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Goldbach numbers
represented by polynomials
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1. Introduction.

Let N be a large positive real number. It is well known that almost
all even integers in the interval [N, 2N] are Goldbach numbers, i.e. a
sum of two primes. The same result also holds for short intervals of
the form [N, N + H], see Mikawa [4], Perelli-Pintz [7] and Kaczorowski-
Perelli-Pintz [3] for the choice of admissible values of H and the size of
the exceptional set in several problems in this direction.

One may ask if similar results hold for thinner sequences of inte-
gers in [N,2N], of cardinality smaller than the upper bound for the
exceptional set in the above problems. In this paper we deal with the
polynomial case.

Let L = log N, F € Z[z] with deg F = k > 1 and with positive
leading coefficient,

R(n)= ) A(r)A(s)

r+s=n

and

6(n)=H(1—(-p—_}T);)H(1+;1—1).

pin

Our main result is the following

477



478 A. PERELLI

Theorem 1. Let k € N, A,e > 0 and NV/GH+e < H < NV/* Then

> |R(F(n)) — F(n) S(F(n))|* <a,e,r HN* L™,
NI/"SHSNU"-'}-H

For d € N let
er(d) = [{m(mod d): F(m)=0(mod d)}|.
If pr(2) # 0 then, writing
Ap(N,H)= {NY* <n < NY* { H: F(n) =0(mod 2)},
by standard techniques we have that

ar (v, 1) = 2 g 4 o).

Hence from Theorem 1 we easily obtain the following
Corollary 1. Let k € N, A,e > 0 and NV/GK+e < H < NV/* Then
R(F(n)) = F(n) §(F(n)) + Oa,e,r(N L™%),

for alln € [NV/*¥ N/* L H] but Oy, p(HL™4) ezceptions. In particu-
lar, if or(2) # 0, for alln € Ap(N,H) but O p(HL™#) ezceptions,
F(n) is a Goldbach number.

Since k can be chosen arbitrarily large, the above results provide
examples of thin sequences in [N, 2N] of cardinality O(N?®) with § > 0
arbitrarily small, having the property that almost all their elements are
Goldbach numbers.

No attempt is made here to obtain results which are uniform in the
coeficients of F. This problem would be of some interest, expecially in
the case k = 1.

Theorem 1 is obtained by an extension of the techniques used in
[7] and hence we shall refer to [7] at several places in the proof, to avoid
merely repeating the arguments there. We also note that the technique
in [7] of localizing the primes involved can be used in this paper too.
This implies that the second statement of Corollary 1 remains valid for
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the shorter interval with N7/3¢k)+e < g < N1/k Moreover, we can
get stronger results under the assumption of the Generalized Riemann
Hypothesis, by techniques similar to those in [3]. In particular we can
obtain rather good uniformity in the coefficients in the case k = 1.

Theorem 1 deals with a short interval mean square estimate of
the error term for the number of Goldbach representations of F(n).
By similar, but simpler, techniques we can also obtain the asymp-
totic formula for the average of R(F(n)) over shorter intervals. Writing
F(z) = arz® + .-+ 4 ap with ax > 0,

_ er(2) or(p)
C(F) = a 252 6,,1;12 (1+ m)

and

6=2H(1—ﬁ),

p>2

we have

Theorem 2. Let k €N, A,e > 0 and N1/(6K)+e < H < N1/*k=¢_ Then

> R(F(n))=C(FYHN 4+ Oa.r(HNL™4).
Nl/“SnSN”"+H

An easy consequence of Theorem 2 is

Corollary 2. Letk € N, ¢ > 0, NV/(6h+e < g < NV/k=e 4nd

0r(2) # 0. Then there ezists n € [N'/*¥ N/* 4 H]| such that F(n) is a
Goldbach number.

The above remarks concerning uniformity in the coefficients, local-
ization of the prime summands and conditional results also apply, in an
appropriate form, to Theorem 2 and Corollary 2. We finally note that
the N¢ in the above results may be replaced by a suitable power of L.

We wish to thank the referee for having pointed out several inac-
curacies in the paper.
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2. Proof of Theorem 1.

We first note that we may assume that H = NY/Gk+e ¢ 5 0 is
sufficiently small, A > 0 is a sufficiently large and N > Ny(4,¢), a
large constant.

Let P = LB, where B > 0 is a suitable constant which will be
chosen later on in terms of A and F, Q = H* LB/ and Q = 61/2/2.
Denote by M(q, a) and MY(q, a) the Farey arc with centre at a/q of the
Farey dissections of order Q and @ respectively, and let

a LB
93"('(q,a)={a: 'a—; S-J—V—},
- q* q*
m=J J M(ga), M= U 9, 9),
g<P a=1 g<LB/4 a=1

m = [0,1] \ M (mod 1) and ™ =[0,1]\ M(mod 1),

where * means that (a,q) = 1.

Writing
S(a) = Z A(n) e(na)
n<ci N
and
K(F,a) = > e(F(n)a),

Nll"SnSN‘/"-{»H

where ¢; = ¢;(F) > 0 is a suitable constant, we have

> |R(F(n)) — F(n) &(F(n))|*

NYk<n< Nkt H
< > | / S(a)? e(-F(n)a)da—F(n)e(F(n))|2
(1) Ni/*k<n<N k4| O
2
+ Z ’/ S(a)? e(—F(n)a)dal
NUk<ngN1/k4Hg °™

say.
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The quantity ) g, can be estimated by standard methods. Using
the arguments of Vaughan [10, Chapter 3] we obtain that

/‘m.S'(oz)2 e(—F(n)a)da — F(n) 6(F(n))

2

2
@ < N{ 3 ZEZ;Z co(=F(n))| + NL7BH1 4 NL~4/2
>P

where ¢g(m) is the Ramanujan sum. By the well known formula

m) = o(q) M8/(&m)
ea(m) = ¢(0) 0 7(g,m)

we have that

RV O UV B
Z;)‘p(q)z Q( F( ))<<’I>EPLP(Q) (P((q,F(n)))

< Y ed)™ > p(n)

3) d|F(n) r>P/d

d
<Py —
d
il P(d)
F(n)r(F(n))
Po(F(n)) '
where 7 is the divisor function. Hence from (2), (3) and the Theorem
of Nair [6] we get

(4) > < HN?L™?B*e L HN? L[4,
m

where ¢3 = ¢3(F') > 0 is suitable constant.
From Parseval’s identity we have that

Z=/ 5(6)2/ S(a) K(F,a—¢)dadé

(8) m " m

| <<NLsup/ 1S(a)? |K(F, a — £)] dax.
tEmJm

We need the following slight variant of Weyl’s inequality.
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Lemma. Let |a —a/q| < 1/¢* and (a,q) = 1. Then for any D > 0 we
have that

+ =

q —2p+k2=2\ X _(D41)/K
+L )L :
H*

1 1
K(F,a) <F,D H (-q' + FI-

where K = 2F—1,

PROOF. Arguing as in Lemma 2.4 of [10] we get

k-1

6) |K(Fa)¥ < BK-* (Hk—l +CSZ Tk(h)‘Ze(nah)l),
h=1 nel

where 7% is the k-th divisor function, I C [N'/¥, N/¥ 4+ H] is a suitable
interval and ¢3 = ¢3(F") > 0 is a suitable constant. The contribution of
the h with m¢(h) > LP is

C:;}{k-1
(7) < HK—k+1L—D Z Tk(h)2 < HKL—D-}-]CZ._I ,
h=1

by the well known inequality

Z m(n)? < z (log eac)kz"1 ,

n<z

see, e.g., [10, p. 120]. The contribution of the h with 7x(k) < LP is, by
(10, Lemma 2.2],

1 1
® <)o

and the Lemma follows from (6)-(8).

If o — ¢ € W, choosing D = B/8 + k?/2 — 1, from the Lemma we
have that

(9) K(F,a - ¢) < HL-(B-4)/6K)
hence from (5) and (9) we get

(10) Z < HNL sup / 1S(a)]? do+ HN?[~(B—4k*~16K)/(8K) ,
m £EM

mn(&+9m)
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where £ + @denotes the set 91 shifted by £.
Since M is the union of at most LB/? Farey arcs, from (10) we
have that

Z &« HNLB/?+1 gyp _max, / |S(a)|? da
11) m EEm q§£ - —
( (@,9)=1 mn(¢+M(3,3))

+ HN2L—(B—4IC2-—16K)/(8K) .
From the definition of (g, @) we have

(12) max [MM(7,a)| <
g<LP/t
(E)E)=1

Qlf =

Since for a/q # a'/q' and ¢,q' < @ we have

4% dze=g

from (12) and (13) we see that there are at most two punctured arcs

IM'"(q, a), where

1 _4

M(q,a) \ M'(q,a), if ¢<P,

ml’ —
(¢,2) {mm@, if P<g<Q,

with ¢ < Q and (a, ¢) = 1, which intersect any of the £ +90(g,@). Hence

(14) sup max / |S(a)|? dae € max / 1S(a)]? da.
¢em g<LB/t 95Q

(@9)=1 mn(6+T(7,3)) (a,.9)=19"(q,a)
Writing
(15) S(=+n) = M9 1) 1+ R(n,0,a),
q ©(q)
where

T(n)= ) e(nn),

ngc; N
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R(n,q,a) = @ S x(@) (%) W(x,m) + O(L2),

W(x.n) = Y, An)x(n)e(nn) -6 T(n),
n<ci N
5 _{17 if x=xo,
X710, if x#x0,

and 7(x) is the Gauss sum, we have that

1

IS(@)[2 da < —— / IT(m)[? dn
/m"(q,a) ©(2)? Je(o)

(16) 1/(9Q) )
+ / R(n,q, )| dn,
-1/(qQ)

where B
(3)  fasom,
€(g) =

(‘;2;‘%) if LB<¢<Q.

Since T(n) <« min{N, 1/||n||}, it is easy to see that
1
(g

In order to estimate the second integral in the right hand side of
(16) we proceed as in [7, Section 5]. We call a character x good if
L(s, x) has no zeros in the rectangle

_10(B/e)log L <
Y

and bad otherwise. By the zero-free region of the Dirichlet L-functions,
see Prachar [8, Chapter 8], and Siegel’s theorem we have that L(s, x) #
0 in the region

(17) [ 1zt < v,
€(q)

(18) 1 o<1, [t|<N,

c(e")
max{q*’,log*/*(Jt| + 1)} ’

(19) og>1-

where ¢’ > 0is arbitrary. Hence the existence of a bad character implies
that

(20) q >>£” Lll(zel) .
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The density estimate

(21) > N(o,T,x) < (¢T)'* =7/ log™ ¢T,

x(mod g)

where ¢4 > 0 is a suitable constant, see Huxley [2] and Ramachandra
[9], implies that the number of bad characters for any modulus ¢ < Q
is

(22) < L*B/=,

Hence from (22) and the estimate 7(x) < ¢'/? we have that

1/(¢Q) )
/ |R(n,q,a)|” dn
-1/(¢Q)
1/(4Q)

q 50 B/« 2
23 <€ —— 1L max W(x, dn
(23) ¢(q)? x bad J_1/(4Q) W00l

1/(¢4Q) 4
q / 2 L
+ —= Wil dn+ — .
v(q) x‘:o‘:d ~1/(4Q) W) 9Q
Choosing €' = ¢/(200 B), from (23) and the Parseval identity we get

1/(¢Q)

|R(n,q,a)|* dn
-1/(¢Q)

1/(4Q)
<L ¥ / \W(x,n)[?dn + NL=B.
0(9) | Srad-1/0aQ)

(24)

Now we argue as for [7, (21)-(26)], thus getting from (21) and (24)

that
1/(¢Q) )
/ |R(n,9,a)|" dn
-1/(4Q)
(25) < L sup N20’—1 N12(5/6—k£/2)(1—¢7)/5 + NL-—B
B
l/ngsl_l_q_Zzl;ﬂ

< NL7B

where c5 > 0 is a suitable constant.
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Theorem 1 follows now from (1), (4), (11), (14)-(17) and (25),
choosing B = B(A, F) > 0 suitably large.

3. Proof of Theorem 2.

We give only a brief sketch of the proof of Theorem 2, since the
method is a simpler version of the one we have already used in Theorem
1.

Choose P = LB Q = H*¥L~B and let B, M(q,a), S(a) and
K(F,a) be as defined at the beginning of the proof of Theorem 1.
Write :

q
* 1 1
M = M(q,a) and m=|—=,1+—=|\M.
qLSJP E'le v ’ [Q Q]

Then, by the Parseval identity, from the Lemma with D = (B+k?%)/2—-1
we obtain that

> R(F(n))

NUk<ngNUk+H
(26) - / S(a)? K(F,—a)da + O(NL sup |K(F,a)))
m aEm
=/ S(e)? K(F,—a)da + O(HNL~(B-F-2K)/2K)
m
where K = 2k-1,

By (15), the Cauchy-Schwarz inequality and the estimate T(n) <
min{N,1/|n|} for |n| < 1/2 we have that

/“mS(a)2 K(F,—-a)da
ey = Y F(n) Y} #(a)” co(—F(n))

NYkL<n<NVUk4+H g<P W(Q)z
+O(H(Y (P)+(NLY (P))'/) + O(HNL™4),

where

T £1/(Q)
SPH=Y % / ooy RO, @) .
- q

g<P a=1
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Arguing as for (3) and (4) we obtain that

S Fn )Z“(qg eq(~F(n))

1/k 1/k <P
(28) NUkLn<NYE+H g<

= > F(n)&(F(n)) + O(HNL™Btesy,
Nl/"SnSNl/"-{—H

where ¢ = cg(F') > 0 is a suitable constant.
Since H < N'/¥=¢ and G(F(n)) <« L, we have that

(29) > F(n)8(F(n)) = axN > (6)+ O(HNL™*),
NYk<n<NUk+H
where .
Y (&)= > 8(F(n)),
NUk<n<NU/k4+H

hence from (26)-(29) we get

) R(F(n)) = N } (6)
NYkLn<NU/k4H
(30) +O0(HY (P)+ (NL S (P)V/?))

+ O(HNL™4)

provided B > 0 is sufficiently large in terms of A and F.
By the orthogonality of the characters we have that

1/(9Q) 4

L
2 —
(31) Z(PKN i /. oo OO+

Now we proceed as at the end of the proof of Theorem 1. Since in
(29) we have ¢ < LB, we can use the zero-free region (19) and the

density estimate (21) in order to bound the sum over x, and then we
sum trivially over ¢. In this way we obtain that

(32) ' > (P) < NL72471,

provided Q > N1/6+¢ which is satisfied by our choice of H.
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In order to treat ) (&) we define

1, if n=1,

0, if 2|n,

fln) = o pede
2 .

u(n) ”[&(——“2), if 21n,

hence f is multiplicative and for 2|F(n)

S(F(n) =6 ) f(d).

d|F(n)

Choosing ¢7 = ¢7(F') > 0 a suitable constant, we thus obtain that

Se-s Y (3 )

NYkE<n<NU*4 g ~ d|F(n)
(33) 2|F(n) (d,2)=1
=6 > f(d) ( > 1) :
d<ciN NV <n<NY*+H
(d,2)=1 F(n)=0(mod 2d)
It is easy to see that
or(2d
(34) > 128280 o),
N'*<n<NY*+H

F(n)=0 (mod 2d)

see, e.g., Halberstam-Richert [1]. Moreover, it is well known that pF is
multiplicative and satisfies

(35) or(m) € m*®

for every ¢ > 0. This follows from Nagell [5, Theorem 54] if F is
primitive and its discriminant is different from 0, and the general case
is an easy consequence of this special case.

Since

log® d

(36) fld) < ——,
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from (33)-(36) we get

3(6) = er(2) oo Z f(d) er(d) ep(d)
(d 2) 1
(37) +O( E f(d)gp(d)) +O( Z f(d) QF(d))
d<csN d>c7N
_ or(2) or(p) e
o HGE(1+p———(p_2))+0(N).

Theorem 2 follows now from (30), (32) and (37).
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