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On the uniqueness problem
for quasilinear
elliptic equations
involving measures

Tero Kilpelainen and Xiangsheng Xu

Abstract. We discuss the uniqueness of solutions to problems like

{ AMul[*~lu —div(|Vu|P~2Vu) =y on Q,
u=20 in 092,

where A > 0 and g is a signed Radon measure.

1. Introduction.

Throughout this paper we let 2 be a bounded open set in R™ and
1 < p < n a fixed number with p > 2 — 1/n.! Suppose that u is a
signed Radon measure in 2 with finite total variation. We consider the
solutions u € W\ () of the equation

loc

B(u) — div A(z,Vu) = 4,

1 The restriction p>2—1/n could be removed by using a generalized derivative as in

[5] or a different concept of a solution as e.g. in [1] or [9].
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462 T. KILPELAINEN AND X. XU

where B: R — R is a continuous increasing function with B(0) =
0 and A: R™ x R®” — R" is a mapping that satisfies the following
assumptions for some numbers 0 < a < § < oo:

the function z — A(z,£) is measurable for all £ € R", and
the function £ — A(z,€) is continuous for a.e. z € R";

(1.1)

for all £ € R™ and almost every z € R"

(1.2) A(z,£) - €2 ¢,

(1.3) |A(z, )| < BlEP~Y,
(1.4) (A(z,€) - A(2,¢)) - (€= ¢) > 0,
whenever £ # (.

Solutions are understood in the sense of distributions, and we fix
weak zero boundary values. More precisely, we consider the problem

B(u) — div A(z,Vu) = p,
B(u) € L'(Q),
ue VVlL,Cmax{p—l,l}(Q),

Ti(u) € WPP(Q) for k >0,

(1.5)

where T} is the double side truncating operator at the level k,
Tk(t) = max { min{t, k}, -k} .

Here the first line in (1.5) means that

/B(u)goda:+/.A(:c,Vu)-Vgod:c:/cpdu
Q Q Q

for each ¢ € C§°(2).
The prime examples of such equations arise from the p-Laplacian
operator
Apu = div (|VulP~2 Vu).

Keeping this example in mind one easily convinces oneself that, for
an arbitrary measure g, there is no hope to find a solution from the
“natural” Sobolev space W, P(£2). Indeed, existence of a solution in this
space automatically implies that g is in the dual of W'ol P(Q2). Moreover,
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it is well known that this dual does not contain point measures for
1 < p < n (see e.g. the discussion before Theorem 3.5 below).

Therefore we only require that the truncations of a solution be in
W, P(£2). Then, using compactness arguments we find that the solution
itself lies in Wol’q“"'l)(ﬂ) foreach 1 <g<n/(n-1).

There are several papers, where the authors discuss the existence
of problems like (1.5) in different senses, see e.g. [7], [2], [5]- In the
nonlinear case, there are a few results aiming at the treatment of the
question of uniqueness: Lions and Murat have announced an existence
and uniqueness result for renormalized solutions in the case when p = 2
and p € L! (see [8]); unfortunately, we haven’t seen their proof. Two
different approaches to the general case with u € L! are given in [1]
and in [9]. Rakotoson [9] uses renormalized solutions, and Bénilan et.
al. [1] an “entropy condition” which we shall adopt and modify. We
shall consider measures p that are absolutely continuous with respect
to p-capacity (see 2.1 below), in particular, L!-functions are particular
cases of our consideration. We prove:

1.6. Theorem. Let p be a finite signed measure in §) that is absolutely
continuous with respect to p-capacity. Then there i3 a unique solution
u of (1.5) such that for o € {+,—}

[ A0 ITE =gy do+ [ B TE (=) do = [ TE(u=g)du,
Q Q Q

whenever ¢ € C§°(R2) and k > 0. Moreover, u € Wol’q(p—])(Q) for each
1<g<n/(n-1).

Here :
T;t (t) = max { min{t, k},0}

and
T; (t) = min { max{t,—k},0}

are the positive and negative truncating operators. Take notice that
here and in what follows we always take the quasicontinuous, hence
Borel, representatives of Sobolev functions; hence there are no problems
with measurability.

To display a simple example that motivates the use of a constraint
for the solutions, consider the p-Laplacian

Apu =0
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in the punctured ball @ = B(0,1)\{0}. Then the identical zero function
is a trivial solution of (1.5) in Q (there B = 0, p = 0 and A(z,§{) =
|€|P=2€). Another solution is given by

(2) |z|(P=m) /(=) _ 1 ifp<n,
u(z) =
log |z|, ifp=n.

Observe that these functions both are SOLAs (solutions obtained as
limits of approximations) in the sense of [3].

Note that the assumption that p < n is no restriction, for any fi-
nite Radon measure belongs to the dual of the Sobolev space Wy '9(2)
if ¢ > n and then the unique solvability of (1.5) is well known. On
the contrary, the assumption that p > 2 — 1/n is partly essential and
partly purely technical. It is a simple matter to construct measures y
for which there cannot be any solutions with locally integrable distribu-
tional derivatives if p < 2 — 1/n. There are at least two different ways
out of this trouble: either one could consider a generalized gradient as
it was done in [5], or to leave distributional solutions and work with
renormalized solutions as in [9] or [11]. We leave these technicalities to
the interested reader.

2. Uniqueness.
To begin with, we recall that the Sobolev space W7(Q2), 1 <

g < 0o, consists of all g-integrable functions u whose first distributional
derivative Vu is also g-integrable in Q; equipped with the norm

1/q
b = ([ (ult + (901t d2) ™,

W14(Q) is a Banach space. The corresponding local space is marked
as W.19(Q). Moreover, Wy'%(f2) stands for the closure of C§(Q) in
whe(Q).

Next we define the p-capacity of the set E C R™ to be the number

wmm=m/uw+wwwa
Rn

where the infimum is taken over all ¢ € W',i’cl (R™) such that ¢ =1 on
an open set containing E. Then cap, defines an outer measure, but
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there are only very few measurable sets. The p-capacity is intimately
connected with Sobolev spaces W!'? and with p-type equations (1.5),
see e.g. [4], [12]. In particular each u € W1P() has a quasicontinuous
version, t.e. there is v such that u = v almost everywhere and for each
€ > 0 there is an open set G such that cap,(G) < € and the restriction
to Q \ G of v is continuous and real-valued.

We say that u is absolutely continuous with respect to p-capacity if

(2.1) p#(E) =0 whenever cap,(E)=0.

Note that the Hausdorff dimension of a set of p-capacity zero is at most
n — p, while a set with finite n — p dimensional Hausdorff measure is of
p-capacity zero, see e.g. [4].

In this section we establish uniqueness under a slightly weaker con-
dition than was stated in Theorem 1.6. We say that a solution u of (1.5)
satisfies the entropy condition if for o € {+, -}

/ A(z,Vu) - VT (u — ) dz + / B(u)T¢(u — ¢)dz
Q Q

(2.2)
< /Q T¢(u - ¢) du

for all ¢ € C§°(2) and k > 0;
In particular, we have that

/A(z, Vu) - VTi(u — ¢)dz +/ B(u)Ti(u — ¢)dz S/ Ti(u — @) dp
Q Q Q

whenever T} is the double side truncating operator.

2.3. Lemma. If u is a solution that satisfies the entropy condition
(2.2), then for each M >0 and k >0

IVulPde < e M |u|({|ul > k}) + c M / B(u)|dz
{k<u<k+M} {lu|>k}

PROOF. An easy approximation shows that one can replace ¢ in (2.2)
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by any bounded function from W, ? (see [1, Lemma 3.3]). In particular,

c / |Vul|Pdz < / A(z,Vu) - VTy(u — Tyu)dz
Q

{k<|u|<k+ M}
< / Trm(u — Tru)dp
Q
- / B(u) Ty (u — Tru)de
Q

< M |p|({|u] > k})

+M |B(u)| dz,
{lu|>k}
as desired.

2.4. Corollary. Let u be a solution that satisfies the entropy condition
(2.2). If |pl({lu] = 00}) =0, then

lim / |VulPdz =0.
k—o0
{k<|u|<k+M}

Corollary 2.4 is in general false if |u|({|u] = c0}) > 0. Take, for
instance, g = the Dirac measure. Then if A(z,£) = |[£[P~2¢ is the
p-Laplacian, we have

lim / |VulPde =M.
k—oo
{(k<u<k+M}

In this paper, we restrict our consideration to measures which are abso-
lutely continuous with respect to p-capacity. Then |p|({|u| = c0}) =0
for p-quasicontinuous u.

2.5. Theorem. Let yu; and u; be finite signed Radon measures that
are absolutely. continuous with respect to p-capacity such that py < ps.
If u and v are solutions of (1.5) with measures p; and psz, respectively,
that satisfy the entropy condition (2.2), then u < v.
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PROOF. By approximation,
/ﬂ A(z, Vu) - VT (u - Tyv) de
< /QT:'(u —Tw)dp; — /(; B(u) T} (u — Tw) dz
and
/ﬂ A(z, Vo) - VT (v — Tyu) dz
< /QT,:(U — Tyu)dus — /Q B(v) Ty (v — Tru) da.

If we add these inequalities up and let | — oo, the right hand side is
treated by the aid of the dominated convergence theorem and its limit
is

[ T = vy = [ T —v)da
Q Q

- [ (B = B@) T = v)de <o,

since p; < p2 and B is increasing. The set of integration on the left
hand side is splitted into four parts:

Gy ={lu—v| <k, |v| <, and |u| <1},
Gz = {|lu —v| > k},

Bl:““"“lﬁk, [v] <1, and |u| > 1},
By ={lu—v| <k, |v| >, and |u| < 1}.

The parts B; and B; are symmetric and they tend to zero as is seen
with an estimation like

|/A(x, Vu) - VI (u — Tiv) dz‘ < c/ [Vul? dz + c/ |Vu|P~|Vo|dz
B, B B,

<c / |Vu|?P dz

{I<lu|<i+k}
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p/(p—1)
+c / [Vul? dz)
{I<lu|<i+k}

1/p
|Vov|P dz)

{1-k<jo|<}
— 0+,

as | =& oo by Corollary 2.4. Further,

A(x,Vv)~VTk_(v—T1u)da:’ <c / |Vv|Pdz — 0,
{1—k<v|<1)

A

as | - oo. Next we estimate the integrals over G,. For instance

\/ Az, Vu) - VT (u — T} da| < ¢ / (VulP dz — 0
e {1-k<jul<t+k)

and the other integral is treated similarly.
Hence we conclude that the integral over G; tends to a nonpositive
number as | = oo, and hence

(A(z, Vu) — A(z,Vv)) - (Vu — Vv)dz < 0.
{lu—v|<k,u>v}

Since this last integrand strictly positive if Vu # Vv, we have Vu = Vv
almost everywhere in the set where |u —v| < k and u > v. Letting
k — oo we find that v < v in Q in the view of the weak boundary
values. The proof is complete.

2.6. Corollary. If pu is absolutely continuous with respect to p-capacity,
then there is at most one solution u of (1.5) that satisfies the entropy
condition.

3. Existence:

There are various proofs for the existence of solutions to problem
(1.5). Because we want that a particular solution satisfies the entropy
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condition, we have to give a proof that results in the entropy equality
as well.
We start our investigation with a compactness lemma.

3.1. Lemma. Let pu; be a sequence of signed Radon measures that
belong to the dual of Wy P(Q) such that

;1) £ M < o0
for each j. Let u; € W'P(Q) be such that B(u;) € L'(Q) and
B(u;) — div A(z, Vu;) = pu;

in (). Then there is a subsequence u;j and a function u such that uj; — u
pointwise almost everywhere and weakly in W19(P~1) whenever 1 <
g < nf/(n—1) = n'. Furthermore, B(u;) is bounded in L'(Q) and
Vu;(z) = Vu(z) for almost every z, A(z,Vuj) - A(z,Vu) in LI(Q)
and for each k > 0, the sequence of truncations VTi(u;) is bounded in
Lr(Q).

PROOF. By using the test functions Tj(uj/e), € > 0, we find that

/|B(u,~)| dz = limsup (/Tl(uj/e) dp; — ! /A(z,VuJ-) - Vuj dx)
Q e—0 Q &

{0<]ujl<e}
(32) <l <M <oo.

Similarly, the use of the test function Ti(u;) shows that
(3.3) / VT4(u;)lP dz < ck M,
Q

so that, by the usual compactness arguments (see e.g. [4, 7.43]), the
sequence |Vu;|P~! is bounded in LI() for all 1 < ¢ < n'. Then there
isu€ Wol’q(p—l)(Q) such that u; — u weakly in Wol’q(p—l)(ﬂ). By the
aid of the Rellich compactness theorem we can extract a subsequence
uj that converges pointwise to u almost everywhere in Q2.

It remains to show that Vu; - Vu pointwise almost everywhere.
Fix € > 0 and let

Ej,k = {:1: € N: (A(x,VUj) - .A(:I:,Vuk)) . (Vu]' - Vuk) > 6}.
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We estimate the measure of Ej  :

|Ej k] < |Ejk 0 {Juj — ukl > *}
+ ‘2’ / (.A(:E,Vu,') - A(Z,Vuk)) . (Vu]‘ - Vuk) dz .

Ej en{jur—uj|<e?}

Using the test function T,2(u; — ux) we find the estimate

(A(z, Vu;) — A(z, Vur)) - (Vuj — Vug) dz

Ej k0 {lue—uj|<e?}

S[)Tsz(uj—uk)dpj—/Tez(Uj—uk)dpk
Q

—/B(uj)Tcz(uj—uk)d:L‘-i-/B(uk)T,z(u]'—uk)d:E
Q Q

<ce?
by what we proved above. Hence we arrive at the estimate
(3.4) |Ejk| < ce+ |Ejp 0 {luj — ur| > €},

where the constant c is independent of j, k, and €.

Since u; — u almost everywhere we easily infer from (3.4) and
the monotonicity and continuity assumptions on A that Vu; converges
pointwise almost everywhere to a function that must coincide with Vu.

Now we consider a nonnegative finite Radon measure y on Q. We
may as well assume that p is defined on the whole of R™ with p(R™\Q) =
0. Then p € (W,"?(Q)) if and only if

/ Wi ,(z,1)dp < oo,
Rn

where

w0 = [ 1 <————"(B($”"))”("'” dr

rn—P r

is the Wolff potential (see e.g. [12, Theorem 4.7.5]).
Now we find a solution for which the entropy inequality (2.2) is an
equality.
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3.5. Theorem. Let yu be a nonnegative finite measure in 0 with
u({: Wt,(a,1) = 00}) = 0.

Then there 1s a solution u of (1.5) such that for o € {+,—}

/A(a:,Vu)-VT{(u—cp)dm—}-/ B(u)T¢ (u— ) dz =/ TS (u—)du,
Q Q Q

whenever ¢ € C§°(2) and k > 0.

PROOF. For a nonnegative integer j, let
B; = {a: W (a,1) <j},
and let u; be the restriction to E; of 4,
1i(E) = l(EN Ej).
Then 0 < pj < pjy1 < pand pj — p weakly, for
u({e: W (z,1) = oo}) = 0.
Since

/R Wi (z,1)dp; < /}; jdp; <5 p() < oo,

we have pu; € (WOI’P(Q))*. Hence there is a unique u; € W, ?() such
that B(u;) € L'(£2) and

(3.6) B(uj) — div A(z, Vu;j) = u;

in Q (see e.g. [10] or [7]). Using Lemma 3.1 we find a subsequence of
u; increasing to a function u such that B(u) € L'(2) and

B(u) — div A(z,Vu) = p

in Q with weak boundary values.
The entropy equality for u is verified as follows: fix ¢ € C§°(2).
Then for each k£ > 0 we have

[ A Vu) VIR ) de + [ Blu)TE(u - ) o
Q Q

=/T£’(u—so)duj-
Q
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Letting j — oo this gives us the desired equality. Indeed, the second
integral does not cause any troubles, for B(u;) — B(u) in L' since
uj increases to u. The first integral is treated by the aid of (3.3): for
M > k + sup || we have

/ A(z,Vu;) - VT (u - ¢)dz
Q

- / Az, VTu(u;)) - VIE (u — ¢) de
{u<M}

— / A(z,VTp(u)) - VI (u — ¢)dz
{u<M]}

= / A(z,Vu) - VT (u — ¢)dz,
Q

since the sequence u; is increasing and Vu; — Vu pointwise almost
everywhere. Finally,

/QTi'(u —‘P)dﬂj>= /QTi’(u —¥)xg, dn — /nTi'(u —¢)dy,
where x E; stands for the characteristic function of the set E;.
3.7. REMARK. If 4 is in the dual of W) '?(Q), then
u({z: WE(z,1) = co}) = 0.
Consequently, if p is such that
u({z: W(z,1) = 00}) >0,
or equivalently?, if 4 is not absolutely continuous with respect to p-

capacity, then there does not exist any increasing sequence of nonneg-
ative Radon measures p; € (W, 'P(Q))* with p; — p weakly.

2 Indeed, the set where W{ (z,1)=co is of p-capacity zero by [6]. On the other
hand, if p({z: Wf.p(z,l)=oo})=0, then as in the previous proof, we find an increasing
sequence g; of measures from the dual of W;"(Q) such that pj —p weakly. Then, since
pj are absolutely continuous with respect to p-capacity, the same holds for the measure

u.
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3.8. Corollary. Let p be a nonnegative finite measure in ) that i3
absolutely continuous with respect to p-capacity. Then there is a unique

solution u of (1.5) such that for o € {+,—}
/A(z,Vu)-VT,f(u—cp)da:-{-/ B(u)T{ (u — ¢)dx =/ T (u—)dp
Q Q Q

whenever ¢ € C§°(Q) and k > 0.

PROOF. The uniqueness follows from Corollary 2.6, the existence from
Theorem 3.5, for the set

E = {z: W{ ,(z,1) = oo}

is of p-capacity zero (there is a p-superharmonic function u such that
u = oo on E by [6]; thus cap,(E) = 0 by [4, 10.1]).

Next we sketch the existence proof for signed measures.

PROOF OF THEOREM 1.6. The uniqueness was established in Corollary
2.6.

To prove the existence, let u = u+ — pu~, where g and u~ are
nonnegative measures. Let 0 € {4, —} and as in the proof of Theorem
3.5, write u7 for the restriction of u to the set where Wf,p(x, 1) <j.

Since, for fixed i the measure p;; = puf — p; € (W P(2))", there is a
unique u;,; € Wy () such that B(u;,;) € L'(R) and

B(uj,i) — div A(z, Vuj;) = pji

in Q. By Lemma 3.1 there is v; € W19(P=1)(Q) such that the trunca-
tions Tk(v;) belong to Wy?(Q) and uj; — v; weakly in WHe(P=1)(Q)
as j — co. By the Rellich compactness theorem we have that (a subse-
quence of) uj; converges to v; a.e. and A(z, Vu;j;) = A(z, Vv;) weakly
in LI(€). Then, since uj; increases to v;, we infer that v; is a solution
of

B(v;) — div A(z, Vv;) = p+ — pf

with B(v;) € L'(R), and the entropy equality is proved almost verbatim
as in Theorem 3.5.

Now Theorem 2.5 implies that the sequence v; is decreasing. Re-
peating the analysis above one easily sees that the limit function v =
lim;_, o v; is the desired solution; we leave the details to the reader.
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3.9. REMARK. Suppose that u is a solution of (1.5). When does it
automatically satisfy the entropy condition? The example we gave in
the introduction shows that this is not always the case. Suppose that
the sets

Ej={zeQ: |u(z)| 2 j}

are compact for j large enough (see the estimates in [6] for the pointwise
behavior of u in terms of the potential W7 ). Then Ti(u — ¢) can be

approximated in Wy ?(£2) by C°(£2) functions whose gradients vanish
on E;. Thus it follows that we can plug Tx(u —¢) in as a test function,
and u therefore satisfies the entropy condition.
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