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Abstract� In this paper a quite complete picture is given of the ab�
solute continuity on the boundary of a quasiconformal map B � � D�
where B � is the unit ��ball and D is a Jordan domain in R� with bound�
ary ��recti�able in the sense of geometric measure theory� Moreover�
examples are constructed� for each n � �� showing that quasiconformal
maps from the unit n�ball onto Jordan domains with boundary �n�	
�
recti�able need not have absolutely continuous boundary values�

�� Introduction�

Suppose that f is a quasiconformal homeomorphism of the open
unit ball B n of Rn onto a bounded domain D in Rn � Then f extends
homeomorphically to the boundary �B n if and only if D is bounded
by a topological �n � 	
�sphere �V	� p� �	
� Should such an extension
exist� we denote it by f as well� and call D a Jordan domain or a
quasiconformal Jordan ball � Suppose now that the boundary of D has
�nite Hausdor� Hn���measure� We say that f is absolutely continu�

ous on the boundary if f carries sets of Hn���measure zero on �B n

to sets of Hn���measure zero on �D� If n � � and f is conformal�

���
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the boundary correspondence is absolutely continuous according to the
classical theorem of F� and M� Riesz �R
� but if f is merely quasiconfor�
mal� it is well known� and �rst observed by Beurling and Ahlfors �BA
�
that the boundary correspondence need not be absolutely continuous
even when f is a self�homeomorphism of a disk� The situation is quite
di�erent in higher dimensions� For instance� if f is a quasiconformal
self�homeomorphism of B n � the boundary map is a quasiconformal map
of Sn�� � �B n onto itself� and hence preserves sets of �n� 	
�measure
zero� provided n� 	 � �� It is therefore natural to ask what conditions
on �D are needed in order to have the absolute continuity of the bound�
ary map f � �B n � �D when n � �� For instance� is it su�cient that
�D be of �nite Hn���measure� In the present paper� which is a sequel
to �H
� a rather complete solution to this problem will be provided in
dimension n � � in the case when the boundary of D is ��recti�able
in the sense of geometric measure theory� It will also be shown that a
direct analog of the F� and M� Riesz theorem is false for quasiconformal
mappings in all dimensions� For the record� we shall only be dealing
with the absolute continuity of the map f � �B n � �D� It still remains
widely open under what conditions the map f�� � �D � �B n is abso�
lutely continuous� Further open problems are listed in the end of the
paper in Section ��

Before proceeding� let us review the prior results in this area� So
assume that f is a quasiconformal mapping of B n onto a Jordan do�
main D whose boundary has �nite Hn���measure� and assume that
n � �� Gehring showed in �G�
 that the boundary correspondence
f � �B n � �D is absolutely continuous if f has a quasiconformal ex�
tension to a neighborhood of �B n � V�ais�al�a �V�
 arrived at the same
positive conclusion under the less restrictive assumption that f be qua�
sisymmetric on B

n
� �Recall that quasisymmetry is a global condition

as opposed to quasiconformality which is local� see ���	�
 below for the
de�nition of quasisymmetry�
 In �H
 it was shown that the answer is
likewise a�rmative if Hn���almost every point on �D is a �two sided
cone point�� and if n �� �� To make this supposition more precise� we
next �x some notation� Let L be a line in Rn through a point a and let
� � s � 	� Set

C�a� L� s
 � fx � Rn � dist�x� L
 � s ja� xjg �

The point a divides the line L into two pieces� which we shall call L�

and L�� The orientation of the line plays no role in our arguments� so
this choice is arbitrary� We write

C�a� L�� s
 � fx � Rn � dist�x� L�
 � s ja� xjg �
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and similarly for C�a� L�� s
� Thus C�a� L� s
 is the union of the two
in�nite open cones C�a� L�� s
 and C�a� L�� s
 with s determining the
angle opening� We also use the notation

C�a� r� L� s
 � C�a� L� s
� B�a� r
 �

C�a� r� L�� s
 � C�a� L�� s
 �B�a� r
 �

Here and throughout B�z� t
 will denote the open n�ball which is cen�
tered at z and has radius t � ��

We say that a set E � R
n has a double cone at a point a � E�

or that a is a double cone point of E� if there are L� s� and r� possibly
depending on a� such that E � C�a� r� L� s
 � ��

The following theorem was proved in �H
�

Theorem ���� Suppose that n � �� �� �� � � � and that f is a quasicon�

formal mapping of B n onto a Jordan domain D� Let CD denote the

set of double cone points of �D� Then for any set A � CD we have

that Hn���A
 � � if and only if Hn���f
���A

 � �� In particular� if

Hn���almost every point of �D is a double cone point of �D� then the

boundary map f � �B n � �D is absolutely continuous�

It follows from Theorem 	�	 in particular that if �D admits a tan�
gent plane at Hn�� almost every point� then the boundary correspon�
dence of f is absolutely continuous� If f is quasisymmetric� it follows
from the results in �V�
 that �D admits tangents almost everywhere� if
it has �nite Hn�� measure� Hence Theorem 	�	 contains the aforemen�
tioned results of Gehring and V�ais�al�a in dimensions n �� �� The proof
in �H
 works in all dimensions n � � for mappings that are bi�Lipschitz
in the quasihyperbolic metric� by the aid of the Sullivan�Tukia�V�ais�al�a
approximation theorem the general quasiconformal case can be reduced
to this case in dimensions di�erent from four� Unfortunately� I have not
been able to dispense with this reduction� and consequently� there is no
proof of Theorem 	�	 in dimension n � � �see Added in Proof at the
end of the paper
�

Geometric measure theory has taught us that the right concept
of recti�ability is expressed in terms of �approximate tangents�� If
E � R

n � we say that an �n � 	
�plane V in R
n is an approximate

tangent plane for E at a if a is a point of Hn�� density of E and if

lim
r��

Hn���E �B�a� r
 n C�a� V� s



rn��
� � �
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for all � � s � 	� where

C�a� V� s
 � fx � Rn � dist�x� V 
 � s ja� xjg �

If such a plane V exists� it is unique and we denote it by apTan�E� a
�
Intuitively� apTan�E� a
 is a plane that approximates E near a except
for some leftover part which has zero Hn���density along each cone
with vertex at a and axis perpendicular to the plane apTan�E� a
�

In this paper we shall call a set �n�	
�recti�able �or sometimes sim�
ply recti�able if there is no danger of misunderstanding the dimension
of the set
 if it has �nite Hn���measure and if it admits an approximate
tangent plane at Hn���almost all of its points� We refer to �F
 and �M

for more information about recti�able sets� �Warning� the terminology
in both �F
 and �M
 is slightly di�erent�
 It su�ces to mention here that
a set E of �niteHn���measure in R

n is �n�	
�recti�able if and only if it
is contained in a countable union of Lipschitz images of Rn�� inside Rn �
Moreover� every set of �nite Hn���measure can be decomposed into a
recti�able and a purely unrecti�able part� the latter being a set whose
intersection with any recti�able set in Rn has zero Hn���measure�

Next� we say that a boundary point a of a domain D is an inner

cone point if there are L� s and r such that C�a� r� L�� s
 lies in D�
Moreover� we say that a is an inner tangent point of D if there is a line
L with the following property� for each s � 	 there is r � � such that
C�a� r� L�� s
 lies in D� In this case the half line L� can be called an
interior normal line to �D at a� Naturally� L� need not be unique�

The following theorem is the �rst main result of this paper�

Theorem ���� Suppose that f is a quasiconformal mapping of B �

onto a Jordan domain D with ��recti�able boundary� Then we have a

decomposition of �D into three disjoint sets�

�D � E� �E� �E� �

where E� has H��measure zero� E� consists of points of inner tangency

of D� and E� consists of points of ��density of R� nD� The Hausdor�

dimension of f���E�
 is zero� and for a set A � E� the preimage

f���A
 has H��measure zero if and only if A has H��measure zero�

In other words� if D is a Jordan domain in R� with ��recti�able
boundary and if f maps B � quasiconformally onto D� then� apart from
an H��null set� the boundary �D consists of the �good part�� where f
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and f�� both are absolutely continuous� and the �bad part�� which is
easily detected and which is responsible for the possible failure of the
absolute continuity of f j�B� � Thus the only way the absolute continuity
can fail for domains with recti�able boundary is to have a situation
where the bad part E� is non�empty and has positive H��measure� The
next theorem says that such situations can occur�

Theorem ���� For each n � � there is a Jordan domain D in R
n

such that D is quasiconformally equivalent to B n � that �D is �n � 	
�
recti�able� and the set

�	��
 E� � fa � �D � a is a point of n�density of Rn nDg

has positive Hn���measure� Moreover� the preimage f���E�
 under any
quasiconformal map f from B

n onto D has Hausdor� dimension zero�

Theorem 	�� answers negatively to an inquiry of Baernstein and
Manfredi �BM� p� ���
� It also shows that Theorem 	�	 is quite sharp�
�Note that if �D has �nite Hn���measure and if it admits double cones
atHn���almost everywhere� then it is �n�	
�recti�able� see �M� Lemma
	��	�

� Of course� it is easy to construct Jordan domains with the
measure theoretic properties as in Theorem 	��� the nontrivial part is
to show that some of them can be mapped quasiconformally onto a ball�

The fact that f���E�
 has Hausdor� dimension zero in Theorems
	�� and 	�� is a recent result of Koskela and Rohde �KR
� They prove�
among other things� that the preimage of the set E� as described in
�	��
 has zero Hausdor� dimension always� that is� in all dimensions
and for all quasiconformal mappings f � B n � D �with boundary values
properly interpreted if D is not Jordan
� In our situation� it would be
much easier to show that f���E�
 has Hn���measure zero� In fact� the
method described in this paper shows that one can construct a domain
D as in Theorem 	�� such that Hn���E�
 is positive and that f

���E�

has zero Hausdor� Hh�measure for any prescribed Hausdor� measure
function h� The construction of the domain is based on the ideas of
V�ais�al�a in �V�
� where he constructed a quasiconformal Jordan ball
whose boundary has positive n�measure� The elaboration of V�ais�al�a�s
method presented here leads to a general �tree and pipeline� procedure
to build quasiconformal balls and may be of independent interest�

One may ask whether the assumption in Theorem 	�� that �D be
��recti�able can be relaxed to the assumption that H���D
 be �nite� I
do not know the answer� An example can be constructed to show that
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the assumptions in Theorem 	�� cannot be relaxed to �D is Jordan and
�D has ���nite Hausdor� Hn���measure��

I conjecture that Theorem 	�� is true in all dimensions n � �� In
the present paper� the argument for Theorem 	�� relies in a crucial way
on the following local description of the boundary of a quasiconformal
Jordan ball �see Added in Proof at the end of the paper
�

Theorem ���� Suppose that D is a Jordan domain in R
� which is

homeomorphic to B � via a K�quasiconformal map� Then for each x � D
we have the estimate

�	��
 H��B�x� � dist�x� �D

 � �D
 � C�K
 dist�x� �D
� �

Theorem 	�� is interesting in its own right� It quanti�es the fact
that the boundary of a quasiconformal ball cannot have lower dimen�
sional parts protruding inwards� It has also led Jussi V�ais�al�a to make
general conjectures about isodiametric inequalities for sets that satisfy
certain connectivity conditions� see ���	
 below� I make the following
conjecture involving quasiconformal mappings�

���� Wall Conjecture for Quasiconformal Balls� If D is a domain

in R
n that is homeomorphic to B n via a K�quasiconformal map� then

for each x � D we have the estimate

�	��
 Hn���B�x� � dist�x� �D

 � �D
 � C�n�K
 dist�x� �D
n�� �

Note that the conjecture is true for n � � for quite trivial rea�
sons� namely� there is a big connected piece of the boundary inside
B�x� � dist�x� �D

� The conjecture is also true for n � 	� when prop�
erly interpreted� Despite some e�ort� I have not been able to prove
the conjecture for n � �� Assuming that it is true even in the weaker
form where the constant C�n�K
 in �	��
 is allowed to depend on D�
the proof for Theorem 	�� will work mutatis mutandis for all n � ��
Dimension n � � has to be excluded for the same reason it is excluded
in �H
� at some point in the proof we need to resort to the fact that in
dimensions n �� � quasiconformal maps of B n � say� can be replaced by
locally bi�Lipschitz quasiconformal maps without changing the bound�
ary values�
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It follows from Theorem 	�� and standard capacity estimates that
every quasiconformal Jordan ball in R� is regular for the Dirichlet prob�
lem for the Laplacian� in fact� it is regular for the p�Laplace equation
for all p � 	� It is not true that an arbitrary Jordan domain in R� is
regular for the Laplacian as the well known Lebesgue�s spine demon�
strates� If the Wall Conjecture 	�� is true� then quasiconformal Jordan
balls are regular for the p�Laplacian in all dimensions and for all p � 	�
I thank Pekka Koskela for pointing out this application�

Finally� I wish to point out the recent interesting paper by Han�
son �Ha
� where recti�ability �Hanson uses a weaker notion here
 of the
boundary of a quasiconformal Jordan ball is tied up with the behav�
ior of the average derivative af in the classical spirit� Recall that the
recti�ability of a Jordan curve � in the plane is equivalent to the mem�
bership of f � in the Hardy class H� for any conformal map f from the
unit disk onto the domain bounded by �� Hanson proves in �Ha
 that
among all quasiconformal Jordan balls D in Rn � n � �� that are also
so�called uniform domains� the �niteness of Hn����D
 is equivalent to
the membership of the average derivative af in a �Hardy space� H

n���
if f maps B n quasiconformally onto D� �We refer to �Ha
 for a precise
de�nition for these concepts�
 Many relations between af � recti�ability
and absolute continuity remain to be sorted out� In particular� it is
plausible that Hanson�s theorem indeed requires some extra assump�
tions on D� Hanson �Ha� ����
 p� 	���	�	
 also advances a conjecture
about quasiconformal mappings that is similar to the wall conjecture
	��� It is not clear what the relationship between these two conjectures
are�

�� Outline of Proof for Theorem ����

In this section the main points in the proof for Theorem 	�� are
sketched for the expert�s convenience�

Assume that the Wall Conjecture 	�� is true� We know that Hn���
almost every point on �D has an approximate tangent plane� We let
E� be the exceptional set� and E� the set consisting of the points of
n�density of the complement of D� For the �rst part of the theorem�
it su�ces to show that each point in E� � �D n E� � E� is a point of
inner tangency for D� If this is not the case� there is a point a � E�

and a line L which is perpendicular to apTan��D� a
 and so oriented
that the cone C�a� r� L�� s
 intersects the boundary �D for arbitrarily
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small r � � and for some �xed s� By �	��
� to each Whitney cube of the
open set Dr � D � C�a� r� L�� s
 there corresponds a substantial piece
of the boundary lying in a cone C�a� r� L�� s�
 with somewhat bigger
opening s� � 	� Because a is not a point of density of Rn nD� the set
Dr is indeed nonempty and has n�measure comparable to r

n� Now the
boundary pieces are essentially disjoint� and their Hn���measures add
up to something which is comparable to rn��� This contradicts the fact
that �D admits an approximate tangent plane at a�

The second assertion of Theorem 	�� is an improvement to Theo�
rem 	�	 which says that f and f�� preserve sets of zero Hn���measure
on double cone points� The proof given in �H
 requires double cone
points� but� below in Section �� I give a sharpening of that argument
which only needs interior cones� in the presence of approximate tan�
gents� The technical argument of �H
 can be shortened somewhat� but
the basic idea is still the same� Suppose� for instance� that there is a
subset A of interior cone points of �D of positive Hn���measure such
that f���A
 has zero Hn���measure� After a standard reduction� we
may assume that A lies on the boundary of a bi�Lipschitz ball contained
in D� hence we may assume without loss of generality that A lies on the
boundary of a round ball B contained in D� Then we use the assump�
tion that n �� � and replace f by a locally bi�Lipschitz quasiconformal
homeomorphism F which agree with f on the boundary� The technical
point� as in �H
� is to show that F���B
 � � is a uniform domain with
�nice� boundary in B n � the niceness is de�ned in terms of the following
Ahlfors�David regularity condition�

C��Rn�� 	 Hn���B�x�R
� ��
 	 CRn��

for each x � �� and � � R � diam�� This condition and known results
on quasisymmetric maps onto regular surfaces guarantee that F j�� is
absolutely continuous� contradicting the hypothesis� In establishing
this technical point� we use a Hayman�Wu type �spotting� technique
and a Carleson measure argument� the main di�erence from �H
 is that
now we have to make use of the approximate tangent planes in place of
the exterior cones� More details will follow in the next section�

�� Proof of Theorem ����

The ensuing proof works in all dimensions n � �� under right
assumptions� Thus� assume that f is a quasiconformal mapping from
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B
n onto a Jordan domain D with recti�able boundary� Also assume
that D satis�es �	��
 for some constant C� possibly depending on D�
By Theorem 	�� this is always true in dimension n � �� Then the
conclusion is that the boundary �D decomposes as in Theorem 	��
with f���E�
 having Hausdor� dimension zero� If in addition n �� ��
then the absolute continuity of f jf���E�� and f

��jE�
is also true as in

Theorem 	���
To begin the proof� let E� denote the set on �D where �D does not

admit approximate tangent planes� Then E� has Hn���measure zero�
We divide �D n E� into two subsets E� and E�� where E� consists of
the points of n�density of the complement of D in Rn � and E� is what
remains� Our �rst task will be to show that every point in E� is a point
of inner tangency for D�

���� Inner tangency of points in E��

Pick a point a � E�� Let L be the line through a which is perpen�
dicular to the approximate tangent plane for �D at a� Fix � � s � 	�
We need to show that there is r � � such that one of the two compo�
nents of the double cone C�a� r� L� s
 is contained in D� Because a is
not a point of n�density for the complement of D� and because �D has
�nite Hn���measure� we can assume� by making s larger if necessary
and by choosing an appropriate orientation for L� that

����
 lim sup
r��

Hn

�
C�a� r� L�� s
 �D

�

rn
� � �

Next� we suppose that

�D � C�a� r� L�� s
 �� �

for all r � � and then show that this leads to a contradiction with the
fact that

����
 lim
r��

Hn����D � C�a� r� L�� s�



rn��
� �

for all � � s� � 	�
To this end� let Dr � C�a� r� L�� s
�D and observe that Dr �� � by

����
� Suppose �rst that for each x � Dr the ball Bx� B�x� dist�x� �D


satis�es

����
 diamBx 	 � dist�Bx� a
 �
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where � � ��s
 � � is so small that ����
 implies

�Bx � C�a� �r� L�� �	  s
	�
 �

By standard covering theorems �see �M� Chapter �

� we can choose a
countable collection fBi � i � 	� �� � � �g of balls of the form Bx such
that

Dr �
�
i

�Bi

and that X
i



�Bi
�x
 	 C�n
 �

The latter condition simply says that no point in Rn belongs to more
than C�n
 balls of the form �Bi� Therefore� by assumption �	��
�

Hn����D � C�a� �r� L�� �	  s
	�

 � C��
X
i

Hn����D � �Bi


� C��
X
i

�diamBi

n��

� C��
�X

i

�diamBi

n
��n����n

� C���Hn�Dr


�n����n �

Because the constant C � 	 above is independent of r � �� we contra�
dict ����
 with the aid of ����
�

We may thus assume that

diamBx � � dist�Bx� a


for some x � Dr and Bx � B�x� dist�x� �D

� In this case a simple
geometric argument proves the existence of a point y � Dr and a ball
By � B�y� dist�y� �D

 that belongs to C�a� r� L�� s
 and satis�es both�

�By � C�a� �r� L�� �	  s
	�


and
C�� diamBy 	 dist�By� a
 	 C diamBy �

for some C � 	 depending only on n and s� Thus we deduce that� for
some r� � r�

Hn����D � C�a� �r�� L�� �	  s
	�

 � Hn����D � �By
 � C��r�
n��
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by assumption �	��
� Moreover� C � 	 is independent of r and r�� This
again contradicts ����
 and we have shown that a is a point of inner
tangency of D�

���� Absolute continuity in the inner tangency set E��

Recall that the fact that f���E�
 has Hausdor� dimension zero is
due to Koskela and Rohde �KR
� To complete the proof of the theorem�
it thus remains to show that f and f�� are absolutely continuous in the
sets f���E�
 � �B n and E� � �D� The proof here has the same idea
as in �H
� In that paper� however� the absolute continuity was proved
in the set of double cone points� and the existence of an exterior cone
was also essentially used there� In the present situation we only have an
interior cone to rely on� The supporting role of the exterior cone is taken
here by the approximate tangent plane� which exists at each point in
E�� This change forces us to make some technical modi�cations to the
proof in �H
� It would be unreasonable to repeat here all the details of
�H
� and I apologetically ask the reader to consult that paper whenever
necessary� The good news is that the most technical part of the proof
of �H� Lemma ��	
 has now been simpli�ed somewhat�

Let us begin with the following lemma�

Lemma ���� Let a be a point in E� and denote by Ta the approximate

tangent plane apTan��D� a
� Then

lim sup
r��

inf
v�Ta�jv�aj	r

dist�v� �D


jv � aj
� � �

Proof� This lemma looks trivial but a little thinking shows that it
need not be true if we replace �D by an arbitrary �n � 	
�recti�able
set� In any event� the ensuing proof is quite easy�

Suppose on the contrary that there is � � � and a sequence of radii
�ri
� ri � � as i�
� such that

dist�v� �D


jv � aj
� � �

for all v � Ta with jv � aj � ri� Then the �ri�neighborhood Ui of the
�n��
�sphere �B�a� ri
�Ta does not meet �D� Because a is a point of
inner tangency of D� it follows that Ui � D for all large i� Let L� be the
interior normal line at a� perpendicular to Ta� Fix s so close to 	 that
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Ui meets C�a� L
�� s
 for all large i� and then choose ri � � so that the

cone C�a� ri� L
�� s
 is contained in D� Clearly C�a� ri� L

�� s
 cannot be
contained in D� for otherwise the connected open set Ui � C�a� ri� L� s

is contained in D for all large i and separates the point a from the part
of the boundary that lies outside B�a� ri
� Thus� for arbitrary small
ri � � we have that

C�a� ri� L
�� s
 � �D �� � �

Using assumption �	��
 on the thickness of the boundary� this leads to
a contradiction with an argument similar to that in the end of the proof
in ���	
� �Note� the analog of ���	
 in the present case is guaranteed by
the size of Ui�
 The lemma follows�

���� Reduction to a ball�

Suppose now that A � E� has positive Hn�� measure� We need
to show that f���A
 has positive Hn���measure as well� And this is in
fact all that needs to be shown in detail� for the case

A � E� and Hn���A
 � � implies Hn���f
���A

 � �

is treated similarly�
A standard measure theoretic trick guarantees that there is a sub�

set A� � A of positive Hn���measure which lies on the boundary of
a bounded starshaped subdomain �� � D� The domain �� can be
mapped onto a ball by a bi�Lipschitz self�map of Rn � Because bi�
Lipschitz maps preserve recti�ability and sets of positive Hausdor�
measure� we can assume� originally� that A lies on the boundary of
a ball B� contained in D� See �H� Proof of Theorem ���
 for more
details here�

Next we form a Stolz domain � in B�� associated with A the usual
way� That is� � consists of all the open rays with one end point in B�	�
and the other in A� Then � is a bi�Lipschitz ball contained in D and
containing A on its boundary� �Note that the round ball B� already
satis�es these conditions and it would be nice if we could manage with
B� alone� It is the proof below in ���	�
 that needs a domain like �
which is safely inside B��
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��	� Bi
Lipschitz maps in the quasihyperbolic metric�

Now we use the assumption n �� �� The Sullivan�Tukia�V�ais�al�a
approximation theorem �TV�� ��	�
 provides us with a quasiconformal
map F � B n � D such that

���!
 kD�f�x
� F �x

 	 	

and that

���	�
 C��kD�F �x
� F �y

 	 kBn �x� y
 	 C kD�F �x
� F �y

 �

for all x and y in B n and for some C � C�n� f
 � 	� Here kG denotes
the quasihyperbolic metric in a domain G� de�ned by the metric density
dist�x� �G
��jdxj�

Condition ���!
 guarantees that f and F have the same boundary
values and ���	�
 says that F is bi�Lipschitz in the quasihyperbolic
metrics� We deduce that there is no loss of generality in assuming�
originally� that the mapping f satis�es ���	�
�

����� Regular surfaces and subinvariance�

Write g � f��� The main bulk of the proof consists of showing
that the boundary �g��
 is an Ahlfors�David �n� 	
�regular set� that
is� there is a constant C � 	 such that

���	�
 C��Rn�� 	 Hn���B�x�R
 � �g��

 	 CRn�� �

for all x � �g��
 and � � R � diam g��
�
Suppose for a moment that this has been accomplished� The proof

is then �nished as follows� The subinvariance principle for quasicon�
formal maps guarantees that gj� � �� g��
 is a quasisymmetric map�
which means that

���	�
 jx� yj 	 t jx� zj implies jg�x
� g�y
j 	 ��t
 jg�x
� g�z
j

for all points x� y� z � � and for some homeomorphism � � ���

 �
���

� �See �FHM� p� 	���	�	
 and �V�� Theorem ���

� Clearly ���	�

will continue to hold for all points in the closure �� so that gj�� � ���
�� is quasisymmetric as well� Because �� is a bi�Lipschitz �n � 	
�
sphere and because �g��
 is �n�	
�regular in the sense of ���	�
� we can
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invoke known results about quasisymmetric maps in such situations to
conclude that Hn���E
 � � if and only if Hn���g�E

 � � for E � ���
�See �S� ���
 or �H� ���

�

We conclude� therefore� that it remains to prove the regularity
���	�
 of �g��
�

����� Proof of regularity of �g��
�

We begin by making two more reductions� Fix � positive and
small� to be determined later� By Lemma ��� there is� for each a � A�
a positive number ra such that

���	�
 dist�vr� �D
 � � jvr � aj �

for some vr � Ta � �B�a� r
 and for all � � r 	 ra� Then

A �
��
j	�

fa � A � ra � 		jg �

and we may assume that there is � � � such that ra � � � � for all
a � A� We assume further that each point in A is a point of Hn���
density on �B� �recall that A lies in the smooth hypersurface �B� and
has positive Hn���measure
�

The left inequality in ���	�
 follows from the quasisymmetry of g
in �� by a result of V�ais�al�a �V�� ���
� The right inequality in ���	�

follows by standard arguments using ���	�
 from the following lemma
�for the details� see �H� p� 	������

�

Lemma ����� Suppose that �xi
 is a hyperbolically separated sequence

of points on ��� this means that there is 
 � � such that

���	�
 B�xi� 
 dist�xi� �D

 � B�xj� 
 dist�xj� �D

 � �

whenever i �� j� Then there is C � 	 such that

���	�

X

g�xi��B

�	� jg�xi
j

n�� 	 C�diamB
n�� �

for all n�balls B centered on �B n �
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One should notice that in ���	�
 the constant C � 	 can� and
usually will� depend on everything else but on B�

Thus� �x a ball B� centered at some point on �B n � Henceforth C
will denote any positive constant that is independent of B and also of
index i� The goal is to �nd for each xi in g

���B
 � f�B � B n 
 its own
spot Si on �D such that the following three conditions hold�

���	!

X
i



Si
�x
 	 C �

that is� no point in Rn belongs to more that C spots Si �

�����
 g�Si
 � CB � �B n �

that is� the image of each spot Si will not land far from B under the
map g � and

����	
 �	� jg�xi
j

n�� 	 CHn���g�Si

 �

that is� the Hausdor� measure of the image g�Si
 � �Bn essentially
dominates the term �	� jg�xi
j


n�� of the sum in ���	�
�
It is clear that ���	�
 follows from ���	!
�����	
�
Before we start describing the spots Si with desired properties� we

make two observations�

����� Hyperbolic freedom�

There is never any harm in replacing any of the points xi by a
point "xi for which

�����
 kD�xi� "xi
 	 C �

because it is easily seen that �����
 implies

�����
 �	� jg�xi
j
 	 C �	� jg�"xi
j
 �

The replacement may cause us to diminish the value of 
 in ���	�
 a
little bit� but such adjustments are left to the reader�
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����� Generational gaps�

Upon dividing �xi
 into generations G� �

xi � G� if and only if dist�xi� �B�
 � ��
����� ��� 
 � � � Z �

we can assume that

�����
 G� � � for � 	 C �

and that

�����
 G�i �� � �� G�j implies �i � �j or j�i � �j j � C �

Above� C should be thought of as a large constant� to be adjusted later�
Condition �����
 means that we only have to worry about those points
xi that lie near the boundary of B�� and �����
 says that we can assume
that there are large generational gaps� In short� we assume that G� is
nonempty only if � is positive and a constant multiple of a large integer�
We shall construct the spots Si in such a way that Si and Sj are disjoint
whenever they correspond to points in di�erent generations� and that
the �nite overlap condition ���	!
 holds for spots Si corresponding to
points from the same generation�

���	� Determining points zi�

We shall associate to each point xi in our sequence two more points�
wi and zi� of which the latter will play a more important role� To get
a mental picture�

xi � wi � �B� � zi � �D �

The point wi is simply the closest point to xi on �B�� and zi is a closest
point to wi on �D� Of course� it may happen that wi � zi� Before we
�x these� however� we need to make some adjustments to the sequence
�xi
 in the spirit of �����
�

Thus� pick a point xi� Let wi be the closest point to xi on �B��
and let ai be the closest point to xi on A� Because each point in A is
assumed to be a point of Hn�� �density� it is clear that the approximate
tangent plane Tai is also tangent to �B� at ai� By choosing the constant
C in �����
 large enough� we may assume that

����!
 dist�wi� Tai
 � � jwi � aij �
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where � � � is as in ���	�
�
Let w�i be the point where the ray emanating from the center of

B� and passing through xi meets Tai � and let

r�i � jai � w�ij �

Again� by making the constant C in �����
 large enough� we may assume
that r�i � � for all i� where � is de�ned just after ���	�
� Thus we can
�nd a point vi � Tai � �B�ai� r

�
i
 such that

dist�vi� �D
 � � jvi � aij �

Now let "xi be the point on the line segment from vi to the center
of B� such that

dist�"xi� �B�
 � dist�xi� �B�
 �

It is easy to see that
kD�xi� "xi
 	 C �

Therefore� by the discussion ����� we may assume� originally� that

dist�w�i� �D
 � � jw�i � aij

and hence that

dist�wi� �D
 	 jwi � w�ij � jw�i � aij 	 �� jwi � aij �

provided that C in �����
 is large enough� depending on �� Next� let zi
be a point on �D such that

jzi � wij � dist�wi� �D


and observe that

�����
 jzi � wij 	 �� jwi � aij �

At this point we could invoke the argument in �H� Main Lemma
��	
 which applies in the present situation� The double cone condition
there was used only to guarantee the existence of the points zi satisfying
�����
� For the reader�s convenience� however� I shall sketch below a
somewhat di�erent and perhaps easier argument for the rest of the
proof�
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Towards this end� we require the following lemma which is proved
in �HK� ���
�

Lemma ����� Let x � D� There is a constant C � 	� depending only

on n and on the dilatation of f � such that

Hn��

�
g�B�x�C dist�x� �D

 � �D
 �#g�x�

�
�
	

�
Hn���#g�x�
 �

where #g�x� is the surface cap�

#g�x� � B�g�x
� ��	� jg�x
j

 � �B n �

Now �x � � � � 	 and let ui be the point �	� �
z�  �wi in B��
where z� is the center of B�� We have

dist�ui� �D
 	 jui � wij jwi � zij � �	� �
  �� jwi � aij �

By choosing � � �i such that

�	� �i
 � � dist�xi� �B�
 �

we �nd that

�����
 dist�ui� �D
 	 � dist�xi� �B�
  �� jwi � aij 	 	� � jwi � aij �

Finally� de�ne Si by

g�Si
 � g
�
B�ui� C dist�ui� �D

 � �D

�
�#g�ui� �

where C is as in Lemma ���	� We easily infer by choosing � � � small
enough� by observing the generational gap �����
� Lemma ���	� formula
�����
� and the geometry of � that this choice of Si will satisfy ���	!
�
����	
� Of course� we need to observe here that

kD�ui� xi
 	 C �

as well as the assumed hyperbolic separation ���	�
 of the points xi�
The details are left to the interested reader�

This completes the proof of Theorem 	���
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�� A class of quasiconformal balls � proof of Theorem ����

In this section I exhibit a general method to build quasiconformal
balls� As mentioned before� the method described below is essentially
due to V�ais�al�a who constructed a single interesting example in �V�
� the
main idea of blowing up towers with moderate dilatation is of course
old and goes back to the early articles of Gehring and V�ais�al�a �GV
� My
contribution is simply to axiomatize the construction done in �V�
� and
then point out how one obtains this way examples that are relevant to
the boundary absolute continuity problem�

���� Admissible trees�

An admissible tree in Rn is a tree around which one can build a
quasiconformal ball� A precise de�nition follows shortly� In the ensuing
discussion� all line segments are assumed to be �nite and closed� We
shall work in R

n for any n bigger than one� although the Riemann
mapping theorem trivializes the discussion for n � ��

Let L� be a line segment in R
n and �x � � ��� �	�
� Set J� �

fL�g� Suppose next that a �nite collection Ji of line segments has
been determined for all i � �� � � � � k� Let L � Jk be a line segment�
Attach a �nite number of line segments L�� � � � � Lp to L in such a way
that

	
 exactly one of the end points of each Li lies on L n fthe end
points of Lg�

�
 the angle between each Li and L is at least � � � �

�
 all line segments Li are mutually disjoint and none of them
meets any line segment from J� � � � � � Jk except their parent L at one
end point�

We further stipulate that all the children of all line segments from
Jk as described above are mutually disjoint� they form the collection
Jk���

We call the set

T� � T �
��
k	�

Jk

an admissible tree with branching angle � if it is a bounded set� con�
structed by the above rules 	
��
� and has the additional property that
each line segment L from T retains a positive distance �depending on
L
 to all other line segments from T � save its immediate family �that
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is� its parent and children
� more formally�

����
 dist�L� T n fthe parent of L and the children of Lg
 � �

for each L � T � We understand that L� has no parent and that there
can be childless line segments�

Next� denote by FT the set of all points that lie �behind in�nitely
many branches�� More precisely� x is in FT if x is a cluster point of
in�nitely many line segments from T �

Theorem ���� Given an admissible tree T� � T in R
n � there is a

domain D in R
n such that

����
 T � D �

that

����
 FT � �D �

and that D is quasiconformally equivalent to B n by a K�quasiconformal

map with K depending only on n and ��
Even more can be said�

Theorem ���� Given any admissible tree T� � T in Rn � any continu�

ous nondecreasing function h � ��� 	
 � ��� 	
� h�t
 � � as t � �� and
any � � �� there is a domain D in R

n satisfying ����
 and ����
� and
there is a quasiconformal map f from B

n onto D such that

����
 Hh�f
���FT 

 � �

and that

����
 Hn����D n FT 
 � � �

Moreover� one can choose f such that its dilatation depends only on n
and ��

Above� Hh denotes the Hausdor� measure obtained from the mea�
sure function h� see �F� ��	�
�

Accepting Theorems ��� and ���� it is easy to construct examples
as in Theorem 	��� For instance� one can take a totally disconnected
compact set F in Rn�� with positive Hn���measure� and then form an
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admissible tree having branches in the upper half space Rn� � fx � Rn �
xn � �g such that the end points of these branches capture each point
in F � It follows from the construction below that the boundary of the
associated domain D is a recti�able �n � 	
�sphere� and that one can
arrange each point on F to be a point of n�density for the complement
of D�

Many other interesting examples of quasiconformal balls can be
exhibited by the aid of the above theorems� For instance� the exis�
tence of quasiconformal Jordan balls with boundary having positive
n�measure is ascertained by the existence of pertinent admissible trees�
V�ais�al�a�s goal in �V�
 was exactly to construct one such domain� V�ais�al�a
was partly motivated by the following consequence of his construction�
there are mappings in the Sobolev spaceW ��n

loc �R
n �Rn
 that do not pre�

serve sets of n�measure zero� Theorem ��� can be used to show that
mappings in W ��n can blow up quite a miniscule set to a set of positive
n�measure� This is done by �folding� a mapping promised in Theorem
���� cf� �Re
� �V�� p� ���
� For a general discussion on this topic� see
�MM
�

We shall only prove Theorem ���� It should be clear how the details
need to be changed in order to achieve Theorem ���� Overall� we shall
rely on the carefully detailed argument in �V�
�

��
� Tower maps�

For h � � de�ne the straight tower

T �h
 � # � �B
n��

� ��� h

 � R
n �

where # � ��en
B
n��

is the join of �en � ��� � � � � ���	
 and the
closed unit ball of Rn�� � If � � ��� �	�
� a leaning tower T �h� �
 is
obtained from the straight tower T �h
 by keeping the base # �xed and

tilting the upper part B
n��

� ��� h
 so that it makes angle � with the

hyperplane Rn�� � We call # the basement � and B
n��

the �oor � of the
tower T �h� �
� The terms wall and roof of T �h� �
 are selfexplanatory
when we make the convention that both these sets consist only of points
where �T �h� �
 is smooth� i�e� we ignore the corners�

A tower map is a quasiconformal map

���	�
 g � #� T �h� �


such that g is the identity on the part of �# that does not include

B
n��

� Strictly speaking� g is quasiconformal only in the interior of the
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basement #� but it extends so as to map # homeomorphically onto
T �h� �
�

The existence of such a map is clear� what is crucial is that it can be
chosen so that its dilatation only depends on n and ��� if � � �� � ��
In particular � and this is the main point � the dilatation does not
depend on the height h of the �leaning
 tower T �h� �
� Moreover� we
can choose g such that it is a di�eomorphism at every point in the
preimage of the wall of the tower� For an explicit construction of the
map g� see �V�� Section �
�

����� Flattening of walls and germs of similarity�

Suppose that a leaning tower T �h� �
 is given and that fa�� � � � � apg
is a �nite subset of the wall of T �h� �
� One can modify both the tower
and the tower map in ���	�
 so that it becomes a similarity in small

neighborhoods of the points a�i � g���ai
 � B
n��

� This is done as
follows� First one $attens out a small piece of the slightly curved wall
surface near each point ai� This does not cost much in terms of the
dilatation� Then� using the language of V�ais�al�a� one can plant a germ

of similarity on g near each point a�i� This means that one can modify
the map g so that it becomes a similarity �in particular� conformal
 in
a neighborhood of a�i� Moreover� the planting can be done in such a
way that the cost in dilatation only depends on n and the dilatation of
the original map� that is� on n and � only in our case�

In sum� we can assume that given a tower as above and a �nite
number of points on its wall� we have a tower map

���	�
 g � #� T ��h� �
 �

where the new tower T ��h� �
 is being slightly $attened around the
given points� �We could call T ��h� �
 a tilted pajupilli �
 Moreover� g
is a similarity near those points and its dilatation only depends on n
and a lower bound for the tilt angle of the tower� On the part of the
boundary of the basement that lies in the lower half space� the map g
is still the identity�

The planting procedure is being described in detail in �V�� Section
�
�



The boundary absolute continuity of quasiconformal mappings II ���

����� Proof of Theorem ����

Once we have the tower map ���	�
 at our disposal� it is rather clear
how to continue the proof� Suppose that we are given an admissible
tree T� � T � First we map the unit ball under a quasiconformal map
f� onto a thin cylinder C� about T� such that the height of the cylinder
is the length of T� and that T� is its axis� The dilatation of f� only
depends on n� and not on the height� We choose the cylinder C� so
thin that all the children of L� in J� stick out of it a good proportion
of their length� and that all the other descendants remain at a positive
distance from L�� this is possible by ����
� We reiterate that C� can be
made as thin as we please with no extra cost at the dilatation of f��
Consequently� the surface area of C� can be made as small as we please�
this observation is needed for Theorem ����

Next� at the points ai� where the children Li of L� leave the cylinder
C�� we $atten the wall of L� and assume� as we may by the discussion
in ��		� that f��� is a similarity in a neighborhood Ui of each point ai�
We place small similarity copies #i of # in all those neighborhoods Ui
such that the origin in # corresponds to ai in #i� Usually the child Li
leaves the cylinder C� in a tilt� and we place a thin leaning tower on
each #i such that Li is the axis of the tower and that the other end
point of Li lies on the roof of the tower� Any such tower is a similarity
copy of a tower of the form T �h� �
 described above in ��!� We choose
these towers so thin that they do not meet other descendants but their
immediate children� again this is possible by ����
�

Each base #i can be mapped quasiconformally onto the leaning
tower above it� For this we use the tower map g in ���	�
 and ap�
propriate similarities� By declaring each such map to be the identity
elsewhere in C�� we get a map

f� � B
n � C� �

where C� is C� plus all the new towers placed above each #i� The map
f� is simply f� followed by all those little tower maps� Because f� was
a similarity on f��� �Ui
� and because the bases #i are located in Ui� the
dilatation of f� only depends on n and �� In other words� we did not
increase the dilatation by this composition because the only nontrivial
contribution came from where f� was conformal�

Now we continue in a similar fashion� The walls of all the little
towers in C� are $attened near the points where the children �the grand�
children of T�
 leave C�� and f� is modi�ed so as to become a similarity
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near those points� This modi�cation increases the dilatation but there
is no accumulation because the increase only occurs at places where f�
was conformal� Then we blow up new �possibly leaning
 towers from
those newly created similarity neighborhoods� Thus the dilatation of
the map f� � B

n � C� will not grow� where� naturally� f� is f� followed
by the new even littler tower maps� declared to be the identity outside
the bases� and C� is the union of C� and the new towers�

The �nal map f is the limit of the maps f�� f�� f�� � � � constructed
in this manner� Its dilatation in B n only depends on n and �� and it
maps B

n
onto D� where D is the interior of the union C��C��C��� � � � If

the tree is properly arranged� f will be a homeomorphism of the closed
unit ball onto D� It is also clear by construction that the set FT lies on
the boundary of D� and that we can always arrange the boundary �D
minus� possibly� the set FT � to be of �nite Hausdor� Hn���measure�

This completes the proof of Theorem ����

�� Proof of the Wall Conjecture in dimension n � ��

Soon after Jussi V�ais�al�a heard about the Wall Conjecture� he de�
vised a simple argument in dimension n � � which also proves the
following more general theorem�

Theorem ���� �V�ais�al�a� �V�

 Suppose that G is an open set in R
n �

n � �� such that %H��Rn � f
g n G
 � � and that Rn n G satis�es the

condition c�LLC�� Then

H�

�
B�x� � dist�x� �G

 � �G

�
�

�

	� c
�dist�x� �G

�

for each x � G�

In the theorem� %H� denotes the �rst %Cech cohomology group with
integer coe�cients� The c�LLC� condition means that for every x in
R
n n G and r � � points in �Rn n G
 n B�x� r
 can be joined in �Rn n

G
 nB�x� r	c
� where c � 	 is a constant independent of x and r�
If D is a �K�
quasiconformal Jordan ball in R

� � then %H��R� �
f
g n D
 � � by Alexander duality� and R� n D is c�LLC� for some
c � 	 depending only on K by a theorem of Gehring and V�ais�al�a �GV
�
The letters LLC stand for linear local connectivity � It is also true� and
proved by Gehring and V�ais�al�a �GV
� that R� nD satis�es the following
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c�LLC� condition� which is dual to c�LLC�� for every x � R
n n G and

r � � points in �Rn nG
�B�x� r
 can be joined in �Rn nG
 �B�x� cr
�
Therefore� Theorem 	�� follows from V�ais�al�a�s Theorem ��	�

I shall next sketch another proof for Theorem 	��� but the reader
should bear in mind that it is not as elegant as V�ais�al�a�s argument and
it will not generalize so as to cover Theorem ��	� But even this proof
as such has nothing to do with quasiconformal maps� we shall only
employ the LLC condition for the complement� In Problem � below in
Section � we formulate a general conjecture along the lines �quantitative
topological conditions imply mass bounds�� This type of results have
recently been popular in Riemannian geometry� see �GP
�

Proof of Theorem ���� We can normalize the situation so that
x � � and dist�x� �D
 � 	� It is an easy exercise to check that it is
enough to �nd constants C� � C��K
 � � and C� � C��K
 � � such
that

����
 H��B��� C�
 � �D
 � C� �

Next we invoke a lemma which is due to Gehring �G	� Lemma 	
�
In the lemma� we denote by K� the decomposition of R

� into closed
cubes with vertices in Z�� then write Ks � sK� for s � �� and denote
by K�

s the 	�skeleton of Ks�

Lemma ���� Suppose that a compact set A in R
� satis�es

����
 H��A
 �
s�

��
� 	

for some s � �� Then some translate A� y � fa� y � a � Ag� y � R� �
does not meet the 	�skeleton K�

s �

Now choose the constant C� � � in ����
 very large and s � � very
small �both depending on the constant c in the linear local connectivity
condition� hence on K only
 and assume that ����
 holds for A � �D �
B��� C�
� Then the part of the �translated
 	�skeleton K�

s that lies
in B��� C�
 does not meet R

� n D� because it does not meet �D� it
is connected� and it meets D near the point �� This will lead to a
contradiction as follows� One �rst selects a curve �� in R

� n D that
joins some point w on �D with jwj � 	 to a point in �B��� C�
� Then�
by using the LLC� condition� one selects another curve �� joining the



��� J� Heinonen

same points in R� n D� but in such a way that the union � � �� � ��
will link one of the polygonal circles forming the �translated
 	�skeleton
K�
s � Although at the �rst glance it seems clear that such a curve ��

exists� the selection is not totally trivial� it can be done however�

This linking contradicts the fact that any circle in D is contractible
in the complement of �� because � lies in R� nD� The theorem follows�

�� Open problems�

Problem �� Prove Theorem 	�	 in all dimensions n � �� This can be
accomplished if the next question admits a positive answer� Similarly�
in that case one can replace double cone points with inner cone points�

Problem �� Suppose that F is a compact set in Rn � n � �� and that
� � F � ��F 
 is a quasisymmetric embedding of F into Rn � Is it true
that the n�measure of ��F 
 is zero if the n�measure of F is zero�

The proof in �H
 of Theorem 	�	 would not only work in all dimen�
sions n � � but it would also tremendously simplify� should the answer
to this question be yes� In particular� no Sullivan theory of Lipschitz
approximations is needed� Note that the answer to the question is no
if n � 	�

Quasisymmetric maps are de�ned in ���	�
� and their basic theory
can be found in �TV	
� �V�
�

Problem �� What version� if any� of Theorem 	�� remains true if
we only assume that �D be of �nite H��measure� By using the tree
construction amended by a certain bubble blowing procedure� it is not
hard to construct a quasiconformal Jordan domainD in Rn � n � �� such
that the boundary �D has a purely unrecti�able piece of positiveHn���
measure that transforms onto a set of Hausdor� dimension zero under
a quasiconformal map f � D � B

n � and that the complement Rn n D
has no points of n�density on �D� However� I have only been able to
construct D in such a way that its boundary has ���nite Hausdor�
Hn���measure�

Problem �� Let f be a quasiconformal map of B n onto a Jordan
domain D in Rn � n � �� and suppose that the boundary of D has �nite
Hn���measure� When is f

�� � �D � �B n absolutely continuous� The
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best known result to the author is the case when �D is �n� 	
�regular
as de�ned in ���	�
� Then f is not only absolutely continuous� but it
induces a measure that is A� related to Hn��� This result is essentially
due to Gehring� �See �S� ���
 or �H� ���

� From the point of view of
boundary behavior� regularity is a strong assumption� It does not cover�
for instance� maps that can be extended to global quasiconformal maps
of Rn �

Problem �� Prove the Wall Conjecture in all dimensions� Related to
this� Jussi V�ais�al�a has proposed the following generalized Wall Conjec�

ture� abbreviated WC�n� p
� for all integers n � � and 	 	 p 	 n � ��
Suppose that G is a homologically trivial open set in Rn � n � �� and
suppose that Rn �f
gnG is inner �k� c
�joinable for all � 	 k 	 p� 	�
Then the conjecture WC�n� p
 states that

���	
 Hp��

�
B�x� � dist�x� �G

 � �G

�
� C�c� n
 dist�x� �G
p��

for x � G� The notion of inner joinability was introduced by V�ais�al�a in
�V�
� where we refer the reader for a precise de�nition� It su�ces to say
here that the inner ��� c
�joinability is precisely the c�LLC� condition�
Thus V�ais�al�a�s Theorem ��	 implies that WC�n� 	
 is true� It is also
not hard to see that WC�n� �
 is true� note that in this case the second
requirement about joinability becomes empty� while the �rst require�
ment about G being homologically trivial implies the connectivity of
the complement of G�

All other cases of WC�n� p
 are open� The wall conjecture as stated
in �	��
 would follow from WC�n� n� �
� because V�ais�al�a has shown in
�V�
 that the complement of a quasiconformal ball is �k� c
�joinable for
all � 	 k 	 n� ��
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Added in Proof� After this paper was submitted� two relevant de�
velopments took place� First� Semmes �Semmes� Quasisymmetry� mea�
sure and a question of Heinonen� this issue
 solved Problem � above�
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its consequences are discussed in �Heinonen� A Theorem of Semmes
and boundary absolute continuity in all dimensions� this issue
� In par�
ticular� Problem 	 is now solved as well� Second� V�ais�al�a �The Wall
Conjecture on Domains in Euclidean Spaces� Preprint� University of
Helsinki� 	!!�
 solved the generalized Wall Conjecture as in Problem
� above� As a joint consequence of the results of Semmes and V�ais�al�a�
Theorem 	�� is true in all dimensions n � �� verifying the conjecture
made on page � before Theorem 	��� Namely� assuming the Wall Con�
jecture� the case n �� � is already proved in the present paper� and the
case n � � can be handled by the aid of the aforementioned result of
Semmes as in �Heinonen� this issue
�
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