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Self-similar solutions
in weak L’-spaces

of the
Navier-Stokes equations

Oscar A. Barraza

Abstract. The most important result stated in this paper is a theorem
on the existence of global solutions for the Navier-Stokes equations in
R™ when the initial velocity belongs to the space weak L™(R") with
a sufficiently small norm. Furthermore, this fact leads us to obtain
self-similar solutions if the initial velocity is, besides, an homogeneous
function of degree —1. Partial uniqueness is also discussed.

1. Introduction.

We start our exposition by setting the central problem and estab-
lishing the framework of the principal ideas. First of all we are going to
try to give to the reader a modest approach to the physical meaning.

Let us consider the Navier-Stokes equations of a viscous incom-
pressible fluid which fills an infinite cylinder of cross section 2, an open
subset of R™. These equations govern the flow of the fluid which moves
parallel to the plane of Q when an external force f = (fi1, fa,..., fa) is
present.

The vector v(t,z) represents the velocity field of a particle at spa-
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tial position z and time ¢, and the function p(t, =) the pressure at z and
time t, respectively. They are the unknows of the Navier-Stokes system

" {p(%+(v-V)v)—uAv+vP=f,
V.v=0,

where the constant p > 0 is the density of the fluid and g > 0 is the
kinematic viscosity. Asusual, Vp = (0;p, &2p, .- ., 0.p) denotes the gra-
dient of pand V-v = 377, 0;v; the divergence of v = (v1,V2,...,Va).

The first equation of system (1) is the momentum conservation
equation and the second one is the mass conservation equation (incom-
pressibility condition) [T].

We shall limit ourselves to the study of the éxistence of solutions
of the Cauchy problem for the equation (1) in the case that € is the
whole space R" . Then, there will not be any external force (f = 0).
Moreover, we will assume that the density p = 1 and the viscosity
¢ = 1. The initial data of the velocity is a vectorial field vq satisfying
the condition V - vy = 0 in the distributional sense.

Therefore, the problem in which we are interested is

%—Av+(v-V)v+Vp=0,

(2) V-v=0,
v(0,z) = vo(z).

Of course, the pressure p will be disregarded. It will be automat-
ically determined by mean of the first equation of (2) after computing
the velocity v, except for an additive function depending on time.

In his paper [K], Kato proved the existence and uniqueness of solu-
tions for the problem (2) in the LP-theory based on the technical details
developed in [K-F]. In both works it was shown that such a global solu-
tion exists using the successive approximation method, applied to the
integral equation formally equivalent to the initial value problem (2).
This problem is recently solved by M. Cannone [C] for any abstract
“adapted space” among the concrete applications we find the L? spaces
and some kind of Besov spaces. In Kozono-Yamazaki’s paper [K-Y], the
existence and the uniqueness of Cauchy problem (2) are treated too for
a larger new function spaces constructed in the same way as the Besov
ones, based on the Morrey spaces instead of the usual L? spaces.

However, in the study of the attractors associated with the Navier-
Stokes equations [T] it is necessary to be able to find “self-similar so-
lutions”. That is, solutions v(¢,z) which satisfy v(¢,z) = Av(\%¢, Az)
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for all z € R™, all ¢ > 0 and all A > 0. This kind of solutions are re-
lated to an asymptotic behaviour, for large time, of the global solutions
of the Navier-Stokes equations. In the paper [G-M] the existence and
uniqueness of self-similar mild-solutions are shown in the frame of the
Morrey-type spaces of measures in R3, solving firstly the problem for
the vorticity. In [F-M-T)] the reader can find some implicit comments
about the meaning of the self-similar solutions in the study of large
time behaviour. If the functions v(t,z) and p(t,z) are global solutions
of system (1), it is not difficult to show that, for each number A > 0,
the functions Av(A%t,Az) and A?p(A?t,)z) are solutions of the same
system too.

Moreover, it is possible to characterize the self-similary condition
in the following way. A vector field v(¢, z) has the self-similar property
if and only if there exists a vector field V = (V4,V;,...,V,) such that
v(t,z) = V(z//t)/Vt, for all z € R™ and all ¢t > 0. In fact, when the
field V exists, this last equality gives the definition for v(¢,z), and it
is straightforward to see that it is self-similar. Conversely, when the
self-similar solution v(¢,z) is given, we define V(z) = v(1,z), for all
z € R™. Then, the self-similar condition on v turns out the expected
equality between v and V choosing A = 1/+/.

But, the problem of finding self-similar solutions is not evident.
The initial velocity vo(z) must be an homogeneous function of degree
—1, if a self-similar solution exists. On R3, the typical elementary
example of such functions is given by any linear combination of the
vector fields

z3 T2 T3 (3] T2 T
o) () i (- F )
O-r ) (epopp) = (- e

which are homogeneous of degree —1 and verify V - v = 0 (see [G-M],
[C]). This fact produces a complicated situation. We would hope that
the LP-spaces might be the natural mathematical setting. However, it is
trivial that there is not any homogeneous function of degree —1 (or any
other degree) in L?, for any power p. The existence and uniqueness of
self-similar solutions for the problem (2) are proved in [C] for a certain
family of Besov spaces.

Professor Y. Meyer suggested I should study the same problem in a
much more natural frame what is the weak L? spaces. So, our interest
is particulary centered on the existence of global solutions v(t,z) of
problem (2) in the space weak L™(R"), when the norm of the initial
velocity is sufficiently small.
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For each 0 < p < oo the space weak L?(R"), denoted L(P*)(R™) or
shortly L(P»>) s the set of all the complex-valued Lebesgue measurable
functions f defined on R™ such that exists a constant A > 0 satisfying

3) miz €R": |f(@) > s} < 5,

for all s > 0. Here m denotes the Lebesgue measure on R™.

For p = oo, the space weak L>®°(R"™) will be L>°(R"), and it will
be denoted L(>>°)(R™), or simply L(>>),

The space L(™*) has the advantage to be one of the most natural
extensions of L™(R"™) that contains, besides, the homogeneous functions
of degree —1. It is easy to see that the functions given above belong to
L3*)(R?) but they are not included in L3(R3). This fact is the key
that resolves the problem of finding self-similar solutions of the Navier-
Stokes equations in a special sense to be explained later. This subject
is one of the principal results presented here. All the main theorems
will be stated in Section 2.

We shall need to make use of a class space which contains LP and
weak LP spaces. That is, the Lorentz spaces L(P*9). In Section 3 we
shall recall the definition, notation and some properties following the
works (L], [H], [S-W] and [O]. At last, in Section 4, the proofs and some
technical results will be given.

2. Our main theorems.

The aim of this section is to describe the principal results and
their mathematical setting. First of all we need to specify the frame of
problem (2), that is, the space of solutions of this system.

Definition. Let n > 1 a positive integer number and let q be any fized
real number such that n < ¢ < oco. Let us define E the space of all the
complez-valued functions v(t,z), with t > 0 and = € R™, such that the
following conditions are satisfied

(4.1) v(t,z) € C((0,00), L(™*)),
(4.2) t-n/0/2y (4 z) € C((0, 00), L)),
(4.3) the map t — v(t,-) from (0,00) to L(™>)

18 continuous at the origin.
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Through this work C denotes the class of bounded and continuous
function, and therefore the norm of v is naturally defined by

(5)  IIvile = supt® /D7 |lv(t,2)l|(g,00) + suP V(£ 2)ll(n,c0) -
>0 t>0

Once for all the space L{™) will be equipped with its canonical
o(L(™), L(*" 1)) topology and the symbol || - ll(r,s) denotes the norm
on the Lorentz space L("*) (R™). (See Section 3.)

The expression (5) defines a norm on E, and the pair (E, || - ||g) is
a Banach space. All this is a straightforward consequence of results of
Section 3. In what follows we shall find global solutions of the problem
(2) in E when the initial velocity vo belongs to L(™) with sufficiently
small norm, and verifies V - vy = 0.

As usual, the problem (2) is written under the following integral
form:

(6) v(t,z) = S(t)vo(z) + B(v,v)(t,z),
where

) S(t)vo(z) = Pe~*2v(z)

and

(8) B(u,v)(t,z) = —-/0 PS(t — s)(u(s,z) - V)v(s,z)ds.

Any vector field v(t,z) satisfying the equality (6) will be called a
“mild-solution” of the initial value problem (2).

The bilinear map B is defined by a Bochner integral. P denotes
the orthogonal projection of LZ(R™) onto the subspace PL%(R™) = {f €
L%2(R™): V- f =0}. As is well known (see, for instance [F-M]), P can
be extended to a continuous operator on LP(R™) to PLP(R") = {f €
LP(R™): V- f =0}, for 1 <p< oo (see [K]). Furthermore, it is trivial
to extend P on LP(R™) to PL(»>®)(R") = {f € L(»®)}(R™): V. f =0}
because LP(R") = L(P»P)(R"). (See Section 3.)

We notice that, since P commutes with the Laplacian A, the op-
erator S(t) agrees with the heat operator on functions in PL®*)(R™).

We are now ready to state our main results.
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Theorem 1. Let vy be any function in L(™>®)(R™) satisfying V-vo =0
in the distributional sense. Then, there ezists a constant § > 0 such
that if |Vol|(n,00) < & the initial value problem (2) for the Navier-Stokes
equations has, at least, a global mild-solution v(t,z) belonging to E.
Furthermore, this solution satisfies sup,sq "/ 972 ||v(t,z)||(g.00) < 7
where n = n(8) — 0 with 6.

Moreover, there ezists a constant ng > 0 such that if there is a
solution v(t,z) satisfying supysot =/ D/2 ||v(t,z)||(g.00) < 70, then it
i3 unique.

Theorem 2. (Corollary). Let vo € L(™m™)(R") such that V-vo =0 in
the distributional sense. It will be assumed that vy is an homogeneous
function of degree —1, that 1s, vo(Az) = A" 1vo(z) for allz € R™,z #0
and all A > 0.

Then, there ezists a constant § > 0 such that if ||Vo||(n,c0) < ¢
a global mild-solution v(t,z) of the problem (2) of the Navier-Stokes
equations in E, given by Theorem 1, satisfies

9) v(t,z) = Av(A\%t, Az),
for allz € R", allt >0 and all A > 0.

REMARK. We remind the reader that any global solution v(t,z) of the
problem (2) having the property (9) is called “self-similar solution” of

).

Theorem 3. (Corollary: Existence and uniqueness of self-similar so-
lutions of Navier-Stokes equations in E). Let vo be any function defined
on R™ which 13 homogeneous of degree —1 and satisfies V - vop = 0
in the distributional sense. Furthermore, it will be supposed that the
restriction of vo to the unitary sphere S™! of R", denoted vo|sn-1,
belongs to L™(S™71).

Then, there exists a constant § > 0 such that if ||[vo|gn-1|[Ln(sn-1)
< 4, the Cauchy problem (2) for the Navier-Stokes equations has, at
least, a self-similar solution in E.

As in Theorem 1, this system admits a unique self-similar solution
if such solution belongs to the ball

{v(t,x) € E: suptC D2 ||v(t,2)(g,00) < M0}
t>0

for some ng > 0 sufficiently small.
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3. Facts on Lorentz spaces.

In this section we shall present a brief summary of the definition
of Lorentz spaces and the principal properties we are going to use.

Let us consider a non-atomic measure space (X, M, m). For each
complex-valued, m-measurable function f defined on X, its distribution
function is defined by

(10) A(s) =m{z € X : |f(z)] > s}, for s >0,

which is non-increasing and continuous from the right. This function
has a “quasi-inverse”, called the non-increasing rearrangement of f onto
(0,00), whose definition is

(11)  f*(t)=inf{s > 0: A(s) < t}, for t>0.

It should be noticed that f*(t) is the true inverse function of A(¢) when
this function is continuous and strictly decreasing. It results that f*(t)
is also continuous from the right and has the same distribution function
as f.

Thus, the Lorentz space L(P9) on (X, M,m) will be the collection
of all the complex-valued, m-measurable functions f defined on X such
that || f]|7, o) < oo, where

0o 1/
(%/0 GUSNOK —dti) q, if 0<p<oo,0<g<co,

(12) fllG.=
P supt!/? f*(t), if 0<p<Loo,g=00.
>0

The case p = o0, 0 < ¢ < oo is out of interest since ||f||f,, ;) < o0
implies f = 0 almost everywhere.

We shall only recall the following two elementary properties for the
Lorentz spaces.

a) For any p > 0 and any ¢ and r such that 0 < ¢ < r < oo we
have

(]‘3) ”f”z(p,r) < ”f”z(p,q) ’
and thus

(14) L9 - P
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b) For any p such that 1 < p < oo we have that | fII7,p) is the
usual LP-norm, and then L(»?) = LP(X, M, m).

Combining these two properties, we obtain in particular that for
0 < p< oo, LPP) = [P  L(P>°) with

(15) | 171y < 151

However, since the triangle inequality fails in general, || f ”(*p, g is not a
norm for p < gq.

In view to build an “adequate” norm for the Lorentz spaces, it is
necessary to define the function:

(16) =1 [ row, e t>o.

This function is closely related with the Hardy-Littlewood maximal
function of f because it can be expressed by ([H])

a7 o= s — [ 1@l
m(E)>t

Hence, the norm || f||(5,4) is defined as:

o dt\1/4
(g/ ) ) s i 1<p<oo,1<g<oo,
0

(18) 1 fllp,r= ) :
supt!/? f**(¢), if 1<p<oo,g=oc0.
>0

These spaces L(P9) with the norm ||f||(,,,) are Banach spaces. In
some sense || f{[(p,q) is equivalent to || f[If, ;)

(19) 1 1Gp,0) < Ifllcp00 S—T T 15 1Gp.0) -

for 1 < p < 00,1 < ¢ < co. We observe that in definition (18) the case
p = 1 has been excluded; although both expressions make sense, they
do not define a norm. In this case property (19), or a similar one, is
not valid. Besides, for p = 1 the second case in (18) would provide

(20) I ll¢t,00) = I fll1 5
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which is inadequate.

Since expression (19), it will be sufficient to estimate ||f||f, ,) in-
stead of || f||(p,q), Which is more complicated to manipulate.

The reader who is interested in the Lorentz spaces L(”9) and their
properties is referred to [S-W, chapter V], and to [L] and [H] for more
details.

In [O] estimates for the product operators and convolution oper-
ators are given. From there we extract the following definitions and
results.

Given three measure spaces (X, i), (X, iz) and (Y, v), a bilinear op-
erator T, which maps complex-valued measurable functions on X and
X into complex-valued measurable functions on Y, is called a “convo-
lution operator” if

(2L.a) - ITCF 9l < fllx llglla
(21.b) IT(f 9o < Ml Fll1 llglloo »
(21.c) IT(f; 9lloo < I lloo llglls -
As usual, || . |[; and || . ||oo are respectively the L'-norm and the L*-

norm on any of the three spaces X, X, Y.

Proposition 1 ([O]) (Generalized Young’s inequality). Let 1 < p1,p2,

r < co. If T is a convolution operator and if f € L(P101) g ¢ L(P2:02)

where 1/p; + 1/pa > 1, then h = T(f, g) belongs to L(™*) where 1/r =

1/p1 +1/p2—1, and s > 1 is any number such that 1/q1 +1/q2 > 1/s.
Moreover,

(22) ”h”(r,s) <3r ”f“(m,m) ”g“(h»qz) :

Otherwise, a bilinear operator P, which maps complex-valued mea-
surable functions on X and X into complex-valued measurable func-
tions on Y, is called a “product operator” if

(23.2) IP(f,9)lloo < I flloo llglloo »
(23.b) v IP(£, 9l < 1l llglleo »
(23.c) IP(f, o)l < N1 flleo llgllh -
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Proposition 2 ([O]) (Generalized Holder’s inequality). If P is a prod-
uct operator, h = P(f,g), and if f € LPv1) g ¢ L(P292) yhere
1/p1 +1/py < 1, then h € L™®) where 1/r =1/p; +1/p2, and s > 1 is
any number such that 1/q; +1/q2 > 1/s.

Moreover,

(24) ”h”(r,s) S T‘, “f“(Ph(h) ”g”(Pz,qz) ’
being r' the conjugate indez of r.

Before leaving this section, we extract the following proposition
from Hunt’s paper [H] about the duality of Lorentz spaces.

Proposition 3 ([H]). The conjugate space of L(P1) is L(P) where
1/p+1/p' =1

The conjugate space of (P91 < p < 00,1 < ¢ < o0, 18 L),
where 1/p+1/p' = 1, 1/q+ 1/q¢' = 1, and hence, these spaces are
reflezive.

REMARK. In the same way that L! is not the conjugate space of L,
L(®1 is not the conjugate space of L"), ([H]).

4. Proofs of the Theorems.

In this last section we shall develope the proofs of the stated in
Section 2, and some intermediate results.

First of all, we begin reminding that the proyection P commutes
with the Laplacian A, and then the operator S(t), defined by (7), is es-
sentially the heat operator. This fact allows us to estimate S(¢) without
taking into account the operator P.

The Weierstrass kernel, or heat kernel, is given by

1 \n/2 _ |2
(25) wi(z) = (m) el=l/040),

for all £ > 0 and all z € R™.
Thus, we can write

(26) S(t)vo(z) = P(we * vo){z),
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and

(27)  B(u,v)(t,z) = —A P(we—s * ((u(s) - V)v(s)))(z)ds.

Here * denotes the usual convolution of functions.

We begin giving a meaning to the right hand side of (26) because,
in our case, vy is a distribution in L(™*)(R™) which is not reflexive.

The operator S(t)(¢) = P(w; * ¢) is well defined for all functions
¢ in § = S(R™) the Schwartz class. These functions are dense in each
Lorentz space L(P9 with 1 < p < oo and 1 < ¢ < co. Then, we can
extend the operator S(t) to these Lorentz spaces and this extension will
be denoted S(t) too.

Let us remember that L(P»*) = (L(*""1)* for any 1 < p < oo, where
p' is the conjugate index of p (see Proposition 3). So, by duality, we can
define the formal transposed operator of S(t) on each L), which we
shall also denote S(t). We shall deduce some continuity properties of
this operator.

Lemma 1. For anyt > 0, eny r and any p such that 1 < p <r < oo
the operator

(28) S(t) : LP)(R™) —s Lm)(R™)
18 weak-star continuous.

In order to see this we must show the following continuity property

of S(t)

(29) S(t): LD — L")

is strong continuous for all t > 0. Moreover,

(30) 15l < elnpyr) =TT g g

Taking into account that S(t) is essentially the convolution with wy,
the inequality (30), for the case 1 < p < r < oo, results directly from
the generalized Young’s inequality (22) and from the evident estimate

”u,t”(qm) < c(n’ql,qz)t—(l—l/m)nﬂ - C(n’p’,.)t-(l/r’—l/p’)n/2,
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where ¢; > 1 and ¢2 > 1 must verify 1/p’ = 1/r' +1/¢1 — 1 and
When p = r > 1 we obtain (30) from an elementary result over the
homogeneous Banach space L(*"1)(R") (see [Kn]).
Clearly, (30) implies (29). Then, a simple duality argument leads
us to

NS@) fll(ro0) < () | fll(p,00) ¢~ (/p=1/)n/2

completing the proof of Lemma 1.

We shall pass to study the behaviour of the operator S(t) near the
value ¢ = 0. This fact will be closely related to the weak continuity at
t = 0 of the mild-solution of the problem (2).

Once more we notice that the operator S(t) is essentially the con-
volution with the heat kernel w, so, taking into account that w(z) — 0,
when t — 0, for all z € R",z # 0, one could hope that S(t) tends to
I, the identity operator. It is not difficult to obtain this convergence in
the norm || - ||(p,q) When S(t) acts on L(P*9) with 1 < p < 00,1 < ¢ < 00,
that means, in the case that L(?9 is a reflexive space (Proposition 3).
But, unfortunately in our problem, the initial velocity vo(z) belongs to
L{(™%) which is not reflexive. However, for each ¢ € L(*"1) we have by

duality

[(S(t)vo — vo, )| = [(Vo, S(t)e — @) < [IVall(n,c0) 1S(B)p = #ll(nr,1)
which tends to 0 with t. Hence, we have proved the following lemma.
Lemma 2. If vo € L(™™), then

S(t)Vo — Vp, when t — 0+ .

In the next lemma our purpose will be the study of the continuity
of the operator S(t) as a function of ¢t.

Lemma 3. Let f € L(")(R™).
a) The function t — S(t)f from (0,00) to L{™™)(R™) is continu-

ous.
b) The function t s t(1="/D/2 S(4)f from (0,00) to LT} (R™) is
continuous.
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This result will be a consequence of the following estimate we shall
suppose true for the moment. Hence we assume

(31)  |ASE)fll(roo) < e(n,p,r)t7 1= Q/p=1IR2 Y £

for 1 < p <r < co. Then, taking into account the mean-value theorem
and

3}
55 =-a50)f,

we obtain part a) from (31) giving, with p=r =n,

|5s®n)],, < L flweor

which is bounded in a neighbourhood of each ¢ > 0.
Analogously, for part b) we apply again the mean-value theorem
to evaluate the difference

“t(l—n/q)/2 S(t)f — (t")A—n/9/2 S(t')f“(q .

Thus it will be sufficient to estimate the derivative

2 Le_n

v t(l—n/q)/Z S(t)f ==-(1=-= t“(l+n/‘1)/2S(t)f

(32) o ( ) i ( Q) o
FORO1 2 (S(2)S)

Thanks to Lemma 1, the first term of the right hand side of (32) can
be estimated by

1 n

(121 -tni0r2 g4 ”
< ci(n, q) =D ATDR Yl o)
= c1(n, @)t || fll(n,00) »

(33)

where we have taken p =n and r = g.
For the second term of the right hand side of (32) we use inequality
(31) with p = n'and r = ¢q producing

6 [ Liswn | <em ) Il

(g,00)
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Finally, we have from (33), (34) and (32), that

|5 (=) s LD sl

completing part b).
It remains to prove inequality (31). In the same way as we have
done in Lemma 1, we must show that

(35)  1AS@)¢llpr,n) < e(nypyr) ¢ /TP )|y

for all € L"), It will be enough to see (35) for any testing function

®.
Then, it can be rapidly seen that

(36) AS(t)p = u x o +ulP + g,
where

2
n T
ugl)(x) =—3 wy(z) and ugz)(:c) = -lzti?w:(r)-

Both terms will be treated separately. The first one is just equal to
(¢/t) (we * ¢)(z), and then, as in Lemma 1, we have

@) ul « ol < En,rp) T2 g 0y

forl<p<r<oo.
For the second term (ugz) * ¢)(z) we can follow the way sketched
in Lemma 1. Thus, we obtain

(38)  |[ul? x| 0y, < Emyr,p) ¢TI gy

Finally, applying triangular inequality in L®")) to (36) and taking into
account estimates (37) and (38) we get (35). Then, (31) is deduced
from (38) by duality and therefore Lemma 3 is proved.

We can now state a result concerning the continuity of the operator
S(t) which collects the properties given in Lemmas 1, 2 and 3.
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Proposition 4. Let t > 0. The operator S(t): L(m*)(R™) — E is
continuous.

Next, we go on with the bilinear operator B and their continuity
properties. We need to define two auxiliar spaces F; and F;. Let F] be
the set of all the complex-valued functions v(t,z), (¢,z) € (0,00) x R,
such that v(t,-) € L{9*)(R") and the number

sup t D72 |lv(8)]](g,00)
>0

is finite.

Analogously, let F5 be the set of all the complex-valued functions
v(t,z), (t,z) € (0,00) x R™, such that v(¢,-) € L{™°)(R™) and the
number sup,sq || V(2,-)||(n,o0) 1s finite.

Lemma 4. The bilinear operator B is continuous from Fy x Fy to Fy
and from F} x Fy to F3 too. More precisely, there ezists a constant
K > 0, depending only on n and q, such that for all pair of functions u
and v in E the following estimates are satisfied:

K —n
sup || B(w, v)(t)|l(n,00) < E(fﬁ{,’tu /9)/2 ||u(t)I|(q,oo))

(39) t>0
 (5upt 0 (1) g0 »
t>0
and

-n K -n
sup t1=n/0)/2 1B(w, v)(t)ll(g,00) < E(SUP tan/or ”u(t)H(q,w))
10 t>0

(40) : (sup =D/ v ()] g 009) -
t>0

We are going to deduce the estimates (39) and (40) on each com-
ponent of the matrix operator B(u,v)(t,z). When the fields u =
(u1,u2,...,u,) and v = (v1,v2,...,v,) are mild-solutions of (2), they
must satisfy V-u = Vv = 0. Consequently,

(u . V)V =V(u ® V)
n P n P n 5
= (; 5;;_‘(“1"01) ,j__.zl —6‘;('&]”02) yen ,; 55}(“1'”")) )
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Then, putting this in the definition (8) of B, and after an integration
by parts, it is not difficult to see that each component of B, denoted
b(f,g)(t), can be expressed as

(41)  b(f,0)(t) = ca /0 (t= )"0 \/ti:—s)*(fg)(S)ds,

being ©(z) a smooth function which is O(|z|~"~!) when |z| = oo,
and ¢, is a constant depending only on n. The symbol * means the
convolution in the variable z.

The totality of the Lemma 5 will be obtained from a unique esti-
mate. Let r > n, frozen for the moment. According to Proposition 1,
we infer from (41) that

15(f, 9) ()l (r,00)
@) <o =97 o (=) < o)
< c(n,1‘)/(]t(t——.s)"("'*’l)/2 “@(

with 1/r=1/p+2/q—1.
Now, due to Proposition 2, we write

ds

(r,00)

) “p 1£(s) 9(s)ll(g/2,00) ds ,

2\/t—s

(43) 1592000 < 75 1 lao0) 19)ao0

where /(g — 2) is the conjugate index of ¢/2.
Otherwise, after a simple change of variables, we have

w  e(=)], = el 2vE=9""
Replacing (43) and (44) in (42), we get

”b(fag)(t)”(r,co) < c(n,r, b, Q) ”G)HP
t
A / (t = )~ D/4n/E0) =0/ g,)
0

(45) -n
. ( sup t(-n/0/2 ||f(t)“(q,oo))
0<t<Typ

. ( sup t(1~n/9/2 Hg(t)”(q,w)) )
0<t<To
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for all Tp > t, including Ty = co. Notice that the integral on s in (45)
is convergent since the numbers ¢ > n > 1 are fixed parameters and
the choice of p gives 1/p > (n — 1)/n, and then it is evident that the
exponent —(n +1)/2+n/(2p) > —1.

The very well known relation between Beta and Gamma functions
yields

t
(46) / (t — s)—(n+l)/2+n/(2P)S—(l—n/q) ds = c(n’r,q)t—(l—n/r)/Z ,
0

where

G+ -0

'(3+35)

e(n,r,q) =

Case i): Taking r = n and setting (46) in (45), it results

I6C£,9)Bllr ey < er(m,) (sup 07072 (8 g,

. ( sup t(1-n/9)/2 ”g(t)”(q,oo)) :
0<t<T,

(47)

In order to obtain (39), we take the supremum over all t > 0 in (47)
and choose T = co.

Case ii): Considering r = ¢, and following the same proceeding, we
arrive to

16,2 go) < calms )™= (s 702 0] )
[}

48 A sup (/D12 )44 ) | -
(48) (0 lo(t)lg)

In the same way as before we get (40).
The continuity properties of B are direct consequences of the esti-
mates (39) and (40), completing the proof of Lemma 4.

Another property on the continuity of the bilinear operator B is
given in the following result.



428 O. A. BARRAZA

Lemma 5. Let u(t,z) and v(t,z) belong to E. Then,
a) The function t — B(u,v)(t,z) from (0,00) to L{m)(R™) is

continuous.

b) The function t — B(u,v)(t,z) from (0,00) to L(H=)(R"™) is

continuous.

c) The function t+>t(—"/9/2B(u,v)(t,z) from (0,00) to
L&) (R") is continuous.

We are going to show parts a) and b). The third one is a conse-
quence of b). ‘
Let t > 0 and h be sufficiently small (take |h| < t/2). We suppose
h > 0. The case h < 0 can be analogously treated. We evaluate the
difference of B between t and ¢ + h. Then we write
B(u,v)(t + h,z) — B(u, v)(t,z)

t+h
= / S(t+h—3s)V(u(s,z) @ v(s,z))ds
0
- /0 S(t—s)V(u(s,z) @ v(s,z))ds
t+h
_ /t S(t+h — 5) V(u(s, z) ® v(s,)) ds

+/(; (S(t+h—3s)—S(t—3s))V(u(s,z) @ v(s,z))ds
:= BM(h) + B@(h).

We have to see

(49) IBO(R)lmooy = 0,  when h—0,
(50) IBD(R)l(gooy = 0,  when h—0,
(51) IB®(h)||(noey 0,  when h—0,
(52) ”B(2)(h)”(q,co) -0, when h — 0.

Let r > n. As in Lemma 4, denoting 5(1)(f, g)(h) the entries of BV (h)
and after applying generalized Young and Holder inequalities, we arrive
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to
"b(l)(fag)(h)”(r,oo)
t+h
< ¢(n,r,p,q) (t+h— S)—(n+1)/2+n/(2p) s—(-n/a) 4o
(53) ‘

(sup /0 | £ oy )
t>0

N supt(1—n/9/2 w)
(Dg lgll¢g.e0)) -

where 1/p = 1/r +1— 2/q. A simple computation (by homogeneity)
gives

t+h
/ (t 4 h — §)~(4D/240/(2p) =(1=n/0) 4
t

= c1(n, g, r)t—(l—n/q) pr/(2r)—n/a+1/2 ,

(54)

for all 7 > n such that n/(2r) —n/q+1/2 > 0. As it was noticed in the
proof of Lemma 4, the last integral is finite. If we take r = n, we have
from (53) and (54)
16D (F, 9)(R)lln,00) < &n,q)t= 7"/ B1/0
(sup 1072 | 7 g o)
>0

- (supt="/07 gl g 0y )
t>0

and then ||[BM(R)||(n,00) — 0 With A.
Otherwise, choosing r = g we obtain from (53) and (54)

1B, 9) (W)l 0y < &y ) 7070 BO/012

 (5up =072 | £ 00
t>0

: (5up =072 g 1))
t>0

yielding ||B®(h)]|(4,00) = O with k. Thus, we have just proved (49)
and (50).
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In order to see (51) and (52) we take again the entries of the op-
erator B(®)(h) which we denote by b*)(f, ¢)(h). Hence, using the same
notation as in Lemma 5 we have

b(2)(f,g)(h) =c, /: ((t +h— s)—(n+1)/2 e(z_i_;\/___ﬁ)
(55) ~ (=9 O3] )+ (fa)(s) .

Let r > n. We are interested on 7 = n and r = ¢q. It is easy to show
that the expression under the integral sign in (55) has bounded L(™)-
norm. Indeed, if 1/r = 1/p+2/q — 1, after applying generalized Young
and Holder inequalities we obtain

[(srm-errerr=s)

- (t__s)—(n+l)/2 9(2\/{-_3)) « (f9)(s)

("Yw)

< et (ernm0 00 ()

- (msyre ()
< é&n,r,q) “((t-{-h—s)_(”"i'l)/2 @(
- (t_s)—(n+1)/2 @(

“N1f()Mlcq.00) l9(8)llg,00) -

(56)

(f9)($)ll(q/2,00)

)
=)

p

Taking into account (44) and reminding that h > 0, we can write

[

~ (=90 () ) + ()

< c'(n,r, q) ((t+h_s)—(n+1)/2+n/(2p) + (t_s)—(n+1)/2+"/(2p))
1Ol 1 ($)ll(g,00) 19(5)l(g,00)

(r,00)
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< ¢ (nyryg) (t=s) (D2 =020/ o),

. (sup t(1-n/a)/2 ”f(s)”(q,oo))
>0

. (supwf(l_"/q)/2 ||9(5)”(q,°°)) ’
t>0

which, due to —(n+1)/2+4n/(2p) > —1 once more, belongs to
L'([0,t],ds) and it is independent of h. It remains to prove that the
function under the integral sign in (55) tends to zero with h in the
L(n>)_norm. But from (56) this is evident since the continuity on ¢
of the function (t — s)~("+1)/2@Q( - /2\/f —s) from (0,00) to L? and
the behaviour of ©(z) for |z2| = +oc0. Thus, thanks to the Lebesgue
dominated convergence theorem we get limj_, ¢+ Hb(z)(f,g)(h)u(r,oo) =
0. In particular we have shown (51) and (52). Then, the proof of
Lemma 5 is complete. '

Lemma 6. If u and v belong to E, then

(57) B(u,v)(t,z) =0, when t — 0F.

As it was noticed in Lemma 4, it is not difficult to see that if
uj(s) and vk(s) denote respectively the j-th and the k-th components
of the vectors u(s) and v(s), then Bi(u,v)(t,z), the k-th component
of B(u,v)(t,z), is written as

n t
(8)  Belwv)(to)= Y [ Qult - ) uslmle)@)ds,
=1
where Q;x(t — s) are pseudodifferential operators with symbols

(59)  o(@ult—s)E) =i (5,- - %;) L

for j,k =1,2,...,n. Here, 6z denotes the Kronecker’s delta function
and 12 = —1. .

More generally, taking into account (58) and (59), we are going to
consider a pseudodifferential operator Q(t—s) on R™ whose symbol has

the form o(Q(¢ — ))(€) = a1(€)a2(€)e= =P, where g1(¢) and a(€)
are homogeneous functions on |£| > 0 of degree 1/2. Note that in (59)

we can take q1(€) = &/|€]'/? and ¢2(€) = ¢ (8 [€]” — &; &)/ €/
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We define T(V)(7) and T(® (1) as the pseudodifferential operators
whose symbols are

o(TO(N))(E) = qu(€) ™72

and

(T (r))(€) = g2 () e 711 /2

and such that Q(t — s) = T(M(t — s) T?)(t — s).

We consider too two functions f and g satisfying ||f||g < co and
llglle < oo. In fact we shall only need that sup,sq || f(£)ll(r,00) < 00 and
sup;sg [|9(t)|l(n,c0) < 00. Then, we shall prove (57) for the operator

JEQ(t — 5) (£(s)g(s))(z) ds.

Let ¢ be a testing function (¢ € S). Hence we have

([ at-9eenise)| =| [ @ -9 ree).e ds
0 0

< / (Tt — 5) TO(t — 5) (£(s)g(5)), )| ds
60) = / (T (¢t — 5) (f(s)g(2)), TVt — 5)p)| ds

< /0 7@t = ) (F()9(5) | (.00 1Tt = 8) @[] s 1y D5 -

Thanks to Propositions 1 and 2 we get

IT® (¢ = ) (f()9()l(n,00
< e(n) [|k2(t = 8)llpa 1£()ll(n,00) [19()ll(n,00)

(61)

with 1/n = 1/p; + 2/n — 1 and the function kz(t — s) € S verifies
kst = 5)(€) = qa(§) ™I/,

It is clear that p, = n'. As usual, we denote by E(&) the Fourier

transformation of a function h at the point €.
Analogously,

) [TO¢-ap < et k= el
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where 1/n' =1/p1+1/r—1,p; > 1,7 > 1, and the function k1 (t—s) € S
satisfies

kit = $)(€) = qu(g) e I /2,
Then, for each function k;(t —s), j = 1,2, we can rapidly see that

it = )l = |t =)= s (=)
(63) = (t = o)A R ),

= c(n,p]) (t — 3)—1/4"n/2+"/(2pi) ,

with k;(€) = g;(¢) eI/
Due to (63) and (62) we obtain

ITO( = $)pllw,1y < &nyr) (¢ = ) HA=/H2E f)

(64) ~ - n/2—n/(2r
= &n,r) (t — )42 o)l
Besides, from (63) and (61) we have

IT@(t - 5) (£(5)9(5)ll(n,00)
< &n)(t = )4 F ()l (n00) 1905l (m,00)
(65) < &n)(t — )3/ Sup [|£()llne0)

- 5Up [|9(7)ll(n,c0) -
>0
Therefore, replacing (64) and (65) in (60) we get
t
([ =0 (r@ats) ds, i)
t
< &)l [ (8= 9y S/ gy
0
+sup || f(7)ll(n,00) sUP 19(T)ll(n,00) -
>0 >0

For instance, choosing r = 3, it results that r > n' since n > 2 and then
the s-integral is convergent and it is like t=1/2+(n=7/7)/2 which tends
to zero with t. Finally we have that

m ([ @t - 000 ds,e)| =o.

li
t—0
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This proves Lemma, 6.

The conclusions of Lemmas 4, 5 and 6 can be briefly summarized
in the following terms.

Proposition 5. The bilinear operator B: E x E — E 1s continuous.

Now, we are ready to prove Theorem 1. The method we shall
apply takes the approach on succesive approximations (called Picard’s
method) developed in [K-F], [F-K], [K] and [C]. Picard’s sequence is
defined as follows.

vi(t,z) = (S(t)vo)(z),
vm+l(t7 z) =V, (t7 1)) + B(Vm, Vm)(t, .‘L’) ’
for m = 1,2,3,... Most of the estimates given here are the weak ver-
sions of those presented in [K]. In [K-F] and [F-K] some techniques
based on the fractional powers of the Laplace operator are used. We
are not going to employ them here.

Previously to explain the details of the proof, we need the following
abstract result extracted from [C].

(66)

Lemma 7 ([C]). Let X be a Banach space with norm || - ||x, and B :
X xX — X a continuous bilinear map. That 13, there ezists a constant
K > 0 such that for all z; and =, in X we have

1B(z1, 22)llx < Kllzallx llz2llx -

Then, for any vector y € X, y # 0, such that 4K |ly|]|x < 1, there
ezists a solution z € X for the equation z = y + B(z,z). Moreover,
this solution x satisfies ||z||x < 2||yllx -

This Lemma will be proved in the same way as in [C]. Let

1-1-4K|lylx
R= 2K ’
which is the smallest solution of the equation ||y||x + X R? = R. We
can easily observe that R < 2||y||x .
In X, we consider the closed ball B = {z € X : ||z|]|x < R}. Let
us define F : X — X by F(z) = y + B(z,z). First, we note that for
all z € Bp,

IF()llx < llyllx +Kllzli% < llyllx + CR* = R.
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That is, F' maps Bp into Br. Besides, for all z and z’ in Br we have

I1F(z) — F(z')llx = || B(z,z) — B(z', )|l x
<|IB(z - z',z)l|x + | B(z',z — 2')||x
<2KR|z—2'||x .

From the definition of R, it becomes

0<2KR=1-+/1-4K|yfx <1.

Hence, |F(z) — F(z')||x < c|lz — z'||x, with 0 < ¢ < 1. Thus, the

map F' : B — Bp is a contraction. Consequently, from the Picard
contractions Theorem applied to the sequence

Ty =Y,,
Tmt1 = Flzm), form=1,2,...,

we obtain a unique solution z in Bg, but perhaps not unique in X. The
last estimates is trivial, since as it was observed

(67) lzllx <R <2lyllx -

PROOF OF THEOREM 1. For the existence of mild-solutions of problem
(2) we want to apply Lemma 7 to the integral equation (6) with the
Banach space X = E and the vector y = S(¢)vo. This fact leads us to
check the condition

(68) 4K [IS()volle <1,

being K the constant given in Lemma 4. Besides, from Proposition 4
there exists a constant ¢ > 0 such that

(69) I15()volle < cllvoll(n,co) -

Choosing 0 < § < (4K ¢)™! and making use of (69), inequality (68)
is satisfied provided that ||vo||(n,c0) < 0. Thus, Lemma 7 guarantees
the existence of a global mild-solution v(¢,z) in E. Moreover, we know
from (67) that ||v|]|e < 2||S(¢)vo|le < 2¢ 6, which goes to 0 with 4.
Now, we shall pass to consider the uniqueness. Let us suppose that
u and v are two mild-solutions of the Navier-Stokes equations in E with
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the same initial data vg, and such that there exists 0 < o < 1/K for
which the following inequalities

sup t =072 [[u(t)|(g,00) < 10
t>0

and
sup t "7 |ly(1)|| (g,00) < M0
t>0

hold. Thanks to the estimate (48) of the proof of Lemma 4, we note
that the difference
w(t,z) = u(t,z) — v(t,z)
= B(u,u)(t,z) — B(v,v)(t, z)
= B(w,u)(t,z) — B(v,w)(t,z)

satisfies (with Tp = o)

sup t0 /D72 ||w(t)]|(g,00)
>0

K o —n
< 3 (sup =072 J[u(®) 00 + 5up L3O ¥ (D)l 00
-supt® D72 [|w(t)]|(g,00)
t>0
<K 1o supt(]_n/q)/z ”w(t)”(q,oo)
t>0

< supt 2 lw(t)]|g,00) »
t>0

since for no > 0 it was supposed Kng < 1. This fact implies that
w(t) = 0 for all £ > 0, and then, v(¢) = u(t). This concludes the proof.

PROOF OF THEOREM 2. From Theorem 1 we know that the sys-
tem (2) with initial data vo(z) admits, at least, a global mild-solution
v(t,z) € E. In fact, this solution was founded as the limit of the se-
quence {v,,(t,z)} defined by (66). It is straightforward to verify that
vi(t,z) = (S(t)vo)(z) satisfies A vi(A%¢,Az) = vi(t,z) by a change of
variables. Also, it is evident to see by induction on m that all the func-
tions vy, (t, z) have this property. Then, it is clear that the limit v(¢,z)

must verify
Av(A%t, Az) = v(t,z)

for all A > 0, all t > 0 and all z € R™. Theorem 2 is proved.
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PROOF OF THEOREM 3. Theorem 3 follows directly from Theorem 2
and the following characterization.

Lemma 8 (A characterization of homogeneous functions). Let 0 <
d < n and let f be a complez-valued function defined on R™. Suppose
that f is homogeneous of degree —d. The function f € L(*/%®)(R") if
and only if its restriction f|gn-1 to the sphere S™~! of R™ belongs to
L"/d(S"_l).

The key of this Lemma is centered in the following computation.
Let s > 0. Recall that m denotes the Lebesgue measure in R".

Therefore, taking polar coordinates and reminding the homogene-
ity assumption on f, we can write

m{z € R": |f(z)] > s} = / ldzx
[f(=)>s

= / / rn1 doe dr.
0

{eesn—1:|f(&)|>rs}

Here, dos denotes the differential area over the sphere. Applying now
Fubini’s Theorem we conclude

s ©1/9"*
m{z € R": |f(z)| > s} = L 1 / r"~ 1 dr dog
n-1Jo

=/ LI 4,
S

n-1 7 Sn/d
Finally, we get

7 inja. = supsmiz € R™: |f(@)] > s}/
L

1
= —apmllfisn-sllpnraqsn-ry -

Then, one of both norms is finite if and only if it is finite the other.
It is necessary to take into account the “equivalence” (19) and the
hypothesis 0 <-d < n to complete the proof of Lemma 8.

REMARK. It is easy to observe after Fubini’s Theorem and a standard
change of variables that there is not any homogeneous function defined
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on R" belonging to LP(R"), for any p > 0. This fact leads us to try to
find “ adequate” extensions of LP(R™) as , for instance, the L(P»>)(R")
spaces.

FINAL REMARK. The results shown throughout the present paper can
be obtained as a consequence of the general theory exposed by M. Can-
none in [C], for the case of spatial dimension n = 3. It is not true that
the Lorentz space L(3°)(R3) is a subset of the Besov space By'™ but,
on the other hand, we have that

,00 3 ) —a,c0
(70) LB=NR*) c B; >,

for ¢ > 3 and @ = 1 — 3/q. So, the Besov space B;“vw can be useful
as the auxiliary space to build the artificial norm in Kato’s theory (see,
for instance, [F-K]|, [K-F], [K]).

From [C] we learn that the bilinear operator B defined by (8) is
continuous from B *™ x Bq_ % to L3(R?). Therefore, taking into
account (70), if the initial condition vy satisfies ||vo||(3,00) < @, for some
a > 0 small enough, we have ”Uo”Bq—a,co < ca, and then, thanks to

Cannone’s results [C] once more, we know that the solution
V(t, I) = S(t)VO(‘z‘) + B(V, V)(ta .’L‘) ’

where ||B(v,v)(t)|ls < ¢1. On the other hand L) is a translation
invariant space which yields S(t)vo € L) uniformly on t.
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