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Abstract. In this paper a quite complete picture is given of the ab-
solute continuity on the boundary of a quasiconformal map B® — D,
where B? is the unit 3-ball and D is a Jordan domain in R with bound-
ary 2-rectifiable in the sense of geometric measure theory. Moreover,
examples are constructed, for each n > 3, showing that quasiconformal
maps from the unit n-ball onto Jordan domains with boundary (n—1)-
rectifiable need not have absolutely continuous boundary values.

1. Introduction.

Suppose that f is a quasiconformal homeomorphism of the open
unit ball B” of R™ onto a bounded domain D in R®. Then f extends
homeomorphically to the boundary 90B™ if and only if D is bounded
by a topological (n — 1)-sphere [V1, p. 61]. Should such an extension
exist, we denote it by f as well, and call D a Jordan domain or a
quasiconformal Jordan ball. Suppose now that the boundary of D has
finite Hausdorft ‘H,,_i-measure. We say that f is absolutely continu-
ous on the boundary if f carries sets of H,,_;-measure zero on 0B"
to sets of H,_i-measure zero on dD. If n = 2 and f is conformal,
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the boundary correspondence is absolutely continuous according to the
classical theorem of F. and M. Riesz [R]; but if f is merely quasiconfor-
mal, it is well known, and first observed by Beurling and Ahlfors [BA],
that the boundary correspondence need not be absolutely continuous
even when f is a self-homeomorphism of a disk. The situation is quite
different in higher dimensions. For instance, if f is a quasiconformal
self-homeomorphism of B"™, the boundary map is a quasiconformal map
of S"=1 = OB" onto itself, and hence preserves sets of (n — 1)-measure
zero, provided n — 1 > 2. It is therefore natural to ask what conditions
on dD are needed in order to have the absolute continuity of the bound-
ary map f : 0B" — 0D when n > 3. For instance, is it sufficient that
0D be of finite H,,_1-measure? In the present paper, which is a sequel
to [H], a rather complete solution to this problem will be provided in
dimension n = 3 in the case when the boundary of D is 2-rectifiable
in the sense of geometric measure theory. It will also be shown that a
direct analog of the F. and M. Riesz theorem is false for quasiconformal
mappings in all dimensions. For the record, we shall only be dealing
with the absolute continuity of the map f : 0B™ — 9dD. It still remains
widely open under what conditions the map f=! : 9D — 9B" is abso-
lutely continuous. Further open problems are listed in the end of the
paper in Section 6.

Before proceeding, let us review the prior results in this area. So
assume that f is a quasiconformal mapping of B" onto a Jordan do-
main D whose boundary has finite H,,_;-measure, and assume that
n > 3. Gehring showed in [G2] that the boundary correspondence
f : OB™ — 0D is absolutely continuous if f has a quasiconformal ex-
tension to a neighborhood of 0B"™. Viisila [V2] arrived at the same
positive conclusion under the less restrictive assumption that f be qua-
sisymmetric on B". (Recall that quasisymmetry is a global condition
as opposed to quasiconformality which is local; see (3.13) below for the
definition of quasisymmetry.) In [H] it was shown that the answer is
likewise affirmative if H,,_i-almost every point on 0D is a “two sided
cone point”, and if n # 4. To make this supposition more precise, we
next fix some notation. Let L be a line in R” through a point a and let
0 <s<1. Set

Cla,L,s)={x € R": dist(z,L) < s|a— x|} .
The point a divides the line L into two pieces, which we shall call LT

and L~. The orientation of the line plays no role in our arguments, so
this choice is arbitrary. We write

Cla,LT,s) = {x e R" : dist(x, L") < s|a — x|},
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and similarly for C(a,L™,s). Thus C(a, L, s) is the union of the two
infinite open cones C(a, L™, s) and C(a, L™, s) with s determining the
angle opening. We also use the notation

C(a,r,L,s)=C(a,L,s)N B(a,r),

C(a,r, L%, s) =C(a, L*,s) N Bla,r).

Here and throughout B(z,t) will denote the open n-ball which is cen-
tered at z and has radius ¢ > 0.

We say that a set £ C R™ has a double cone at a point a € E,
or that a is a double cone point of E, if there are L, s, and r, possibly
depending on a, such that ENC(a,r, L,s) = @.

The following theorem was proved in [H].

Theorem 1.1. Suppose that n = 3,5,6,... and that f is a quasicon-
formal mapping of B™ onto a Jordan domain D. Let Cp denote the
set of double cone points of 0D. Then for any set A C Cp we have
that Hy_1(A) = 0 if and only if Hn_1(f~1(A)) = 0. In particular, if
H,,_1-almost every point of 0D is a double cone point of 0D, then the
boundary map f : OB™ — 0D is absolutely continuous.

It follows from Theorem 1.1 in particular that if 0D admits a tan-
gent plane at H,,_1 almost every point, then the boundary correspon-
dence of f is absolutely continuous. If f is quasisymmetric, it follows
from the results in [V2] that 0D admits tangents almost everywhere, if
it has finite H,,_; measure. Hence Theorem 1.1 contains the aforemen-
tioned results of Gehring and Vaisala in dimensions n # 4. The proof
in [H] works in all dimensions n > 3 for mappings that are bi-Lipschitz
in the quasihyperbolic metric; by the aid of the Sullivan-Tukia-Vaisala
approximation theorem the general quasiconformal case can be reduced
to this case in dimensions different from four. Unfortunately, I have not
been able to dispense with this reduction, and consequently, there is no
proof of Theorem 1.1 in dimension n = 4 (see Added in Proof at the
end of the paper).

Geometric measure theory has taught us that the right concept
of rectifiability is expressed in terms of “approximate tangents”. If
E C R, we say that an (n — 1)-plane V in R™ is an approzimate
tangent plane for E at a if a is a point of H,,_1 density of £ and if

lim Hn 1 (ENB(a,r)\C(a,V,s))

r—0 pn—1

=0,
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for all 0 < s < 1, where
C(a,V,s)={z e R": dist(z,V) < sla —z|}.

If such a plane V exists, it is unique and we denote it by apTan(E, a).
Intuitively, apTan(E, a) is a plane that approximates F near a except
for some leftover part which has zero H,,_;-density along each cone
with vertex at a and axis perpendicular to the plane apTan(FE, a).

In this paper we shall call a set (n—1)-rectifiable (or sometimes sim-
ply rectifiable if there is no danger of misunderstanding the dimension
of the set) if it has finite H,,_;-measure and if it admits an approximate
tangent plane at H,_j-almost all of its points. We refer to [F] and [M]
for more information about rectifiable sets. (Warning: the terminology
in both [F] and [M] is slightly different.) It suffices to mention here that
a set E of finite #,,_;-measure in R" is (n—1)-rectifiable if and only if it
is contained in a countable union of Lipschitz images of R"~! inside R™.
Moreover, every set of finite H,,_i-measure can be decomposed into a
rectifiable and a purely unrectifiable part, the latter being a set whose
intersection with any rectifiable set in R™ has zero H,,_i-measure.

Next, we say that a boundary point a of a domain D is an inner
cone point if there are L, s and r such that C(a,r, L™, s) lies in D.
Moreover, we say that a is an inner tangent point of D if there is a line
L with the following property: for each s < 1 there is » > 0 such that
C(a,r,L*,s) lies in D. In this case the half line Lt can be called an
interior normal line to 0D at a. Naturally, LT need not be unique.

The following theorem is the first main result of this paper.

Theorem 1.2. Suppose that f is a quasiconformal mapping of B>
onto a Jordan domain D with 2-rectifiable boundary. Then we have a
decomposition of 0D into three disjoint sets,

0D =EyUE; UE;,

where Ey has Ha-measure zero, E1 consists of points of inner tangency
of D, and E5 consists of points of 3-density of R® \ D. The Hausdorff
dimension of f~1(Es) is zero, and for a set A C E; the preimage
f~Y(A) has Ha-measure zero if and only if A has Ha-measure zero.

In other words, if D is a Jordan domain in R® with 2-rectifiable
boundary and if f maps B® quasiconformally onto D, then, apart from
an Ho-null set, the boundary 9D consists of the “good part”, where f
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and f~! both are absolutely continuous, and the “bad part”, which is
easily detected and which is responsible for the possible failure of the
absolute continuity of f|gg:. Thus the only way the absolute continuity
can fail for domains with rectifiable boundary is to have a situation
where the bad part F5 is non-empty and has positive Hy-measure. The
next theorem says that such situations can occur.

Theorem 1.3. For each n > 3 there is a Jordan domain D in R™
such that D is quasiconformally equivalent to B"™, that 0D is (n — 1)-
rectifiable, and the set

(1.4) Ey; ={a € 0D :a is a point of n-density of R" \ D}

has positive H,,_1-measure. Moreover, the preimage f~1(Es) under any
quasiconformal map f from B onto D has Hausdorff dimension zero.

Theorem 1.3 answers negatively to an inquiry of Baernstein and
Manfredi [BM, p. 846]. It also shows that Theorem 1.1 is quite sharp.
(Note that if 9D has finite H,,—;-measure and if it admits double cones
at H,,_1-almost everywhere, then it is (n—1)-rectifiable; see [M, Lemma
15.13]). Of course, it is easy to construct Jordan domains with the
measure theoretic properties as in Theorem 1.3; the nontrivial part is
to show that some of them can be mapped quasiconformally onto a ball.

The fact that f~!(E;) has Hausdorff dimension zero in Theorems
1.2 and 1.3 is a recent result of Koskela and Rohde [KR]. They prove,
among other things, that the preimage of the set E5 as described in
(1.4) has zero Hausdorff dimension always; that is, in all dimensions
and for all quasiconformal mappings f : B* — D (with boundary values
properly interpreted if D is not Jordan). In our situation, it would be
much easier to show that f~!(E2) has H,,_;1-measure zero. In fact, the
method described in this paper shows that one can construct a domain
D as in Theorem 1.3 such that H,,_1(Es) is positive and that f~!(Fy)
has zero Hausdorff Hj-measure for any prescribed Hausdorff measure
function h. The construction of the domain is based on the ideas of
Viiséld in [V4], where he constructed a quasiconformal Jordan ball
whose boundary has positive n-measure. The elaboration of Vaisala’s
method presented here leads to a general “tree and pipeline” procedure
to build quasiconformal balls and may be of independent interest.

One may ask whether the assumption in Theorem 1.2 that 9D be
2-rectifiable can be relaxed to the assumption that Ho(9D) be finite. 1
do not know the answer. An example can be constructed to show that
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the assumptions in Theorem 1.2 cannot be relaxed to “D is Jordan and
0D has o-finite Hausdorff H,,_1-measure”.

I conjecture that Theorem 1.2 is true in all dimensions n > 3. In
the present paper, the argument for Theorem 1.2 relies in a crucial way
on the following local description of the boundary of a quasiconformal
Jordan ball (see Added in Proof at the end of the paper).

Theorem 1.5. Suppose that D is a Jordan domain in R® which is
homeomorphic to B® via a K -quasiconformal map. Then for each z € D
we have the estimate

(1.6) Ho(B(z,2dist(x,0D)) N ID) > C(K) dist(z,dD)?.

Theorem 1.5 is interesting in its own right. It quantifies the fact
that the boundary of a quasiconformal ball cannot have lower dimen-
sional parts protruding inwards. It has also led Jussi Vaisala to make
general conjectures about isodiametric inequalities for sets that satisfy
certain connectivity conditions; see (6.1) below. I make the following
conjecture involving quasiconformal mappings.

1.7. Wall Conjecture for Quasiconformal Balls. If D is a domain
in R™ that is homeomorphic to B" via a K-quasiconformal map, then
for each x € D we have the estimate

(1.8)  Hp_1(B(z,2dist(x,0D))NOD) > C(n, K) dist(z,0D)" " .

Note that the conjecture is true for n = 2 for quite trivial rea-
sons; namely, there is a big connected piece of the boundary inside
B(z,2dist(x,dD)). The conjecture is also true for n = 1, when prop-
erly interpreted. Despite some effort, I have not been able to prove
the conjecture for n > 4. Assuming that it is true even in the weaker
form where the constant C(n, K) in (1.8) is allowed to depend on D,
the proof for Theorem 1.2 will work mutatis mutandis for all n > 5.
Dimension n = 4 has to be excluded for the same reason it is excluded
in [H]: at some point in the proof we need to resort to the fact that in
dimensions n # 4 quasiconformal maps of B", say, can be replaced by
locally bi-Lipschitz quasiconformal maps without changing the bound-
ary values.
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It follows from Theorem 1.5 and standard capacity estimates that
every quasiconformal Jordan ball in R? is regular for the Dirichlet prob-
lem for the Laplacian; in fact, it is regular for the p-Laplace equation
for all p > 1. It is not true that an arbitrary Jordan domain in R? is
regular for the Laplacian as the well known Lebesgue’s spine demon-
strates. If the Wall Conjecture 1.7 is true, then quasiconformal Jordan
balls are regular for the p-Laplacian in all dimensions and for all p > 1.
I thank Pekka Koskela for pointing out this application.

Finally, I wish to point out the recent interesting paper by Han-
son [Ha], where rectifiability (Hanson uses a weaker notion here) of the
boundary of a quasiconformal Jordan ball is tied up with the behav-
ior of the average derivative ay in the classical spirit. Recall that the
rectifiability of a Jordan curve I' in the plane is equivalent to the mem-
bership of f’ in the Hardy class H! for any conformal map f from the
unit disk onto the domain bounded by I". Hanson proves in [Ha| that
among all quasiconformal Jordan balls D in R*, n > 3, that are also
so-called uniform domains, the finiteness of H,,_1(9D) is equivalent to
the membership of the average derivative ay in a “Hardy space” H n—1
if f maps B" quasiconformally onto D. (We refer to [Ha| for a precise
definition for these concepts.) Many relations between ay, rectifiability
and absolute continuity remain to be sorted out. In particular, it is
plausible that Hanson’s theorem indeed requires some extra assump-
tions on D. Hanson [Ha, (5.8) p. 140-141] also advances a conjecture
about quasiconformal mappings that is similar to the wall conjecture
1.7. It is not clear what the relationship between these two conjectures
are.

2. Outline of Proof for Theorem 1.2.

In this section the main points in the proof for Theorem 1.2 are
sketched for the expert’s convenience.

Assume that the Wall Conjecture 1.7 is true. We know that H,,_1-
almost every point on 0D has an approximate tangent plane. We let
Ey be the exceptional set, and E5 the set consisting of the points of
n-density of the complement of D. For the first part of the theorem,
it suffices to show that each point in £y = 0D \ Ep U Es is a point of
inner tangency for D. If this is not the case, there is a point a € E;
and a line L which is perpendicular to apTan(0D,a) and so oriented
that the cone C(a,r, LT, s) intersects the boundary dD for arbitrarily
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small » > 0 and for some fixed s. By (1.8), to each Whitney cube of the
open set D, = DNC(a,r,L™,s) there corresponds a substantial piece
of the boundary lying in a cone C(a,r, L™, s") with somewhat bigger
opening s’ < 1. Because a is not a point of density of R™ \ D, the set
D, is indeed nonempty and has n-measure comparable to r". Now the
boundary pieces are essentially disjoint, and their H,,_;i-measures add
up to something which is comparable to 7™ ~1. This contradicts the fact
that 0D admits an approximate tangent plane at a.

The second assertion of Theorem 1.2 is an improvement to Theo-
rem 1.1 which says that f and f~! preserve sets of zero #,,_,-measure
on double cone points. The proof given in [H] requires double cone
points, but, below in Section 3, I give a sharpening of that argument
which only needs interior cones, in the presence of approximate tan-
gents. The technical argument of [H] can be shortened somewhat, but
the basic idea is still the same. Suppose, for instance, that there is a
subset A of interior cone points of dD of positive H,,_1-measure such
that f=!'(A) has zero H,_i-measure. After a standard reduction, we
may assume that A lies on the boundary of a bi-Lipschitz ball contained
in D, hence we may assume without loss of generality that A lies on the
boundary of a round ball B contained in D. Then we use the assump-
tion that n # 4 and replace f by a locally bi-Lipschitz quasiconformal
homeomorphism F' which agree with f on the boundary. The technical
point, as in [H], is to show that F~1(B) = Q is a uniform domain with
“nice” boundary in B"; the niceness is defined in terms of the following
Ahlfors-David regularity condition:

C'R" ' < H,_1(B(z,R)n9N) < CR"*

for each x € 02 and 0 < R < diam 2. This condition and known results
on quasisymmetric maps onto regular surfaces guarantee that F'|aq is
absolutely continuous, contradicting the hypothesis. In establishing
this technical point, we use a Hayman-Wu type “spotting” technique
and a Carleson measure argument; the main difference from [H] is that
now we have to make use of the approximate tangent planes in place of
the exterior cones. More details will follow in the next section.

3. Proof of Theorem 1.2.

The ensuing proof works in all dimensions n > 3, under right
assumptions. Thus, assume that f is a quasiconformal mapping from
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B™ onto a Jordan domain D with rectifiable boundary. Also assume
that D satisfies (1.8) for some constant C, possibly depending on D.
By Theorem 1.5 this is always true in dimension n = 3. Then the
conclusion is that the boundary 0D decomposes as in Theorem 1.2
with f~1(Es) having Hausdorff dimension zero. If in addition n # 4,
then the absolute continuity of f|s—1(g,) and f~!|g, is also true as in
Theorem 1.2.

To begin the proof, let Ey denote the set on D where 9D does not
admit approximate tangent planes. Then FEy has H,_i-measure zero.
We divide 0D \ Ey into two subsets F; and Fj, where Es consists of
the points of n-density of the complement of D in R", and F; is what
remains. Our first task will be to show that every point in F is a point
of inner tangency for D.

3.1. Inner tangency of points in Fj.

Pick a point @ € E;. Let L be the line through a which is perpen-
dicular to the approximate tangent plane for D at a. Fix 0 < s < 1.
We need to show that there is 7 > 0 such that one of the two compo-
nents of the double cone C(a,r, L, s) is contained in D. Because a is
not a point of n-density for the complement of D, and because dD has
finite H,,_1-measure, we can assume, by making s larger if necessary
and by choosing an appropriate orientation for L, that

n(Cla,r, LT, s)N D
(3.2) limsupH (Clar *) )

r—0 rh

> 0.
Next, we suppose that
oDNC(a,r, LT, 5) # &

for all r > 0 and then show that this leads to a contradiction with the
fact that

=0

n—1(0DNC Lt s
(33) lim H 1( (?7 r, ) S ))
r—0 rn—
for all 0 < &' < 1.
To this end, let D, = C(a,r, LT, s)ND and observe that D,. # & by

(3.2). Suppose first that for each x € D, the ball B, = B(z, dist(x,0D))
satisfies

(3.4) diam B, < edist(By,a),
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where € = €(s) > 0 is so small that (3.4) implies
2B, C C(a,2r, L™, (1+5)/2).

By standard covering theorems (see [M, Chapter 2]), we can choose a
countable collection {B; : i = 1,2,...} of balls of the form B, such
that

D, C U2Bi
7

and that

> Xop, @) < C).

The latter condition simply says that no point in R® belongs to more
than C(n) balls of the form 2B;. Therefore, by assumption (1.8),

Hnu1(OD N C(a,2r, LT, (1+5)/2)) > C™1>  Hyu_1 (0D N2B;)
> C71) (diam B;)"!

> C~1 (Z(diam Bi)") (n=n/m

7

> Y (H, (D,)) =D/

Because the constant C' > 1 above is independent of r > 0, we contra-
dict (3.3) with the aid of (3.2).
We may thus assume that

diam B, > e dist(B;, a)

for some © € D, and B, = B(z,dist(z,0D)). In this case a simple

geometric argument proves the existence of a point y € D, and a ball
B, = B(y, dist(y,dD)) that belongs to C(a,r, L™, s) and satisfies both,

2B, C C(a,2r,L*, (1+5)/2)

and
C~'diam B, < dist(By,a) < Cdiam By,

for some C' > 1 depending only on n and s. Thus we deduce that, for
some 1’ < r,

Hp_1(0D N C(a,2r' LT, (14 5)/2)) > Hp_1(0DN2B,) > C~ "1
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by assumption (1.8). Moreover, C' > 1 is independent of r and 7’. This
again contradicts (3.3) and we have shown that a is a point of inner
tangency of D.

3.5. Absolute continuity in the inner tangency set F;.

Recall that the fact that f~1(E;) has Hausdorff dimension zero is
due to Koskela and Rohde [KR]. To complete the proof of the theorem,
it thus remains to show that f and f~! are absolutely continuous in the
sets f~1(F1) C OB™ and E; C dD. The proof here has the same idea
as in [H]. In that paper, however, the absolute continuity was proved
in the set of double cone points, and the existence of an exterior cone
was also essentially used there. In the present situation we only have an
interior cone to rely on. The supporting role of the exterior cone is taken
here by the approximate tangent plane, which exists at each point in
FE4. This change forces us to make some technical modifications to the
proof in [H|. It would be unreasonable to repeat here all the details of
[H], and I apologetically ask the reader to consult that paper whenever
necessary. The good news is that the most technical part of the proof
of [H, Lemma 3.1] has now been simplified somewhat.

Let us begin with the following lemma.

Lemma 3.6. Let a be a point in E, and denote by T, the approrimate
tangent plane apTan(0D, a). Then

lim sup inf M =0.
r—0 vET,,|lv—al=r |U — a|
ProoF. This lemma looks trivial but a little thinking shows that it
need not be true if we replace D by an arbitrary (n — 1)-rectifiable
set. In any event, the ensuing proof is quite easy.
Suppose on the contrary that there is § > 0 and a sequence of radii
(r;), r; = 0 as i — oo, such that

dist(v, 0D)

v al

> 6,

for all v € T, with |v — a| = r;. Then the dr;-neighborhood U; of the
(n —2)-sphere 0B(a, ;) N T, does not meet D. Because a is a point of
inner tangency of D, it follows that U; C D for all large 7. Let L™ be the
interior normal line at a, perpendicular to 7,. Fix s so close to 1 that
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U; meets C(a, LT, s) for all large 7, and then choose 7; > 0 so that the
cone C(a,r;, L™, s) is contained in D. Clearly C(a,r;, L™, s) cannot be
contained in D, for otherwise the connected open set U; U C(a,r;, L, s)
is contained in D for all large ¢ and separates the point a from the part
of the boundary that lies outside B(a,r;). Thus, for arbitrary small
r; > 0 we have that

Cla,r;yy L™,8)NOD # @.

Using assumption (1.8) on the thickness of the boundary, this leads to
a contradiction with an argument similar to that in the end of the proof
in (3.1). (Note: the analog of (3.1) in the present case is guaranteed by
the size of U;.) The lemma follows.

3.7. Reduction to a ball.

Suppose now that A C FE, has positive H,,_; measure. We need
to show that f~!(A) has positive H,,_i-measure as well. And this is in
fact all that needs to be shown in detail, for the case

ACE; and H,_1(A) =0 implies H,_1(f~*(4)) =0

is treated similarly.

A standard measure theoretic trick guarantees that there is a sub-
set Ay C A of positive H,,_i-measure which lies on the boundary of
a bounded starshaped subdomain €y C D. The domain 2y can be
mapped onto a ball by a bi-Lipschitz self-map of R™. Because bi-
Lipschitz maps preserve rectifiability and sets of positive Hausdorff
measure, we can assume, originally, that A lies on the boundary of
a ball By contained in D. See [H, Proof of Theorem 4.3] for more
details here.

Next we form a Stolz domain €2 in By, associated with A the usual
way. That is, 2 consists of all the open rays with one end point in By /2
and the other in A. Then € is a bi-Lipschitz ball contained in D and
containing A on its boundary. (Note that the round ball By already
satisfies these conditions and it would be nice if we could manage with
By alone. It is the proof below in (3.14) that needs a domain like €2
which is safely inside By.)
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3.8. Bi-Lipschitz maps in the quasihyperbolic metric.

Now we use the assumption n # 4. The Sullivan-Tukia-Vaisala
approximation theorem [TV2, 7.12] provides us with a quasiconformal
map F': B" — D such that

(3.9) kp(f(z), F(z)) < 1
and that
(3.10)  C'kp(F(x),F(y)) < ken(z,y) < Ckp(F(z),F(y)),

for all z and y in B™ and for some C = C(n, f) > 1. Here kg denotes
the quasihyperbolic metric in a domain G, defined by the metric density
dist(z, 0G)~!|dx|.

Condition (3.9) guarantees that f and F' have the same boundary
values and (3.10) says that F' is bi-Lipschitz in the quasihyperbolic
metrics. We deduce that there is no loss of generality in assuming,
originally, that the mapping f satisfies (3.10).

3.11. Regular surfaces and subinvariance.

Write ¢ = f~!. The main bulk of the proof consists of showing
that the boundary 0¢(f2) is an Ahlfors-David (n — 1)-regular set; that
is, there is a constant C' > 1 such that

(3.12) C'R" ' < H,_1(B(x,R)Ndg(Q)) < CR™*,

for all z € 9g(2) and 0 < R < diam g(2).

Suppose for a moment that this has been accomplished. The proof
is then finished as follows. The subinvariance principle for quasicon-
formal maps guarantees that g|qo : © — ¢(€2) is a quasisymmetric map,
which means that

(3.13) |z —y| <t|lr—z| implies [g(z)—g(y)| < n(t)lg(x) —g(2)|

for all points z,y,z € Q and for some homeomorphism 7 : [0,00) —
[0,00). (See [FHM, p. 120-121] and [V3, Theorem 5.6]). Clearly (3.13)
will continue to hold for all points in the closure €2, so that g|aq : 02 —
o€ is quasisymmetric as well. Because 02 is a bi-Lipschitz (n — 1)-
sphere and because dg(£2) is (n—1)-regular in the sense of (3.12), we can
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invoke known results about quasisymmetric maps in such situations to
conclude that H,,_1(E) > 0 if and only if H,,_1(g(E)) > 0 for E C 09.
(See [S, 3.4] or [H, 2.7]).

We conclude, therefore, that it remains to prove the regularity
(3.12) of 0g(Q).

3.14. Proof of regularity of dg(Q2).

We begin by making two more reductions. Fix ¢ positive and
small, to be determined later. By Lemma 3.6 there is, for each a € A,
a positive number r, such that

(3.15) dist(v,,0D) < €|v, —al,

for some v, € T, N0B(a,r) and for all 0 < r < r,. Then
A= U{aEA:ra>1/j},
j=1

and we may assume that there is 6 > 0 such that r, > § > 0 for all
a € A. We assume further that each point in A is a point of H,_1-
density on 0By (recall that A lies in the smooth hypersurface 0By and
has positive H,,_1-measure).

The left inequality in (3.12) follows from the quasisymmetry of g
in 0 by a result of Viiséld [V2, 5.2]. The right inequality in (3.12)
follows by standard arguments using (3.10) from the following lemma
(for the details, see [H, p. 1564-65]).

Lemma 3.16. Suppose that (x;) is a hyperbolically separated sequence
of points on 0S); this means that there is T > 0 such that

(3.17) B(x;, Tdist(z;,0D)) N B(xj, Tdist(z;,0D)) = @
whenever i« # 5. Then there is C' > 1 such that

(3.18) > @-lg(x)h)"t < C(diamB)" ',
g(z;)€EB

for all n-balls B centered on OB".
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One should notice that in (3.18) the constant C' > 1 can, and
usually will, depend on everything else but on B.

Thus, fix a ball B, centered at some point on 0B™. Henceforth C'
will denote any positive constant that is independent of B and also of
index i. The goal is to find for each z; in g=}(B) = f(BNB") its own
spot S; on 0D such that the following three conditions hold:

(3.19) D Xs, (@) £ C,

that is, no point in R™ belongs to more that C' spots S; ;
(3.20) g(S;) CcCBNJB™,

that is, the image of each spot S; will not land far from B under the
map ¢ ; and

(3.21) (L= lg(@))" ™" < CHa1(9(Sh)),

that is, the Hausdorff measure of the image g(S;) C OB" essentially
dominates the term (1 — |g(z;)])"~! of the sum in (3.18).

It is clear that (3.18) follows from (3.19)-(3.21).

Before we start describing the spots S; with desired properties, we
make two observations.

3.22. Hyperbolic freedom.

There is never any harm in replacing any of the points z; by a
point z; for which

(3.23) kD(.Ti,ffi) < C,
because it is easily seen that (3.23) implies
(3.24) (1 —lg(z:)]) < C(1—[g(z2)]).

The replacement may cause us to diminish the value of 7 in (3.17) a
little bit, but such adjustments are left to the reader.
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3.25. Generational gaps.

Upon dividing (z;) into generations G,,
x; €G, ifandonlyif dist(x;,0Bg) € (2777 1,27"], veZ,

we can assume that

(3.26) G, =@ for v<C,
and that
(3.27) Gu, # @ # G, implies v; =v;or |y —v;|>C.

Above, C should be thought of as a large constant, to be adjusted later.
Condition (3.26) means that we only have to worry about those points
x; that lie near the boundary of By, and (3.27) says that we can assume
that there are large generational gaps. In short, we assume that G, is
nonempty only if v is positive and a constant multiple of a large integer.
We shall construct the spots S; in such a way that S; and S; are disjoint
whenever they correspond to points in different generations, and that
the finite overlap condition (3.19) holds for spots S; corresponding to
points from the same generation.

3.28. Determining points z;.

We shall associate to each point z; in our sequence two more points,
w; and z;, of which the latter will play a more important role. To get
a mental picture,

€x; ~ w; € 0B ~ zi € 0D.

The point w; is simply the closest point to xz; on 0By, and z; is a closest
point to w; on dD. Of course, it may happen that w; = z;. Before we
fix these, however, we need to make some adjustments to the sequence
(x;) in the spirit of (3.22).

Thus, pick a point x;. Let w; be the closest point to x; on 9By,
and let a; be the closest point to xz; on A. Because each point in A is
assumed to be a point of H,,_1 -density, it is clear that the approximate
tangent plane Ty, is also tangent to 0By at a,;. By choosing the constant
C in (3.26) large enough, we may assume that
(3.29) dist(w;, Ty,) < € |w; — a;],

A
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where € > 0 is as in (3.15).
Let w] be the point where the ray emanating from the center of
By and passing through x; meets T,,, and let

/ /
r; = |a; —wj.

Again, by making the constant C'in (3.26) large enough, we may assume
that r, < § for all 4, where 0 is defined just after (3.15). Thus we can
find a point v; € Ty, N OB(a;, ;) such that

i
diSt(Uz‘,aD) <e¢€ |Uz' - ai| .

Now let z; be the point on the line segment from v; to the center
of By such that
dist(Z;, 0By) = dist(z;, 0By) .

It is easy to see that
kp(xi,z;) < C.

Therefore, by the discussion 3.22, we may assume, originally, that
dist(w}, 0D) < € |w; — a4
and hence that
dist(w;, 0D) < |w; — wi| + ¢ |w] — a;| < 2 |w; — a4],

provided that C' in (3.26) is large enough, depending on e. Next, let z;
be a point on dD such that

|Zi — U),| = dist(wi, 8D)
and observe that
(3.30) |zi — w;| < 2e|w; — a4

At this point we could invoke the argument in [H, Main Lemma
3.1] which applies in the present situation. The double cone condition
there was used only to guarantee the existence of the points z; satisfying
(3.30). For the reader’s convenience, however, I shall sketch below a
somewhat different and perhaps easier argument for the rest of the
proof.
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Towards this end, we require the following lemma which is proved
in [HK, 6.6].

Lemma 3.31. Let x € D. There is a constant C' > 1, depending only

on n and on the dilatation of f, such that

1
Hy—1(g(B(z,Cdist(z,0D)) NOD) N Agy) = = Hn-1(Dy))

[\)

where Ay () 18 the surface cap,
Byta) = Blole),3(1 — lg(x)])) n OB"

Now fix 0 < A < 1 and let u; be the point (1 — A)zg + Aw; in By,
where z is the center of By. We have

dist(u;, 0D) < |u; — wi| + |w; — 2| = (L= A) + 2¢ |w; — a;] .
By choosing A = \; such that

(1 —X;) = edist(z;,0By),

we find that
(3.32) dist(u;,0D) < edist(z;,0By) + 2¢|w; —a;] < 10€ |w; — a;] .

Finally, define S; by

9(8;) = g(B(ui, C dist(u;, D)) N OD) N Ay, 5

where C' is as in Lemma 3.31. We easily infer by choosing € > 0 small
enough, by observing the generational gap (3.27), Lemma 3.31, formula
(3.32), and the geometry of Q that this choice of S; will satisfy (3.19)-
(3.21). Of course, we need to observe here that

kp(u;,z;) < C,

as well as the assumed hyperbolic separation (3.17) of the points z;.
The details are left to the interested reader.
This completes the proof of Theorem 1.2.
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4. A class of quasiconformal balls — proof of Theorem 1.3.

In this section I exhibit a general method to build quasiconformal
balls. As mentioned before, the method described below is essentially
due to Viiséld who constructed a single interesting example in [V4]; the
main idea of blowing up towers with moderate dilatation is of course
old and goes back to the early articles of Gehring and Véiséla [GV]. My
contribution is simply to axiomatize the construction done in [V4], and
then point out how one obtains this way examples that are relevant to
the boundary absolute continuity problem.

4.1. Admissible trees.

An admissible tree in R™ is a tree around which one can build a
quasiconformal ball. A precise definition follows shortly. In the ensuing
discussion, all line segments are assumed to be finite and closed. We
shall work in R™ for any n bigger than one, although the Riemann
mapping theorem trivializes the discussion for n = 2.

Let Lo be a line segment in R” and fix a € (0,7/2]. Set Jy =
{Lo}. Suppose next that a finite collection J; of line segments has
been determined for all : = 0,...,k. Let L € Jx be a line segment.
Attach a finite number of line segments Ly, ..., L, to L in such a way
that

1) exactly one of the end points of each L; lies on L \ {the end
points of L};

2) the angle between each L; and L is at least o > 0

3) all line segments L; are mutually disjoint and none of them
meets any line segment from JyU - --U Jy except their parent L at one
end point.

We further stipulate that all the children of all line segments from
Jr as described above are mutually disjoint; they form the collection
Tk+1-

We call the set

oo
To=T=]J %
k=1

an admissible tree with branching angle « if it is a bounded set, con-
structed by the above rules 1)-3), and has the additional property that
each line segment L from T retains a positive distance (depending on
L) to all other line segments from 7', save its immediate family (that
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is, its parent and children); more formally,

(4.2) dist(L, T \ {the parent of L and the children of L}) > 0

for each L € T. We understand that Ly has no parent and that there
can be childless line segments.

Next, denote by Fr the set of all points that lie “behind infinitely
many branches”. More precisely, x is in Fp if x is a cluster point of
infinitely many line segments from 7.

Theorem 4.3. Given an admissible tree T, = T in R™, there is a
domain D in R such that

(4.4) TCD,
that
(4.5) Fpr COD,

and that D is quasiconformally equivalent to B"™ by a K -quasiconformal
map with K depending only on n and a.
Even more can be said.

Theorem 4.6. Given any admissible tree T,, =T in R", any continu-
ous nondecreasing function h : [0,1) — [0,1), h(t) — 0 ast — 0, and
any € > 0, there is a domain D in R™ satisfying (4.5) and (4.6), and
there 1s a quasiconformal map f from B™ onto D such that

(4.7) Ha(f~(Fr)) = 0
and that
(4.8) /Hn_l(aD \ FT) < €.

Moreover, one can choose f such that its dilatation depends only on n
and .

Above, Hj, denotes the Hausdorff measure obtained from the mea-
sure function h; see [F, 2.10].

Accepting Theorems 4.3 and 4.6, it is easy to construct examples
as in Theorem 1.3. For instance, one can take a totally disconnected
compact set F' in R*~! with positive H,,_1-measure, and then form an
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admissible tree having branches in the upper half space R} = {z € R" :
xy, > 0} such that the end points of these branches capture each point
in F'. It follows from the construction below that the boundary of the
associated domain D is a rectifiable (n — 1)-sphere, and that one can
arrange each point on F' to be a point of n-density for the complement
of D.

Many other interesting examples of quasiconformal balls can be
exhibited by the aid of the above theorems. For instance, the exis-
tence of quasiconformal Jordan balls with boundary having positive
n-measure is ascertained by the existence of pertinent admissible trees.
Viisild’s goal in [V4] was exactly to construct one such domain. V&iséld
was partly motivated by the following consequence of his construction:
there are mappings in the Sobolev space Wl 7(R™; R™) that do not pre-
serve sets of n-measure zero. Theorem 4.6 can be used to show that
mappings in W™ can blow up quite a miniscule set to a set of positive
n-measure. This is done by “folding” a mapping promised in Theorem
4.6, cf. [Re|, [V4, p. 206]. For a general discussion on this topic, see

We shall only prove Theorem 4.3. It should be clear how the details
need to be changed in order to achieve Theorem 4.6. Overall, we shall
rely on the carefully detailed argument in [V4].

4.9. Tower maps.

For h > 0 define the straight tower
T(h)y =AU B x[0,h]) C R",

where A = (—en)En_1 is the join of —e, = (0,...,0,—1) and the
closed unit ball of R*~!. If a € (0,7/2], a leaning tower T(h, ) is
obtained from the straight tower T'(h) by keeping the base A fixed and
tilting the upper part B! x [0, h] so that it makes angle o with the

hyperplane R*~1. We call A the basement, and B" " the floor, of the
tower T'(h, ). The terms wall and roof of T'(h,«) are selfexplanatory
when we make the convention that both these sets consist only of points
where OT'(h, ) is smooth, i.e. we ignore the corners.

A tower map is a quasiconformal map

(4.10) g:A—T(h )

such that g is the identity on the part of A that does not include
B . Strictly speaking, g is quasiconformal only in the interior of the
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basement A, but it extends so as to map A homeomorphically onto
T(h, ).

The existence of such a map is clear; what is crucial is that it can be
chosen so that its dilatation only depends on n and «g, if @ > ay > 0.
In particular — and this is the main point — the dilatation does not
depend on the height h of the (leaning) tower T'(h, ). Moreover, we
can choose g such that it is a diffeomorphism at every point in the
preimage of the wall of the tower. For an explicit construction of the
map g, see [V4, Section 3.

4.11. Flattening of walls and germs of similarity.

Suppose that a leaning tower 7'(h, c) is given and that {a1,...,ap}
is a finite subset of the wall of T'(h, @). One can modify both the tower
and the tower map in (4.10) so that it becomes a similarity in small

neighborhoods of the points a, = g71(a;) € B"~'. This is done as
follows. First one flattens out a small piece of the slightly curved wall
surface near each point a;. This does not cost much in terms of the
dilatation. Then, using the language of Vaisala, one can plant a germ
of similarity on g near each point a. This means that one can modify
the map g so that it becomes a similarity (in particular, conformal) in
a neighborhood of a;. Moreover, the planting can be done in such a
way that the cost in dilatation only depends on n and the dilatation of
the original map, that is, on n and a only in our case.

In sum, we can assume that given a tower as above and a finite
number of points on its wall, we have a tower map

(4.12) g: A =T (ha),

where the new tower T”(h,«) is being slightly flattened around the
given points. (We could call T"(h, ) a tilted pajupilli.) Moreover, g
is a similarity near those points and its dilatation only depends on n
and a lower bound for the tilt angle of the tower. On the part of the
boundary of the basement that lies in the lower half space, the map ¢
is still the identity.

The planting procedure is being described in detail in [V4, Section
2.
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4.13. Proof of Theorem 4.3.

Once we have the tower map (4.12) at our disposal, it is rather clear
how to continue the proof. Suppose that we are given an admissible
tree T, = T. First we map the unit ball under a quasiconformal map
fo onto a thin cylinder Cy about Ty such that the height of the cylinder
is the length of T, and that Ty is its axis. The dilatation of fy only
depends on n, and not on the height. We choose the cylinder Cy so
thin that all the children of Ly in J; stick out of it a good proportion
of their length, and that all the other descendants remain at a positive
distance from Lyg; this is possible by (4.2). We reiterate that Cy can be
made as thin as we please with no extra cost at the dilatation of fj.
Consequently, the surface area of Cy can be made as small as we please;
this observation is needed for Theorem 4.6.

Next, at the points a;, where the children L; of L leave the cylinder
Co, we flatten the wall of Ly and assume, as we may by the discussion
in 4.11, that fo_l is a similarity in a neighborhood U; of each point a;.
We place small similarity copies A; of A in all those neighborhoods U;
such that the origin in A corresponds to a; in A;. Usually the child L;
leaves the cylinder Cp in a tilt, and we place a thin leaning tower on
each A; such that L; is the axis of the tower and that the other end
point of L; lies on the roof of the tower. Any such tower is a similarity
copy of a tower of the form T'(h, @) described above in 4.9. We choose
these towers so thin that they do not meet other descendants but their
immediate children; again this is possible by (4.2).

Each base A; can be mapped quasiconformally onto the leaning
tower above it. For this we use the tower map g in (4.10) and ap-
propriate similarities. By declaring each such map to be the identity
elsewhere in Cy, we get a map

flt]Bn—>C1,

where C; is Cqy plus all the new towers placed above each A;. The map
f1 is simply fo followed by all those little tower maps. Because fy was
a similarity on fo_l(Ui), and because the bases A; are located in U;, the
dilatation of f; only depends on n and «. In other words, we did not
increase the dilatation by this composition because the only nontrivial
contribution came from where fy was conformal.

Now we continue in a similar fashion. The walls of all the little
towers in C; are flattened near the points where the children (the grand-
children of Tp) leave Cq, and f; is modified so as to become a similarity
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near those points. This modification increases the dilatation but there
is no accumulation because the increase only occurs at places where fj
was conformal. Then we blow up new (possibly leaning) towers from
those newly created similarity neighborhoods. Thus the dilatation of
the map f; : B" — Cy will not grow, where, naturally, fs is f; followed
by the new even littler tower maps, declared to be the identity outside
the bases, and Cs is the union of C; and the new towers.

The final map f is the limit of the maps fo, f1, fo,... constructed
in this manner. Its dilatation in B"” only depends on n and «, and it
maps B” onto D, where D is the interior of the union CoUC;UCoU- - -. If
the tree is properly arranged, f will be a homeomorphism of the closed
unit ball onto D. It is also clear by construction that the set Fy lies on
the boundary of D, and that we can always arrange the boundary 0D
minus, possibly, the set Fr, to be of finite Hausdorft H,,_i-measure.

This completes the proof of Theorem 4.3.

5. Proof of the Wall Conjecture in dimension n = 3.

Soon after Jussi Vaisala heard about the Wall Conjecture, he de-
vised a simple argument in dimension n = 3 which also proves the
following more general theorem.

Theorem 5.1. (Yéiisélé, [V6]) Suppose that G is an open set in R",
n > 3, such that HY(R" U {oco} \ G) = 0 and that R" \ G satisfies the
condition c-LLCy. Then

™

Ha (B(w, 2dist(x, 0G)) N 0G) > 1= (dist(x, 9G))?

c

for each x € G.

In the theorem, H' denotes the first Cech cohomology group with
integer coefficients. The ¢-LLCs condition means that for every x in
R" \ G and 7 > 0 points in (R* \ G) \ B(z,r) can be joined in (R" \
G) \ B(x,r/c), where ¢ > 1 is a constant independent of x and r.

If D is a (K—)quasiconformal Jordan ball in R3, then H'(R® U
{oo} \ D) = 0 by Alexander duality, and R® \ D is ¢-LLCz for some
¢ > 1 depending only on K by a theorem of Gehring and Vaisild [GV].
The letters LLC stand for linear local connectivity. It is also true, and
proved by Gehring and Viiséla [GV], that R\ D satisfies the following
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¢-LLC; condition, which is dual to ¢-LLCsy: for every z € R” \ G and
r > 0 points in (R™ \ G) N B(x, ) can be joined in (R* \ G) N B(x, cr).
Therefore, Theorem 1.5 follows from Vaisald’s Theorem 5.1.

I shall next sketch another proof for Theorem 1.5, but the reader
should bear in mind that it is not as elegant as Vaisala’s argument and
it will not generalize so as to cover Theorem 5.1. But even this proof
as such has nothing to do with quasiconformal maps; we shall only
employ the LLC condition for the complement. In Problem 5 below in
Section 6 we formulate a general conjecture along the lines “quantitative
topological conditions imply mass bounds”. This type of results have
recently been popular in Riemannian geometry; see [GP].

Proor OF THEOREM 1.5. We can normalize the situation so that
x = 0 and dist(xz,0D) = 1. It is an easy exercise to check that it is
enough to find constants Cy; = C1(K) > 2 and Cy = Co(K) > 0 such
that

(5.2) Ha(B(0,C1) NOD) > Cs.

Next we invoke a lemma which is due to Gehring [G1, Lemma 1].
In the lemma, we denote by K; the decomposition of R into closed
cubes with vertices in Z3; then write K, = sK; for s > 0, and denote
by K} the 1-skeleton of K.

Lemma 5.3. Suppose that a compact set A in R® satisfies

2

(5.4) Ha(A) < 2—4 <1

for some s > 0. Then some translate A —y ={a—y:a € A}, y € R3,
does not meet the 1-skeleton K}.

Now choose the constant C7 > 2 in (5.2) very large and s > 0 very
small (both depending on the constant ¢ in the linear local connectivity
condition, hence on K only) and assume that (5.4) holds for A = 0D nN
B(0,C1). Then the part of the (translated) 1-skeleton K! that lies
in B(0,C) does not meet R® \ D, because it does not meet 9D, it
is connected, and it meets D near the point 0. This will lead to a
contradiction as follows. One first selects a curve y; in R® \ D that
joins some point w on dD with |w| =1 to a point in dB(0,C). Then,
by using the LLCy condition, one selects another curve vy, joining the
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same points in R® \ D, but in such a way that the union v = v; U 72
will link one of the polygonal circles forming the (translated) 1-skeleton
K. Although at the first glance it seems clear that such a curve o
exists, the selection is not totally trivial; it can be done however.

This linking contradicts the fact that any circle in D is contractible
in the complement of v, because « lies in R® \ D. The theorem follows.

6. Open problems.

PROBLEM 1. Prove Theorem 1.1 in all dimensions n > 3. This can be
accomplished if the next question admits a positive answer. Similarly,
in that case one can replace double cone points with inner cone points.

PROBLEM 2. Suppose that F'is a compact set in R”, n > 2, and that
¢ : F — ¢(F) is a quasisymmetric embedding of F' into R™. Is it true
that the n-measure of ¢(F') is zero if the n-measure of F' is zero?

The proof in [H] of Theorem 1.1 would not only work in all dimen-
sions n > 3 but it would also tremendously simplify, should the answer
to this question be yes. In particular, no Sullivan theory of Lipschitz
approximations is needed. Note that the answer to the question is no
if n=1.

Quasisymmetric maps are defined in (3.13), and their basic theory
can be found in [TV1], [V2].

PrOBLEM 3. What version, if any, of Theorem 1.2 remains true if
we only assume that 0D be of finite Ho-measure? By using the tree
construction amended by a certain bubble blowing procedure, it is not
hard to construct a quasiconformal Jordan domain D in R"®, n > 3, such
that the boundary 0D has a purely unrectifiable piece of positive H,,_1-
measure that transforms onto a set of Hausdorff dimension zero under
a quasiconformal map f : D — B", and that the complement R™ \ D
has no points of n-density on dD. However, I have only been able to
construct D in such a way that its boundary has o-finite Hausdorff
‘H,,—1-1easure.

PROBLEM 4. Let f be a quasiconformal map of B" onto a Jordan
domain D in R™, n > 3, and suppose that the boundary of D has finite
H,,—1-measure. When is f~1: 0D — OB" absolutely continuous? The
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best known result to the author is the case when 0D is (n — 1)-regular
as defined in (3.12). Then f is not only absolutely continuous, but it
induces a measure that is A, related to #,,_1. This result is essentially
due to Gehring. (See [S, 3.4] or [H, 2.7]). From the point of view of
boundary behavior, regularity is a strong assumption. It does not cover,
for instance, maps that can be extended to global quasiconformal maps
of R™.

PROBLEM 5. Prove the Wall Conjecture in all dimensions. Related to
this, Jussi Vaisala has proposed the following generalized Wall Conjec-
ture, abbreviated WC(n, p), for all integers n > 2 and 1 < p < n — 2.
Suppose that G is a homologically trivial open set in R™, n > 2, and
suppose that R U{oo}\ G is inner (k, c)-joinable for all0 < k < p—1.
Then the conjecture WC(n, p) states that

(6.1)  Hp+1(B(z,2dist(z,0G)) NOG) > C(c,n)dist(z, 0G)PT!

for z € G. The notion of inner joinability was introduced by Vaisala in
[V5], where we refer the reader for a precise definition. It suffices to say
here that the inner (0, ¢)-joinability is precisely the ¢-LLCs condition.
Thus Viisild’s Theorem 5.1 implies that WC(n, 1) is true. It is also
not hard to see that WC(n, 0) is true; note that in this case the second
requirement about joinability becomes empty, while the first require-
ment about G being homologically trivial implies the connectivity of
the complement of G.

All other cases of WC'(n, p) are open. The wall conjecture as stated
in (1.8) would follow from WC'(n,n — 2), because Véisili has shown in
[V5] that the complement of a quasiconformal ball is (k, ¢)-joinable for
all0 <k <n-—3.
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ADDED IN PROOF. After this paper was submitted, two relevant de-
velopments took place. First, Semmes (Semmes, Quasisymmetry, mea-
sure and a question of Heinonen, this issue) solved Problem 2 above;
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its consequences are discussed in (Heinonen, A Theorem of Semmes
and boundary absolute continuity in all dimensions, this issue). In par-
ticular, Problem 1 is now solved as well. Second, Viisdla (The Wall
Conjecture on Domains in Euclidean Spaces, Preprint, University of
Helsinki, 1996) solved the generalized Wall Conjecture as in Problem
5 above. As a joint consequence of the results of Semmes and Vaisala,
Theorem 1.2 is true in all dimensions n > 3, verifying the conjecture
made on page 6 before Theorem 1.5. Namely, assuming the Wall Con-
jecture, the case n # 4 is already proved in the present paper, and the
case n = 4 can be handled by the aid of the aforementioned result of
Semmes as in (Heinonen, this issue).
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