], but with
the circles being smaller and unlinked. If we wanted we could impose
some symmetry conditions, but we shall not bother.

Next, fix markings 9, for the fy(p)’s. It does not matter how the
markings are selected, but they need to be fixed forever.

Take M(T'y) to be the union of the fo(p)’s, p € Po, but viewed as
a union of marked circles. We can define M(T") for any marked circle I'
in R? just as in (3.5), so that M(T') is again a union of marked circles,
and these circles are labelled by Py in the obvious way. As in Section 3
we define M(E) when E is a finite union of marked circles, so that M
defines a mapping on the space C of finite unions of marked circles in R?
with the same kinds of operational properties as N has (with respect
to unions and the action of orientation-preserving similarities).

Define F; € C, | > 0, in the same way that the A;’s were before,
but using M now instead of N. That is, we set Fy = I'g, F; = M(Ty),
and F} = M'(Ty), where M! denotes the I'* power of M, viewed as
a mapping on C. Each F} is a union of k! marked circles of radius
(up(k))!, and Fi4, is the union of the M(a)’s, where a runs through
the circles which make up F;. The Hausdorff limit of the Fi’s will give
a Cantor set which is not wild.

Most of the lemmas in Section 3 apply to F' and M as well, and
we summarize them in the following.

Scholium 5.2. a) For each j,l with 0 < j < | we have that F| =
UaM!'=i(a), where the union is taken over all the constituent (marked)
circles a in Fj, and the constituent circles of these two collections are
marked in the same way.

b) For any marked circle ' in R® we have that sup, ¢y (r) dist (z,T)
< pp(k)radius (T') < 10~° radius(T").
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c) 7(My(T)) C 7(T') for all marked cirles T and all 1 > 0.
d) 7(Fj) 2 7(Fi) when 0 < j <.

e) Let a and o' be two distinct circles among those which make up
Fi, 1 > 1. Then ts0(a) and m50(a’) are disjoint.

This is proved in exactly the same way as Lemmas 3.7, 3.8, 3.10,
3.11, and 3.14. The point is that the Sy(p)’s have the same properties
as the vo(p)’s, except that they are smaller and unlinked, and these
changes do not matter for these statements. For instance, the combi-
natorics in a) are exactly the same as in Lemma 3.7, while b) and ¢)
are no more than simple applications of the triangle inequality.

Let us now proceed to R*. From now on we shall identify R? with
the z4 = 0 hyperplane in R%, so that all of our constructions (4, F,
etc.) can be viewed as living also in R%. Notice that every orientation-
preserving similarity on R?® has a unique extension to an orientation-
preserving similarity on R*, and so we can view all such transformations
as acting on R%. In particular the similarities which provide markings
for our circles will be viewed as acting on all of R*.

Given a circle ' in R* and a > 0 set

(5.3) T(T) = {z € R*: dist(z,T) < 10~ ° radius T},
(5.4) T.(T') = {z € R*: dist(z,T') < a10™°radiusT}.

These are the 4-dimensional versions of (3.9) and (3.13) in R?, and they
enjoy properties analogous to those for 7(I') and 7,(T"). If E is a finite
union of circles, then we define T(E) and T,(E) to be the union of the
sets obtained by applying T or T, to the constituent circles.

Lemma 5.5. a) If " is a marked circle in R3, then T(N,(T)) C T(T)
and T(M(T')) C T(T) for all1 > 0.

b) T(4;) 2 T(A:) and T(F;) 2 T(Fi) when 0 < j <.

c) Let a and o' be two distinct circles among those which make up

Aq (or Fy), 1 > 1. Then Tso(a) and Tso(a') are disjoint.

This is proved in the same way as for the analogous results for 7.
(Nothing special about R?® was used; it all came down to the triangle
inequality.)
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Qur next task is to build a homeomorphism from R* to itself which
sends A to F' and which is otherwise as nice as possible. This mapping
will have to shrink distances with some severity near A, but away from
A it will be a diffeomorphism. We shall produce this mapping through
an iterative process, and we first need to construct some building blocks.

Lemma 5.6. There is a smooth diffeomorphism &, : R* — R* such
that ®¢(T(Ty)) = T(To), ®o equals the identity on the complement of
T(Ty) and on a neighborhood of 3T(Ty), and the restriction of $g to a
neighborhood of T(vo(p)) i3, for each p € Py, the orientation-preserving
similarity from T(vo(p)) onto T(Bo(p)) which is determined by their
markings. :

For this lemma it is crucial that we are working in R* instead of
R3. In R3 the vo(p)’s are linked, while the By(p)’s are not; in R*, none
of them are linked.

We shall obtain &, by composing a finite number of simpler pieces.
It will be convenient to use also some auxiliary circles. For each p € P,
choose a circle §o(p) in R® which is centered at p and which has radius
(10%k)~!. These circles should also be given markings. The specific
choices do not matter.

Sublemma 5.7. For each p € Py there is a diffeomorphism f : R* —
R* such that f equals the identity on R*\ T(Iy), on a neighborhood of
0T (Ty), and on neighborhoods of T(vo(g)) and T(do(q)) for each q €
Po\{p}, and such that the restriction of f to a neighborhood of T(vo(p))
agrees with the orientation-preserving similarity which takes vo(p) to
do(p) and which is determined by their markings. The analogous result
holds for the By’s instead of the vo’s.

Lemma 5.6 will follow once we have proved Sublemma 5.7. Indeed,
if Sublemma 5.7 is true, then we can build a nice map on R* which is the
identity outside T(T'g) and which sends T(yo(p)) to T(do(p)) for each
p € P, in the right way (in accordance with the markings), simply by
composing the various pieces from Sublemma 5.7. We can then produce
a similar map for the fy’s instead of the v¢’s, and @®g is obtained by
composing the previous map with the inverse of the second one.

Let us prove Sublemma 5.7. Let p € Py be given. We want to
pick up T(y0(p)) off the “floor” R3, shrink it and turn it around as
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necessary, and lay it down on T'(é¢(p)) without disturbing any of the
other T'(vo(q))’s or T(60(q))’s or the complement of T(Ig). This is very
simple geometrically (or physically), and the following claim makes it
precise.

Claim 5.8. There is a smooth 1-parameter family of orientation-
preserving similarities 0¢, 0 < t < 1, on R* such that aq is the identity,
o, 18 the similarity which sends vo(p) to do(p) that is determined by the
markings, and the compact set Up<i<10:(T(70(p))) lies in the interior

of T(T0) \ Uge o\ (5} (T(70(2)) U T(b0(9))) -

To see this, let H denote the z4 = 10~7 hyperplane. In the be-
ginning (near t = 0) o, should simply make a translation in the z4
direction by 10~7, so that R3 is sent onto H. For the next period of
time o4 should preserve H while deforming the translate of vo(p) in H
into the translate of §o(p) in H. At the end o, should simply make a
translation by —10~7 in the z4 direction. If we do the deformation in
H in the middle stage correctly then at the end we shall obtain the
correct choice of o,. Because we are requiring that k¥ > 10'° in this
section (so that radius(Bo(p)) < radius(yo(p)) < 1079, by (3.1)), we
obtain easily that Up<¢<10:(T(70(p))) lies inside T(T'g). It also remains
disjoint from Ugzepy\(p} (T(70(g)) U T(Bo(g))). Indeed, in the first and
final stages of the motion o; (when we are simply translating in the z4
direction) this follows easily from (3.2) and (5.1), while in the middle
stage we are moving around in H, and H is too far from R? = {z4 = 0}
to cause any problems, since k > 10'°. (Keep in mind that vo(q)’s,
Bo(q)’s, and do(q)’s lie in R3.) This proves the claim.

Next we want to extend the motion in Claim 5.8 to all of R* with
suitable properties. We use a standard argument for extending smooth
isotopies, 1.e., we convert the problem to one of extending vector fields.

Claim 5.9. There is a smooth R*-valued function V(z,t) on [0,1] x
R* such that V(z,t) = 0 for all t when z € R*\ T(Tg) or z lies in
a neighborhood of OT(T'o) or of Ugepy\(p} (T(10(q)) U T(do(q))), and
V(oi(z),t) = (do¢/dt)(z) for all t when z lies in a neighborhood of

T(vo(p))-

This is an immediate consequence of Claim 5.8 and standard facts
about smooth functions.
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We are now almost finished with the proof of Sublemma 5.7. Let
ft be the flow associated to V(z,t), so that fo is the identity and
(dfy/dt)(z) = V(fi(z),t) for all z and ¢. Then fi(z) = z for all t when
z lies in R* \ T(T) or a neighborhood of 8T(T'y) or a neighborhood of
Ugepo\{p} (T(70(q)) U T(0(q))), and fi(z) = o4(z) for all ¢ when z lies
in a neighborhood of T'(7o(p)), by the uniqueness theorem for ordinary
differential equations. Of course the f;’s are diffeomorphisms also, and
so f = f1 has all the required properties. This proves Sublemma 5.7.

Now that Lemma 5.6 is established we want to build a more com-
plicated homeomorphism by piecing together many copies of ®,. This
mapping will take A to F and we shall try to make it as nice as possible
off of A. To do this we need some more notation and definitions.

Let A; and F; denote the collections of k! marked circles which
make up A; and Fj, respectively. Let S; denote the Cartesian product
of | copies of Py, so that elements of S; are finite sequences of length
[ with entries in Py. There are natural bijections from &; onto each
of A; and F; which code the history of the circles. If @ € A; and
a' is its parent in A;_;, so that @ € N(a'), then the sequence in S
associated to « is just the sequence in S;—; associated to a' together
with one additional element of Py at the end to specify the position
of o relative to a'. (See (3.5).) These codings of A; and F; induce a
natural (bijective) correspondence 6; : A; = F;.

Let S denote the Cartesian product of countably many copies of Py,
so that the elements of S are sequences {g;};>1 which take values in P.
There are natural bijections from S onto A and F which take a sequence
of elements of Py and assign to it the point in A or F with that history.
Alternatively, these points could be described as the limits of the circles
in A; and F; corresponding to the initial ! terms in the sequence in S.
These bijections induce a bijection # : A - F. The homeomorphism
on R* that we are going to construct will be an extension of 8, and it
will (in a certain sense) respect the codings provided by the 6;’s on the
complement of A.

Given a marked circle I' in R?, let us associate to it two compact
sets X(I') and Y(T') by taking X (T") to be the closure of T'(T")\ T(N(T"))
and Y (T') to be the closure of T(T") \ T(M(T')). These sets are solid tori
with k smaller solid tori removed. We are going to break up R* into
pieces using the X(I')’s and Y(I')’s and define our eventual homeo-
morphistn initially on these various pieces before gluing them together.
Notice that &,(X(Ty)) = Y ().
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If B is a marked circle in R3, let ¢4 denote the similarity which
provides the marking. (This will not be confused with ¢,, which pro-
vides the marking of vo(p), because p is not a circle.) Define ®5 to be
the composition ¢g 0 @ o (¢5)~!. In other words this is a copy of @
which lives near f instead of I'y. Thus @4 has the following properties:
it is a diffeomorphism on R* which is the identity on the complement of
T(B) and on a neighborhood of 8T(8) and which takes T(f3) to itself;
it sends N(B) to M(B), and it preserves the labellings of the circles
in N(B) to M(B) by Py; its restriction to a neighborhood of T'(y) is
an orientation-preserving similarity for each circle v in N(f), and this
similarity is the one determined by the markings (and implicitly the
labellings of the circles by P, also); and @4 sends X(3) onto Y (3).
These properties are all easy consequences of the analogous statements
for ®; and I'y.

Given a € A; let £, denote the orientation-preserving similarity
which takes o to 8 = 6i(a) € F; and which is the one determined by
the markings. Set ¥, = ®3 0 {s. The ¥,’s will provide the building
blocks for the homeomorphism that we want to build. Let us summarize
some of their important properties in a lemma.

Lemma 5.10. Suppose that a € A; and B = 6i(a) € Fi. ¥y has the
following properties: it is a diffeomorphism on R* which sends T(a) to
T(B); it agrees with £, outside T(a) and on a neighborhood of 0T (a);
it maps N(a) to M(B); if v i3 one of the circles in N(a), then ¥q(7y) 1s
the same as the circle 6 = 0141(y) € Fi, and the restriction of ¥, to a
neighborhood of T(v) agrees with the orientation-preserving similarity
that takes v to & and is determined by the markings (i.e., £); and

Vo(X(a)) =Y(B).

These properties are all easy to verify from the definitions and
Lemma 5.6.

Let A and F denote the union of all the A;’s and F;’s for | =
0,1,... The homeomorphism H that we really want is defined as fol-
lows:

the identity, on R*\ T(Ty),
(5.11) H= Uy, on X(a) for a € A,
a, on A.

We need to check that this is well defined, etc.
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Lemma 5.12. R* is the union of R*\ T(T), the sets X(a) for a € A,
and A. R*\ T(Ty) is disjoint from all the X(a)’s ezcept X(Tp), and
X(a), X(a') intersect, a,a' € A, if and only if one of a and o' i3 the
parent of the other, in which case X(a) and X(a') intersect only in a
component of the boundary. Neither R*\ T(L'o) nor any of the X(a)’s
contain any elements of A. The analogous statements for Y(8), B € F,
and F are also true.

This follows easily from Lemma 5.5, the definitions of A and F,
etc. The main point is that if a,a’ € A, then either one of o and
o' is an ancestor of the other, say o' is an ancestor of @, in which
case T(a) C T(a'), or T(a) and T(a') are disjoint (because they have
distinct common ancestors in some A;).

Lemma 5.13. H is well defined and smooth off A.

For instance, we have taken H to be the identity on the complement
of T(Ty) and to be ¥r, on X(Ty), and the two share the torus 8T(Ty)
as part of their boundaries. However, Ur, = @, by definitions, and so
we really have H = ®; on the union of R* \ T'(Ty) and X (T).

Similarly, if @ € A, a # Ty, and o' € A is its parent, then X (a')
and X(a) have a torus as their common boundary (namely, 0T(a)).
However, on a neighborhood of 8T(a) both ¥, and ¥, agree with {4,
and so H is smooth across 9T (a).

Lemma 5.14. For any a in any A; we have that H(X (o)) = Y (6i(a))
and H(T(a)) = T(6:(a)).

The first part about X(a)) is an immediate consequence of the
definition (5.11). For the second part we begin by observing that T'(«)
is the union of X(v) over all v € A descended from «a (including a
itself) together with ANT(«a), and that the analogous statement holds
for a B € F, but with Y(-) instead of X(:). Next we observe that
H(ANT(a)) = FNT(6)(e)). Indeed, Lemma 5.5 implies that ANT(«)
consists precisely of the points in A which are “descended” from «, and
similarly F' N T(6i(a)) consists of the points in F' which are descended
from 6;(a), and the two correspond under H because H is defined to
be the same as § on A. The second part of the lemma follows from the
first part and these observations.
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Lemma 5.15. H is continuous on all of R*.

The continuity of H away from A follows from Lemma 5.13, while
the continuity on A follows from Lemma 5.14.

Lemma 5.16. H is a homeomorphism on R%, and it is a diffeomor-
phism from R*\ A onto R*\ F.

This follows from Lemmas 5.14 and 5.12, the fact that the individ-
ual ¥, ’s are diffeomorphisms, etc.

Next let us estimate the differential of H, which we denote by
dH, and which is well defined off A. More precisely, if z € R*\ A,
then dH, will be used to denote the differential of H at z as a linear
transformation.

Lemma 5.17. Choose s > 0 so that p = p(k)?, sett = s(1+s)7!, and
set \(z) = min{1,dist (z, 4)*} and v(y) = max{1,dist (y, F)~*}. Then
there 1s a constant C so that

C™' A(z) |v] < |dH.(v)] < C A(z) |v]
and
C™u(y) o] < [dH; (v)] < Cu(y) o],

forallz € R*\ A, y € R*\ F, and v € R*, where |v| denotes the
Euclidean norm of the vector v.

To see this we need to first reexpress A and v in more useful forms.

Sublemma 5.18. A(z) ~ 1 on R*\ T(Iy), and A\(z) =~ p' on X(a)
for any a € A;, | > 0. Here a = b means that each of a,b is bounded
by a constant times the other. Similarly, v(y) =~ 1 on R*\ T(T'y) and
v(y) = p~! on Y(B) for any p € Fi, 1 > 0.

That A(z) = 1 and v(y) = 1 on R*\ T(Ty) simply reflects the
fact that A and F lie in the interior of T(Tg) (which follows from A C
7(N(Tg)) and F C 7(M(Tg)), for instance). Using the definitions of s

and t the remaining parts come down to

dist (z, A) ~ p(k)', on X(a),

(519) dist (y’ F) ~ (/“ p(k))l , on Y(ﬂ)v
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for a € A; and B € F;. These estimates are easy to check, using @ #
ANT(a) € T(N*(a)), radius(a) = p(k)', @ # FNT(B) C T(M?*(B)),
and radius(8) = (up(k))!. (Do not forget Lemma 3.10 and Scholium
5.2.c).) This proves the sublemma.

As for Lemma 5.17, notice first that it is true on R*\ T(Ty), since
H equals the identity there. Fix now an a in some Ay, so that H agrees
with ¥, on X(a) by the definition (5.11). Let us check that

(5.20) |d(Za)z(v)] = ' o],

for all z and v. Recall that, by definition, ¥4 = @0y = ¢go P 0
(¢8)7! o0 £q, where B = 6)(a). ®, is a single diffeomorphism which
equals the identity outside T(T'g), and so its differential distorts the
Euclidean norm only by a bounded factor. Since ¢g is a similarity, it
distorts distances by the same constant factor everywhere, and so the
presence of ¢g and its inverse cancel each other out. Thus we are left
with €4, which is a similarity which maps a to 8. This means that the

" dilation factor of €, is simply the ratio of the diameters of # and a. By

‘construction the diameter of the former is (u p(k))! while the diameter
of the latter is p(k)!, and so we get (5.20). The required estimates on
dH and dH ™! follow easily. (Do not forget Lemma 5.14.)

Lemma 5.21. H is Lipschitz continuous and continuously differen-

tiable on all of R*.

We already know that H is smooth off A, but it is not hard to see
that the differential of H exists and vanishes at points in A. This can
derived from Lemma 5.14, for instance, and the fact that the radius of
Oi(a) is u’ times the radius of a for all @« € A;. Lemma 5.21 follows
from Lemma 5.17 and the boundedness of A.

REMARK 5.22. Although H is C! everywhere, it is not a C! diffeomor-
phism across A, because its differential vanishes there. However, there
is a simple way to approximate H by C! diffeomorphisms. Define Hp,
by Hm = the identity on R*\ T(Tg), Hn = ¥4 on X(a) for a € A,
|l < m, and Hy, = {4 on T(a) when a € A,,. This is approximately
the same as the definition (5.11) of H, except at levels m and below,
where it is flattened out. These mappings satisfy suitable versions of
the preceding lemmas, and in particular the differentials of the H.1’s
satisfy the same sort of estimates as in Lemma 5.17, uniformly in m.
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This observation can be useful in making it easier to derive properties of
H from the bounds on dH ! (e.g., when verifying the precise Sobolev
space properties of H™1).

Lemma 5.23. H i3 quasiconformal.

According to the usual definition this follows from Lemmas 5.16
and 5.17. However it is not hard to verify directly the a priori stronger
condition that there is a C > 0 so that for all z € R* and r > 0 there
is an R > 0 (which may depend on z and r) such that B(H(z),R) C
H(B(z,r)) € B(H(z),CR). To do this one considers separately the
cases where 7 > 1, r < 1 and r is small compared to dist (z, A), and
r < 1 but r is not small compared to dist(z, A). These cases can be
treated by reducing to facts about the ¥,’s (which are clearly uniformly
quasiconformal) and Lemma 5.14.

It is not too difficult to describe completely the manner in which H
distorts distances, but this is slightly gory and best left as an exercise.
We should at least make the connection with the preceding section by
formulating Lemma 5.17 (and some consequences of it) in terms of the
metrics associated to strong A, weights.

Define (z) on R* by Q(z) = A(z)*, and define w(z) on R3 by
w = X(z)®. Thus w is the same as in (4.1), with s chosen as in Lemma
5.17. These are both strong A, weights on their respective domains,
by Propositions 4.3 and 4.4. This uses also the simple fact that A is uni-
formly disconnected as subset of R*, and not just R®. (In fact uniform
disconnectedness is an intrinsic property of a metric space.) Let Dq(-,-)
and D, (-,-) be the associated metrics on R* and R3, respectively.

Lemma 5.24. D, (z,y) = Dq(z,y) for all z,y € R3.

This is not an accident, but it is sort of pleasant that we get an
actual equality and not just an equivalence in size. Let z,y € R3? be
given, and let v be a rectifiable curve in R* which connects z to y. Let
7' denote the projection of 4 to R3. One can compute that the Q-length
of v is at least as big as the w-length of 4/, and that the two are equal
if v C R? to begin with. (The first part comes down to the fact that
dist(z, A) is decreased by projecting z onto R?, while the second is just
a question of unwinding definitions.) This implies the lemma.
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Lemma 5.25. H is bilipschitz as a map from (R*, Dq(z,y)) to (R*,|z—
y|), and as a map from (R3, D, (z,y)) to (E,|z~y|), where E = H(R?®).

The first part is basically a reformulation of Lemma 5.17. Strictly
speaking, the fact that H is Lipschitz as a map from (R*%, Dq(z,y)) to
(R*, |z — y|) is an immediate consequence of Lemmas 5.17 and 5.21,
but one should be a little more careful about the Lipschitzness in the
reverse direction. (Note however that Lemma 5.14 can be very useful in
providing control near the singular points, so that one can concentrate
on the smooth parts, which are more amenable to calculus. Alterna-
tively one can approximate H by diffeomorphisms as in Remark 5.22
in order to reduce the problem to calculus.) The second part follows
from the first and Lemma 5.24.

Note that Lemma 5.25 implies that for any pair of points z,y € E
there is a closed subset of E containing z and y which is bilipschitz
equivalent to a closed Euclidean 3-ball, with a uniformly bounded bilips-
chitz constant, because of the corresponding property for (R3, D.(z,y))
(Proposition 4.25).

Lemma 5.26. E is a regular set of dimension 3 (as in Definition 1.1).

This can be derived from the second part of Lemma 5.25 and the
corresponding general fact for strong A, weights (1.7). Alternatively,
one could go back to the definitions of E, H, ... , and simply compute
directly, using the fact that H is basically a uniform contraction by a
known quantity on each X(a), and Lemma 5.14, etc.

At this stage we can read off Theorem 1.3 and some variants of it
from Lemma 5.25, Proposition 4.25, and Theorem 4.20.

Theorem 5.27. With the notation as above, H : R* - R* is a quasi-
conformal mapping which is also Lipschitz continuous and E = H(R3?)
is a 3-dimensional reqular set when k > 10'° and p € (0,1). Every pair
of points in E 1is contained in a closed subset of E which is bilipschitz
equivalent to a closed Euclidean 3-ball, with a uniformly bounded bilip-
schitz constant (which depends on k and p.) Define s > 0 by p = p(k)°,
and let U be a (relatively) open subset of E which intersects F = H(A),
and let V be any open subset of R3. (For instance take U = E,V = R3.)

a) If s > 2 then there does not ezist a homeomorphism h : (U, |z —
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\

yl) = (V, |z — y|) which is locally Lipschitz.

b) For any s > 0 there does not ezist a homeomorphism h : (U, |z —
y|) = (V,|z — y|) which is locally Lipschitz if k is large enough.

c) For any s > 0 there does not ezist a homeomorphism h : (U, |z —
y]) = (V,|z — y|) which 1s locally Hélder continuous of order greater
than 3(1 + s)7!.

The Euclidean metric is made crudely explicit in a)-c) above to
avoid confusion with the other metrics which have been used.

Notice that any value of s > 0 can occur by choosing p € (0,1)
correctly. _

The remarks that follow Theorem 4.20 have counterparts in this
setting too. Quasiconformal mappings and their inverses are always
Hoélder continuous, but part ¢) of Theorem 5.27 shows that any home-
omorphism from E to R?® must have small Holder exponent if s is large
enough. Thus E can be chosen so that it is very far from being bilips-
chitz equivalent to R3. On the other hand, we can take s to be as small
as we like as long as we take k to be large enough, in such a way that
we can make E be extremely close to being bilipschitz equivalent to R3
without actually being bilipschitz equivalent. For instance, H ™! will be
locally Holder continuous of order as close to 1 as we like if we take s
small enough. There are similar statements in terms of Sobolev spaces
(using Lemma 5.17).

REMARK 5.28. Suppose that we defined A in the same way as in Section
3 except that we replaced (3.3) with the requirement that the vo(p)’s
be unlinked. Then (R3, D,(z,y)) would be bilipschitz equivalent to
(R%, |z — y|), no matter how large s is. This follows from the same
construction as above. The only place in the preceding construction
where we really needed to be in R* was in the proof of Lemma 5.6, but
if the 4o(p)’s are unlinked then Lemma 5.6 works in R3.

6. Another interesting class of strong-A., weights.

In this section we shall give another construction of strong A
weights which can be viewed as a more refined version of Proposition
4.4 and from which Theorem 1.15 will be derived. We begin with a
definition.
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Definition 6.1. A closed set E C R™ will be called a snowflake of order
s, s > 1, if there 13 a metric p(z,y) on E and a constant C > 0 such
that

(6.2) C7lz—yl* < p(z,y) < Cle —yl*,
for allz,y € E.

In this definition a metric simply means a nonnegative symmetric
function which satisfies the triangle inequality, etc.

The usual Von Koch snowflake curve in R? is a snowflake of order s
for a computable value of s. In general we can use Assouad’s Theorem
1.14 to generate plenty of snowflakes in the sense of Definition 6.1, with
the order s given by a™!, where «a is as in Theorem 1.14. One can
show that uniformly disconnected sets (in the sense of Definition 4.2)
are snowflakes of order s for all s > 1. On the other hand, no snowflake
of order s > 1 can contain a nonconstant rectifiable curve, for if y(t),
0 <t <1, were such a curve, and if p(z,y) is as in Definition 6.1,
then p(7(0),v(1)) would have to be zero, because of the assumptions
on p. (Think about ) p(y(ti),¥(ti+1)) for partitions {¢;} of [0,1] of
small mesh.)

Theorem 6.3. Let E C R"™ be a snowflake of order s. Then w(z) =
dist (z, E)"(*~V is a strong Ao continuous weight on R™ such that

(64) C—l Dw(l‘, y) < |$ - yls < CDw(za y)’

for some C and allz,y € E, where D, i3 as in Definition 1.5. (Actually,
(6.4) holds as soon as one of x or y lies in E.)

In other words, if p is as in Definition 6.1, then we can build our
strong Ao, weight w in such a way that D, is comparable to p on E.
This kind of extension principle works in much greater generality, t.e.,
we take a distance function on a set E with certain properties, and
we build a strong A, weight on all of R™® whose associated distance
function essentially gives this distance function back again on E. For
the present purposes however this more modest result is adequate and
it has the nice feature of being much simpler.

Theorem 1.15 will follow once we prove Theorem 6.3. Indeed, if
(M,d(z,y)) is a metric space which satisfies a doubling condition, then
Assouad’s Theorem 1.14 implies that (M, d(z,y))® is bilipschitz equiv-
alent to some subset of some R™ for any given value of @ € (0,1). The
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closure of this subset is an s-snowflake with s = a~! (with p coming
from d(-,-)), and the continuous weight w provided by Theorem 6.3
satisfies the requirements of Theorem 1.15.

The rest of this section will be devoted to the proof of Theorem
6.3. From now on let E and w be as in Theorem 6.3, let p(-,-) be as
in Definition 6.1, and let D,(:,-), the w-length, and B, , be defined
as in Definition 1.5. Set é.(z,y) = w(B;,)'/™, as in Section 1. The
following will be the main step.

Lemma 6.5. There is a constant C so that D (z,y) > C~ |z —y|* for
all z,y € R™.

Let z,y € R" be given, and let I" be a curve in R” that joins them.
More precisely, I' should be a continuous map from [0, L] into R™ for
some L with T'(0) = z and I'(1) = y, and we shall assume that T is
parameterized by arclength, so that I' is Lipschitz continuous with norm
1 and |z — y| < L in particular. We want to show that the w-length of
T is bounded from below by C~!|z — y|*. The idea is that this is easy
when I stays far away from FE, where w is large, and that we can use
our snowflake condition to get estimates when I' gets close to E. To
make this precise we need to break up T into simpler pieces that stay
away from E and then recombine them.

Let A denote the collection of closed subintervals of [0, L] which
are dyadic with respect to [0,L]. That is, if L = 1 these intervals
are dyadic in the usual sense, but in general they are not quite the
usual dyadic intervals because we take [0, L] itself, its two halves, the
two halves of those, etc. These dyadic intervals are all of the form
[k279L,(k + 1) 277 L] for some nonnegative integers j and k.

Set F={t€[0,L]:T(t)€ E} and U = [0,L] \ F. Let M denote
the collection of maximal dyadic subintervals I of [0, L] such that

(6.6) 1017 < inf dist (T(t), B),

where |I| denotes the length of the interval I. By standard reasoning
U is the union of the elements of M, and two distinct intervals in M
are either disjoint or intersect in one of their common endpoints.

Sublemma 6.7. |z — y|* < C w-length (") when [0,L] € M.

Indeed, in this case we have that dist(T'(¢),E) > 10L for all
t € [0,L], and since L > |z — y| (because we are using an arclength
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parameterization) we get the desired estimate from the definitions of w
and the w-length.
From now on we assume that [0, L] ¢ M.

Sublemma 6.8. If I € M then inf,¢r dist (I'(t), E) < 30 |1].

Indeed, otherwise the (dyadic) parent of I would satisfy (6.6), in
contradiction to the maximality of I.

Let T'; denote the restriction of I' to any closed subinterval J of
[0,L]. A finite sequence I, I,..., I} of closed intervals will be called a
chain if the the right endpoint of I; is the same as the left endpoint of
I;;, for each j < k.

Sublemma 6.8. There is a constant C > 0 so that if J = [a,b] is
the union of a chain of intervals I, I,,...,Ix in M, then |a — b|* <
C w-length (T';).

Pick v; € E such that dist(I's;,v;) = dist (T'y;, E) for j = 1,2,...
Thus dist (I'r;,v;) < 30|I;| by Sublemma 6.8. Using p(-,-) we get that

lvr — vk]® < Cp(v1,vk)

k-1 k-1
< CZP(UJ',UJ‘H) < CZ lvj —vj4a]”.

j=1 j=1

(6.10)

On the other hand

|vj - vj+1| < dist (F]J- s vj) + dist (P[,.+1,Uj+1)
(6.11) + diam (Tr, UT,,.,)
< O]+ Hj4al)

by our choice of the v;’s, Sublemma 6.8, and the fact that we chose '
to be parameterized by arclength. Using (6.6) we get that the w-length
of each I'y; is at least C!|I}|*, and so we conclude from (6.11) that
|v; = vj41]° < Cw-length(T'y; UTy;,,). Putting this back into (6.10)
we obtain

k-1
(6.12) vy —vel* < C ) w-length(I'y; UTy;,,) < C w-length(Ty).

=1

In the same manner we can obtain that |a — vi| < dist(T'p,,v1) +
diam(T'z,) < C|I1| and that [1]° < C w-length (T'y, ), whence |[a—v; |* <



394 S. SEMMEs

C w-length (T'7,). Similarly |b — vg]* < Cw-length(T's,). Combining

these estimates with (6.12) we get the desired conclusion.

Sublemma 6.13. Let J be a mazimal subinterval of U, and let a,b be
its endpoints. Then |a — b|* < C w-length (T'y).

This follows from the previous lemma and a limiting argument.

Sublemma 6.14. Let ¢ > 0 be given. There is a finite chain of points
0=ty <ty < <tm=0L,tj € FU{0,L}, such that for each j
either |t; —tj11| < € or tj,tj41 are the endpoints of an interval J as in
Sublemma 6.13.

This is an easy exercise.

We are now ready to finish the proof of Lemma 6.5. Let ¢ > 0
be given, and let {¢;} be as in Sublemma 6.14. Then I'(t;) € E when
1 < j < m, and so using p(:,-) we get that

IT(t1) = T(tm-1)|" < Cp(T(t1),T(tm-1))

m—2

<C I'(t;), T(¢;
(6.15) ?—_:; p(L(t;), T(tjs )
m-—2
<C Z IT(t;) — T(tj41)|° -
=1

Hence |T(to) — I'(tm)|* < C 74! [T(t;) — T(¢j+1)|*. The terms in
this sum fall into two categories. The first are the terms for which
tj,tj+1 are the endpoints of an interval J as in Sublemma 6.13. The
sum of these terms is at most C w-length (I"), by Sublemma 6.13. For
the remaining terms we have |t; — tj41| < €. Since we are assuming
that I is parameterized by arclength, for such a j we have that |I'(¢;) —
T(tj+1)|* < e*YI(¢;) — I'(¢j+1)|, and so the sum of these terms is
dominated by £°~! times the Euclidean length of I. Altogether we get
that

(6.16) |z—y|* = |T(to) =T(tm)|* < Cw-length(I')+C e° length (T).

Sending £ to 0 we get that |z — y|* < Cw-length(T"), which proves
Lemma 6.5.
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In order to derive Theorem 6.3 from Lemma 6.5 we just need to
make some simple observations.

Lemma 6.17. If B is a ball in R™ such that 3B is disjoint from E,
then sup,gw < C infopw for some constant C which does not depend
on B.

This follows from the definition of w and simple geometric consid-
erations.

Lemma 6.18. There is a constant C so that D,(z,y) > C1é,(z,y)
for all z,y € R™.

If 3B;,y touches E, then é,(z,y) < C|z — y|*® by definition of é,
and w, and the desired inequality follows from Lemma 6.5. If 3B, 4 is
disjoint from E, then it is easy to derive the required inequality from
Lemma 6.17 and the definition of D, (z,y).

Next we need the following estimate on the thinness (or porosity)
of E.

Lemma 6.19. There is a constant C so that for each ball B(z,r) in
R™ we can find a point z € B(z,r/2) such that dist(z, E) > C~'r.

Let y be any point in 0B(z,r/2), and let v denote the segment
which joins = to y. If 2B, , is disjoint from E then there is nothing to
prove. If not, then we can apply Lemma 6.5 to conclude that the w-
length of v is at least C~! |z—y|*. This implies that sup, ., dist(z, E) >
C~ 1|z — y|, because of the definitions of w and the w-length, and the
lemma follows.

Lemma 6.20. E has Lebesgue measure zero, and there i3 a constant
C > 0 so that

1
6.21 su wSC’——/w,
(6.21) 25 |B| /B

for all balls B in R™.

The first part is a consequence of Lemma 6.19, which implies that
E can have no points of density. (See also the remarks after Lemma
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4.6.) The second part follows from Lemma 6.17 when 3B is disjoint
from E. If 3B intersects E, then sup,gw < (5radius(B))*(*~1), while
the right side of (6.21) is bounded from below by C~!radius(B)"(*~1)
for some constant C, because of Lemma 6.19 and the definition of w.
This proves Lemma 6.20.

Lemma 6.20 implies that w is a continuous weight which is also
doubling. Another easy consequence of (the second part of) Lemma
6.20 is that D, (z,y) < Cé,(z,y). Combining this with Lemma 6.18
we obtain that w is a strong Ao, continuous weight.

To prove the first inequality in (6.4), notice that if at least one of
z,y lies in E, then dist(z,E) < |z — y| for all z on the line segment
that joins z and y, and the w-length of this line segment is less or equal
than C'|z — y|°. The second inequality in (6.4) comes from Lemma 6.5
and is true for all z,y, and the proof of Theorem 6.3 is now complete.

7. Metric spaces which do not admit bilipschitz embeddings
into Euclidean spaces.

Theorem 7.1. There is a metric space M which satisfies a doubling
condition (as in Definition 1.13) but which is not bilipschitz equivalent
to a subset of any Euclidean space.

This theorem was known to Assouad, and it is an easy consequence
of [P], but it does not seem to have been stated explicitly anywhere.

To prove Theorem 7.1 we use the 3-dimensional Heisenberg group
(or any other Carnot group, as in [P, Definition 1.2]) equipped with its
Carnot metric. For the sake of simplicity we leave the precise definitions
to [P] (see especially paragraph 1.1 on p. 3), but basically the Carnot
metric on the Heisenberg group is a distance function that is defined by
minimizing the length of the “horizontal” curves which connect a given
pair of points, where a curve is said to be horizontal if at each point it is
tangent to a certain (completely nonintegrable) distribution of planes.
This distance function is invariant under group translations and scales a
certain way under a natural family of dilations. The built-in degeneracy
of the metric leads to a certain fractal quality of the resulting metric
space. For instance, the 3-dimensional Heisenberg group has Hausdorff
dimension 4 with respect to its Carnot metric.

The Heisenberg group with its Carnot metric certainly satisfies a
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doubling condition: The group of translations and dilations can be
employed to reduce this propery to the (true) statement that the unit
ball centered at the origin can be covered by a finite number of balls of
radius 1/2.

One of the reasons that the Heisenberg group with its Carnot met-
ric (and other Carnot groups) are so interesting geometrically is that
real-valued Lipschitz functions on them are differentiable almost every-
where. This is a special case of [P, Theorem 2, p. 4]. The precise notion
of “differentiability” is given in [P, Paragraph 1.3, p. 4], but it comes
down to the usual idea: one “blows up” the given function at a given
point and asks that a limiting object exist, and one uses the group of
translations and dilations to realize the tangent map as a map on the
original Heisenberg group (or Carnot group). The theorem in [P] states
not only the existence of the differential almost everywhere, but also its
realizability as a group homomorphism which is compatible with the
respective groups of dilations.

Let us call the 3-dimensional Heisenberg group with its Carnot
metric M. If M had a bilipschitz embedding f into some Euclidean
space R", then the aforementioned result would imply that f is differ-
entiable almost everywhere in the sense of [P]. The blowing-up proce-
dure used to define the differential scales in the natural way, so that
the differential is bilipschitz since f itself is. This gives a contradic-
tion, because any homomorphism from the 3-dimensional Heisenberg
group into R™ must have a kernel which is at least 1-dimensional (all
commutators in the Heisenberg group must be mapped to 0 by the
homomorphism) and hence cannot be bilipschitz.

Theorem 2 in [P] on the differentiability almost everywhere of Lip-
schitz functions on the Heisenberg group (or other Carnot groups) ac-
tually allows the mapping to take values in another Carnot group and
not just the real line. The special (linear) case of real-valued (and
hence R"-valued) Lipschitz functions should be much older than [P],
although I did not find a reference. It is certainly within the realm
of the usual subelliptic analysis on Carnot groups, and I doubt that
it would be very difficult to adapt the standard methods in Harmonic
Analysis for proving the the differentiability a.e. of Lipschitz functions
on Euclidean spaces (using maximal functions, etc.) to the case of the
Heisenberg group and other Carnot groups using the standard tools for
doing analysis on these groups (as in [Fo], [FS1], [FS2], [Je], [St2]).

Theorem 7.1 together with Theorem 1.15 imply Theorem 1.12, but
unfortunately it is not at all clear how small we can take the dimension d
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\
to be. By this method one would first have to know the best dimensionn
in Assouad’s Theorem 1.14 when M is taken to be the Heisenberg group
with the Carnot metric and « is allowed to be any positive number. In
any case n is at least 5.

It would be very interesting to have some alternative construction
for Theorem 7.1 which is more direct. Aside from understanding how
small the dimension d in Theorem 1.12 can be, it would be good to
have a simpler and more direct understanding of why examples as in
Theorem 7.1 exist.

A related problem is to find other examples of metric spaces for
which there is some kind of rigidity theorem along the lines of “real-
valued Lipschitz functions are differentiable almost everywhere”. I do
not know of any examples which are not somehow based on Euclidean
geometry or the geometry of Carnot groups, nor do I know whether any
such examples should exist. This is related to the WALA and GWALA
in [DS4]. (See [DS4, p. 45-6 and Chapter III.4]. The issue there is
to decide whether certain uniform rigidity properties of Lipschitz func-
tions on a set £ C R" should force E to be “uniformly rectifiable”.
This problem was not resolved satisfactorily in [DS4].) Notice that no
such results are true for self-similar Cantor sets or snowflakes; Lips-
chitz functions on these types of sets are as flabby as Holder continuous
functions on R"™ of order less than 1.

8. Regular mappings.

Definition 8.1. Let M and N be metric spaces. A mapping f: M —
N i3 said to be regular if it is Lipschitz continuous and if there is a
constant C > 0 so that if B is a ball in N then f~'(B) can be covered
by at most C balls in M of the same radius as B.

Note that no requirements are being imposed on the position of
these balls in M which cover f~1(B).

To my knowledge this kind of condition was first considered in
the context of Euclidean spaces (with the metric perhaps deformed by
a weight) in [D1], [D2]. The definition given in [D1], [D2] is slightly
different but equivalent to this one in the case of Euclidean spaces.

In practice we shall only be considering metric spaces which satisfy
a doubling condition, and so bilipschitz embeddings will automatically
be regular. Notice that the bilipschitz condition can be reformulated
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as meaning that f is Lipschitz and f~(B) is contained in a single ball
whose radius is allowed to be larger than the radius of B by only a
bounded factor. Roughly speaking, bilipschitzness is a uniform and
scale-invariant version of injectivity, while regularity is a uniform and
scale-invariant version of the requirement that a map have bounded
multiplicity. (Note that regular maps have bounded multiplicity.)

A simple example of a regular mapping is f : R — R given by
f(z) = |z|. It is easy to draw curves in the plane whose arclength
parameterization is regular. They are allowed to cross themselves many
times, but they are not allowed to have too much mass concentrate in
a disk.

Regular mappings have many of the same nice properties as Lip-
schitz and bilipschitz mappings. For instance, the regularity condition
scales the same way as the Lipschitz and bilipschitz conditions, and the
composition of two regular mappings is regular. Regular mappings also
share some of the important features of bilipschitz mappings, e.g., they
can increase Hausdorff measure of any dimension by only a bounded
factor.

There is an analogue of Theorems 7.1 and 1.12 for regular map-

pings.

Theorem 8.2. There is a metric space M which satisfies a doubling
condition but which does not admit a regular mapping into any Eu-
clidean space.

Corollary 8.3. There is a strong-Ao weight on some R? such that
(R4, D) does not admit a regular mapping into any Euclidean space.

Theorem 8.2 is proved in exactly the same way as Theorem 7.1.
Take M to be the 3-dimensional Heisenberg group with its Carnot met-
ric, and suppose that f : M — R" is regular. In particular it is Lip-
schitz, and so it is differentiable almost everywhere. Because of the
natural scale-invariance of the regularity condition we have that the
differential of f is also regular whenever it exists. Since the differen-
tial is almost always a group homomorphism, we get a contradiction as
before, because the kernel of such a homomorphism has dimension at
least one.

Corollary 8.3 is an immediate consequence of Theorem 8.2 and
Theorem 1.15.

The questions posed at the end of the preceding section (concerning
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the possible small values of d in Corollary 8.3 and alternative construc-
tions for Theorem 8.2 and Corollary 8.3) are also open in the case of
regular mappings. Here is another one.

PROBLEM 8.4. Let M be a metric which satisfies a doubling condition.
If M admits a regular mapping into some Euclidean space, must M
admit a bilipschitz embedding into one also?

Of course the examples above were the same for Theorems 7.1 and
8.2.

Proposition 8.5. The answer to Problem 8.4 is affirmative if and
only if it is affirmative for the special case of metric spaces of the form
(R%, Do(:,)), where w is a strong Ao, continuous weight.

This is proved using Theorem 1.15, and the argument is given at
the end of the section.

Regular mappings from Euclidean spaces into other (larger) Eu-
clidean spaces are quite interesting. It turns out that such mappings
have a considerable amount of bilipschitz behavior, and in particular
that they have “large bilipschitz pieces”. See [D1], [D2], [D3], [D4], and
[Js], and see [DS3] for a related notion of “weakly bilipschitz”. This
good behavior is sufficient to ensure the L? boundedness of singular
integral operators on the image of the mapping, as in [D1], [D2]. Reg-
ular mappings are also flexible enough so that there are some general
existence results. For instance, suppose that E is a d-dimensional reg-
ular subset of R” which is “uniformly rectifiable” in the sense of [DS4].
This means that inside each ball centered on E there should be a sub-
stantial fraction of E which is bilipschitz equivalent to a subset of R%,
with uniform bounds. Then part of the main result of [DS2] is that
there is an A; weight w on R? and a regular mapping ¢ from the metric
space (R?, D,(-,-)) into R™*! whose image contains E. (See Definition
2.8 for the definition of an A; weight, and note that for this result we
need to allow discontinuous weights.) It is not known whether this last
result is true with the weight w simply taken to be constant. Because
a regular image of (R?, D,(,-)) is necessarily uniformly rectifiable for
any A; weight w, this question comes down to the following.

PROBLEM 8.6. Suppose that ¢ is a regular map from (R%, Dy(,-))
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into some R", where w is an A; weight. Is there then a regular map
¥ : R? 5 R™ for some m > n such that the image of ¥ contains the
image of ¢ (with R™ viewed as a subspace of R™)?

Remember that Problem 2.10 asks whether (R4, D,(-,-)) is bilip-
schitz equivalent to R? with the Euclidean metric when w is an A;
weight. If this is true then Problem 8.6 also has an affirmative answer,
with 1 simply a reparameterization of ¢. For that matter Problem 8.6
would have an affirmative answer if there is a regular mapping from R?
with the Euclidean metric onto (R¢, D, (-,-)).

The main result of [DS2] contains a result of the same type as Prob-
lem 8.6. Specifically, the image of a regular mapping from (R, D,(-,))
into some R™ for w a strong A. weight is uniformly rectifiable and
hence is contained in the image of a regular mapping associated to an
A; weight. Thus A; weights are natural for Problem 8.6. (See also the
discussion of open problems in [DS2, Section 21).)

A special case of the main result in [Sed] is that (R%, Dy(-,-)) is
bilipschitz equivalent to a subset of some R™ (with the Euclidean metric)
when w is an A; weight. If, for a particular w, this subset could be put
inside the image of a regular mapping v : R? - R™ as in Problem 8.6,
then the answer to Problem 8.6 would be affirmative in general for w,
i.e., all other regular mappings from (R?, D,(-,-)) into Euclidean space
would also be good. To see this we need an auxiliary fact (which is
useful to know anyway).

Proposition 8.7. Suppose that E C R™ is closed and that f : E — R¥
is regular. Then there ezists a regular mapping F : R® — R*tn+!
such that F agrees with f on E, modulo the identification of R* with a
subspace of RF*"t1 in the obvious way.

Assuming Proposition 8.7 for the moment let us apply it to the
assertion in the preceding paragraph. Let w be an A; weight on RY,
and let £ C R" be chosen so that E (with the induced Euclidean
metric) is bilipschitz equivalent to (R?, D, (+,-)). Suppose also that E
is contained in the image of a regular mapping 1, : R® = R™. We
may as well assume that m = n, because each of m and n can be
increased without difficulty. Let ¢ : (R%, D,(-,-)) = R* be some other
regular map, so that we want to find another regular map % as in
Problem 8.6. Since E is bilipschitz equivalent to (R?, Dy(+,-)) we get a
regular mapping f : E — R* which is just a reparameterization of ¢.
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Proposition 8.7 provides us with an extension F of f to all of R™ and
the composition 1 = F 0 is a regular mapping from R? into R¥+7+1
whose image contains the image of ¢, as desired.

Proposition 8.7 is a simpler and cruder version of the result in [D2,
Section 4]. As such it is very similar to [DS2, Proposition 17.4], and the
proof below is essentially the same as the argument in [DS2, Section
17], modulo some additional simplifications which are possible in this
case.

Lemma 8.8. Given any closed set E C R"™ we can find a Lipschitz
function p: R™ — R™ which vanishes on E and which has the property
that if B is a ball such that 2B C R" \ E, then the restriction of p to
B 1s regular, with a uniformly bounded constant.

In fact we can do this in such a way that p|p is bilipschitz, with a
uniform bound, at least if we allow ourselves to increase the dimension
of the target space. This is basically what happens in [DS2, Section
17], but it is a little simpler to just get regularity.

Note that the mapping p in Lemma 8.8 cannot be orientation pre-
serving, because (as pointed out to me by Juha Heinonen) quasiregular
mapping theory would then force E to be discrete.

To prove Lemma 8.8 let {Q;} be a Whitney decomposition of R\ E
into dyadic cubes, as described on [St1, p. 167ff]. We are going to build
p by gluing together a bunch of little maps on the Whitney cubes Q;.
We shall do this via an induction on skeleta, with the next observation
supplying the induction step.

Sublemma 8.9. Given a j-dimensional cube Q in R™ and a regular
mapping o : 0Q — R! with constant Cy (as in Definition 8.1) we can
find an eztension T : Q = R of o (modulo the obvious identification
of R! with R! x {0}) which is regular with constant C Cp, where C
depends only on the dimensions. (Here 0Q refers to the “polyhedral”
boundary of Q, since Q will be its own topological boundary when j < n.
Also, j =1 and | = 0 are allowed here, with R} interpreted as the trivial
vector space with only the zero element when | =0.)

This is easy to prove. Assume for simplicity that @ is centered at
the origin and that 0 € 0(0Q). Let tQ denote the image of Q under
the mapping ¢ — tz. If z € 8(tQ), define (z) by taking the R’
part of £(z) to be to(¢t~'z) (0 when z = 0) and the last coordinate
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to be (1 — t)diam Q. It is easy to check that this defines a regular
mapping with the correct estimate. Note that in the j = 1 case this
gives a piecewise-linear mapping on a segment which vanishes at the
endpoints, is positive in the middle, and does not preserve orientations.

To define p, we begin by setting p = 0 on E and also on all the
vertices of the Whitney cubes Q;. At this stage we can view p as a
map into R®. We extend p to the various edges of the Whitney cubes
using Sublemma 8.9. Actually, we have to be a little careful; let us
call an edge of a Whitney cube minimal if it does not properly contain
an edge of another Whitney cube, and let us call the collection of all
these minimal edges the “minimal edges of the Whitney decomposi-
tion”. Thus the edge of any Whitney cube is the union of (a bounded
number of ) minimal edges, disjoint except at the vertices, and the min-
imal edges contained in any Whitney cube @Q; cannot be smaller than
a fixed constant times the sidelength of Q;. This follows from the fact
that if two Whitney cubes intersect, then the intersection must be a
face of one of the two cubes (of some dimension j, 0 < j < n), and
the two cubes must have approximately the same size. (In fact one
can take the “fixed constant” mentioned above to be 1/4. See [Stl,
Proposition 1, p. 169].) We extend p to the edges of the Whitney cubes
by applying Sublemma 8.9 to the minimal edges, which then takes care
of all the others. This gives rise to a map into R which is regular on
each minimal edge, and hence on any edge of any Whitney cube, with
a uniformly bounded regularity constant. We then extend p to the var-
ious squares using Sublemma 8.9, so that this part of p takes values in
R2. Note that a mapping on the boundary of a square is regular if it is
continuous at the vertices and regular on each of the four sides of the
square, so that we can apply Sublemma 8.9. Also, as before, we should
really work with the “minimal squares of the Whitney decomposition”,
etc. Repeating this argument for the various dimensions up to n we get
a map p which is defined and regular with a bounded constant on each
of the Whitney cubes, and which is also continuous as one passes from
a Whitney cube to its neighbor. Because p vanishes at the vertices of
the Whitney cubes we also obtain that |p(z)| < C dist (z, E) for some
constant C and all z. This implies that p is continuous across E, and
it is not hard to check that p is Lipschitz on all of R, and not just on
the various Whitney cubes. The regularity property on balls stated in
Lemma 8.8 follows easily from the fact that any such ball is covered by
a bounded number of Whitney cubes. This proves Lemma 8.8.
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Now let us prove Proposition 8.7. Let f : E — R* be given (and
regular), and extend it to a Lipschitz map (also denoted by f) from
R" into R¥. Identify R¥*"*! with R* x R" x R, and identify R* with
R* x {0} x {0}. Let p: R® - R™ be as in Lemma 8.8, and define
h:R™ — R by h(z) = dist (z, E). Take F to be (f,p, k).

Let B be a ball in R¥*"t! with radius r, and let ¢ denote the last
coordinate of the center of B. We need to show that F~1(B) can be
covered by a bounded number of balls of radius r.

Let B denote the ball in R¥ which is the projection of B. By
assumption we can cover f~!(MpB) N E with at most C(M) balls of
radius r for any given M > 0. Let E, denote the set of points in R™ at
distance at most s from E. ’

It will be convenient to distinguish some cases concerning the rel-
ative values of t and r. If t < —r then every point in B has negative
last coordinate. In this case F~1(B) = @, since h is nonnegative. Now
suppose that —r < ¢t < 2r. Then F~!(B) C Ej,, by definition of k. For
each point z € F~1(B) there is a point y € E such that |y — z| < 3r,
and so |f(y) — f(z)| < 3Lr, where L denotes the Lipschitz norm of f.
That is to say, z lies within 3r of f~!((3L + 1)3)N E. From this it fol-
lows easily that F~!(B) can be covered by a bounded number of balls
of radius r, since this is true for f~1((3L +1)3) N E, by assumption.

It remains to deal with the case where t > 2r. In this case we have
that F~1(B) C Ey; \ E;/,, again because of the definition of h. Let B’
denote the ball in R¥*"*! with the same center as B but with radius ¢,
so that B’ O B. Then B’ is a ball of the type considered in the previous
case, and so F~!(B) is covered by a bounded number of balls of radius
t. Since F~'(B) C R"\ E,/; we obtain that F~!(B) is covered by a
bounded number of balls whose doubles do not touch E. Because p is
regular on each of these balls, with bounded constant, we conclude that
F~1(B) is covered by a bounded number of balls with radius r. This
proves Proposition 8.7.

Let us now prove Proposition 8.5. The “only if” part is trivial,
since the metric spaces coming from strong A, weights satisfy doubling
conditions. Conversely, let (M, d(-,-)) be a metric space which satisfies
a doubling condition and which admits a regular mapping into some
Euclidean space. Fix a € (0,1), e.g., take @ = 1/2. By Assouad’s
Theorem 1.14 we can find a set E in some R™ such that (M,d(-,-)*)
is bilipschitz equivalent to E (with the Euclidean metric). Thus E is
a snowflake of order 1/a; in the sense of Definition 6.1, and so we can



ON THE NONEXISTENCE OF BILIPSCHITZ PARAMETERIZATIONS 405

apply Theorem 6.3 with s = 1/a to get a strong A weight w such that
(E,Dy(-,-)) is bilipschitz equivalent to (M,d(-,-)). Our assumption
that M admits a regular mapping into some Euclidean space translates
into the condition that there is a regular mapping ¢ : (E, D (-,-)) = R*
for some k. In order to prove Proposition 8.5 it suffices to show that
there is a regular mapping G : (R™, D, (-,-)) = R¥*"t! which agrees
with g on E, modulo the usual identification of R™ with a subspace
of R¥+n+1  (The sufficiency of this statement comes down to the fact
that (M, d(-,-)) is bilipschitz equivalent to a subset of some Euclidean
space if (R",D,(,-)) is, since (M,d(:,-)) is bilipschitz equivalent to
(E,Du(-+)).)

The construction of the mapping G is completely analogous to the
proof of Proposition 8.7; we simply have make some adjustments for
the weight.

Lemma 8.10. There is a Lipschitz mapping 7 : (R",D,(z,y)) —
(R™, |z — y|) which vanishes on E and which has the property that if B
i3 a ball such that 2B C R™\ E, then 7 : (B, D,(z,y)) = (R", |z — y|)

18 regular, with a uniformly bounded constant.

This is proved in much the same way as Lemma 8.8 was. Let {Q;}
be a Whitney decomposition of R™ \ E, and define 7 initially on E
and on the vertices of the Whitney cubes Q; as a map into R? = {0}
which vanishes identically. We want to extend 7 to the edges of the
Whitney cubes, the higher-dimensional faces, and eventually to the
Whitney cubes themselves as before, except that on these various faces
we should build 7 so that it is regular as a map with the D,-metric on
the domain and the Euclidean metric on the range. In order to do this
we need to have a version of Sublemma 8.9 where o and I are regular
as maps with the D, -metric on the domain and with the Euclidean
metric on the range. This version of Sublemma 8.9 is true, at least
when the cube Q in Sublemma 8.9 is contained in a Whitney cube (as it
always is for our application). Indeed, D, (z,y) is comparable in size to
(diam Q;)®|z —y| when z, y lie in a Whitney cube Q;, where § = 1/a—1,
and hence a mapping on a subset A of @; is regular with respect to
D, (z,y) with a bounded constant if and only if it equals (diam Q;)°
times a mapping which is regular with respect to the Euclidean metric
with a bounded constant. This allows the aforementioned D, version
of Sublemma 8.9 to be derived from the original Euclidean statement.
Once we have this D, versicn of Sublemma 8.9 we can construct 7 in



406 S. SEMMES

the same manner as before, and we get a map into (R"”, |z — y|) which is
regular with respect to D, (z,y) on each Whitney cube Q;, and with a
bounded constant. The regularity property on balls required in Lemma
8.10 again follows from the observation that any such ball is covered by
a bounded number of Whitney cubes. On the other hand we have that
|7(z)| < C(diam Q;)*/* for = in a Whitney cube Q;, because 7 vanishes
on the vertices of @; (by construction) and is uniformly Lipschitz with
respect to D, on Q;, and this is the same as saying that |7(z)| is
bounded by a constant times the D, distance from r to E for any
z € R™ (because of Theorem 6.3, for instance). Using this bound it is
not hard to show that 7 has the correct Lipschitz property, and Lemma
8.10 follows. :

Next define h(z) for z € R" to be the D,-distance from z to E.
This is about the same as the Euclidean distance to E raised to the
power 1/a, by Theorem 6.3. Notice that h is Lipschitz as a map from
(R™, Dy,(z,y)) into R equipped with the Euclidean metric.

Extend g to a Lipschitz map from (R", D,(-,-)) to R¥ equipped
with the Euclidean metric. The existence of such an extension follows
from the fact that (R", D,(-,-)) is a metric space, but in this case one
could also use the methods of the Whitney extension theorem (as in
[St1, Chapter VI]). Take G to be (g,7, k), with R¥¥"+! identified with
RF x R™ x R, and identify R* with RF x {0} x {0}.

The proof that G is regular is practically the same as in the proof
of Proposition 8.7 above. Let B be a (Euclidean) ball in RF*"*! with
radius r, and let ¢t denote the last coordinate of the center of B. We
need to show that G~!(B) can be covered by a bounded number of
w-balls of w-radius r. As before, there is nothing to do when t < —r.

For this proof let E, denote the set of points z € R™ such that the
w-distance from z to E is < s, i.e., h(z) < s. If we assume now that
—r < t < 2r, then G™!(B) C Ej,. Thus for each z € G™1(B) thereis a
y € E with |g(y) — ¢9(z)| £ LD,(y,2) < 3Lr, where L is the Lipschitz
norm of G. This implies that the w-distance from z to g~} ((3L+1)3)NE
is < 3r, where f is again the projection of B in R¥. This implies that
G~!(B) is contained in the union of a bounded number of w-balls of
radius (3L + 4)r, since g|g is assumed to be regular, and the doubling
property for the metric space (R", D,(z,y)) allows us to conclude that
G~1(B) is covered by a bounded number of w-balls of radius r, which
is what we wanted.

Now suppose that ¢ > 2r. In this case we have that G™1(B) C



ON THE NONEXISTENCE OF BILIPSCHITZ PARAMETERIZATIONS 407

E3:\ Ey )5, because of the definition of h. Let B' denote the (Euclidean)
ball in R¥*"+! with the same center as B but with radius ¢, so that
B' O B. Then B' is a ball of the type considered in the previous case,
and so G™1(B) is covered by a bounded number of w-balls of radius
t. Since G™}(B) C R"\ E,/; we obtain that G™!(B) is covered by
a bounded number of Euclidean balls whose doubles do not touch E.
This is not too hard to check, but one must be a little careful. (One
way to do this uses the observation that for each ¢ > 0 we can cover
G~1(B) by at most C(¢) w-balls of radius et, because of the doubling
property for (R™, D,,). If ¢ is small enough, then these smaller w-balls
will be contained in Euclidean balls whose doubles do not touch E.
Alternatively, all the relevant w-balls of radius ¢t which cover G~1(B)
lie in Ey44, and we can use the fact that that D, is comparable to a
constant multiple of the Euclidean metric on Ejq \ Ey/5 in this special
situation.) Therefore 7 is regular on each of these balls, with bounded
constant, and we conclude that G~!(B) is covered by a bounded number
of w-balls with radius r.

Thus we obtain that G is regular, which is what we wanted. This
completes the proof of Proposition 8.5.
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