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1. Introduction.

It is known that degenerate parabolic equation exhibit somehow
different phenomena when we compare them with their elliptic coun-
terpart: see e.g. [CS1], [CS2], [CS3], [GW3], [GW4], [Fe2]. Thus, the
problem of existence and properties of the Green function for degener-
ate parabolic boundary value problems is not completely solved, even
after the contributions of [GN] and [GW4], in the sense that the exis-
tence problem is still open, even if the a priori estimates proved in [GN]
will be crucial in our approach. Roughly speaking, we will consider the
following Dirichlet problem
(Po) { O — 3, ; Gi(aij Oju) = g +divf, in 2 x(0,T],
° u =0, on the parabolic boundary of Q x (0,T],

where a;; = aj; are measurable functions such that

1) @R <Y el 068 < Su@R,

i,J
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almost everywhere in Q x (0, 7). Here  C R" is a bounded domain, the
parabolic boundary of 2 x (0, T] is the set @ x {0} UdN x (0,T), t > 0,
v € (0,1), and w is a weight function belonging to the Muckenhoupt
class A;42/n (see below for precise definitions). We will prove that the
problem (Pg) admits a unique Green function 4(z,t,£,7) belonging to
the natural function space associated with the differential operator in
(Po). Moreover the Green function 4 satisfies the classical properties
concerning the adjoint equations and the representation formula for the
solution of general Cauchy problems.

Our technique is inspired by Aronson’s paper [A], where an anal-
ogous result is proved for non degenerate parabolic equations by ap-
proaching them with a sequence of parabolic equations with smooth
coeflicients. In our case, we approximate our degenerate equation by
means of a sequence of non degenerate problems, for which Aronson’s
results are true and precise a priori estimates in terms of our weight
function have already been proved in [CS1], [CS2], [CS3], [GN]. To this
end, in Section 2, we prove a general approximation theorem for A,
weights (p > 1) by means of weights which are bounded away from 0 and
infinity and whose “Ap-constants” depend only on the “Ap-constant”
of w (see Lemma 2.1). In Section 3, existence and properties of weak
solutions of the Cauchy problem for the operator in (Py) are proved.
The crucial point consists of showing that a weak limit (in a suitable
function space) of a sequence of solutions of approximate problems is
in fact a solution of the original problem (see Theorem 3.14). Finally,
in Section 4, our main existence and properties results for the Green
functions are proved (Theorems 4.1 and 4.2)

1.1. Notations, definitions and basic inequalities.

We indicate by (z,t) = (z1,z2,...,Zn,t) the pointsof R**1, n > 2,
B = B(§,r) the usual Euclidean ball with center in £ and radius r and
by (-,-) the usual inner product in R™. The symbols 3;, ; and V indi-
cate the derivatives 8/0z;, /0t and the gradient (38/0z1,...,0/0z,).
If f=(f1,...,fn) thendivf =" 8;fi. If E is a measurable set in
R", we indicate by |E| its Lebesgue measure and if w : R® - R is a
non negative, locally integrable function we put w(E) = [ w(z)dz.

For any p > 1, L?(E) is the usual Lebesgue space; L?(E) is the
Lebesgue space with respect to the measure w(z)dz. If X is a normed
space and f € X, ||f; X|| indicates the norm of f in X.



EXISTENCE AND PROPERTIES OF THE GREEN FUNCTION 493

We recall that given 1 < p < oo, a locally integrable non negative
function w is called an A, weight if there is a constant ¢ > 0 such that
for all cubes K in R™

(1.2) (-lIl(—l Lw(x)da:) ('lﬂ /;(w(z)_l/(p—l) d:::)p-_1 <c.

The infimum of the set of ¢ > 0 such that (1.2) holds will be called the
A, constant of w. We list now some basic properties of A, weights (see

[GC/RF)).

(1.3) Every A, weight is doubling, i.e. w(2K) < ¢ w(K) for any cube
K in R", with the constant ¢ independent of the cube K. Here 2K

denotes the cube with the same center as K and having twice the side
length of K.

(14) If w € A, with A, constant c, then there is pg = po(n,p,cp),
po < p such that if ¢ € (po,p) then w € A, with A, constant depending
on ¢, ¢, n and p.

If p =1, we say that a locally integrable non negative function w
is a A; weight if there exists a constant ¢ > 0, such that for all cubes
K in R",

1
— < i .
K] /w(x)d:c <c essKmfw

We now recall results proved in [CS2], namely Sobolev inequality and
Sobolev interpolation inequality, that will be used throughout the pa-
per.

Sobolev inequality. Assume w is an A, weight in R™ for p < 2, and
let c, be its A, constant. Assume u : R™ — R is a Lipschitz continuous

function supported in B = B(€,r). Then there ezists ¢ > 0 depending
only on n, p and c, such that

1 1/2k 1 9 1/2
(1.5) (m /1‘3 |u|?* w d:c) < cr(;(—z-ﬁ /B |Vu| wda:) ,
for 1 <k < nf/(n—2/p) (see [CS2, Theorem 2.7]).

Sobolev interpolation inequality 1. Assume w is ¢ A; weight.
Then for any cylinder Q = B(¢,r) x I C R™*! and for any Lipschitz
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continuous function f : Q — R which is compactly supported in B(€,r)
for any fized t, we have

(:(1?) /Q If2* w dz dt)l/h

(1.6) 2
Sc(suplB| /If!zdz+uﬁ /;)IVfIzwda:dt),

where h > 1 and ¢ > 0 depend only on n and c,.

This inequality was proved in [CS2, Lemma 2.8].
Sobolev interpolation inequality 2. Assume w is a A;45/n weight.
Then for any cylinder Q = B(&,r) x I C R™*! and for any Lipschitz

continuous function f : Q — R which is compactly supported in B(&,r)
for any fized t, we have

(IEZ_I / lf;”'wda,-dt)l/h

<c(suplBl/|f|2d$+ Q) L|Vf|2wd$dt),

where h' > 1 and ¢ > 0 depend only on n and cy49/n-

!

(1.7)

This inequality was proved in a more general context in [CS2,
Lemma 2.9].

The next remark points out the choice of k' that will be important
in the future (see Lemmas 3.7 and 3.11).

REMARK 1.8. If we look at the proof of [CS2, Lemma 2.9] we see that
k' is chosen in the following way: let ¢ > n/2 be such that w € A;4,/,
(see property (1.4)). Then inequality (1.5) holds for k = n(g+1)/(n(q+
1) —2q). Put 8 =1/2k, a = 1— B(q+ 1)/g; then inequality (1.7) holds
for ' =kf+a=14+(2/n—-1/q)/2.
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2. Approximation of 4, weights.

The first step is to approximate the equation (Pg) by non-degene-
rate parabolic equations. To this end we have to prove the following
lemma.

Lemma 2.1. Let a, B > 1 be given and let w belong to some A,
class, p > 1, with Ap constant c(w,p) and let a;; = aji be measurable
functions satisfying

n

V(@) 6P < 3 aijle, 06 < - (@) P,

i,j=1

for all £ € R™ and almost every (z,t) € Q x (a,b). Then there ezist
wqp > 0 and measurable functions a:-”jﬂ(z,t) such that

1) ¢1 871 <wep<cra in Q where ¢y, ¢z depend only on w and Q.

i) W < wag £ W2, where w; 13 a fized Ap weight and (Wi, p)
depends only on c(w,p), fori=1,2.

i) wap € Ap with c(wap,p) depending only on c(w,p) uniformly
ona and .

iv) there ezists a closed set Fuopg such that a?jﬂ = a;j i Fop,
Wapg = W in Fog and waeg ~ W) ~ Wy in Fog with equivalence constants
depending on a and B (i.e. cap < wap/Wi < Cap for some positive
constants cog and Cop and for i = 1,2). Moreover, Fog C Fnipg if
a<d, <P and the complement of Uy g>1Fap has zero measure.

V) wag —> w almost everywhere in R™ as a, [ tend to infinity.
vi)
. 1
vwap(z) (€ < D aff (2,8) €6 < ~wa(=) €1,
1,7=1
for any € € R™ and almost every (z,t) € Q X (a,b).

PROOF. Suppose first w € A; . Since we are interested to approximate
in Q, we may assume, without loss of generality, that w € L(R"™).
Then for each @ > 1, by Calderon-Zygmund decomposition, there exists
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a family of non-overlapping cubes {Q}} consisting of those maximal
dyadic cubes over which the average of w is greater than a. If we put

a) U2,Q5 = UF, then

b) a< %/ w(z)dz < 2" a, for any j;
51 Jos

¢) w(z) < aforany z € Ff =(U});

d) |U;:|slj w(z)dz.
[0 Rn

Moreover, if M(w) denotes the usual Hardy-Littlewood maximal
function, then '

{z eR™: M(w)z)>4"a}C UsQ;

(see, for instance, [GC/RF, Chapter 2, Theorem 1.12]).

We explicitly note that, if & < 3, then U;’ C U}. In fact, let =
belong to U}; then there exists a (unique) dyadic cube Qfo containing
z such that b) holds. Let now T be the set of all indices j € N such
that Q5 N Q;’o # . Note that T # O, since otherwise we would have

Q?o C F} and hence, by c),

1
ﬂ<—/ wdr<a<pf,
Q51 Jaz,

a contradiction. Since we are dealing with dyadic cubes, either T = {j; }
and Q'J?o C QF, or Qf c Qfo for any j € Z. In the first case we are done.
Let us show that the second case cannot occur. Indeed, for any j, Qf
is a maximal dyadic cube over which the average w is greater than o;
on the other hand Qfa is a dyadic cube and the average of w over it is
greater than 8 > a. Thus the assertion is completly proved.

Define

=1
wel®)= 3 g /Q ()Y xgp () +0(e) g (2]

We will show that
I) wa € A; and c(wq, 1) depends only on ¢(w, 1).
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IT) wo — w almost everywhere in R as o — oo.

IITI) min{l,w} € A; and ¢(min{1,w},1) depends only on c(w,1);
moreover min{w, 1} < wqe < cw, where ¢ depends only on c¢(w,1).

IV) If Qo is a fixed cube containing 2, then

2"a > wo(z) 2 c= / min{w, 1}(y) dy, Tz €.
Qo

1

|Qol

In order to prove the above statements, first of all we note that, if
v € L' is a weight function such that for any dyadic cube @ we have
v(3Q) < ¢ v(Q), then we can restrict ourselves to test the A; condition
only on dyadic cubes. In fact, denoting by ¢*(v, 1) the “A;-constant for
dyadic cubes”, if f € L} and {C}} is the Calderon-Zygmund decompo-
sition for f, we have

v({z: M(f)(z) >4"}) < Zv(30})

< ey v(CH)

J

< ¢g c*(v,1) Z IC]] i(r.:ltfv

j J

1
<cgc* - infv d
<cpec (v’l)th:L; |f(z)] 161};1) z

<o) [ 1@ d,

and hence v € A;, by [GC/RF, Chapter 4, Theorem 2.1]. We note
explicitly that c¢(v,1) depends only on ¢y and c*(v, 1).
Thus, let us prove first that

w0(3Q) <eo wO(Q) )

for any dyadic cube Q and for any o > 1, where ¢q depends only on n
and c(w, 1).

First, let us suppose that |Q N U} | < |Q|/2. We will prove later,
in III), that woa < max{1,c(w,1)} w = ¢; w; we have:

wa(3Q) < 1 w(3Q)
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=¢3"|Q| =— |3Q| w(:r)d:c

<ee(w,1)3"|Q| gngw

<c1e(w,1)3"|Q] inf w
QnFY

QI + s
= , N3 —=__|QNF f
ere(w,1) |QnF§f||Q "Iqlnnpgw

<2¢ c(w,1)3"|QNFY| inf w
QnFt

< 2¢; c(w, 1)3"/ wq(z)dz
Qnr¢

a

since wo = w on F} and therefore
wa(3Q) < 261 c(w, 1)3" / wa(z)dz = 2¢1 o(w, 1) 3" wal(Q)
Q

and hence, in this case we are done.

Suppose now |Q N U} | > [Q|/2; then either @ C Q% for some jo
(which in turn is unique), or @ C Q for j belonging to a given set J of
indices. By definition of w,, it follows from b) and ¢) that wa(z) < 2"«
almost everywhere; hence, if @ C Q3 we get

/ we(z)dr < [3Q|2" a
3Q
=3"2"[Q|a
<3"2"|Q| oz |/° w(z)dz

= 6"/ wqo(z)de,
Q
since wo = |QF |77 quo w(z)dz on Q. Otherwise
wa(3Q) <3"(Q[2" a

526"/ adz
QnUt

—26"2/ adz

€T

<26" Z/ wa(z)dz

Jj€J
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where in the last inequality we used b) and therefore we have

wa(3Q) < 26 /

Sle )

we(z)dr <2 6"/ we(z)dz
Q

and the assertion is completely proved.
Now we are ready to prove I). Let Q be a fixed dyadic cube, then
one of the three cases can happen

L) @NQ§ =g, for all 5,
I;) @ C Qf, for one and only one j,
Is) QF C Q, for some index j € J.

In case I;), @ C F} and hence wy, = w in Q and we are done. In
case I),

we(@) = 1l gy [ w()de = inf w1,
J j

since wq = |QF|™! fQ;‘ w(z) dz over QF. Finally in case I3)

weo(Q N w(z)dz |QF +w(QNFS
(),eJlQI/ (z)dz Q5| +w(Q N FY)
—Z/ w(z)dz + w(Q N FY)
JjE€J

< w(Q) < ¢(w,1)|Q] inf w(y).
veQ
On the other hand we note that if y € U}, by definition

wa(y) = ﬁ as w(z)dz > a.

Thus, if y € QN UF and QF is any cube contained in Q we have
infw < mfw < o= w(z)dz <2"a < 2" wq(y).
Q. |Q | Qe

In addition, if y € QNF then wq(y) = w(y) > infg w so that infow <
2" infg w, and hence I) is completely proved.
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To prove II), we note that w, = w in FJ and that F increases
as « tends to infinity. Moreover, | N (F})'| = 0.

Finally, to show III) we know that, for any cube Q, either infg w >
1 orinfqw < 1. In the first case

1 ; = L r = min{w
Ia-l-/;mm{w,l}(z)dm_ IQI/;)ld 1< {w(y),1},

for any y € Q, whereas if infqw < 1 then
1/m'{1}()d<1/()d<(1)'nfw
— in{w,1}(z)dz < — | w(z)dzr <c(w,1)1i .
QI Q QI Q Q

Put A = infg w < 1 and assume by contradiction that infg min{w, 1} <
A; then there exists £ C @, |E| > 0 such that min{w,1} < A’ < Ain
E and hence, since A < 1, w < A" in E, which is a contradiction. Thus
we have proved the first part of III). To prove the second part we note
that if z € Fy then wy(z) = w(z) > min{l,w}(z); if z € QF, for some
7, then

1 .
wal(z) = @T/c;;' w(y)dy > a > min{l,w}(z).

Analogously, if z € Q¢ for some j, then

wa(z) < ¢(w,1) glfw < c(w,l)w(z).

Finally, assertion IV) follows straightforwardly from III) by using a)
and c). :

Suppose now w € A, for p > 1. Then by Peter Jones’ factorization
theorem ([GC/RF, Theorem 5.2 and Corollary 5.3, Chapter 4]) there
exist wg, w1 € A; such that w = wyg w%_”. In addition ¢(w;, 1) depends
only on ¢(w,p), i = 0,1. Choose a, > 1 and define

Wap = (wO)cx ((wl )ﬂl/(p—l))l_P .

We need to show that wa,p satisfies properties i)-v). Obviously i)
follows from IV); ii) from III) and [GC/RF, Theorem 5.2, Corollary
5.3] with @; = min{wo,1}w] 7, @y = wo(min{w;,1})'~?; iii) from
I) and [GC/RF, Theorem 5.2, Corollary 5.3]; v) from II); for iv), we
define Fop = Fg N Fgy/(,_1y, where Fy = F} for the weight wo and
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F;”(,_,) = (Fﬂlup-l))"’ for the weight w;. By definition, (we)e = wo
and (w1)g/(-1) = wy on Fug. Hence to prove that wap ~ w; (for
instance) we can replace wap by w. Note now that (with the notation
we used above) min{wg,1} ~ wp in Fy. Obviously min{wg,1} < wy;
moreover, if, for some z € F,, 1 = min{wy, 1}, then wo(z) < a =
a min{wy(z),1}. An analogous argument shows that w; ~ min{w;, 1}
and hence

1—- . _ .
Wapg = (wo)a ((wl)ﬂll(p—l)) P ~ min{wy, 1} ((wl)ﬂl,(,_l))l P =1 .

Finally to prove vi) we define
aif(z,t) = ((w1)grr-)" 7"
co 1 / .
- mar [ @)l (¥)dy xga (2
(;lel e 9O xgy 2)
+ ais(z, ) 0l 7 (2) Xy (2))

where {Q¢'} is the Calderon-Zygmund decomposition for we. Now, by
assumption,

0 (@065 < 3 (1) grom0) 7 (wo)a € = 3 was(2) I

The lower estimate can be carried out in the same way.

REMARK. There is a different approach to the approximation theorem,
see [G].

3. The weak solutions.

In this section we prove existence and properties of the weak solu-
tions of the Cauchy-Dirichlet problems for the operator d; — L. We will
follow [A] and [FJK]. The crucial point is to prove that a weak limit
(in a suitable function space) of a sequence of solutions of approximate
non degenerate problems is in fact a solution of the original problem.
This will be done in Theorem 3.14. We start this section by introducing
some normed spaces in order to be able to define what we mean by a
weak solution for Cauchy-Dirichlet problems for the operator 9; — L.
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Put @ = 2 x (0,T) and let w belong to A, for some p > 1. We
denote by H1?(Q) the closure of Lipschitz functions under the norm

”u||"=//Q |u(z,t)|vw(x)dzdt+//q Vu(z, )| w(z) dz dt

and similarly H;”:(Q) denotes the closure of Lipschitz functions with
compact support in @ under the same norm. We note that, since w €
Ap, Vu in the limit sense belongs to L}, and it coincides with the
distribution gradient of u. Moreover we put

—

HI'?(Q) = {divf : 'w—' € L{‘v}.
The next theorem characterizes the dual space of H1?(Q). We will
assume that  is a smooth regular open subset of R™. This implies in
particular that there exist a > 0, pg > 0 such that for any zo € 01,

p < po we have
|B(z0,0) \ Q| 2 a|B(z,p)| -

We note that the smoothness assumption could be strongly relaxed;
however we hold it to avoid a number of arguments at some points.

Theorem 3.1. The space HLP(Q) is a reflezive Banach space, for
p > 1. Moreover

i) H3'?(Q) = (Hok (Q))*.
ii) Let wy be another A, weight; if u € H}? (Q) with respect to

0,w1

wy and u, |Vu| € L2, then u € H(}”:;(Q) with respect to w (3ee also
[CP/SC)) :

PROOF. It is easy to see that H1?(Q) is reflexive since it is isometrical
to a closed subspace of the reflexive space (LZ(Q))"*!.

Let us now prove ii). First, let z € Q be such that d(z,09) < r
for a given (small) r > 0, and let y = y(z) € 0N be such that d(z,y) =
d(z,00) = d. If v is a Lipschitz function with compact support in @,
it can be continued by zero outside of Q and we have

B(y,d)\ Q C {z € B(y,2d) : v(z,t) =0},
for any t € [0, T], so that
[{z € B(y,2d) : v(z,t) = 0}| > a|B(y,d)| > c|B(y,2d)|.
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Hence, keeping in mind that z € B(y, 2d), by standard arguments (see,
e.g., [KS] or arguing as in [FS, Lemma 4.3]) we obtain for ¢t € [0, T]

[o(z,8)] < cd M(IV0(,1)| X g, payon )@

where M f is the usual Hardy-Littlewood maximal function and 6 >
0 is an absolute constant. On the other hand, if z € B(y,6d) then
d(z,09) < d(z,y) < 8d < 8r, so that

(3.2) lv(z,1)] < er M(|Vo(-, t)l x4, )(2),

where x,(z) is the characteristic function of {z € Q : d(z,00) < s}
for s > 0. On the other hand the function u is (by assumption) the
limit in H:P(Q) (with respect to w;) of a sequence (vi)ren of Lipschitz
continuous functions supported in Q. In particular, vy — u, as £k = oo,
for almost every (z,t) € Q. Moreover (by [Mu])

IM(IVvr — Vulx,,); LE, (2; L7 ([0, T))IIP

= [ (] M0¥on = Fulx Py (e ) a

T
Sc/ /IVvk—Vu"x wydz) dt
0 ( Q I or 1 )

< ellox —u; HUP(Q)|IP — 0,
as k — oco. Hence
M(|Vvk( . 7t) - Vu( ' ,t)l Xg,-)(m) -0 ’

as k — oo for almost every (z,t) € Q. By applying (3.2) to v = vg, we
get

lvi(z, t)] < er (M(IVu(-, 1) Ix,, (@) +M([Vo(-, 1) =Vu(-, )] x,,)(z))
and hence
(3:3) lu(z, )] < er M(|Vu(-,1)| x4, )(z),

for almost everywhere (z,t) € &, = {(z,t) € Q : d(z,00) <r}.

If § > 0, let now o4 : [0,00) — [0,1] be a smooth function such
that o4(t) = 0if 0 < ¢ < 4, 05(t) = 1 if t > 26 and |o}(t)| < 2/6 for any
t > 0. Define

u=uos(d(-,00)) +u(l—as(d(-,00Q))) =us +vs .
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Note that, by [GT, Lemma 14.16], d(-,0Q) is a smooth function in £
if 4 is small enough. Using our previous notations we have (by (3.3))

[Voa(a, )] < 190z )] g5 (=) + 3 a2, )] gy (2)
< V(2,8 Xy (2) + e MUV 1)] Xy05)(2).

Hence

llvs; HyP(Q)IIP < (lu(z, )IP + [Vu(z,1)|P) w(z) dz dt
Las

+c/0T (/M(Wu(-,t)lxm)l’(z)w(m)dz) dt
< C//}:,” (Ju(z,t)? + [Vu(z,t)|?) w(z) dz dt,

by [Mu]. Thus, by the absolute continuity of the integral, we can choose
d > 0 such that

(3.4) llos; HoP (@)1 < €.

Let now 4 be fixed so that (3.4) holds. If r, p > 0 and p,, 9, are usual
mollifiers in R and R™ respectively, we put

Us,r,p = U§ * Pp * Pr ,

where we have continued us(z,-) by zero outside of [0,T]. Obviously,
us,r,p belongs to Cg°(©2 x R) if p is small enough. Moreover

llus — ws,r,p; HoP(Q)|| < |lus — us * ¥,; HyP(Q)||
+ |[us * hp — ug * Y * pr; H:;P(Q)”
=1 +1

Now

T
= / lus — s * s HYP ()P dt.
0

By assumption us, |Vugs| belong to L2(§2) for almost every ¢t € [0, T]
and hence, arguing as in [CP/SC, Proposition 2.5],

llus — us * 1 HYP(Q)]| = 0,
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as p — 0 for almost every ¢ € [0,T]. On the other hand

llws * o5 HyP (I < llus * o3 LE(Q + || [Vus| * 905 LL(Q)]|
S | Mus(-,2); LEEN + 1M ([Vus( -, 1)]); LE (D)l
< cllus(-,t); HE* (@),
by [Mu]. Hence we can apply Lebesgue’s dominate convergence the-
orem, since t — |jug(-,t); HLP(Q)|| belongs to LP([0,T]) and we can
conclude that there exists p > 0 such that I; <e.

Let now p be fixed as above; we will now show that there exists
r > 0 such that I < €. We have

T
= [ ([ s ) = (s ) ol ) (o)
Q 0
’ T
+ / (/ |(Vus x1,) — (Vus *,) * pr|P dt) w(z)dz.
Q “Jo
We now denote by i either us * 9, or Vug * 1,. By assumption

|i(z, )] < M (fus( -, £)] + [Vus(-,2)])(z)

and hence, again by [Mu], @ € L?([0,T]; L2(£)). On the other hand
w(z) # 0 for almost every = € Q since it belongs to A, and hence

i(z, -) € L*([0,T]),

for almost z € 2, so that, by standard results on convolution,

T
/0 li(z, ) — (iz, - ) * pe)(E)[P dt — 0,

as r — 0% for almost everywhere z € 2. We can now argue as above
by using the maximal function in R and hence apply the Lebesgue’s
dominate convergence theorem. Thus we get

L <e, if r is small enough.

Combining these estimates with (3.4) we get

llu = us,r,p; HyP(Q)I < 3e.
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Thus we have proved that u can be approximated in H1'?(Q) by func-
tions in C§°([0,T] x Q). In particular, u belongs to Hé,’f,(Q).
Finally, let us prove i). Denote by T the application
T: HyZ (Q) — (L (Q)"

given by Tu = w'/?'Vu. Note that ||Tu;(L? (Q))"|| is equivalent to

||u;H(}”5’(Q)|| because of the Sobolev inequality (1.5) for compactly
supported functions, so that the range of T is a closed subspace Y
of (L?'(Q))". Thus, if F € (HL?'(Q))* then the application &# —
F(T~!(¥)) is a linear continuous functional in ¥ which can be con-
tinued as an element of ((L*' (Q))")* = (L?(Q))" by Hahn-Banach the-
orem. Thus there exists § = (g1,...,9n) € (LP(Q))" such that for any
u € HL?' (Q) we can write

F(u) = F(T7 (/"' Vu))
= Z//Q dju(e,t) gj(z,t) /P (z) dz dt

_ //Q(vu(z,t),f“(z,t)) dz dt

where f(z,t) = §(z,t)w!/?' (z). Note that

Jf (e otea = [ 5.0 @ Dot ds i

w
= // |g(z,t)|P dz dt < o0,
Q

and the assertion is proved.

REMARK 3.5. If f is such that fo/w € LP(Q), then f; can be iden-
tified with a linear functional on H(},’ﬂ (Q) (with respect to the duality

between D and D') and hence we can write fy = div f for some vector

field f such that |f]/w € L2(Q).

If @ = Q x (0,T] is the parabolic cylinder, we will denote by I its
lateral boundary, i.e. & = 99 x (0,T]. We write

Lu= ; 5%((1;]'58%) .
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Definition 3.6. Let S € H™1%(Q) and uo € L*(Q) be given. We say
that u € Hy*(Q) is a weak solution of the problem

Ou—Lu=-5,

u(z,0) = uo(z),

u(z,t) =0 on .
if

Ju Oy Op
-//;? (a.,(z,t) Bz; Bo; u E) dz dt
~ ~(Seop + [ uola)p(z,0)ds,
Q

for any o € W = {p € Hy*(Q) : 0p/0t € H~12(Q)} with o(T) =0.

For more details about space W see [CS3], where, it is proved, for
instance, that W C C([0,7T], L?(2)). Before we prove the main result
of this section, Theorem 3.14, we need two preliminary results stated
in Lemmas 3.7 and 3.11.

Lemma 3.7. Let w be an Az weight, S =Y,0;fi € H;1*(Q), g/w €
L?(Q) for p > h/(h — 1), where h > 1 is an indez for which inequality
(1.6) holds and let ug € L?(Q). If u € HL?(Q) is a weak solution of
the problem

3¢u—-L1u=g—S inQ,

u(z,0) = uo(x) in (2,

u(z,t) =0 in X,
where Ly = ) 8;(b;;0;) and bj; = b;j are measurable functions satisfy-
ing

(3.8) > bij&iti ~w(z) ¢,
1,7=1
then
sup /u(m,t)2 da:+// |Vu(z,t)|* wdz dt
tefo, 7]/ Q
2
(39 < (lluos @I + | £ 2277+ 0(Q)|

2| L@,
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where the constant ¢ depends only on c(w,2), the equivalence constant

in (3.8), T and Q.

PROOF. For any 7 € (0,T), we put Q, = Q x(0,7); arguing as in [CS3,
proof of T! ~orem 2.4], we get

// Zb,,ﬁu@udmdt+ ]u(z;,'r)zdz

T'J—

=—/u(10 da:+// gud:rdt+// S Bou fde dt.

'r,—-

By standard arguments, keeping in mind (3.8), we can reduce ourselves
to estimate the last two terms above by the right hand side of (3.9). For
the last term it is quite easy. On the other hand, if we put s = 2p/(p+1),
for any € > 0 we get

//Q IQUId:cdt=//Q %w‘/’lulw‘/"dzdt
§ /:/_ I—g—lswdz:dt i /:lulalwdzdt)l/
f // |g| dzdt)Z/
% // !u]’wdzdt

Since s' < 2h, by (1.6) we have (let r = diameter of 2)

s 2/s
lgu|dzdt < 1 ( M wd:rdt)
2. 2¢? Q

2
+——wQ2/’ sup /u2dx
5 @ (@) [oT]IQI |ul

+r2w(Q) // |Vl wde dt) ,
Q
ard the assertion follows with a convenient choice of .

In order to establish the notation for the proof of Theorem 3.11 we
will state, in a simpler context, a lemma proved in [CS2].
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Lemma 3.10 (Chiarenza and Serapioni). Assume w is a Ay 13/, weight.
Then for any (§,7) € Q there is R = R(£) > 0 and a function h :
% [0,T) — R*, such that

i) h(E, -) is continuous, strictly increasing and h(£,0) = 0. (We
will also denote h(,t) by he(t)),

ii) the set Q.(€,7) = {(z,t) e R**': z € B((,r), T —h(é,r) <
t < 7} is contained in Q, for r < R(€), (we will call Q.(§,7) a “stan-
dard cylinder”),

iii) w(z)dz dt ~r"*?
Q- (&)

iv) there 1s a constant o9 > 1 such that h(&;2r) < oo h(€,7), where
oo depends on c(w,1+2/n) and n, but it is independent of €, T and r.

v) There is o € (0,1) such that h(¢;0r) < h(€,r)/4. Here o
depends only on c(w,1+2/n) and n.

It is also useful to define the following sets:

_h(g)
4

Qf(E,T)={($,t)= |$—£I<£,T <t<7'},

Q&) ={(et): le—€l <%, m— LhEr) <t<7-Zh(EN].

Theorem 3.11 (Chiarenza and Serapioni). Assume (1.1) holds with
w € Ay. For any S € H™12(Q) there ezists a unigue u = G(S) €
HY*(Q) which is a weak solution of the problem

{ ?(Z,I))L: “ (_acf

Moreover, if p > 21/(1 — 1), where | is an indez for which (1.5) and
(1.6) hold, S =div f € H~1?(Q), then

(3.12) “ess sup |u(z,t)| < C “i ,LZ(Q)“ + ess sup |uo(z)|,
Q w Q2

where C depends only on Q, T, c¢(w,2) and p. Finally, if w € Ay 1o/n
and | is chosen such that (1.7) also holds then the solution u is Holder
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continuous uniformly on the compact subsets of Q and, if Q.(Z,t) C
QR(E,{) cc Q; then

(3.13) Qo5 ¥ < Cr (%)a(qg?;nu + “g,Lﬂ(Q)”) ;

for some a € (0,1) and Cgr > 0 depending only on n, v, c(w,1+ 2/n)
and p.

PROOF. The existence and (3.12) are proved explicitly in [CS3, Theo-
rems 2.3 and 2.4]. The last assertion is stated in [CS2, Theorem 3.7],
but we prefer to give an explicit proof which stresses the dependence of
the constants. Let Q,(Z,f) CC Q be a standard cylinder; by Lemma
3.10.v), there exists a constant o € (0,1) such that Q,.(z,f) C Q}(z,1)-
Denote now by v € Hy'*(Q,(z,%)) the weak solution of (8; —L)v = S in
Q-(z,%) and v = 0 on the parabolic boundary of the standard cylinder
and put u = v + 7, so that Lo = 0. Hence, by [CS2, Theorems 3.3 and
3.6],

osc_u< osc_ 9+2 sup [|v]

Qr(i;t-) Q,-(f,i) Q,.(i,t-)
<(1—¢) osc ©+2 sup |v
) Qr/a(iyt—) Q,.(z':,ﬂ I
<(1—¢€¢) osc _u+4 sup |v
) Q"/"'(i’t_) Qr/ﬂ(iyf)
<(l—¢€¢) osc _u
Qr/v(ivi)

\ 1/2
+e [(IQ_r(}m . |v]? dz dt)

1 ) 1/2
+ (w—_(Qr(:i',t_)) b [v|* wdz dt)

1 Fil% 1r
(o Ly () 0tea) ]

where ¢ depends only on ¢(w,1 4+ 2/n,v,n). Let us consider now the
terms between curly brakets. To estimate the last term, note that, if
r < R then

(Qu(z, )P = Pl

by Lemma 3.10.iii), with equivalence constants depending only on n, v
and ¢(w,1+42/n). But p > 21/(l—1) > 2h'/(h' — 1) (where h' has been
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defined in Remark 1.8) and hence 1 — (n +2)/p > 0, so that it can be
estimated by (r/R)? (for some positive 8) times the average for r = R.
Consider now the first term: it is estimated by

. / 2 o \1/2
=T sup v(z, )| dz
(!Br(1)| {t:i—h,(i,t')<z<i} 13r(5)I =) )
1 // Ifl 2 12
<c _ —) wdzdt
IBr(w)I Q- (2, D )

cr ™2y z,0)- 2/?)/2 lfl w da dt 1/p
(Qu(z,D) / QM )

< epmirrasmmennn( [ (U g,
Qr(2,D) ‘*’

where the first inequality follows from (3.9) and, if we look to the proof
of Lemma 3.7, we see that the dependence of the constant c on the hight
of @ appears only to bound the term in g that in the present case is zero.
By remark 1.8, it is easy to see that we can choose —n+(1—-2/p)(n+2) >
0 and therefore we can repeat our previous arguments. Finally, by
Sobolev inequality (1.5) and by the a priori estimate (3.9), the second
term can be estimated by

1 1/2
r| —— Uv|?wdz dt
(W(Qr(m»ﬂ) Qr(f,t‘)l | )

r (1Y dr )"
"C(L«J(_Q(f_ﬂ)//,(m ) wisd)

er="2 (0(5.7))(1- 2/p)/2 |f|
@ (ff

Note that all constants depend only on n, and ¢(w,1 + 2/n). Thus we
have proved that

osc. u<(l—€) osc_u
I'(i)t Qrﬂ(i)t

e, 1 it 1/p
L - = dz dt
+C(R) (w(QR(a‘:,ﬂ) Or(zD) ( w) wdz )
and the assertion follows.

Theorem 3.14. Assume w € Ay, (1.1) holds, S =Y, 8:fi e H;*(Q),
g/w € L?, for p > 21/(1—1) and uo € L*(), where | > 1 is an indez for
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which inequalities (1.5) and (1.6) hold. Then the solution u € HL2(Q)
of the problem

(i —Lu=g+S in Q,
(P) u(z,0) = ug in
u(z,t) =0 on X,

is the weak limit in H;‘lz(Q) of a sequence of solutions um € HL?(Q)
of the problems

(Ot = Lm)um =gm+ Sm  in Q,
(Pm) um(z,0) = ug n Q,

um(z,t) =0 on X,
where wm = Wmm and &y are as in Lemma 2.1, L, = 3, 0i(a7}™0;),
Im = g(w/wm)(l—p)/p; Sm = D;0ifmi, fmi = f.‘(w/wm)—l/z. More-

over, if w € Aj4q/n and | is chosen such that (1.7) also holds then u is
the uniform limit of (um)meN in any compact subset of Q.

PROOF. Obviously, gm/wm € L?, (Q) and S, € H;!?(Q). Since um
is a solution of (Pp,), by (3.9),

sup /‘um(:r,t)2 da:+// [Vim(z,t)|? wn dz dt
tefo,T] JQ Q

<o (lus @I + |2 2200 @) + g |22, @)),

where the constant ¢ depends only on ¢(w,2), (since ¢(wm,2) depends
only on ¢(w,2)), v, T and Q.
Note that :

|22 @) = |25 220)

|22 2200 40(Q)| < @m(@) D127 | 2227, (@)|

< @@ T | €120,
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where @y was defined in Lemma 2.1.ii). Thus

sup / um(z,1)? dz + || |Vm|; szm QI
tefo,11 Ja

(3.15) < ¢ (Jluos @I + @@ T | 2207

oSl -a
j=1

In particular, since w, > @; (see Lemma 2.1.ii)), we have

sup |lum(-,1); L2(Q)I* + || [Vuml; L3, (Q)II* < C1
tefo,T]

By (1:5), in view of the weak compactness of bounded sets in Hy’2 (Q)

0,@1
there exists a subsequence of (um)men, again denoted by (Um)men,
which converges weakly to an element u in H&,’EI(Q).

First we note that u € Héf,(Q). In fact, fix Fx = Fy i (see Lemma
2.1). We know that Qu.m/dzi — Ou/dz; weakly in L% (Q) and that if
@ € L2(Q) then ¢ Xp, € L?;,l (since on Fj, w ~ @;). Thus,

Oup, . 0 -
//—-auz—ixn gowld:cdt——)//a—:ixncpwldmdt,

for any ¢ € L2(Q) and hence (Xg, Ot /0zi)men converges weakly to
a function in L2(Q), again since w ~ @&; on F;. Therefore

1V; (R < lim sup [[Vum; ()|

and since for m > k, w = w,, over F}, it follows that

IVu; LE(Fe)|| < lim sup [|[Vum; L, (Fi)l| < C1
m—00

for any k£ € N. By monotone convergence theorem
IVu; L2(Q)) < C1 -

On the other hand the same argument shows that v € L2(Q) and hence
u belongs to Héf,( Q) by Theorem 3.1.
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Next we have to show that u is a weak solution to the problem (P).
Suppose ¢ € W, ¢(T) = 0. By a density argument (see [CS3, proof

of Theorem 2.3]) we can suppose ¢ € C®(Q) and ¢(-,t) compactly
supported in Q for any t. We have

// ((AVu, V) —up,) dzdt = hm // (AVu,Ve) —up,) dzdt.
Q Fy

It is easy to see that the linear functional
u — // ((AVu, Vo) —up) X, (z) dz dt

is continuous in Hy'? (Q) (since &; ~ w in Fi by Lemma 2.1.iv). Since

0 w1
Um — u weakly in ng (Q), A™ = Ain Fy forany m > k and u,, is a
solution of (Py,), it follows that

/ ((AVu,Vga)-—ugat) dz dt
F,
* T
= lim ((A™ Vum, Vo) — um ps) dz dt

m—00 0 Fy

=n3§nw(//q ((A™ Vi, V) — tm 01) dz dt
T
- / ((A™ Vum, Vo) — um 1) dz dt)
o JF
= lim (/uo(x)(,a(z,O)dz
Q

+ JE;: / /Q fmj(z,t) a%(x,t)dx dt
—//Qym(z?t)w(z,t)dxdt

—/OT/; (A™ Vum, V) = im 1) di i)

Note now that both integrals over ) converge as m — oo. Indeed
fmj(z,t) = f(z,t) almost everywhere by Lemma 2.1.v) and

(z &»x o dt = fi(z,t) ‘999 1/21: -
J[ fritet) gyt = [ TS S @t aeae,
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where fj(z,t)w™1/2(z) € L*(Qr) (by hypothesis) and
0
=2 (a,)| wH?(2) < ¢, @}/* € X(Q)
J

(by Lemma 2.1.i1)), since @3 € Az. Thus, the conclusion follows by
Lebesgue dominated convergence theorem. Analogously, to prove the
corresponding assertion for the integral containing ¢g.,, we note that
9(z,t)w!/P~1(z) € LP(Q) and wiy /7 < ey MP e LP(Q), 1/p+1/p =
1, since &, € A;. By difference, also the integrals over Fj converge as
m — oo to I(k) € R, so that

/OT _/;,k ((AVu, V) ‘Utpt) dz dt = /ﬂ uo(z) (z, 0) dz
+g//q fj(-’c,t)gl%(m,t)dzdt

_ //Q o(z,8) (e, t) dz dt + I(k) .

But, by Cauchy-Schwarz inequality, Lemma 2.1.vi) and (3.15), we have
T
’ / / ((Am Vum, Vo) —um (pt) dz dt’
o Jr

1/2
< c¢\/T (%(// IVt |? wm dzdt) wm(QﬁF,'c)l/2
Q

+ (-/:/;u?nwm dzdt)l/z(/p‘:nn wLm da:)llz)

< e(p, T, v, data) (wm(@ N F) + (/ 1 dm)llz) .

FlnQ Wm

Note now that wm < &; and 1/wy,, < 1/@; and that both &, and 1/&,
belong to Aw. Hence (considering, for instance, the first case) there
exists § > 0 such that, if Qo is a cube containing £, then ([GC/RF,
Theorem 2.9, Chapter IV])

Fi|\¢

n(@NFY) <5220 F) < 2(Qu) (12D’

1Qol
which is independent of m and tends to zero as k — oo, by Lemma
2.1.iv). Thus, taking the limit as £ — oo, we conclude that u is a
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weak solution (which in turn is unique: and hence it is the limit of the
original sequence, since our argument can be carried out in the same
way starting from any subsequence of the original one).

Now, by (3.13) (uniform Hélder continuity of the solutions), keep-
ing in mind that the norms of ¢,, and S,, are uniformly bounded with
respect to m (as we showed at the beginning of the present proof), we
obtain that the sequence (um)men is locally equicontinuous. In addi-
tion, it is locally uniformly bounded, since we can combine the local
boundedness of the solutions ([CS2, Theorem 3.3]) with the a priori
estimate arguing as in the proof of Holder continuity (i.e. noting that
the L2 norm of u can be estimated by the analogous norm of its gra-
dient, by Sobolev inequality (1.5)). Hence, we can apply Arzela-Ascoli
theorem and conclude that u,, converges to u uniformly on compact
subsets (note that all converging subsequences converge to u).

4. The Green function.

In this section we will prove that there exists a weak Green func-
tion y(z,¢; €, 7) for Ou — Lu = 0, where Lu = }; . 0i(ai;O0;u) satisfies
condition ( 1.1), for any bounded cylinder @ = Q X (0,T). In particu-
lar, v belongs to H, P’ P (@) and it gives a representation formula for the
solutions of the Cauchy—Dlrlchlet problem. We will also derive some ad-
ditional properties of 4 which are analogous to the corresponding ones
in the non-degenerate problems (see [A, Theorem 9]). The derivation
is based on the fact that v can be approximated, in convenient spaces,
by Green functions in the sense of Aronson (see [A]). In the sequel, we
will use the following notations: if 7 is an arbitrary point in [0,T) we
set @, = Q x (7,T], while if ¢ is an arbitrary point in (0,T] we set
Qt =0 x [0 t)

Next, we prove the existence of a Green function for 9; — L in @,
by following the abstract argument given by Aronson.

Theorem 4.1. Suppose w € A 49/n and p > 21/(1 — 1), where | is an
indez for which (1.5), (1.6) and (1.7) hold. Then there ezists a function
v =(=,t;¢,7) such that:

i) y(z,t; -, ) € HyE (Q) for (z,t) € Q and

(.t -, - S HyD Q)N < C,
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where C depends only on Q, T, v, c¢(w,2) and p;
i1) If u is a solution of the problem

B—Lu=fo—divf inQ,
u=0 on the parabolic boundary of Q,

for some fo, fsuch that fo/w, Iﬂ/w € LP(Q), then
1) = Ok; 456, 7) filé, d¢d
u(z,?) ;//Q (2,85 €, 7) (€, 7) dE dr

+ [[ Aot foem) dear
Q
We will say that v is the weak Green function for 8, — L.

PROOF. Let f = (fi,..., fa) be such that |f]/w € L? for p > 21/(1-1).
By Theorem 3.11, if (z,t) € Q and u is a solution of the problem stated
there with uo = 0 and S = div f, then the linear functional

fr-——) u(z,1)

is well defined and is continuous on H;1"?(Q) by (3.13). By Theorem
3.1, there exists a function 7(z,t¢; -, -) in Hg’p (Q) such that

u(z,t) = / /Q j;asﬂ(m,t;fﬁ)fj(f,‘f)dﬁ .

and ,
Iv(z,t; -, - He? (Q)]| £ C,

where C is the constant of (3.12) and hence it depends only on , T,
v, ¢(w,2) and p. Then the assertion follows from the Remark 3.5.

Theorem 4.2. Suppose w € Ay43/n, condition (1.1) holds, uo € L%(Q)
and G such that G/w € L2(Q), p > 21/(1 — 1), where I is an indez for
which (1.5) and (1.6) hold. Then the weak Green function y(z,t;€,7)
of Oy — Lu in @Q has the following properties:

1) (z,t¢,7) = F(€,7m;2,t) in Q X Q for t > T, where ¥ 13 the
weak Green function for the adjoint problem in Q,
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ii) For fized (£,7) € Qr let Z denote an arbitrary open domain
such that Z C Q\{¢}. Then the function (-, -;&,7) is a weak solution
of 0;—Lu = 0 in Z x(7,T) with initial value zero ont = 7 and vanishing
on the lateral boundary. For fized (z,t) € Qo let Z denote an arbitrary
open domain such that Z C Q\{z}. Then the function y(z,t; -, ) is a
weak solution of the adjoint problem in Z x (0,t) with initial value zero
on 7 =t and vanishing on the lateral boundary.

ili) The weak solution of the boundary value problem

(0t — L)u = G(z,t) 1nQ,
(P) u(z,0) = uo(z) for z in 2,
u(z,t) =0 for (z,t) € L,

13 given by
u(z,t) = /Q (2,1 €,0) uo(€) d€ + / /Q (2, t;€,7) G(€,7) d dr .

iv) The weak solution of the adjoint boundary value problem
(=8 — L)v = G(z,t) inQ,

(P) v(€,T) = uo(§) for & in 2,
v(€,t) =0 for (z,t) € X,

18 given by

v({,‘r):/s;'y(:t,T;f,T)uo(x)d:r+/L7(a:,t;§,7‘)G(:v,t)da:dt.

PROOF. We denote by 7v,, the Green function of 0; — L™ (with the
notations of Theorem 3.14). First, we assert that

(43) 7m($’t; i) ')wrln/pl — 7($,t; Yy ')wl/P'
and
(44) 7m( Ty T ;é’T)wzn/Pl — ‘7(677‘; " )wl/Pl

weakly in L”'(Q), for any p’ whose Holder conjugate satisfies p > 21/(1—
1) (i.e, p' < 21/(1 + 1)). First, we prove (4.3). Fix fo € L?(Q) and
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put go = w'/?' f,, so that go/w € LP(Q). Then, as in Theorem 3.14,
consider the solution u,, of the Dirichlet problem

(Bt = L™)um = (g0)m inQ,
um =0 on the parabolic boundary of Q.

By Theorem 3.14, we know that {¢, }meN converges uniformly on com-
pact subsets of Q) to the solution u of the problem

(at —L)U = go in Qa
u =0 on the parabolic boundary of Q.

So, by definition of the Green function, Theorem 4.1, and [A, Theo-
rem 9],

//Q .’Ym(:v,t;f, 7)(g90)m(§,7)dEdT — //Q v(z,t;€,7) go (€, 7) dE dr .

Recalling that (go)m = go(wm/w)/?" = fo wi!?’ we are done. In addi-
tion, (4.4) follows by applying the same argument to the adjoint equa-
tion.
Now, let (£,7) € Qr be fixed and let § > 0 be such that 7 <

T — 6§ < T; from [A, Theorem 9.v)], we know that ym(-, -;¢,7) is a
solution of the Dirichlet problem

(6t —=L™)v =0 in Qr4s,

v(z,7+6) =ym(z, 7+ 6;¢,7) in Q,

v=0 on IAx]T +4,T].

By Lemma 3.7 we have
sup |1 ¥m (- €, 7); LI + IVarym(-, -5 €7); L2, (Qraa)l®
r+6<t<T
<c ||7m( T+ 6; EvT); Lz(Q)HZ ’

where ¢ does not depend on m. Now, by [GN] we have (note that
Green function vy, satisfies the assumptions of [GN] and, in addition,
a fundamental solution I',, exists by [A], since L™ is an usual elliptic
operator)

1 1
7m(1',7' +5;€,T) < Fm(-’l!,T +5;f,7’) <c ((hz);l(a) + (hi);il(é)) ’
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where the constant ¢ is independent of m and the function (h;), cor-
responds to h; at the step m. By [CS1, Proposition 1.1] there exist
positive numbers Iy and l; (both depending only on ¢(w,1+ 2/n)) and
there are two constants ¢; and c; (depending only on ¢(w, 1+ 2/n), I,
[, and Q) such that

ot < (hzo)m(r) < 2 rlz

In particular,

(45) St < ((heo)m) N (E) S 1 1

where ¢} and ¢, depend only on ¢(w, 1+ 2/n) and therefore
Ym(z, T +8;¢,7) < C6Mh

and
¥ (-7 + 86, 7); LHQ)|? < C 67",

Thus we have

sup |lym (-, 556 7); Q) + IVavm (-, -36,7); L2, (Qr+8)l?
r+6<t<T

<Ccé§ U

and since wy, > &),

sup  |[Ym (.t 6,7 LA + | Vaym( -, -3 & 7); L (Qr44)II?
rH8<t<T

<CsHh,

Hence (keeping in mind the Sobolev inequality for compact support
functions in space variables), there exists a subsequence of Y, ( -, -;€,7)
which converges weakly to a limit function 4* in H;y’gl(Q,..H;). Next we
show that v* is (¢, 7, -, - ). By (4.4),

7m('a ';6;7-)""311/})' _)'?(E’T; “y .)wl/p'

weakly in LP‘(QH.,s), p' < 2l/(1+1). On the other hand, wm > @
(by Lemma 2.1.iv)) and hence, for any g € LP(Q45), the functions
(@1 /wm)!/?' g are uniformly bounded by a constant times g for any m
and converge to (@ /w)!/?'g as m tends to infinity by Lemma 2.1.v).
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Then, by Lebesgue Theorem, (@ /wm ) /?’g converges to (@; /w)!/?'g in
L?(Qr4+5) and hence

// 7m(z,t,E,r)L:,}/P’ (z) g(z,t) dz dt
Qr+6
= // Ym(z,t, €, T) WP (2) (-w—‘)llp (z) 9(z,t) dz dt
Qris Wm
tends to
' 5 1/ !
//(;H-& ’?(z,t,f,T)wl/p (17) (%) g (.’l?)g(z,t) dz dt

as m — 0o, t.e.

7m('a ';E:T)‘D;/p —_>:7(€7T; ',')‘Jll/P’

weakly in L?' (Qr45), p' < 21/(1 + 1). Or equivalently
Ym( -y 36 m) — A& 15 -, )
weakly in L2 (Q.+5), p' < 21/(1+1). But
Ym(=5 5& 1) — (&5 ,0)

weakly in L2 (Qr4s) and therefore 4 = v* almost everywhere. The
same argument can be carried out starting from any subsequence
{¥m. }ken and hence vn(-, -;&,7) converges weakly in Hé,'g,l to
(€, 7; -, -). As in the proof of Theorem 3.14, ¥(¢,7; -, ) is a weak
solution of Lu = 0 for (z,t) € Q,. If we hold (z,t) € Qo fixed and
apply the same argument to ., considered as function of (£, 7), we find
that y(z,t;-, - ) is a weak solution of Lv = 0 for ({,7) € Q:.

On the other hand, for fixed (£,7) € Qr it follows from [GN,
(1.3)], (4.5) and (3.13) that the sequence {vm(:, -;&,7)}men is uni-
formly bounded and equicontinuous for (z,t) in any compact subset of
@-. Thus,

7m('7 ';E»T) —)?(fa‘r; Ty )

uniformly in any compact subset of Q. Similarly, for each (z,t) € Qo ,

7m(zat; s ) _)7($1t; ) ')
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uniformly in any compact subset of Q;. Thus, in particular, i) holds.
From i) and what we proved before ii) also holds.

According to Theorem 3.14, if u is a solution of the problem (P)
then for (z,t) € Q we have um(z,t) = u(z,t) where u,, is the solution
of the approximate problem (P,). Here we are using the notation
introduced in Theorem 3.14. If v,, is the Green function associated
with problem (P,,) then we have

Um(z, 1) = /n (2,1 €, 0) o (€) dE + / /Q (@285 6,7) G (€,7) dE T

Now let I';, denotes the fundamental solution associated with problem
(Pm). Then

Ym(z,t;€,7) < Tm(z, €, 7),
and by [GN, (1.3)] it follows that

1 1
m(z,t,€,0) < C ([(hz);ll(t)]" + [(hg);zl(t)]")

where C depends only on v, n, c(w, 141/2n). By (4.5) {vm(z,t;*,0)} men
is uniformly bounded in L?(Q) and therefore

/7m(zst;£:0)u0(£)d£_—)‘/7($7t;§70)u0(£)d€a
Q Q

as m tends to infinity. Moreover, {ym(z,t; -, -)w,ln/p’ }men is uniformly
bounded in L? (Q) for p' < 21/(1+ 1) (by (4.3)). Since

//Q V(2,8 €,7) Gm (€, 7) dE dr

= [[ (e e ntls St dgar,
Q w
and (G/w)w!/? € L? we have that
| / f (@, 856,7) G (€, 7) dE dr —> f / Az, 6,7) G(E, 7) dE dr,
Q Q

as m tends to infinity. This proves viii), and the proof of iv) is similar.

REMARK 4.6, If w = 1 then the lower bound of the set of p such
that Theorem 3.14 and Theorem 4.2 hold does not coincide with the
analogous bound established in [A, Theorem 9 and Theorem 1], since
we have followed the results proved in [CS1], [CS2] and [CS3]. On the
other hand, in the degenerate case, the optimal value of [ and hence of
p is rather implicit, since it depends on the lower bound of the set of ¢
such that w € A;4, (see for instance [W] and [F/SC]).
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